BabyScreen+ newborn screening
Gene: COL3A1 Amber List (moderate evidence)I don't know
Well established gene-disease association.
Assessed as 'moderate actionability' in paediatric patients by ClinGen.
Approximately half of children tested for vEDS in the absence of a positive family history present with a major complication at an average age of 11 years. The majority (60%) of individuals diagnosed before age 18 are identified because of a positive family history, though 15% of children have experienced a major complication before the time of testing, and of those tested in the absence of family history, 54% had experienced a major complication.
Death in the first two decades of life most commonly results from arterial rupture; death before age 20 is more commonly reported in males (3:1). Vascular rupture or dissection and gastrointestinal perforation or organ rupture are the presenting signs in 70% of adults with a COL3A1 pathogenic variant, and may present as sudden death, stroke and neurologic sequelae, acute abdomen/retroperitoneal bleeding, uterine rupture at delivery, and/or shock, with an average age of 31 for first major arterial or gastrointestinal complication. Bowel rupture is very rarely (3%) lethal. Hemoptysis can be severe and recurrent, even life threatening. Carotid cavernous sinus fistulas typically present with sudden-onset ocular symptoms and almost always require rapid intervention to save vision. It affects about 10% of individuals with vEDS with a preponderance among females. Vascular fragility is dominant in the third and fourth decade.
Imaging of the entire arterial tree is recommended.
Lack of consensus re aortic repair: Guidelines differ on recommendation for prophylactic aortic repair in the case of asymptomatic patients with aortic aneurysm. Some guidelines recommend patients undergo elective operation at diameters of 4.0-6.0 cm depending on location of aortic aneurysm and pregnancy anticipation status. Other guidelines take a more conservative approach, stating that due to the high risk of complications as a result of hemorrhagic tendency, tissue fragility, and poor wound healing in vEDS as well as the lack of specific data in vEDS patients, it is not possible to set threshold for surgical intervention in patients with EDS Type IV and thoracic aortic aneurysm. These guidelines state that decisions to surgically intervene should instead be based on a case-by-case basis and guided by multidisciplinary discussion.Created: 24 Dec 2022, 7:06 a.m. | Last Modified: 24 Dec 2022, 7:06 a.m.
Panel Version: 0.1679
Mode of inheritance
MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes
Ehlers-Danlos syndrome, vascular type, MIM# 130050
Added phenotypes Ehlers-Danlos syndrome, vascular type, MIM# 130050 for gene: COL3A1
Tag for review was removed from gene: COL3A1.
Gene: col3a1 has been classified as Amber List (Moderate Evidence).
Phenotypes for gene: COL3A1 were changed from Ehlers-Danlos syndrome, type IV to Ehlers-Danlos syndrome, vascular type, MIM# 130050
Gene: col3a1 has been classified as Amber List (Moderate Evidence).
Tag for review tag was added to gene: COL3A1. Tag cardiac tag was added to gene: COL3A1.
gene: COL3A1 was added gene: COL3A1 was added to gNBS. Sources: BabySeq Category A gene,Expert Review Green Mode of inheritance for gene: COL3A1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: COL3A1 were set to Ehlers-Danlos syndrome, type IV
If promoting or demoting a gene, please provide comments to justify a decision to move it.
Genes included in a Genomics England gene panel for a rare disease category (green list) should fit the criteria A-E outlined below.
These guidelines were developed as a combination of the ClinGen DEFINITIVE evidence for a causal role of the gene in the disease(a), and the Developmental Disorder Genotype-Phenotype (DDG2P) CONFIRMED DD Gene evidence level(b) (please see the original references provided below for full details). These help provide a guideline for expert reviewers when assessing whether a gene should be on the green or the red list of a panel.
A. There are plausible disease-causing mutations(i) within, affecting or encompassing an interpretable functional region(ii) of this gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
B. There are plausible disease-causing mutations(i) within, affecting or encompassing cis-regulatory elements convincingly affecting the expression of a single gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
C. As definitions A or B but in 2 or 3 unrelated cases/families with the phenotype, with the addition of convincing bioinformatic or functional evidence of causation e.g. known inborn error of metabolism with mutation in orthologous gene which is known to have the relevant deficient enzymatic activity in other species; existence of an animal model which recapitulates the human phenotype.
AND
D. Evidence indicates that disease-causing mutations follow a Mendelian pattern of causation appropriate for reporting in a diagnostic setting(iv).
AND
E. No convincing evidence exists or has emerged that contradicts the role of the gene in the specified phenotype.
(i)Plausible disease-causing mutations: Recurrent de novo mutations convincingly affecting gene function. Rare, fully-penetrant mutations - relevant genotype never, or very rarely, seen in controls. (ii) Interpretable functional region: ORF in protein coding genes miRNA stem or loop. (iii) Phenotype: the rare disease category, as described in the eligibility statement. (iv) Intermediate penetrance genes should not be included.
It’s assumed that loss-of-function variants in this gene can cause the disease/phenotype unless an exception to this rule is known. We would like to collect information regarding exceptions. An example exception is the PCSK9 gene, where loss-of-function variants are not relevant for a hypercholesterolemia phenotype as they are associated with increased LDL-cholesterol uptake via LDLR (PMID: 25911073).
If a curated set of known-pathogenic variants is available for this gene-phenotype, please contact us at panelapp@genomicsengland.co.uk
We classify loss-of-function variants as those with the following Sequence Ontology (SO) terms:
Term descriptions can be found on the PanelApp homepage and Ensembl.
If you are submitting this evaluation on behalf of a clinical laboratory please indicate whether you report variants in this gene as part of your current diagnostic practice by checking the box
Standardised terms were used to represent the gene-disease mode of inheritance, and were mapped to commonly used terms from the different sources. Below each of the terms is described, along with the equivalent commonly-used terms.
A variant on one allele of this gene can cause the disease, and imprinting has not been implicated.
A variant on the paternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on the maternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on one allele of this gene can cause the disease. This is the default used for autosomal dominant mode of inheritance where no knowledge of the imprinting status of the gene required to cause the disease is known. Mapped to the following commonly used terms from different sources: autosomal dominant, dominant, AD, DOMINANT.
A variant on both alleles of this gene is required to cause the disease. Mapped to the following commonly used terms from different sources: autosomal recessive, recessive, AR, RECESSIVE.
The disease can be caused by a variant on one or both alleles of this gene. Mapped to the following commonly used terms from different sources: autosomal recessive or autosomal dominant, recessive or dominant, AR/AD, AD/AR, DOMINANT/RECESSIVE, RECESSIVE/DOMINANT.
A variant on one allele of this gene can cause the disease, however a variant on both alleles of this gene can result in a more severe form of the disease/phenotype.
A variant in this gene can cause the disease in males as they have one X-chromosome allele, whereas a variant on both X-chromosome alleles is required to cause the disease in females. Mapped to the following commonly used term from different sources: X-linked recessive.
A variant in this gene can cause the disease in males as they have one X-chromosome allele. A variant on one allele of this gene may also cause the disease in females, though the disease/phenotype may be less severe and may have a later-onset than is seen in males. X-linked inactivation and mosaicism in different tissues complicate whether a female presents with the disease, and can change over their lifetime. This term is the default setting used for X-linked genes, where it is not known definitately whether females require a variant on each allele of this gene in order to be affected. Mapped to the following commonly used terms from different sources: X-linked dominant, x-linked, X-LINKED, X-linked.
The gene is in the mitochondrial genome and variants within this can cause this disease, maternally inherited. Mapped to the following commonly used term from different sources: Mitochondrial.
Mapped to the following commonly used terms from different sources: Unknown, NA, information not provided.
For example, if the mode of inheritance is digenic, please indicate this in the comments and which other gene is involved.