Date | Panel | Item | Activity | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BabyScreen+ newborn screening v1.114 | FAS | Tommy Li Added phenotypes Autoimmune lymphoproliferative syndrome, type IA, MIM# 601859 for gene: FAS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v1.114 | CHRNE | Tommy Li Added phenotypes Myasthenic syndrome, slow-channel congenital, 601462; Myasthenic syndrome, congenital, 4C, associated with acetylcholine receptor deficiency, 608931; Myasthenic syndrome, congenital, 4B, fast-channel, 616324; Myasthenic syndrome, congenital, 4A, slow-channel, 605809 for gene: CHRNE | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v1.114 | CHRND | Tommy Li Added phenotypes Myasthenic syndrome, congenital, 3B, fast-channel, MIM#616322; Multiple pterygium syndrome, lethal type, MIM# 253290; Myasthenic syndrome, congenital, 3A, slow-channel, MIM#616321; MONDO:0009668; Myasthenic syndrome, congenital, 3C, associated with acetylcholine receptor deficiency, MIM#616323 for gene: CHRND | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v1.114 | CHRNA1 | Tommy Li Added phenotypes Myasthenic syndrome, congenital, 1A, slow-channel, MIM# 601462; Myasthenic syndrome, congenital, 1B, fast-channel , MIM#608930 for gene: CHRNA1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1872 | HMGCS2 |
Lilian Downie gene: HMGCS2 was added gene: HMGCS2 was added to gNBS. Sources: Expert list Mode of inheritance for gene: HMGCS2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: HMGCS2 were set to PMID: 32259399, 32470406 Phenotypes for gene: HMGCS2 were set to HMG-CoA synthase-2 deficiency MIM#605911 Penetrance for gene: HMGCS2 were set to Incomplete Review for gene: HMGCS2 was set to AMBER Added comment: Metabolic disorder; patients present with hypoketotic hypoglycemia, encephalopathy, and hepatomegaly, usually precipitated by an intercurrent infection or prolonged fasting. Recover completely between illnesses, do develop fatty liver. ?incomplete penetrance or variable age of onset On GUARDIAN and Rx Genes Rx IV glucose during acute episodes, avoid prolonged fasting Metabolic parameters are normal in between episodes, so no ability to do a confirmatory biochemical test. Pros: readily treatable if child has an episode Cons: unncessary worry as child may never have episode Super rare ?30 cases Discuss with JC? Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1865 | TANGO2 |
Ari Horton changed review comment from: Folate may assist with TANGO2 DOI: https://doi.org/10.21203/rs.3.rs-1778084/v1 While chronic symptoms are predominantly neurodevelopmental, metabolic stressors such as fasting, dehydration, illness, and excessive heat can trigger episodic metabolic crises characterized by encephalopathy, ataxia, muscle weakness, rhabdomyolysis, and hypoglycemia. During these events, patients can develop acute life-threatening cardiac arrhythmias. Arrhythmias typically initiate with isolated premature ventricular contractions (PVC) followed by recalcitrant ventricular tachycardia. Because these lethal arrhythmias usually do not respond to standard antiarrhythmic therapies, cardiac arrhythmias are the leading cause of death in TDD Fasting and feeding recommendations to reduce crises and improve cardiac status and neurodev outcomes, reduce risk of cardiac arrhythmias and SCDY Natural history study (ClinicalTrials.gov Identifier: NCT05374616) strongly suggests that subjects on a multivitamin or a Bcomplex vitamin supplement have a greatly reduced risk for metabolic crises and cardiac arrhythmias Specific diet and fasting plans are recommended for all patients from the neonatal period Sources: Expert Review; to: Folate may assist with TANGO2 DOI: https://doi.org/10.21203/rs.3.rs-1778084/v1 PMID: 35568137 While chronic symptoms are predominantly neurodevelopmental, metabolic stressors such as fasting, dehydration, illness, and excessive heat can trigger episodic metabolic crises characterized by encephalopathy, ataxia, muscle weakness, rhabdomyolysis, and hypoglycemia. During these events, patients can develop acute life-threatening cardiac arrhythmias. Arrhythmias typically initiate with isolated premature ventricular contractions (PVC) followed by recalcitrant ventricular tachycardia. Because these lethal arrhythmias usually do not respond to standard antiarrhythmic therapies, cardiac arrhythmias are the leading cause of death in TDD Fasting and feeding recommendations to reduce crises and improve cardiac status and neurodev outcomes, reduce risk of cardiac arrhythmias and SCDY Natural history study (ClinicalTrials.gov Identifier: NCT05374616) strongly suggests that subjects on a multivitamin or a Bcomplex vitamin supplement have a greatly reduced risk for metabolic crises and cardiac arrhythmias Twenty-seven children were admitted for 43 cardiac crises (median age 6.4 years; interquartile range [IQR] 2.4–9.8 years) at 14 centers. During crisis, QTc prolongation occurred in all (median 547 ms; IQR 504–600 ms) and a type I Brugada pattern in 8 (26%). Arrhythmias included VT in 21 (78%), supraventricular tachycardia in 3 (11%), and heart block in 1 (4%). Nineteen patients (70%) developed cardiomyopathy, and 20 (74%) experienced a cardiac arrest. There were 10 deaths (37%), 6 related to arrhythmias. In 5 patients, recalcitrant VT occurred despite use of antiarrhythmic drugs. In 6 patients, arrhythmias were controlled after extracorporeal membrane oxygenation (ECMO) support; 5 of these patients survived. Among 10 patients who survived VT without ECMO, successful treatment included intravenous magnesium, isoproterenol, and atrial pacing in multiple cases and verapamil in 1 patient. Initiation of feeds seemed to decrease VT events. Specific diet and fasting plans are recommended for all patients from the neonatal period Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1865 | TANGO2 |
Ari Horton gene: TANGO2 was added gene: TANGO2 was added to gNBS. Sources: Expert Review Mode of inheritance for gene: TANGO2 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: TANGO2 were set to Cardiomyopathy; Metabolic Crises; Arrhythmia; Neurodevelopmental Penetrance for gene: TANGO2 were set to Complete Review for gene: TANGO2 was set to GREEN Added comment: Folate may assist with TANGO2 DOI: https://doi.org/10.21203/rs.3.rs-1778084/v1 While chronic symptoms are predominantly neurodevelopmental, metabolic stressors such as fasting, dehydration, illness, and excessive heat can trigger episodic metabolic crises characterized by encephalopathy, ataxia, muscle weakness, rhabdomyolysis, and hypoglycemia. During these events, patients can develop acute life-threatening cardiac arrhythmias. Arrhythmias typically initiate with isolated premature ventricular contractions (PVC) followed by recalcitrant ventricular tachycardia. Because these lethal arrhythmias usually do not respond to standard antiarrhythmic therapies, cardiac arrhythmias are the leading cause of death in TDD Fasting and feeding recommendations to reduce crises and improve cardiac status and neurodev outcomes, reduce risk of cardiac arrhythmias and SCDY Natural history study (ClinicalTrials.gov Identifier: NCT05374616) strongly suggests that subjects on a multivitamin or a Bcomplex vitamin supplement have a greatly reduced risk for metabolic crises and cardiac arrhythmias Specific diet and fasting plans are recommended for all patients from the neonatal period Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1740 | TGFB2 |
Zornitza Stark gene: TGFB2 was added gene: TGFB2 was added to gNBS. Sources: ClinGen Mode of inheritance for gene: TGFB2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: TGFB2 were set to Loeys-Dietz syndrome 4, MIM# 614816 Review for gene: TGFB2 was set to GREEN Added comment: Rated as 'strong actionability' in paediatric patients by ClinGen. Individuals with LDS are predisposed to widespread and aggressive arterial aneurysms which are the major source of morbidity and mortality. Aortic growth can be faster than 10mm per year. Aortic dissection has been observed in early childhood, and the mean age of death is 26 years. Other life-threatening manifestations include spontaneous rupture of the spleen, bowel, and uterine rupture during pregnancy. Prophylactic surgical repair is typically recommended at an aortic diameter of ≥ 4.2 cm. Beta-blockers or other medications can be used to reduce hemodynamic stress. Consider Medicalert bracelet. Use of subacute bacterial endocarditis prophylaxis should be considered for individuals with connective tissue disorders and documented evidence of mitral and/or aortic regurgitation who are undergoing dental work or other procedures expected to contaminate the bloodstream with bacteria. Because of a high risk of cervical spine instability, a flexion and extension x-ray of the cervical spine should be performed prior to intubation or any other procedure involving manipulation of the neck. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1154 | GYS2 | John Christodoulou reviewed gene: GYS2: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 33489759; Phenotypes: fasting hypoglycaemia, hepatomegaly; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1034 | FAS | Zornitza Stark Marked gene: FAS as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1034 | FAS | Zornitza Stark Gene: fas has been classified as Red List (Low Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1034 | FAS | Zornitza Stark Classified gene: FAS as Red List (low evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1034 | FAS | Zornitza Stark Gene: fas has been classified as Red List (Low Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1033 | FAS | Zornitza Stark reviewed gene: FAS: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Autoimmune lymphoproliferative syndrome MONDO:0017979; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.719 | PHKG2 | John Christodoulou reviewed gene: PHKG2: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 30659246, https://www.ncbi.nlm.nih.gov/books/NBK55061/#gsd9.Summary; Phenotypes: hepatomegaly, hypotonia, growth retardation, hypoglycaemia, fasting ketosis, cirrhosis; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.719 | PHKB | John Christodoulou reviewed gene: PHKB: Rating: GREEN; Mode of pathogenicity: None; Publications: https://www.ncbi.nlm.nih.gov/books/NBK55061/#gsd9.Summary; Phenotypes: marked hepatomegaly, hypoglycaemia, short stature, fasting ketosis, hypotonia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.719 | PHKA2 | John Christodoulou reviewed gene: PHKA2: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 30659246; Phenotypes: hepatomegaly, short stature, liver dysfunction, hypoglycaemia, hyperuricaemia, hyperlipidemia, fasting ketosis, mild motor delay; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.664 | ETFB |
Zornitza Stark changed review comment from: Well established gene-disease association. Glutaric aciduria II (GA2) is an autosomal recessively inherited disorder of fatty acid, amino acid, and choline metabolism. It differs from GA I in that multiple acyl-CoA dehydrogenase deficiencies result in large excretion not only of glutaric acid, but also of lactic, ethylmalonic, butyric, isobutyric, 2-methyl-butyric, and isovaleric acids. The heterogeneous clinical features of MADD fall into 3 classes: a neonatal-onset form with congenital anomalies (type I), a neonatal-onset form without congenital anomalies (type II), and a late-onset form (type III). The neonatal-onset forms are usually fatal and are characterized by severe nonketotic hypoglycemia, metabolic acidosis, multisystem involvement, and excretion of large amounts of fatty acid- and amino acid-derived metabolites. Symptoms and age at presentation of late-onset MADD are highly variable and characterized by recurrent episodes of lethargy, vomiting, hypoglycemia, metabolic acidosis, and hepatomegaly often preceded by metabolic stress. Muscle involvement in the form of pain, weakness, and lipid storage myopathy also occurs. The organic aciduria in those with the late-onset form of MADD is often intermittent and only evident during periods of illness or catabolic stress. Treatment: riboflavin, carnitine, glycine, Coenzyme Q10 supplementation, fat restriction, avoidance of fasting, and a diet rich in carbohydrates Non-genetic confirmatory tests: plasma acylcarnitine profile, urine organic acid analysis; to: Well established gene-disease association. Glutaric aciduria II (GA2) is an autosomal recessively inherited disorder of fatty acid, amino acid, and choline metabolism. It differs from GA I in that multiple acyl-CoA dehydrogenase deficiencies result in large excretion not only of glutaric acid, but also of lactic, ethylmalonic, butyric, isobutyric, 2-methyl-butyric, and isovaleric acids. The heterogeneous clinical features of MADD fall into 3 classes: a neonatal-onset form with congenital anomalies (type I), a neonatal-onset form without congenital anomalies (type II), and a late-onset form (type III). The neonatal-onset forms are usually fatal and are characterized by severe nonketotic hypoglycemia, metabolic acidosis, multisystem involvement, and excretion of large amounts of fatty acid- and amino acid-derived metabolites. Symptoms and age at presentation of late-onset MADD are highly variable and characterized by recurrent episodes of lethargy, vomiting, hypoglycemia, metabolic acidosis, and hepatomegaly often preceded by metabolic stress. Muscle involvement in the form of pain, weakness, and lipid storage myopathy also occurs. The organic aciduria in those with the late-onset form of MADD is often intermittent and only evident during periods of illness or catabolic stress. Treatment: riboflavin, carnitine, glycine, Coenzyme Q10 supplementation, fat restriction, avoidance of fasting, and a diet rich in carbohydrates Non-genetic confirmatory tests: plasma acylcarnitine profile, urine organic acid analysis Predominantly neonatal onset. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.541 | FBP1 | John Christodoulou reviewed gene: FBP1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: fasting hypoglycemia, metabolic acidosis, ketosis; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.296 | CHRNE | Zornitza Stark Phenotypes for gene: CHRNE were changed from Congenital myasthenic syndrome, MIM#605809 to Myasthenic syndrome, congenital, 4B, fast-channel, 616324; Myasthenic syndrome, congenital, 4C, associated with acetylcholine receptor deficiency, 608931; Myasthenic syndrome, slow-channel congenital, 601462; Myasthenic syndrome, congenital, 4A, slow-channel, 605809 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.295 | CHRNE | Zornitza Stark reviewed gene: CHRNE: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Myasthenic syndrome, congenital, 4B, fast-channel, 616324, Myasthenic syndrome, congenital, 4C, associated with acetylcholine receptor deficiency, 608931, Myasthenic syndrome, slow-channel congenital, 601462, Myasthenic syndrome, congenital, 4A, slow-channel, 605809; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.295 | CHRND | Zornitza Stark Phenotypes for gene: CHRND were changed from Congenital myasthenic syndrome, MIM#616321 to Myasthenic syndrome, congenital, 3B, fast-channel, MIM#616322; Myasthenic syndrome, congenital, 3C, associated with acetylcholine receptor deficiency, MIM#616323; Myasthenic syndrome, congenital, 3A, slow-channel, MIM#616321; Multiple pterygium syndrome, lethal type, MIM# 253290; MONDO:0009668 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.293 | CHRND | Zornitza Stark reviewed gene: CHRND: Rating: GREEN; Mode of pathogenicity: None; Publications: 30808424; Phenotypes: Myasthenic syndrome, congenital, 3B, fast-channel, MIM#616322, Myasthenic syndrome, congenital, 3C, associated with acetylcholine receptor deficiency, MIM#616323, Myasthenic syndrome, congenital, 3A, slow-channel, MIM#616321, Multiple pterygium syndrome, lethal type, MIM# 253290, MONDO:0009668; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.290 | CHRNA1 | Zornitza Stark Phenotypes for gene: CHRNA1 were changed from Congenital myasthenic syndrome, MIM#601462 to Myasthenic syndrome, congenital, 1A, slow-channel, MIM# 601462; Myasthenic syndrome, congenital, 1B, fast-channel , MIM#608930 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.288 | CHRNA1 | Zornitza Stark reviewed gene: CHRNA1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Multiple pterygium syndrome, lethal type, MIM# 253290, MONDO:0009668, Myasthenic syndrome, congenital, 1A, slow-channel, MIM# 601462, Myasthenic syndrome, congenital, 1B, fast-channel , MIM#608930; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.274 | ETFA |
Zornitza Stark changed review comment from: Well established gene-disease association. Glutaric aciduria II (GA2) is an autosomal recessively inherited disorder of fatty acid, amino acid, and choline metabolism. It differs from GA I in that multiple acyl-CoA dehydrogenase deficiencies result in large excretion not only of glutaric acid, but also of lactic, ethylmalonic, butyric, isobutyric, 2-methyl-butyric, and isovaleric acids. The heterogeneous clinical features of MADD fall into 3 classes: a neonatal-onset form with congenital anomalies (type I), a neonatal-onset form without congenital anomalies (type II), and a late-onset form (type III). The neonatal-onset forms are usually fatal and are characterized by severe nonketotic hypoglycemia, metabolic acidosis, multisystem involvement, and excretion of large amounts of fatty acid- and amino acid-derived metabolites. Symptoms and age at presentation of late-onset MADD are highly variable and characterized by recurrent episodes of lethargy, vomiting, hypoglycemia, metabolic acidosis, and hepatomegaly often preceded by metabolic stress. Muscle involvement in the form of pain, weakness, and lipid storage myopathy also occurs. The organic aciduria in those with the late-onset form of MADD is often intermittent and only evident during periods of illness or catabolic stress. Treatment: riboflavin, carnitine, glycine, Coenzyme Q10 supplementation, fat restriction, avoidance of fasting, and a diet rich in carbohydrates, D,L-3-hydroxybutyrate Non-genetic confirmatory tests: plasma acylcarnitine profile, urine organic acid analysis; to: Well established gene-disease association. Glutaric aciduria II (GA2) is an autosomal recessively inherited disorder of fatty acid, amino acid, and choline metabolism. It differs from GA I in that multiple acyl-CoA dehydrogenase deficiencies result in large excretion not only of glutaric acid, but also of lactic, ethylmalonic, butyric, isobutyric, 2-methyl-butyric, and isovaleric acids. The heterogeneous clinical features of MADD fall into 3 classes: a neonatal-onset form with congenital anomalies (type I), a neonatal-onset form without congenital anomalies (type II), and a late-onset form (type III). The neonatal-onset forms are usually fatal and are characterized by severe nonketotic hypoglycemia, metabolic acidosis, multisystem involvement, and excretion of large amounts of fatty acid- and amino acid-derived metabolites. Symptoms and age at presentation of late-onset MADD are highly variable and characterized by recurrent episodes of lethargy, vomiting, hypoglycemia, metabolic acidosis, and hepatomegaly often preceded by metabolic stress. Muscle involvement in the form of pain, weakness, and lipid storage myopathy also occurs. The organic aciduria in those with the late-onset form of MADD is often intermittent and only evident during periods of illness or catabolic stress. Treatment: riboflavin, carnitine, glycine, Coenzyme Q10 supplementation, fat restriction, avoidance of fasting, and a diet rich in carbohydrates, D,L-3-hydroxybutyrate (PMID 31904027) Non-genetic confirmatory tests: plasma acylcarnitine profile, urine organic acid analysis |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.271 | HADHA |
Zornitza Stark changed review comment from: Well established gene-disease association. Clinical presentation is characterised by early-onset cardiomyopathy, hypoglycaemia, neuropathy, and pigmentary retinopathy, and sudden death Treatment: IV glucose during acute episodes, avoid fasting, carnitine, restrict LCFA, bezafibrate, triheptanoin; to: Well established gene-disease association. Clinically, classic trifunctional protein deficiency can be classified into 3 main clinical phenotypes: neonatal onset of a severe, lethal condition resulting in sudden unexplained infant death, infantile onset of a hepatic Reye-like syndrome, and late-adolescent onset of primarily a skeletal myopathy. Treatment: IV glucose during acute episodes, avoid fasting, carnitine, restrict LCFA, bezafibrate, triheptanoin |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | FAS |
Zornitza Stark gene: FAS was added gene: FAS was added to gNBS. Sources: BeginNGS,Expert Review Green Mode of inheritance for gene: FAS was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Phenotypes for gene: FAS were set to Autoimmune lymphoproliferative syndrome, type IA, MIM# 601859 |