Activity

Filter

Cancel
Date Panel Item Activity
10 actions
Mendeliome v1.1725 OTULIN Zornitza Stark edited their review of gene: OTULIN: Added comment: Three individuals reported with de novo missense variants and auto inflammatory syndrome. Two had at the same variant, p.Cys129Ser. Experimental data supports dominant negative mechanism. Fourth individual with heterozygous variant in PMID 38129331 and severe fasciitis.; Changed publications: 27523608, 27559085, 35587511, 38630025, 38652464, 38129331
Mendeliome v1.1401 SEL1L Sarah Pantaleo gene: SEL1L was added
gene: SEL1L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SEL1L was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SEL1L were set to PMID: 37943610; PMID: 37943617
Phenotypes for gene: SEL1L were set to Neurodevelopmental disorder, MONDO:0700092, SEL1L-related
Penetrance for gene: SEL1L were set to Complete
Added comment: Wang paper PMID: 37943610

SEL1L protein is involved in the SEL1L-HRD1 endoplasmic reticulum (ER)-associated degradation.

Report two biallelic missense variants in SEL1L in six children from three independent families presenting with developmental delay, intellectual disability, microcephaly, facial dysmorphisms, hypotonia and/or ataxia (termed ERAD-associated neurodevelopment disorder with onset in infancy (ENDI). The variants were hypomorphic and impaired ERAD function.

Identified by WES. Parents heterozygous and asymptomatic. P.(Gly585Asp) in Patient 1, p.(Met528Arg) in Patients 2 and 3 (siblings).

All variants cause substrate accumulation. The extent of substrate accumulation in knockin cells was modest compared to those in knockout cells, pointing to a hypomorphic nature.

They also had a variant in HRD1.



Weis paper PMID: 37943617

Third variant p.(Cys141Tyr), biallelic, causing premature death in five patients from a consanguineous family with early-onset neurodevelopmental disorders and agammaglobulinaemia due to severe SEL1L-HRD1 ERAD dysfunction.

This variant appears to have a more severe outcome, exhibiting B cell depletion and agammaglobulinaemia, causing the most severe dysfunction among all of the variants described by this group so far. They postulate that functionality of SEL1L-HRD1 ERAD is inversely correlated with disease severity in humans.

Their symptoms were dev delay, neurological disorder and agammaglobulinaemia in childhood. Along with severe axial hypotonia, short stature and microcephaly.

“Not a complete loss-of-function variant”.
Sources: Literature
Mendeliome v1.698 MCF2L Michelle Torres gene: MCF2L was added
gene: MCF2L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MCF2L was set to Unknown
Publications for gene: MCF2L were set to 36760094
Phenotypes for gene: MCF2L were set to vascular malformation MONDO:0024291, MCF2L-related
Review for gene: MCF2L was set to RED
Added comment: Three families with Systemic malformation (resulting in a left to right shunt instead of the right to left shunt seen in individuals with HHT) had missense variants in the MCF2L gene (families 1, 2 and 7).
Family 1 (Val875Met: v2 & v3: 113 hets) did no present PA (pulmonary artery).
Family 2 (Cys199Gly : v2 & v3: 260 hets, 1 hom) did no present PA (pulmonary artery).
Family 7: Leu130Pro (1 het, 0 hom), segregated in family 7 with SA-PA (systemic artery to the pulmonary artery), with 5x affected tested (Sanger or WES). Unaffected and other 6x individuals affected were not tested.
Sources: Literature
Mendeliome v0.10788 CYS1 Zornitza Stark Marked gene: CYS1 as ready
Mendeliome v0.10788 CYS1 Zornitza Stark Gene: cys1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10788 CYS1 Zornitza Stark Classified gene: CYS1 as Amber List (moderate evidence)
Mendeliome v0.10788 CYS1 Zornitza Stark Gene: cys1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10787 CYS1 Zornitza Stark gene: CYS1 was added
gene: CYS1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CYS1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CYS1 were set to 34521872
Phenotypes for gene: CYS1 were set to Polycystic kidney disease, MONDO:0020642
Review for gene: CYS1 was set to AMBER
Added comment: Single family reported. However, extensive experimental data, including mouse model.
Sources: Literature
Mendeliome v0.8824 PLXNA2 Zornitza Stark gene: PLXNA2 was added
gene: PLXNA2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLXNA2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PLXNA2 were set to 34327814
Phenotypes for gene: PLXNA2 were set to Intellectual disability; Abnormality of the face; Failure to thrive; Abnormal heart morphology
Review for gene: PLXNA2 was set to AMBER
Added comment: Altuame et al (2021 - PMID: 34327814) describe 3 individuals from 2 consanguineous Arab families with biallelic PLXNA2 variants.

The index patient from the 1st family presented with CHD (hypoplastic right ventricle, ASD), DD and moderate ID (IQ of 40), failure to thrive as well as some dysmorphic features (obtuse mandibular angle, mild overbite, synophrys with downslanting p-f, strabismus, etc). There were additional features (eg. postaxial polydactyly) which were found in other affected and unaffected family members.

Exome sequencing with autozygome analysis revealed homozygosity for a PLXNA2 stopgain variant (NM_025179:c.3603C>A / p.(Cys1201*)).

Sanger confirmation was carried out and segregation analyses confirmed carrier status of the unaffected parents and a sib as well as a brother homozygous for the same variant. Clinical evaluation of the latter, following this finding revealed borderline intellectual functioning, ADHD, failure to thrive. There was no mandibular anomaly or overbite and no clinical evidence of CHD (no echo performed).

The index patient from the 2nd consanguineous family was evaluated for ID (IQ of 63), with previous borderline motor development, ADHD and some dysmorphic features (obtuse mandibular angle and overbite). There was no clinical evidence of CHD (no echo performed).

Exome sequencing with autozygosity mapping revealed a homozygous missense PLXNA2 variant (c.3073G>A / p.(Asp1025Asn), present only once in gnomAD (htz), with rather non-concordant in silico predictions SIFT 0.22, PolyPhen 0.682 and CADD 23.5. The aa was however highly conserved.

Segregation analysis confirmed carrier state of the parents and 2 unaffected sibs, with a 3rd sib homozygous for the wt allele.

As the authors discuss:
*PLXNA2 belongs to the plexin family of genes, encoding transmbembrane proteins functioning as semaphorin receptors. It has predominant expression in neural tissue. The protein is thought to bind semaphorin-3A, -3C or -5 followed by plexin A2 dimerization, activation of its GTPase-activating protein domain, negative regulation of Rap1B GTPase and initiation of a signal transduction cascade mediating axonal repulsion/guidance, dendritic guidance, neuronal migration.
*Murine Plxna2 knockout models display structural brain defects. In addition they display congenital heart defects incl. persistent truncus arteriosus and interrupted aortic arch.
*Rare CNVs in adult humans with tetralogy of Fallot have suggested a potential role of PLXNA2 in cardiac development and CHD.
*Expression and the role of PLXNA2 in human chondrocytes as well as a GWAS in 240 japanese patients with mandibular prognathism where PLXNA2 was suggested as a susceptibility locus.

Overall, the authors recognize some common features (as for cognitive functioning, some dysmorphic features incl. obtuse mandibular angle and overbite in 2 unrelated subjects, failure to thrive 3/3) and provide plausible explanations for the variability / discordance of others eg:
- Cyanotic heart disease explaining discordance in cognitive outcome among sibs
- Incomplete penetrance for CHD (and/or ID or mandibular anomaly) as for few AR disorders and/or
- Additional pathogenic variants possibly explaining the CHD in the first subject.

There is no associated phenotype in OMIM or G2P. SysID includes PLXNA2 among the candidate ID genes.
Sources: Literature
Mendeliome v0.7191 PLCH1 Arina Puzriakova gene: PLCH1 was added
gene: PLCH1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLCH1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PLCH1 were set to 33820834
Phenotypes for gene: PLCH1 were set to Holoprosencephaly spectrum; Severe developmental delay; Brain malformations
Review for gene: PLCH1 was set to AMBER
Added comment: PLCH1 is currently not associated with any phenotype in OMIM (last edited on 16/06/2009) or Gene2Phenotype.

- PMID: 33820834 (2021) - Two sibling pairs from two unrelated families with a holoprosencephaly spectrum phenotype and different homozygous PLCH1 variants (c.2065C>T, p.Arg689* and c.4235delA, p.Cys1079ValfsTer16, respectively). One family presented with congenital hydrocephalus, epilepsy, significant developmental delay and a monoventricle or fused thalami; while sibs from the second family had alobar holoprosencephaly and cyclopia. 3/4 individuals also displayed a cleft palate and congenital heart disease.
Human embryo immunohistochemistry showed PLCH1 to be expressed in the notorcord, developing spinal cord (in a ventral to dorsal gradient), dorsal root ganglia, cerebellum and dermatomyosome.
Sources: Literature