Activity

Filter

Cancel
Date Panel Item Activity
79 actions
BabyScreen+ newborn screening v1.114 ACADSB Tommy Li Added phenotypes 2-methylbutyrylglycinuria MIM#610006 for gene: ACADSB
BabyScreen+ newborn screening v1.114 ACADS Tommy Li Added phenotypes Acyl-CoA dehydrogenase, short-chain, deficiency of 201470 for gene: ACADS
BabyScreen+ newborn screening v1.114 ACADL Tommy Li Added phenotypes Sudden infant death for gene: ACADL
BabyScreen+ newborn screening v1.114 ACAD8 Tommy Li Added phenotypes Isobutyryl-CoA dehydrogenase deficiency MIM#611283 for gene: ACAD8
BabyScreen+ newborn screening v1.114 CAD Tommy Li Added phenotypes Developmental and epileptic encephalopathy 50, MIM# 616457 for gene: CAD
BabyScreen+ newborn screening v1.114 ACADVL Tommy Li Added phenotypes VLCAD deficiency, MIM#201475 for gene: ACADVL
Publications for gene ACADVL were updated from 31372341; 32885845 to 32885845; 31372341
BabyScreen+ newborn screening v1.114 ACADM Tommy Li Added phenotypes Medium chain acyl CoA dehydrogenase deficiency, MIM#201450 for gene: ACADM
BabyScreen+ newborn screening v1.114 ACAD9 Tommy Li Added phenotypes Mitochondrial complex I deficiency, nuclear type 20, MIM#611126 for gene: ACAD9
BabyScreen+ newborn screening v0.2134 TRDN Zornitza Stark changed review comment from: Rated as 'strong actionability' for paediatric patients by ClinGen.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease.

Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events.

In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended.

Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years.

For review: age of onset and penetrance.; to: Rated as 'strong actionability' for paediatric patients by ClinGen.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease.

Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events.

In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended.

Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years.

Reviewed with paediatric cardiologist: variable penetrance and age of onset, does not fulfil criteria for gNBS.
BabyScreen+ newborn screening v0.2133 TECRL Zornitza Stark changed review comment from: Rated as 'strong actionability' for paediatric patients by ClinGen.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease.

Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events.

In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended.

Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years.

For review: age of onset and penetrance.
Sources: ClinGen; to: Rated as 'strong actionability' for paediatric patients by ClinGen.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease.

Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events.

In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended.

Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years.

Reviewed with a paediatric cardiologist: variable penetrance and age of onset, does not fulfil criteria for gNBS.
BabyScreen+ newborn screening v0.2126 CASQ2 Zornitza Stark changed review comment from: Well established gene-disease association.

ClinGen: 'strong actionability' both for adult and paediatric patients. Treatment: beta blockers first line; ICD. There are also numerous known arrhythmia triggers which can be avoided.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease.

; to: Well established gene-disease association.

ClinGen: 'strong actionability' both for adult and paediatric patients. Treatment: beta blockers first line; ICD. There are also numerous known arrhythmia triggers which can be avoided.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease.

Reviewed with paediatric cardiologist: variable penetrance and age of onset.

BabyScreen+ newborn screening v0.2124 CALM3 Zornitza Stark changed review comment from: Rated as 'strong actionability' for paediatric patients by ClinGen.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2.

Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death.

Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events.

In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended.

Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years.

For review: age of onset and penetrance.
Sources: ClinGen; to: Rated as 'strong actionability' for paediatric patients by ClinGen.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2.

Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death.

Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events.

In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended.

Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years.

Exclude for CPVT: association has moderate evidence, there are issues with penetrance, and treatment is generally only recommended in symptomatic individuals.
Sources: ClinGen
BabyScreen+ newborn screening v0.2123 CALM2 Zornitza Stark changed review comment from: Rated as 'strong actionability' for paediatric patients by ClinGen.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2.

Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death.

Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events.

In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended.

Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years.

For review: age of onset and penetrance.
Sources: ClinGen; to: Rated as 'strong actionability' for paediatric patients by ClinGen.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2.

Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death.

Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events.

In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended.

Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years.

Reviewed with paediatric cardiologist: not for inclusion due to issues with penetrance, plus guidelines only generally recommend treatment is symptomatic individuals.
BabyScreen+ newborn screening v0.2123 CALM1 Zornitza Stark changed review comment from: Rated as 'strong actionability' for paediatric patients by ClinGen.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2.

Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death.

Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events.

In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended.

Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years.

For review: age of onset and penetrance.
Sources: ClinGen; to: Rated as 'strong actionability' for paediatric patients by ClinGen.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2.

Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death.

Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events.

In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended.

Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years.

Reviewed with paediatric cardiologist: not for inclusion due to issues with penetrance, plus guidelines only generally recommend treatment is symptomatic individuals.
BabyScreen+ newborn screening v0.2058 SAMD9 Zornitza Stark gene: SAMD9 was added
gene: SAMD9 was added to Baby Screen+ newborn screening. Sources: Expert list
Mode of inheritance for gene: SAMD9 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SAMD9 were set to 31306780
Phenotypes for gene: SAMD9 were set to MIRAGE syndrome, MIM# 617053
Review for gene: SAMD9 was set to GREEN
Added comment: MIRAGE syndrome (MIRAGE) is a form of syndromic adrenal hypoplasia, characterized by myelodysplasia, infection, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy. The condition is often fatal within the first decade of life, usually as a result of invasive infection.

Treatment: BMT.

Non-genetic confirmatory testing: no.
Sources: Expert list
BabyScreen+ newborn screening v0.2052 TNFAIP3 Lilian Downie gene: TNFAIP3 was added
gene: TNFAIP3 was added to Baby Screen+ newborn screening. Sources: Expert list
Mode of inheritance for gene: TNFAIP3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TNFAIP3 were set to PMID: 31587140, PMID: 33101300
Phenotypes for gene: TNFAIP3 were set to Autoinflammatory syndrome, familial, Behcet-like 1 MIM#616744
Review for gene: TNFAIP3 was set to RED
Added comment: Average age of onset 5yrs - too variable re age of onset.

painful and recurrent mucosal ulceration affecting the oral mucosa, gastrointestinal tract, and genital areas. The onset of symptoms is usually in the first decade, although later onset has been reported. Additional more variable features include skin rash, uveitis, and polyarthritis, consistent with a systemic hyperinflammatory state. Many patients have evidence of autoimmune disease. Rare patients may also have concurrent features of immunodeficiency, including recurrent infections with low numbers of certain white blood cells or impaired function of immune cells.

Treatment: Colchicine, glucocorticoid, mesalazine, cyclosporine, methotrexate, azathioprine, anakinra, rituximab, tocilizumab, infliximab
Sources: Expert list
BabyScreen+ newborn screening v0.1982 TRNT1 Lilian Downie gene: TRNT1 was added
gene: TRNT1 was added to Baby Screen+ newborn screening. Sources: Expert list
Mode of inheritance for gene: TRNT1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TRNT1 were set to PMID: 25193871, PMID: 23553769, PMID: 33936027, PMID: 26494905
Phenotypes for gene: TRNT1 were set to Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay MIM#616084
Review for gene: TRNT1 was set to AMBER
Added comment: Onset infancy
Strong gene disease association

Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD) is an autosomal recessive syndromic disorder characterized by onset of severe sideroblastic anemia in the neonatal period or infancy. Affected individuals show delayed psychomotor development with variable neurodegeneration. Recurrent periodic fevers without an infectious etiology occur throughout infancy and childhood; immunologic work-up shows B-cell lymphopenia and hypogammaglobulinemia. Other more variable features include sensorineural hearing loss, retinitis pigmentosa, nephrocalcinosis, and cardiomyopathy. Death in the first decade may occur (summary by Wiseman et al., 2013).

Bone marrow transplant (hematopoietic stem cell transplantation (HSCT)), replacement immunoglobulin treatment

Allelic disease: Retinitis pigmentosa and erythrocytic microcytosis MIM#616959. Also AR.
DeLuca et al. (2016) concluded that hypomorphic TRNT1 mutations can cause a recessive disease that is almost entirely limited to the retina - this has teenage onset and is not treatable. can we exclude these variants?
Sources: Expert list
BabyScreen+ newborn screening v0.1935 C17orf62 Zornitza Stark gene: C17orf62 was added
gene: C17orf62 was added to Baby Screen+ newborn screening. Sources: Expert Review
new gene name, treatable, immunological tags were added to gene: C17orf62.
Mode of inheritance for gene: C17orf62 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: C17orf62 were set to 30361506; 30312704; 28351984
Phenotypes for gene: C17orf62 were set to Chronic granulomatous disease 5, autosomal recessive, MIM# 618935
Review for gene: C17orf62 was set to GREEN
Added comment: Seven Icelandic families reported with same homozygous variant, p.Tyr2Ter and an additional family from different ethnic background with different homozygous splice site variant. Functional data, including mouse model. Gene also known as EROS and CYBC1 (HGNC approved name)

Primary immunodeficiency characterized by onset of recurrent infections and severe colitis in the first decade of life. Patients often present with features of inflammatory bowel disease and may show granulomata on biopsy. Patients are particularly susceptible to catalase-positive organisms, including Burkholderia cepacia, Legionella, and Candida albicans. Some patients may develop autoinflammatory symptoms, including recurrent fever in the absence of infection, hemolytic anemia, and lymphopenia. Additional features may include short stature, viral infections, cutaneous abscesses, pulmonary infections, and lymphadenitis. Haematopoietic bone marrow transplant is curative.

Non-genetic confirmatory assay: dihydrorhodamine assay
Sources: Expert Review
BabyScreen+ newborn screening v0.1876 ACADSB Zornitza Stark Marked gene: ACADSB as ready
BabyScreen+ newborn screening v0.1876 ACADSB Zornitza Stark Gene: acadsb has been classified as Red List (Low Evidence).
BabyScreen+ newborn screening v0.1876 ACADSB Zornitza Stark Phenotypes for gene: ACADSB were changed from 2-Methylbutyryl-CoA dehydrogenase deficiency to 2-methylbutyrylglycinuria MIM#610006
BabyScreen+ newborn screening v0.1875 ACADS Zornitza Stark Marked gene: ACADS as ready
BabyScreen+ newborn screening v0.1875 ACADS Zornitza Stark Gene: acads has been classified as Red List (Low Evidence).
BabyScreen+ newborn screening v0.1872 ACADSB Lilian Downie reviewed gene: ACADSB: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: 2-methylbutyrylglycinuria MIM#610006; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
BabyScreen+ newborn screening v0.1872 ACADS Lilian Downie reviewed gene: ACADS: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Acyl-CoA dehydrogenase, short-chain, deficiency of MIM#201470; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
BabyScreen+ newborn screening v0.1845 CASQ2 Zornitza Stark changed review comment from: Well established gene-disease association.

ClinGen: 'strong actionability' both for adult and paediatric patients. Treatment: beta blockers first line; ICD. There are also numerous known arrhythmia triggers which can be avoided.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease.

For review.; to: Well established gene-disease association.

ClinGen: 'strong actionability' both for adult and paediatric patients. Treatment: beta blockers first line; ICD. There are also numerous known arrhythmia triggers which can be avoided.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease.

BabyScreen+ newborn screening v0.1844 CAD Zornitza Stark Marked gene: CAD as ready
BabyScreen+ newborn screening v0.1844 CAD Zornitza Stark Gene: cad has been classified as Green List (High Evidence).
BabyScreen+ newborn screening v0.1844 CAD Zornitza Stark Classified gene: CAD as Green List (high evidence)
BabyScreen+ newborn screening v0.1844 CAD Zornitza Stark Gene: cad has been classified as Green List (High Evidence).
BabyScreen+ newborn screening v0.1843 CAD Zornitza Stark gene: CAD was added
gene: CAD was added to gNBS. Sources: Expert list
treatable, metabolic tags were added to gene: CAD.
Mode of inheritance for gene: CAD was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CAD were set to 28007989
Phenotypes for gene: CAD were set to Developmental and epileptic encephalopathy 50, MIM# 616457
Review for gene: CAD was set to GREEN
Added comment: Developmental and epileptic encephalopathy-50 (DEE50) is an autosomal recessive progressive neurodegenerative neurometabolic disorder characterized by delayed psychomotor development, early-onset refractory seizures, severe developmental regression, and normocytic anemia. Onset is within the first months or years of life.

Affected children can have a favourable response to treatment with uridine, PMID 28007989
Sources: Expert list
BabyScreen+ newborn screening v0.1834 GLA Zornitza Stark changed review comment from: Assessed as 'moderate actionability' in paediatric patients by ClinGen.

In classic FD, the first symptoms, including chronic neuropathic pain and episodic severe pain crises, emerge during childhood (typically age 3-10 years). Heterozygous females typically have a later median age of onset than males (9-13 years versus 13-23 years). Rarely, females may be relatively asymptomatic and have a normal life span or may have symptoms as severe as males with the classic phenotype.

Cardiac and/or cerebrovascular disease is present in most males by middle age while ESRD usually develops during the third to fifth decade. Renal and cardiac failure represent major sources of morbidity, and account for the reduced lifespan among affected males (50-58 years) and females (70-75 years) compared to the normal population.

A systematic review of RCTs of ERT reported on nine studies of 351 FD patients; however, many of these studies reported only on the effect of ERT on levels of enzyme substrate. Data from 2 trials (n=39 males) found no statistically significant differences in plasma enzyme substrate and one trial (n=24 males) found no statistical differences in renal function between individuals treated with agalsidase alfa and placebo (up to 6-month follow-up). Similar results were seen for agalsidase beta. One trial of 26 male patients found a statistically significant difference in pain, favoring agalsidase alfa compared to placebo at 5-6 months after treatment. No trial reported on the effect of agalsidase alfa on mortality or cardiac/cerebrovascular disease. One trial of agalsidase beta (n=82 males and females) found no difference in mortality, renal function, or symptoms or complications of cardiac or cerebrovascular disease over 18 months. The long-term influence of ERT on risk of morbidity and mortality related to FD remains to be established.

Migalastat, an oral chaperone drug, is recommended as an option for treatment for some patients with FD who are over 16 years with an amenable genetic variant who would usually be offered ERT. For non-amenable genotypes, migalastat may result in a net loss of alpha-Gal A activity, potentially worsening the disease condition.

A systematic review evaluated 2 phase III RCTs that both included males and females. One RCT randomized patients to switch from ERT to migalastat (n = 36) or continue with ERT (n = 24) during an 18-month period with a 12-month extension in which all patients received migalastat. During the treatment period, the percentage of patients who had a renal, cardiac, or cerebrovascular event or died was 29% of patients on migalastat compared to 44% of patients on ERT. However, this difference was not statistically significant. A second RCT compared migalastat (n=34) with placebo (n=33) over a 6-month period, with an 18-month extension study. The primary outcome was change from baseline in interstitial capillary inclusions of the enzyme substrate globotriaosylceramide (GL-3), which was not significantly different between groups. Results from both trials indicate that migalastat does not have a significant beneficial effect on pain, health-related quality of life outcomes, or glomerular filtration rate (results were uncertain due to large confidence intervals, small sample sizes, and/or short follow-up time). Migalastat did not influence left ventricular ejection fraction but did improve left ventricular mass over 18 months.

There are a number of recommendations for surveillance and agents to avoid (amiodarone). There is no consensus as to when ERT should be started.; to: Assessed as 'moderate actionability' in paediatric patients by ClinGen.

In classic FD, the first symptoms, including chronic neuropathic pain and episodic severe pain crises, emerge during childhood (typically age 3-10 years). Heterozygous females typically have a later median age of onset than males (9-13 years versus 13-23 years). Rarely, females may be relatively asymptomatic and have a normal life span or may have symptoms as severe as males with the classic phenotype.

Cardiac and/or cerebrovascular disease is present in most males by middle age while ESRD usually develops during the third to fifth decade. Renal and cardiac failure represent major sources of morbidity, and account for the reduced lifespan among affected males (50-58 years) and females (70-75 years) compared to the normal population.

A systematic review of RCTs of ERT reported on nine studies of 351 FD patients; however, many of these studies reported only on the effect of ERT on levels of enzyme substrate. Data from 2 trials (n=39 males) found no statistically significant differences in plasma enzyme substrate and one trial (n=24 males) found no statistical differences in renal function between individuals treated with agalsidase alfa and placebo (up to 6-month follow-up). Similar results were seen for agalsidase beta. One trial of 26 male patients found a statistically significant difference in pain, favoring agalsidase alfa compared to placebo at 5-6 months after treatment. No trial reported on the effect of agalsidase alfa on mortality or cardiac/cerebrovascular disease. One trial of agalsidase beta (n=82 males and females) found no difference in mortality, renal function, or symptoms or complications of cardiac or cerebrovascular disease over 18 months. The long-term influence of ERT on risk of morbidity and mortality related to FD remains to be established.

Migalastat, an oral chaperone drug, is recommended as an option for treatment for some patients with FD who are over 16 years with an amenable genetic variant who would usually be offered ERT. For non-amenable genotypes, migalastat may result in a net loss of alpha-Gal A activity, potentially worsening the disease condition.

A systematic review evaluated 2 phase III RCTs that both included males and females. One RCT randomized patients to switch from ERT to migalastat (n = 36) or continue with ERT (n = 24) during an 18-month period with a 12-month extension in which all patients received migalastat. During the treatment period, the percentage of patients who had a renal, cardiac, or cerebrovascular event or died was 29% of patients on migalastat compared to 44% of patients on ERT. However, this difference was not statistically significant. A second RCT compared migalastat (n=34) with placebo (n=33) over a 6-month period, with an 18-month extension study. The primary outcome was change from baseline in interstitial capillary inclusions of the enzyme substrate globotriaosylceramide (GL-3), which was not significantly different between groups. Results from both trials indicate that migalastat does not have a significant beneficial effect on pain, health-related quality of life outcomes, or glomerular filtration rate (results were uncertain due to large confidence intervals, small sample sizes, and/or short follow-up time). Migalastat did not influence left ventricular ejection fraction but did improve left ventricular mass over 18 months.

There are a number of recommendations for surveillance and agents to avoid (amiodarone). There is no consensus as to when ERT should be started. Note ERT is licensed in Australia from age 7 years.

However, carbamazepine relieves neuropathic pain, which has onset in early childhood. Overall, include.
BabyScreen+ newborn screening v0.1801 MLH1 Zornitza Stark changed review comment from: Note mono-allelic variants are associated with adult-onset cancer risk.

MMRCS rated as 'strong actionability' in paediatric patients by ClinGen.

The hallmark of MMRCS is early onset cancer, most often in childhood or young adulthood. The median age of onset of the first tumor is 7.5 years, with a wide range observed (0.4-39 years). A large portion (up to 40%) of patients develop metachronous second malignancies. The median survival after diagnosis of the primary tumor is less than 30 months. Prognosis depends on the possibility of complete resection, making early detection paramount. It is unclear what tumor spectrum will emerge among adults with MMRCS. Brain tumors are frequent and often diagnosed in the first decade of life. The rate of progression appears to be rapid in the brain tumors. The median age at diagnosis of brain tumors is 9 years (range, 2-40 years). Brain tumors are by far the most common cause of death. Colonic adenomatous oligopolyposis typically is diagnosed between 5 and 10 years of age. The progression of adenomas to malignancy in MMRCS is the most rapid of any inherited colorectal cancer syndrome. Among MMRCS patients presenting with colorectal cancer (CRC), the median age at diagnosis was 16 years (range, 8-48 years) with more than half of patients classified as pediatric-onset CRC. The age of onset of small-bowel adenomas is later; they typically develop in the second decade of life. The median age at diagnosis of small-bowel cancer was 28 years, with a range of 11-42 years. The lifetime risk of gastrointestinal cancer among MMRCS patients is the highest reported of all gastrointestinal cancer predisposition syndromes as a function of age. The median age at diagnosis of hematologic malignancy is 6.6 years. Endometrial cancer has been diagnosed between 19 and 44 years. The age at diagnosis of urinary tract tumors has ranged from 10 to 22 years.

The management of MMRCS is based on the current estimates of neoplasia risk and the early age of onset for the cancers, which have led to tentative guidelines for the management of these patients. The age at which to begin surveillance varies by guideline and is represented below as age ranges. In patients with MMRCS, the following surveillance is suggested:

•Screening for CRC by colonoscopy is recommended annually beginning at age 6 to 8 years. Once polyps are identified, colonoscopy every 6 months is recommended.
•Annual surveillance for small-bowel cancer by upper endoscopy and video capsule endoscopy is suggested beginning at 8 to 10 years of age. Monitoring of hemoglobin levels every 6 months also is suggested, beginning at 8 years of age.
•Surveillance for brain tumors by brain MRI every 6 to 12 months is suggested starting at the time of diagnosis even in the first year of life to age 2 years.
•Currently, no proven surveillance modalities for leukemia or lymphoma have been identified. Complete blood count to screen for leukemia is suggested every 6 months beginning at 1 year of age. Clinical examinations and abdominal ultrasounds to screen for lymphoma every 6 months may be considered by the treating physician.
•For individuals with a uterus, surveillance for endometrial cancer is suggested by transvaginal ultrasound, pelvic examination, and endometrial sampling annually starting at age 20 years.
•Surveillance for cancer of the urinary tract is suggested, with annual urinalysis starting at age 10 to 20 years.
•To screen for other types of tumors, whole-body MRI could be considered once a year starting at 6 years of age or when anesthesia is not needed. This method should not replace the need for ultrasound and brain MRI.

Estimated penetrance in MMRCS:

•50% develop small-bowel adenomas
•>90% develop colorectal adenomas
•59 to 70% develop colorectal cancer
•58 to 70% develop high-grade brain tumours
•20-40% develop lymphoma
•10-40% develop leukemia
•10 to 18% develop small-bowel cancer
•<10% develop endometrial cancer
•<10% develop urinary tract cancer

•<10% develop cancer of other sites; to: Note mono-allelic variants are associated with adult-onset cancer risk.

MMRCS rated as 'strong actionability' in paediatric patients by ClinGen.

The hallmark of MMRCS is early onset cancer, most often in childhood or young adulthood. The median age of onset of the first tumor is 7.5 years, with a wide range observed (0.4-39 years). A large portion (up to 40%) of patients develop metachronous second malignancies. The median survival after diagnosis of the primary tumor is less than 30 months. Prognosis depends on the possibility of complete resection, making early detection paramount. It is unclear what tumor spectrum will emerge among adults with MMRCS. Brain tumors are frequent and often diagnosed in the first decade of life. The rate of progression appears to be rapid in the brain tumors. The median age at diagnosis of brain tumors is 9 years (range, 2-40 years). Brain tumors are by far the most common cause of death. Colonic adenomatous oligopolyposis typically is diagnosed between 5 and 10 years of age. The progression of adenomas to malignancy in MMRCS is the most rapid of any inherited colorectal cancer syndrome. Among MMRCS patients presenting with colorectal cancer (CRC), the median age at diagnosis was 16 years (range, 8-48 years) with more than half of patients classified as pediatric-onset CRC. The age of onset of small-bowel adenomas is later; they typically develop in the second decade of life. The median age at diagnosis of small-bowel cancer was 28 years, with a range of 11-42 years. The lifetime risk of gastrointestinal cancer among MMRCS patients is the highest reported of all gastrointestinal cancer predisposition syndromes as a function of age. The median age at diagnosis of hematologic malignancy is 6.6 years. Endometrial cancer has been diagnosed between 19 and 44 years. The age at diagnosis of urinary tract tumors has ranged from 10 to 22 years.

The management of MMRCS is based on the current estimates of neoplasia risk and the early age of onset for the cancers, which have led to tentative guidelines for the management of these patients. The age at which to begin surveillance varies by guideline and is represented below as age ranges. In patients with MMRCS, the following surveillance is suggested:

•Screening for CRC by colonoscopy is recommended annually beginning at age 6 to 8 years. Once polyps are identified, colonoscopy every 6 months is recommended.
•Annual surveillance for small-bowel cancer by upper endoscopy and video capsule endoscopy is suggested beginning at 8 to 10 years of age. Monitoring of hemoglobin levels every 6 months also is suggested, beginning at 8 years of age.
•Surveillance for brain tumors by brain MRI every 6 to 12 months is suggested starting at the time of diagnosis even in the first year of life to age 2 years.
•Currently, no proven surveillance modalities for leukemia or lymphoma have been identified. Complete blood count to screen for leukemia is suggested every 6 months beginning at 1 year of age. Clinical examinations and abdominal ultrasounds to screen for lymphoma every 6 months may be considered by the treating physician.
•For individuals with a uterus, surveillance for endometrial cancer is suggested by transvaginal ultrasound, pelvic examination, and endometrial sampling annually starting at age 20 years.
•Surveillance for cancer of the urinary tract is suggested, with annual urinalysis starting at age 10 to 20 years.
•To screen for other types of tumors, whole-body MRI could be considered once a year starting at 6 years of age or when anesthesia is not needed. This method should not replace the need for ultrasound and brain MRI.

Estimated penetrance in MMRCS:

•50% develop small-bowel adenomas
•>90% develop colorectal adenomas
•59 to 70% develop colorectal cancer
•58 to 70% develop high-grade brain tumours
•20-40% develop lymphoma
•10-40% develop leukemia
•10 to 18% develop small-bowel cancer
•<10% develop endometrial cancer
•<10% develop urinary tract cancer
•<10% develop cancer of other sites
BabyScreen+ newborn screening v0.1753 OAT Zornitza Stark gene: OAT was added
gene: OAT was added to gNBS. Sources: ClinGen
for review, treatable, metabolic tags were added to gene: OAT.
Mode of inheritance for gene: OAT was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: OAT were set to Gyrate atrophy of choroid and retina with or without ornithinemia MIM#258870
Review for gene: OAT was set to GREEN
Added comment: Rated as 'moderate actionability' in paediatric patients by ClinGen.

GA due to deficiency of the enzyme ornithine aminotransferase (OAT) is characterized by a triad of progressive chorioretinal degeneration, early cataract formation, and type II muscle fiber atrophy. GA first presents as night blindness and constriction of the visual field caused by sharply demarcated circular areas of chorioretinal atrophy in the periphery. Atrophic areas progressively increase, coalesce, and spread towards the macula leading to central visual loss and blindness (vision less than 20/200).

Age at diagnosis ranges from 1 month to 44 years. The condition is characterized by the development of chorioretinal atrophic patches that start in the mid-peripheral retina in the first decade of life. Myopia, night blindness, changes in the macula (including cystic changes), and visual field affection usually start in the first or second decade. Most patients with GA have posterior subcapsular cataracts by the end of the second decade. Irreversible loss of vision and blindness generally occurs between 40 and 55 years of age but is highly variable.

Treatment of GA consists mainly of dietary modifications to help lower elevated systemic ornithine levels. Restriction of dietary arginine, a precursor of ornithine, appears to have therapeutic value. Pediatric patients undergoing arginine restriction should receive enough calories in their diet supplemented by essential amino acids, vitamins, and minerals to avoid malnutrition and excessive break down of endogenous proteins.

A long-term observational study of 27 patients with GA, 17 who complied with the arginine-restricted diet and 10 who were noncompliant, found that at 14 years follow-up the rates of vision loss were significantly slower in the compliant group for 3 of the 4 outcome measures, when adjusted for age.
Sources: ClinGen
BabyScreen+ newborn screening v0.1748 PRKAR1A Zornitza Stark edited their review of gene: PRKAR1A: Added comment: Rated as 'strong actionability' in paediatric patients by ClinGen, principally due to benefit from early detection of cardiac myxomas through surveillance.

CNC is associated with skin pigmentary abnormalities, myxomas, endocrine tumors or overactivity, and schwannomas.

Lentigines are the most common presenting feature of CNC and may be present at birth. Typically, they increase in number at puberty, fade after the fourth decade, but may still be evident in the eighth decade. Cutaneous myxomas appear between birth and the fourth decade. Cardiac myxomas may occur at a young age. Breast myxomas occur in females after puberty. Males and females may develop nipple myxomas at any age. In a minority of individuals, PPNAD presents in the first two to three years; in the majority, it presents in the second or third decade. LCCSCT often present in the first decade. Signs and symptoms of CNC may be present at birth, but the median age of diagnosis is 20 years. Most patients with CNC present with a mild increase in GH. However, clinically evident acromegaly is a relatively frequent manifestation of CNC, occurring in approximately 10% of adults at the time of presentation. Most individuals with CNC have a normal life span. However, because some die at an early age, the average life expectancy for individuals with CNC is 50 years. Causes of death include complications of cardiac myxoma (myxoma emboli, cardiomyopathy, cardiac arrhythmia, and surgical intervention), metastatic or intracranial PMS, thyroid carcinoma, and metastatic pancreatic and testicular tumors.

The only preventive measure in an asymptomatic individual is surgical removal of a heart tumor (cardiac myxoma) prior to the development of heart dysfunction, stroke, or other embolism. Cardiac myxomas should be diagnosed early through regular screening.

Development of metabolic abnormalities from Cushing syndrome or arthropathy and other complications from acromegaly may be prevented by medical or surgical treatment of the respective endocrine manifestations.

The overall penetrance of CNC in those with a PRKAR1A pathogenic variant is greater than 95% by age 50 years. 30-60% have cardiac myxomas.; Changed rating: GREEN; Changed phenotypes: Carney complex, type 1, MIM# 160980
BabyScreen+ newborn screening v0.1736 TECRL Zornitza Stark gene: TECRL was added
gene: TECRL was added to gNBS. Sources: ClinGen
for review, cardiac, treatable tags were added to gene: TECRL.
Mode of inheritance for gene: TECRL was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: TECRL were set to Ventricular tachycardia, catecholaminergic polymorphic, 3, MIM# 614021
Review for gene: TECRL was set to GREEN
Added comment: Rated as 'strong actionability' for paediatric patients by ClinGen.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease.

Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events.

In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended.

Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years.

For review: age of onset and penetrance.
Sources: ClinGen
BabyScreen+ newborn screening v0.1734 CALM3 Zornitza Stark gene: CALM3 was added
gene: CALM3 was added to gNBS. Sources: ClinGen
for review, cardiac, treatable tags were added to gene: CALM3.
Mode of inheritance for gene: CALM3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: CALM3 were set to Ventricular tachycardia, catecholaminergic polymorphic 6 , MIM# 618782
Penetrance for gene: CALM3 were set to Incomplete
Review for gene: CALM3 was set to GREEN
Added comment: Rated as 'strong actionability' for paediatric patients by ClinGen.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2.

Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death.

Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events.

In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended.

Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years.

For review: age of onset and penetrance.
Sources: ClinGen
BabyScreen+ newborn screening v0.1732 CALM2 Zornitza Stark gene: CALM2 was added
gene: CALM2 was added to gNBS. Sources: ClinGen
for review, cardiac, treatable tags were added to gene: CALM2.
Mode of inheritance for gene: CALM2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: CALM2 were set to Catecholaminergic polymorphic ventricular tachycardia MONDO:0017990
Review for gene: CALM2 was set to GREEN
Added comment: Rated as 'strong actionability' for paediatric patients by ClinGen.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2.

Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death.

Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events.

In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended.

Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years.

For review: age of onset and penetrance.
Sources: ClinGen
BabyScreen+ newborn screening v0.1730 CALM1 Zornitza Stark gene: CALM1 was added
gene: CALM1 was added to gNBS. Sources: ClinGen
for review, cardiac, treatable tags were added to gene: CALM1.
Mode of inheritance for gene: CALM1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: CALM1 were set to Ventricular tachycardia, catecholaminergic polymorphic, 4, MIM# 614916
Penetrance for gene: CALM1 were set to Incomplete
Review for gene: CALM1 was set to GREEN
Added comment: Rated as 'strong actionability' for paediatric patients by ClinGen.

The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2.

Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death.

Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events.

In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended.

Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years.

For review: age of onset and penetrance.
Sources: ClinGen
BabyScreen+ newborn screening v0.1728 RPE65 Zornitza Stark gene: RPE65 was added
gene: RPE65 was added to gNBS. Sources: ClinGen
for review, treatable, ophthalmological tags were added to gene: RPE65.
Mode of inheritance for gene: RPE65 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: RPE65 were set to Leber congenital amaurosis 2 MIM#204100; Retinitis pigmentosa 20 MIM#613794
Review for gene: RPE65 was set to GREEN
Added comment: Assessed as 'strong actionability' in paediatric patients by ClinGen.

Biallelic RPE65 mutation-associated retinal dystrophy is a form of IRD caused by biallelic pathogenic variants in RPE65; it presents as a spectrum of disease with variable age of onset and progression of vision loss. Common clinical findings across the spectrum include night blindness, progressive loss of visual fields and loss of central vision.

In LCA, night blindness often occurs from birth. Characteristically, these patients have residual cone-mediated vision in the first to third decades with progressive visual field loss until complete blindness is observed, most often in mid- to late-adulthood. A range of age of onset has been described for night blindness in RP, but it typically onsets in later childhood.

In December 2017, the FDA approved LUXTURNA (voretigene neparvovec-rzyl) gene therapy for the treatment of patients with confirmed biallelic RPE65 mutation-associated retinal dystrophy. The FDA’s conclusion of efficacy is based on improvement in a functional vision score over 1 year in a single open-label controlled Phase 3 study of 31 affected patients. The average age of the 31 randomized patients was 15 years (range 4 to 44 years), including 64% pediatric subjects (n=20, age from 4 to 17 years) and 36% adults (n=11). Functional vision was scored by a patient’s ability to navigate a course in various luminance levels. Using both treated eyes of the 21 subjects in the LUXTURNA treatment group, 11 (52%) had a clinically meaningful score improvement, while only one of the ten (10%) subjects in the control group had a clinically meaningful score improvement. Using the first treated eye only, 15/21 (71%) had a clinically meaningful score improvement, while no comparable score improvement was observed in controls. Other secondary clinical outcomes were also examined. Analysis of white light full-field light sensitivity threshold testing showed statistically significant improvement at 1 year in the LUXTURNA treatment group compared to the control group. The change in visual acuity was not significantly different between the LUXTURNA and control groups.

LUXTURNA is administered subretinally by injection. Per the FDA package insert, the most common adverse reactions (incidence ≥ 5%) in the clinical trials for LUXTURNA included conjunctival hyperemia, cataract, increased intraocular pressure, retinal tear, dellen (thinning of the corneal stroma), and macular hole. Several other ocular adverse effects were also reported, including risk of endophthalmitis. Safety data was included on the basis of 41 patients (81 eyes).

For review: availability of therapy?
Sources: ClinGen
BabyScreen+ newborn screening v0.1701 GLA Zornitza Stark changed review comment from: For review: screen only for males or include both?; to: Assessed as 'moderate actionability' in paediatric patients by ClinGen.

In classic FD, the first symptoms, including chronic neuropathic pain and episodic severe pain crises, emerge during childhood (typically age 3-10 years). Heterozygous females typically have a later median age of onset than males (9-13 years versus 13-23 years). Rarely, females may be relatively asymptomatic and have a normal life span or may have symptoms as severe as males with the classic phenotype.

Cardiac and/or cerebrovascular disease is present in most males by middle age while ESRD usually develops during the third to fifth decade. Renal and cardiac failure represent major sources of morbidity, and account for the reduced lifespan among affected males (50-58 years) and females (70-75 years) compared to the normal population.

A systematic review of RCTs of ERT reported on nine studies of 351 FD patients; however, many of these studies reported only on the effect of ERT on levels of enzyme substrate. Data from 2 trials (n=39 males) found no statistically significant differences in plasma enzyme substrate and one trial (n=24 males) found no statistical differences in renal function between individuals treated with agalsidase alfa and placebo (up to 6-month follow-up). Similar results were seen for agalsidase beta. One trial of 26 male patients found a statistically significant difference in pain, favoring agalsidase alfa compared to placebo at 5-6 months after treatment. No trial reported on the effect of agalsidase alfa on mortality or cardiac/cerebrovascular disease. One trial of agalsidase beta (n=82 males and females) found no difference in mortality, renal function, or symptoms or complications of cardiac or cerebrovascular disease over 18 months. The long-term influence of ERT on risk of morbidity and mortality related to FD remains to be established.

Migalastat, an oral chaperone drug, is recommended as an option for treatment for some patients with FD who are over 16 years with an amenable genetic variant who would usually be offered ERT. For non-amenable genotypes, migalastat may result in a net loss of alpha-Gal A activity, potentially worsening the disease condition.

A systematic review evaluated 2 phase III RCTs that both included males and females. One RCT randomized patients to switch from ERT to migalastat (n = 36) or continue with ERT (n = 24) during an 18-month period with a 12-month extension in which all patients received migalastat. During the treatment period, the percentage of patients who had a renal, cardiac, or cerebrovascular event or died was 29% of patients on migalastat compared to 44% of patients on ERT. However, this difference was not statistically significant. A second RCT compared migalastat (n=34) with placebo (n=33) over a 6-month period, with an 18-month extension study. The primary outcome was change from baseline in interstitial capillary inclusions of the enzyme substrate globotriaosylceramide (GL-3), which was not significantly different between groups. Results from both trials indicate that migalastat does not have a significant beneficial effect on pain, health-related quality of life outcomes, or glomerular filtration rate (results were uncertain due to large confidence intervals, small sample sizes, and/or short follow-up time). Migalastat did not influence left ventricular ejection fraction but did improve left ventricular mass over 18 months.

There are a number of recommendations for surveillance and agents to avoid (amiodarone). There is no consensus as to when ERT should be started.
BabyScreen+ newborn screening v0.1308 SLC30A10 Seb Lunke gene: SLC30A10 was added
gene: SLC30A10 was added to gNBS. Sources: Literature
for review tags were added to gene: SLC30A10.
Mode of inheritance for gene: SLC30A10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC30A10 were set to 31089831
Phenotypes for gene: SLC30A10 were set to Hypermanganesemia with dystonia 1, MIM# 613280
Review for gene: SLC30A10 was set to GREEN
Added comment: Established gene-disease association.

Childhood onset, usually in first decade and multiple under 5 (youngest 2). Multi-system disorder

Treatment: manganese chelation therapy with EDTA-CaNa2 accepted as effective, other treatments under investigation.

Non-genetic confirmatory test: Mn level
Sources: Literature
BabyScreen+ newborn screening v0.1053 ACADVL Zornitza Stark Tag metabolic tag was added to gene: ACADVL.
BabyScreen+ newborn screening v0.1053 ACADM Zornitza Stark Tag metabolic tag was added to gene: ACADM.
BabyScreen+ newborn screening v0.1053 ACAD9 Zornitza Stark Tag metabolic tag was added to gene: ACAD9.
BabyScreen+ newborn screening v0.914 ENG Zornitza Stark changed review comment from: Well established gene disease association.

Clingen: strong actionability in adults
Although HHT is a developmental disorder and infants are occasionally severely affected, in most people the features are age-dependent and the diagnosis is not suspected until adolescence or later. The average age of onset for epistaxis is 12 years, with 50-80% of patients affected before the age of 20 and 78-96% developing it eventually. Most patients report the appearance of telangiectasia of the mouth, face, or hands 5-30 years after the onset of nose bleeds, most commonly during the third decade. GI bleeding, when present, usually presents in the 5th or 6th decades of life. Patients rarely develop significant GI bleeding before 40 years of age. Women are affected with GI bleeding in a ratio of 2-3:1. AVMs of the brain are typically present at birth, whereas those in the lung and liver typically develop over time. Hemorrhage is often the presenting symptom of cerebral AVMs, while visceral AVMs may cause transient ischemic attacks, embolic stroke, and cerebral or other abscesses. Hepatic AVMs can present as high-output heart failure, portal hypertension, or biliary disease.

However, screening guidelines recommend screening for cerebral AVMs in first 6 months of life or at diagnosis (MRI).

For review.; to: Well established gene disease association.

Clingen: strong actionability in adults
Although HHT is a developmental disorder and infants are occasionally severely affected, in most people the features are age-dependent and the diagnosis is not suspected until adolescence or later. The average age of onset for epistaxis is 12 years, with 50-80% of patients affected before the age of 20 and 78-96% developing it eventually. Most patients report the appearance of telangiectasia of the mouth, face, or hands 5-30 years after the onset of nose bleeds, most commonly during the third decade. GI bleeding, when present, usually presents in the 5th or 6th decades of life. Patients rarely develop significant GI bleeding before 40 years of age. Women are affected with GI bleeding in a ratio of 2-3:1. AVMs of the brain are typically present at birth, whereas those in the lung and liver typically develop over time. Hemorrhage is often the presenting symptom of cerebral AVMs, while visceral AVMs may cause transient ischemic attacks, embolic stroke, and cerebral or other abscesses. Hepatic AVMs can present as high-output heart failure, portal hypertension, or biliary disease.

However, screening guidelines recommend screening for cerebral AVMs in first 6 months of life or at diagnosis (MRI). Management guidelines also suggest screening in asymptomatic children for pulmonary AVMs, PMID 32894695.

BabyScreen+ newborn screening v0.648 CEP78 Zornitza Stark changed review comment from: Gene-disease association assessed as 'strong' by ClinGen.

Atypical Usher phenotype.

However, onset of visual and hearing symptoms is variable, ranging from first to fourth decade, exclude for this reason.; to: Gene-disease association assessed as 'strong' by ClinGen.

Atypical Usher phenotype.

However, onset of visual and hearing symptoms is variable, ranging from first to fourth decade, exclude for this reason, unlikely to be detected by the newborn hearing screening program.
BabyScreen+ newborn screening v0.585 CBS Zornitza Stark changed review comment from: Well established gene-disease association.

Multi-system disorder, onset in infancy.
In general, individuals appear normal at birth but have a progressive disease course if untreated. Clinical features typically manifest in the first or second decade of life. Intellectual disability may be the first recognizable sign and may present as developmental delay after the first to second year of life. Myopia typically occurs after age one with the majority of untreated individuals developing ectopia lentis by age 8. Roughly half of patients show signs of osteoporosis by their teens. Cerebrovascular events typically manifest during young adulthood, though they have been reported earlier. Thromboembolism is the major cause of early death and morbidity. Among B₆-responsive individuals, a vascular event in adolescence or adulthood is often the presenting feature.

Treatment: vitamin B6 (pyridoxine), methionine-restricted diet, folate, vitamin B12, betaine. Management guidelines PMID 27778219.

Non-genetic confirmatory testing: plasma total homocysteine and plasma amino acids

Paediatric actionable gene by ClinGen.

Note excluded from reproductive carrier screening tests due to poor mappability, for review.; to: Well established gene-disease association.

Multi-system disorder, onset in infancy.
In general, individuals appear normal at birth but have a progressive disease course if untreated. Clinical features typically manifest in the first or second decade of life. Intellectual disability may be the first recognizable sign and may present as developmental delay after the first to second year of life. Myopia typically occurs after age one with the majority of untreated individuals developing ectopia lentis by age 8. Roughly half of patients show signs of osteoporosis by their teens. Cerebrovascular events typically manifest during young adulthood, though they have been reported earlier. Thromboembolism is the major cause of early death and morbidity. Among B₆-responsive individuals, a vascular event in adolescence or adulthood is often the presenting feature.

Treatment: vitamin B6 (pyridoxine), methionine-restricted diet, folate, vitamin B12, betaine. Management guidelines PMID 27778219.

Non-genetic confirmatory testing: plasma total homocysteine and plasma amino acids

Paediatric actionable gene by ClinGen.

Note excluded from reproductive carrier screening tests due to poor mappability: downgraded to Amber for now.
BabyScreen+ newborn screening v0.486 ACADVL Zornitza Stark Marked gene: ACADVL as ready
BabyScreen+ newborn screening v0.486 ACADVL Zornitza Stark Gene: acadvl has been classified as Green List (High Evidence).
BabyScreen+ newborn screening v0.486 ACADVL Zornitza Stark Publications for gene: ACADVL were set to
BabyScreen+ newborn screening v0.485 ACAD9 Zornitza Stark Marked gene: ACAD9 as ready
BabyScreen+ newborn screening v0.485 ACAD9 Zornitza Stark Gene: acad9 has been classified as Green List (High Evidence).
BabyScreen+ newborn screening v0.485 ACAD9 Zornitza Stark Tag treatable tag was added to gene: ACAD9.
BabyScreen+ newborn screening v0.485 ACAD9 Zornitza Stark reviewed gene: ACAD9: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Mitochondrial complex I deficiency, nuclear type 20, MIM# 611126; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
BabyScreen+ newborn screening v0.483 ACAD8 Zornitza Stark Marked gene: ACAD8 as ready
BabyScreen+ newborn screening v0.483 ACAD8 Zornitza Stark Gene: acad8 has been classified as Red List (Low Evidence).
BabyScreen+ newborn screening v0.483 ACAD8 Zornitza Stark Phenotypes for gene: ACAD8 were changed from Isobutyryl-CoA dehydrogenase deficiency to Isobutyryl-CoA dehydrogenase deficiency MIM#611283
BabyScreen+ newborn screening v0.482 ACAD8 Zornitza Stark Classified gene: ACAD8 as Red List (low evidence)
BabyScreen+ newborn screening v0.482 ACAD8 Zornitza Stark Gene: acad8 has been classified as Red List (Low Evidence).
BabyScreen+ newborn screening v0.481 ACAD8 Zornitza Stark reviewed gene: ACAD8: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Isobutyryl-CoA dehydrogenase deficiency MIM#611283; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
BabyScreen+ newborn screening v0.276 ACADVL Zornitza Stark Tag treatable tag was added to gene: ACADVL.
BabyScreen+ newborn screening v0.276 ACADVL Zornitza Stark reviewed gene: ACADVL: Rating: GREEN; Mode of pathogenicity: None; Publications: 31372341, 32885845; Phenotypes: VLCAD deficiency, MIM# 201475; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
BabyScreen+ newborn screening v0.274 NOTCH3 David Amor reviewed gene: NOTCH3: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Cerebral arteriopathy with subcortical infarcts and leukoencephalopathy 1 (CADASIL); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
BabyScreen+ newborn screening v0.270 ACADM Zornitza Stark Marked gene: ACADM as ready
BabyScreen+ newborn screening v0.270 ACADM Zornitza Stark Gene: acadm has been classified as Green List (High Evidence).
BabyScreen+ newborn screening v0.270 ACADM Zornitza Stark Tag treatable tag was added to gene: ACADM.
BabyScreen+ newborn screening v0.270 ACADM Zornitza Stark reviewed gene: ACADM: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Acyl-CoA dehydrogenase, medium chain, deficiency of, MIM# 201450; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
BabyScreen+ newborn screening v0.270 CBS Zornitza Stark changed review comment from: Well established gene-disease association.

Multi-system disorder, onset in infancy.
In general, individuals appear normal at birth but have a progressive disease course if untreated. Clinical features typically manifest in the first or second decade of life. Intellectual disability may be the first recognizable sign and may present as developmental delay after the first to second year of life. Myopia typically occurs after age one with the majority of untreated individuals developing ectopia lentis by age 8. Roughly half of patients show signs of osteoporosis by their teens. Cerebrovascular events typically manifest during young adulthood, though they have been reported earlier. Thromboembolism is the major cause of early death and morbidity. Among B₆-responsive individuals, a vascular event in adolescence or adulthood is often the presenting feature.

Treatment: vitamin B6 (pyridoxine), methionine-restricted diet, folate, vitamin B12, betaine. Management guidelines PMID 27778219.

Non-genetic confirmatory testing: plasma total homocysteine and plasma amino acids

Paediatric actionable gene by ClinGen.; to: Well established gene-disease association.

Multi-system disorder, onset in infancy.
In general, individuals appear normal at birth but have a progressive disease course if untreated. Clinical features typically manifest in the first or second decade of life. Intellectual disability may be the first recognizable sign and may present as developmental delay after the first to second year of life. Myopia typically occurs after age one with the majority of untreated individuals developing ectopia lentis by age 8. Roughly half of patients show signs of osteoporosis by their teens. Cerebrovascular events typically manifest during young adulthood, though they have been reported earlier. Thromboembolism is the major cause of early death and morbidity. Among B₆-responsive individuals, a vascular event in adolescence or adulthood is often the presenting feature.

Treatment: vitamin B6 (pyridoxine), methionine-restricted diet, folate, vitamin B12, betaine. Management guidelines PMID 27778219.

Non-genetic confirmatory testing: plasma total homocysteine and plasma amino acids

Paediatric actionable gene by ClinGen.

Note excluded from reproductive carrier screening tests due to poor mappability, for review.
BabyScreen+ newborn screening v0.203 ACAD9 John Christodoulou reviewed gene: ACAD9: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: ; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
BabyScreen+ newborn screening v0.199 ACADVL John Christodoulou reviewed gene: ACADVL: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: ; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
BabyScreen+ newborn screening v0.199 ACADM John Christodoulou reviewed gene: ACADM: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: ; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
BabyScreen+ newborn screening v0.0 ACADSB Zornitza Stark gene: ACADSB was added
gene: ACADSB was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene
Mode of inheritance for gene: ACADSB was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: ACADSB were set to 2-Methylbutyryl-CoA dehydrogenase deficiency
BabyScreen+ newborn screening v0.0 ACADS Zornitza Stark gene: ACADS was added
gene: ACADS was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene
Mode of inheritance for gene: ACADS was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: ACADS were set to Acyl-CoA dehydrogenase, short-chain, deficiency of 201470
BabyScreen+ newborn screening v0.0 ACADL Zornitza Stark gene: ACADL was added
gene: ACADL was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene
Mode of inheritance for gene: ACADL was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: ACADL were set to Sudden infant death
BabyScreen+ newborn screening v0.0 ACADVL Zornitza Stark gene: ACADVL was added
gene: ACADVL was added to gNBS. Sources: BeginNGS,BabySeq Category A gene,Expert Review Green
Mode of inheritance for gene: ACADVL was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: ACADVL were set to VLCAD deficiency, MIM#201475
BabyScreen+ newborn screening v0.0 ACADM Zornitza Stark gene: ACADM was added
gene: ACADM was added to gNBS. Sources: BeginNGS,BabySeq Category A gene,Expert Review Green
Mode of inheritance for gene: ACADM was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: ACADM were set to Medium chain acyl CoA dehydrogenase deficiency, MIM#201450
BabyScreen+ newborn screening v0.0 ACAD9 Zornitza Stark gene: ACAD9 was added
gene: ACAD9 was added to gNBS. Sources: BeginNGS,BabySeq Category A gene,Expert Review Green
Mode of inheritance for gene: ACAD9 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: ACAD9 were set to Mitochondrial complex I deficiency, nuclear type 20, MIM#611126
BabyScreen+ newborn screening v0.0 ACAD8 Zornitza Stark gene: ACAD8 was added
gene: ACAD8 was added to gNBS. Sources: BabySeq Category A gene,Expert Review Green
Mode of inheritance for gene: ACAD8 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: ACAD8 were set to Isobutyryl-CoA dehydrogenase deficiency