Activity

Filter

Cancel
Date Panel Item Activity
1552 actions
Mendeliome v1.1888 CRNKL1 Mark Cleghorn gene: CRNKL1 was added
gene: CRNKL1 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: CRNKL1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: CRNKL1 were set to complex neurodevelopmental disorder MONDO:0100038
Review for gene: CRNKL1 was set to GREEN
Added comment: Unpublished, presented at ESHG June 2024 - Louise Bicknell, University of Otago NZ
8 unrelated families via gene matcher with rare, de novo, missense variants in CRNKL1
severe microcephaly (all, -8 to -11 SD)
ID/epilepsy
pontocerebellar hypoplasia (6/8)
simplified gyration (8/8)
7 variants are missense at p.Arg267 residue
1 variant missense at p.Arg301
RNA-seq on patient fibroblasts - no alteration in gene expression
Zebrafish homolog of Arg267 and Arg301 - mimics observed phenotype (reduced brain development), increased in embryo apoptosis
RNA seq on affected zebrafish embryos - transcriptome strongly disrupted
Splicing analysis in progress

CRKNL1 supports U6 structure in spliceosome
Sources: Other
Mendeliome v1.1876 SELENBP1 Sangavi Sivagnanasundram gene: SELENBP1 was added
gene: SELENBP1 was added to Mendeliome. Sources: ClinGen
Mode of inheritance for gene: SELENBP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SELENBP1 were set to 29255262
Phenotypes for gene: SELENBP1 were set to extraoral halitosis due to methanethiol oxidase deficiency MONDO:0029144
Review for gene: SELENBP1 was set to GREEN
Added comment: 3 unrelated probands in one publication. All reported individuals had a “cabbage-like” breath odour due to the elevated levels of methanethiol and dimethylsulfide in their breath.
Knockout mouse model recapitulating the human phenotype including the biochemical characteristics.

Classified as Moderate by ClinGen Aminoacidopathy GCEP on 11/11/2022
https://search.clinicalgenome.org/CCID:006103
Sources: ClinGen
Mendeliome v1.1865 PSMF1 Zornitza Stark gene: PSMF1 was added
gene: PSMF1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PSMF1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PSMF1 were set to https://www.medrxiv.org/content/10.1101/2024.06.19.24308302v1
Phenotypes for gene: PSMF1 were set to Complex neurodevelopmental disorder with motor features, MONDO:0100516, PSMF1-related
Review for gene: PSMF1 was set to GREEN
Added comment: 22 individuals from 15 families reported with a range of neurological phenotypes ranging from early-onset Parkinson's disease; childhood conditions typified by ID and a range of movement disorders; through to perinatal lethal presentations with arthrogryposis multiplex. Genotype-phenotype correlation: biallelic missense variants resulted in the milder phenotypes, while bi-allelic LoF variants in the more severe phenotypes. Supportive functional data.
Sources: Literature
Mendeliome v1.1860 VPS50 Ain Roesley changed review comment from: 1x proband Chet for a nonsense p.(Lys5*) and a complex structural variant of a 4.3Mb inversion, flanked by 170kb and 428kb deletions, respectively. The 428kb deletion spans the entire VPS50 gene.

Sanger confirmed the Lys5* to be 'homozygous' in the proband.

Phenotypes include:
microcephaly, nystagmus, seizures, hypoplastic corpus callous, neonatal low GGT cholesatsis, hepatomegaly, failure to thrive; to: 1x proband Chet for a nonsense p.(Lys5*) and a complex structural variant of a 4.3Mb inversion, flanked by 170kb and 428kb deletions, respectively. The 428kb deletion spans the entire VPS50 gene.

Sanger confirmed the Lys5* to be 'homozygous' in the proband.

Phenotypes include:
severe ID, muscular hypotonia, sensorineural hearing impairment, microcephaly, nystagmus, seizures, hypoplastic corpus callous, neonatal low GGT cholesatsis, hepatomegaly, failure to thrive
Mendeliome v1.1855 VPS50 Ain Roesley changed review comment from: 1x proband Chet for a nonsense p.(Lys5*) and a complex structural variant of a 4.3Mb inversion, flanked by 170kb and 428kb deletions, respectively. The 428kb deletion spans the entire VPS50 gene.

Sanger confirmed the Lys5* to be 'homozygous' in the proband.

Phenotypes include:
nystagmus, seizures, hypoplastic corpus callous, neonatal low GGT cholesatsis, hepatomegaly, failure to thrive; to: 1x proband Chet for a nonsense p.(Lys5*) and a complex structural variant of a 4.3Mb inversion, flanked by 170kb and 428kb deletions, respectively. The 428kb deletion spans the entire VPS50 gene.

Sanger confirmed the Lys5* to be 'homozygous' in the proband.

Phenotypes include:
microcephaly, nystagmus, seizures, hypoplastic corpus callous, neonatal low GGT cholesatsis, hepatomegaly, failure to thrive
Mendeliome v1.1855 VPS50 Ain Roesley reviewed gene: VPS50: Rating: GREEN; Mode of pathogenicity: None; Publications: 38876772; Phenotypes: Neurodevelopmental disorder with microcephaly, seizures, and neonatal cholestasis MIM#619685; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.1842 MYH10 Zornitza Stark Phenotypes for gene: MYH10 were changed from Microcephaly; Intellectual Disability to AD complex neurodevelopmental disorder with or without congenital anomalies (MONDO:0100465)
Mendeliome v1.1840 PRRX1 Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain.
> These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%.
> These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149)
> Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import.

Supporting evidence:
> Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454)

>Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651)

>Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2.

> PMID: 7758948 generated a loss-of-function mutation in the mouse Pmx1 gene. Mice homozygous for the mutant allele died soon after birth and exhibited defects of skeletogenesis, which involved the loss or malformation of craniofacial, limb, and vertebral skeletal structures. ; to: Craniosynostosis (MONDO:0015469), PRRX1-related
> 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain.
> These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%.
> These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149)
> Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import.

Supporting evidence:
> Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454)

>Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651)

Agnathia-otocephaly complex, MIM# 202650
>Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2.

> PMID: 7758948 generated a loss-of-function mutation in the mouse Pmx1 gene. Mice homozygous for the mutant allele died soon after birth and exhibited defects of skeletogenesis, which involved the loss or malformation of craniofacial, limb, and vertebral skeletal structures.
Mendeliome v1.1840 PRRX1 Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain.
> These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%.
> These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149)
> Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import.

Supporting evidence:
> Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454)

>Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651)

>Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2.; to: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain.
> These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%.
> These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149)
> Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import.

Supporting evidence:
> Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454)

>Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651)

>Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2.

> PMID: 7758948 generated a loss-of-function mutation in the mouse Pmx1 gene. Mice homozygous for the mutant allele died soon after birth and exhibited defects of skeletogenesis, which involved the loss or malformation of craniofacial, limb, and vertebral skeletal structures.
Mendeliome v1.1840 PRRX1 Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain.
> These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%.
> These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149)
> Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import.

Supporting evidence:
> Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454)

>Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651)

>Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708).; to: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain.
> These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%.
> These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149)
> Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import.

Supporting evidence:
> Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454)

>Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651)

>Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2.
Mendeliome v1.1840 PRRX1 Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain.
> These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%.
> These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149)
> Authors discuss how the previous reports of agnathia-otocephaly doen't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import.

Supporting evidence:
> Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454)

>Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651)

>Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708).; to: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain.
> These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%.
> These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149)
> Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import.

Supporting evidence:
> Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454)

>Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651)

>Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708).
Mendeliome v1.1840 PRRX1 Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain.
> These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%.
> These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149)
> Authors discuss how the previous reports of agnathia-otocephaly don't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import.


Supporting evidence:
> Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454)

>Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651); to: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain.
> These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%.
> These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149)
> Authors discuss how the previous reports of agnathia-otocephaly doen't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import.

Supporting evidence:
> Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454)

>Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651)

>Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708).
Mendeliome v1.1840 PRRX1 Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain.
> These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%.
> These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149)

Supporting evidence:
> Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454)

>Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651); to: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain.
> These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%.
> These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149)
> Authors discuss how the previous reports of agnathia-otocephaly don't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import.


Supporting evidence:
> Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454)

>Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651)
Mendeliome v1.1816 ATXN7L3 Chirag Patel gene: ATXN7L3 was added
gene: ATXN7L3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATXN7L3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ATXN7L3 were set to PMID: 38753057
Phenotypes for gene: ATXN7L3 were set to Neurodevelopmental disorder, MONDO_0100500
Review for gene: ATXN7L3 was set to GREEN
gene: ATXN7L3 was marked as current diagnostic
Added comment: This study reports 9 unrelated individuals with de novo heterozygous variants in ATXN7L3 identified through WES testing and GeneMatcher. Core clinical features included: global motor and language developmental delay, hypotonia, and dysmorphic features (hypertelorism, epicanthal folds, blepharoptosis, small nose, small mouth, and low-set posteriorly rotated ears). Variable features included: feeding difficulties, seizures, mild periventricular leukomalacia, and structural cardiac abnormalities.

A recurrent nonsense variant [p.(Arg114Ter)] was found in 5/9 individuals. The other variants were 1 frameshift [p.(Ser112LysfsTer12)] and 3 missense variants [p.(Ile71Thr), p.(Ser92Arg), and p.(Leu106Pro)]. They investigated the effects of the recurrent nonsense variant [p.(Arg114Ter)] in fibroblasts of an affected individual. ATXN7L3 protein levels were reduced, and deubiquitylation was impaired (as indicated by an increase in histone H2Bub1 levels). This is consistent with the previous observation of increased H2Bub1 levels in Atxn7l3-null mouse embryos, which have developmental delay and embryonic lethality.

Pathogenic variants in deubiquitinating enzymes (DUBs) have been implicated in neurodevelopmental disorders (ND) and congenital abnormalities. ATXN7L3 is a component of the DUB module of the SAGA complex, and two other related DUB modules, and serves as an obligate adaptor protein of 3 ubiquitin-specific proteases (USP22, USP27X or USP51).
Sources: Literature
Mendeliome v1.1814 FAM177A1 Chirag Patel gene: FAM177A1 was added
gene: FAM177A1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FAM177A1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FAM177A1 were set to PMID: 38767059, 25558065
Phenotypes for gene: FAM177A1 were set to Neurodevelopmental disorder, MONDO_0100500
Review for gene: FAM177A1 was set to GREEN
gene: FAM177A1 was marked as current diagnostic
Added comment: PMID: 38767059
5 individuals from 3 unrelated families reported with with biallelic loss of function variants in FAM177A1. Clinical features included: global developmental delay, intellectual disability, seizures, behavioural abnormalities, hypotonia, gait disturbance, and macrocephaly.

They showed that FAM177A1 localizes to the Golgi complex in mammalian and zebrafish cells. Intersection of the RNA-seq and metabolomic datasets from FAM177A1-deficient human fibroblasts and whole zebrafish larvae demonstrated dysregulation of pathways associated with apoptosis, inflammation, and negative regulation of cell proliferation.

PMID: 25558065
A study of 143 multiplex consanguineous families identified a homozygous frameshift variant in FAM177A1 in 1 family with 4 affected siblings with intellectual disability, dolicocephaly, obesity, and macrocephaly. The variant segregated with all 4 affected siblings and parents were confirmed heterozygous carriers.
Sources: Literature
Mendeliome v1.1800 GABRA4 Zornitza Stark Phenotypes for gene: GABRA4 were changed from Developmental and epileptic encephalopathy MONDO:0100062, GABRA4-related to Neurodevelopmental disorder MONDO:0700092, GABRA4-related
Mendeliome v1.1793 APOA1 Zornitza Stark Phenotypes for gene: APOA1 were changed from Amyloidosis, 3 or more types MIM#105200; Hypoalphalipoproteinemia, primary, 2 MIM#618463; Hypoalphalipoproteinemia, primary, 2, intermediate MIM#619836 to Amyloidosis, hereditary systemic 3, MIM# 620657; Amyloidosis, 3 or more types MIM#105200; Hypoalphalipoproteinemia, primary, 2 MIM#618463; Hypoalphalipoproteinemia, primary, 2, intermediate MIM#619836
Mendeliome v1.1777 CHRNA7 Ain Roesley gene: CHRNA7 was added
gene: CHRNA7 was added to Mendeliome. Sources: Literature
cnv tags were added to gene: CHRNA7.
Mode of inheritance for gene: CHRNA7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CHRNA7 were set to 20979196; 21596161; 21290787
Phenotypes for gene: CHRNA7 were set to intellectual disability; seizures; hypotonia
Review for gene: CHRNA7 was set to RED
gene: CHRNA7 was marked as current diagnostic
Added comment: Homozygous deletion of 15q13.3, which includes CHRNA7, causes ID, hypotonia, seizures, encephalopathy
Sources: Literature
Mendeliome v1.1776 DNA2 Zornitza Stark Phenotypes for gene: DNA2 were changed from Seckel syndrome 8, MIM#615807; Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 6 MIM#615156 to Rothmund-Thomson syndrome, type 4, MIM# 620819; Seckel syndrome 8, MIM#615807; Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 6 MIM#615156
Mendeliome v1.1765 GLUL Zornitza Stark Phenotypes for gene: GLUL were changed from Developmental and epileptic encephalopathy, MONDO:0100062, GLUL-related; Glutamine deficiency, congenital MIM#610015; disorder of amino acid metabolism to Developmental and epileptic encephalopathy 116, MIM# 620806; Glutamine deficiency, congenital MIM#610015; disorder of amino acid metabolism
Mendeliome v1.1764 GLUL Zornitza Stark edited their review of gene: GLUL: Changed phenotypes: Developmental and epileptic encephalopathy 116, MIM# 620806
Mendeliome v1.1755 CYHR1 Bryony Thompson Phenotypes for gene: CYHR1 were changed from Neurodevelopmental disorder and microcephaly, MONDO:0700092, CYHR1-related to Neurodevelopmental disorder, MONDO:0700092, ZTRAF1-related
Mendeliome v1.1746 SHH Ain Roesley Phenotypes for gene: SHH were changed from Holoprosencephaly 3, MIM#142945; Microphthalmia with coloboma 5, MIM#611638; Single median maxillary central incisor, MIM#147250 to Holoprosencephaly 3, MIM#142945; Microphthalmia with coloboma 5, MIM#611638; Single median maxillary central incisor, MIM#147250; Hypertelorism, ACC, intellectual disability
Mendeliome v1.1697 IQSEC2 Ain Roesley Phenotypes for gene: IQSEC2 were changed from Mental retardation, X-linked 1/78, MIM# 309530, MONDO:0010656; Severe intellectual disability-progressive postnatal microcephaly- midline stereotypic hand movements syndrome MONDO:0018347 to Intellectual developmental disorder, X-linked 1 MIM#309530, MONDO:0010656; Severe intellectual disability-progressive postnatal microcephaly- midline stereotypic hand movements syndrome MONDO:0018347
Mendeliome v1.1694 SNF8 Zornitza Stark Phenotypes for gene: SNF8 were changed from Developmental and epileptic encephalopathy 115, MIM#620783 to Developmental and epileptic encephalopathy 115, MIM#620783; Neurodevelopmental disorder plus optic atrophy, MIM# 620784
Mendeliome v1.1693 SNF8 Zornitza Stark edited their review of gene: SNF8: Added comment: Four individuals from 3 families with NDD plus OA, rather than DEE.; Changed phenotypes: Developmental and epileptic encephalopathy 115, MIM#620783, Neurodevelopmental disorder plus optic atrophy, MIM# 620784
Mendeliome v1.1688 SNF8 Zornitza Stark Phenotypes for gene: SNF8 were changed from Neurodevelopmental disorder (MONDO:0700092), SNF8-related to Developmental and epileptic encephalopathy 115, MIM#620783
Mendeliome v1.1687 SNF8 Zornitza Stark reviewed gene: SNF8: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Developmental and epileptic encephalopathy 115, MIM#620783; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1687 CNOT1 Sangavi Sivagnanasundram reviewed gene: CNOT1: Rating: AMBER; Mode of pathogenicity: None; Publications: https://search.clinicalgenome.org/CCID:004485; Phenotypes: holoprosencephaly 12 with or without pancreatic agenesis MONDO:0032787; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1687 CENPE Sangavi Sivagnanasundram reviewed gene: CENPE: Rating: RED; Mode of pathogenicity: None; Publications: https://search.clinicalgenome.org/CCID:004413; Phenotypes: autosomal recessive primary microcephaly MONDO:0016660; Mode of inheritance: None
Mendeliome v1.1673 GLUL Zornitza Stark Phenotypes for gene: GLUL were changed from Glutamine deficiency, congenital MIM#610015; disorder of amino acid metabolism to Developmental and epileptic encephalopathy, MONDO:0100062, GLUL-related; Glutamine deficiency, congenital MIM#610015; disorder of amino acid metabolism
Mendeliome v1.1671 GLUL Zornitza Stark reviewed gene: GLUL: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Developmental and epileptic encephalopathy, MONDO:0100062, GLUL-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1657 DISP1 Sangavi Sivagnanasundram changed review comment from: Well-establised gene disease association with differing mechanism of disease depending on the type of causative variant.
Monoallelic truncating variants that resulted in haploinsufficiency in DISP1 led to mild HPE. However biallelic missense variants that results in a partial loss of function of DISP1 cause HPE as well.

PMID: 38529886
25 individuals from 20 unrelated families with a phenotype associated with mild holoprosencephaly (HPE).
A total of 23 different variants were identified in DISP1 (missense, frameshift and nonsense).
14 heterozygous individuals , 5 compound heterozygous individuals, 6 homozygous individuals (5 of the individuals were from 3 unrelated consanguineous families).

HPE phenotype was also seen prenatally as one of the reported monoallelic individuals was a fetus at 20+6 GW prior to passing due to MTP.

; to: Gene disease association with differing mechanism of disease depending on the type of causative variant.
Monoallelic truncating variants that resulted in haploinsufficiency in DISP1 led to mild HPE. However biallelic missense variants that results in a partial loss of function of DISP1 cause HPE as well.

PMID: 38529886
25 individuals from 20 unrelated families with a phenotype associated with mild holoprosencephaly (HPE).
A total of 23 different variants were identified in DISP1 (missense, frameshift and nonsense).
14 heterozygous individuals , 5 compound heterozygous individuals, 6 homozygous individuals (5 of the individuals were from 3 unrelated consanguineous families).

HPE phenotype was also seen prenatally as one of the reported monoallelic individuals was a fetus at 20+6 GW prior to passing due to MTP.

Mendeliome v1.1657 DISP1 Sangavi Sivagnanasundram changed review comment from: Well-establised gene disease association with differing mechanism of disease depending on the type of causative variant.

PMID: 38529886
25 individuals from 20 unrelated families with a phenotype associated with mild holoprosencephaly (HPE).
A total of 23 different variants were identified in DISP1 (missense, frameshift and nonsense).

Monoallelic truncating variants that resulted in haploinsufficiency in DISP1 led to mild HPE. However biallelic missense variants that results in a partial loss of function f DISP1 cause HPE as well.; to: Well-establised gene disease association with differing mechanism of disease depending on the type of causative variant.
Monoallelic truncating variants that resulted in haploinsufficiency in DISP1 led to mild HPE. However biallelic missense variants that results in a partial loss of function of DISP1 cause HPE as well.

PMID: 38529886
25 individuals from 20 unrelated families with a phenotype associated with mild holoprosencephaly (HPE).
A total of 23 different variants were identified in DISP1 (missense, frameshift and nonsense).
14 heterozygous individuals , 5 compound heterozygous individuals, 6 homozygous individuals (5 of the individuals were from 3 unrelated consanguineous families).

HPE phenotype was also seen prenatally as one of the reported monoallelic individuals was a fetus at 20+6 GW prior to passing due to MTP.

Mendeliome v1.1648 CEP295 Chirag Patel gene: CEP295 was added
gene: CEP295 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CEP295 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CEP295 were set to PMID: 38154379
Phenotypes for gene: CEP295 were set to Seckel syndrome 11, OMIM # 620767
Review for gene: CEP295 was set to GREEN
gene: CEP295 was marked as current diagnostic
Added comment: 4 children from 2 unrelated families with Seckel-like syndrome - severe primary microcephaly, short stature, developmental delay, intellectual disability, facial deformities, and abnormalities of fingers and toes. WES identified biallelic pathogenic variants in CEP295 gene (p(Q544∗) and p(R1520∗); p(R55Efs∗49) and p(P562L)).

Patient-derived fibroblasts and CEP295-depleted U2OS and RPE1 cells were used to clarify the underlying mechanisms. Depletion of CEP295 resulted in a decrease in the numbers of centrioles and centrosomes and triggered p53-dependent G1 cell cycle arrest. Loss of CEP295 caused extensive primary ciliary defects in both patient-derived fibroblasts and RPE1 cells. The results from complementary experiments revealed that the wild-type CEP295, but not the mutant protein, can correct the developmental defects of the centrosome/centriole and cilia in the patient-derived skin fibroblasts.
Sources: Literature
Mendeliome v1.1646 SASS6 Ain Roesley reviewed gene: SASS6: Rating: GREEN; Mode of pathogenicity: None; Publications: 38501757, 36739862; Phenotypes: Microcephaly 14, primary, autosomal recessive, MIM# 616402; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.1634 DISP1 Sangavi Sivagnanasundram reviewed gene: DISP1: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 38529886; Phenotypes: Holoprosencephaly (MONDO:0016296); Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.1633 USP14 Zornitza Stark gene: USP14 was added
gene: USP14 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: USP14 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: USP14 were set to 38469793; 35066879
Phenotypes for gene: USP14 were set to Syndromic disease MONDO:0002254, USP14-related
Review for gene: USP14 was set to GREEN
Added comment: PMID 35066879: 3 fetuses from 2 different branches of a consanguineous family, presenting with distal arthrogryposis, underdevelopment of the corpus callosum, and dysmorphic facial features. Exome sequencing identified a biallelic 4-bp deletion (c.233_236delTTCC; p.Leu78Glnfs*11) in USP14, and sequencing of family members showed segregation with the phenotype. Ubiquitin-specific protease 14 (USP14) encodes a major proteasome-associated deubiquitinating enzyme with an established dual role as an inhibitor and an activator of proteolysis, maintaining protein homeostasis. Usp14-deficient mice show a phenotype similar to lethal human multiple congenital contractures phenotypes, with callosal anomalies, muscle wasting, and early lethality, attributed to neuromuscular junction defects due to decreased monomeric ubiquitin pool. RT-qPCR experiment in an unaffected heterozygote revealed that mutant USP14 was expressed, indicating that abnormal transcript escapes nonsense-mediated mRNA decay.

PMID 38469793: biallelic USP14 variants in four individuals from three unrelated families: one fetus, a newborn with a syndromic NDD, and two siblings affected by a progressive neurological disease. Specifically, the two siblings from the latter family carried two compound heterozygous variants c.8T>C p.(Leu3Pro) and c.988C>T p.(Arg330*), while the fetus had a homozygous frameshift c.899_902del p.(Lys300Serfs*24) variant and the newborn patient harbored a homozygous frameshift c.233_236del p.(Leu78Glnfs*11) variant. The fetus and the newborn had extensive brain malformations.
Sources: Literature
Mendeliome v1.1625 SLC32A1 Zornitza Stark Phenotypes for gene: SLC32A1 were changed from Generalized epilepsy with febrile seizures plus, type 12, MIM# 620755 to Generalized epilepsy with febrile seizures plus, type 12, MIM# 620755; Developmental and epileptic encephalopathy 114, MIM# 620774
Mendeliome v1.1624 SLC32A1 Zornitza Stark edited their review of gene: SLC32A1: Changed phenotypes: Generalized epilepsy with febrile seizures plus, type 12, MIM# 620755, Developmental and epileptic encephalopathy 114, MIM# 620774
Mendeliome v1.1624 CRELD1 Zornitza Stark Phenotypes for gene: CRELD1 were changed from Developmental and epileptic encephalopathy, MONDO:0100062, CRELD1-related; Atrioventricular septal defect, partial, with heterotaxy syndrome, MIM# 606217 to Jeffries-Lakhani neurodevelopmental syndrome, MIM# 620771; Atrioventricular septal defect, partial, with heterotaxy syndrome, MIM# 606217
Mendeliome v1.1620 SV2A Zornitza Stark Phenotypes for gene: SV2A were changed from Neurodevelopmental disorder, MONDO:0700092, SV2A-related to Neurodevelopmental disorder, MONDO:0700092, SV2A-related; Developmental and epileptic encephalopathy 113, MIM# 620772
Mendeliome v1.1619 SV2A Zornitza Stark edited their review of gene: SV2A: Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, SV2A-related, Developmental and epileptic encephalopathy 113, MIM# 620772
Mendeliome v1.1613 ZRSR2 Zornitza Stark gene: ZRSR2 was added
gene: ZRSR2 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: ZRSR2 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: ZRSR2 were set to 38158857
Phenotypes for gene: ZRSR2 were set to Orofacialdigital syndrome MONDO:0015375, ZRSR2-related
Review for gene: ZRSR2 was set to GREEN
Added comment: Oral-facial-digital (OFD) syndrome with brain anomalies ranging from alobar holoprosencephaly to pituitary anomalies.
Six unrelated families with two truncating variants and functional studies:
- p.(Gly404GlufsTer23): detected in one family with 2x affected males
- p.(Arg403GlyfsTer24): 5 unrelated families, both de novo and inherited
Sources: Expert Review
Mendeliome v1.1612 SLC32A1 Zornitza Stark Phenotypes for gene: SLC32A1 were changed from Genetic epilepsy with febrile seizures plus; Developmental and epileptic encephalopathy MONDO:0100062, SLC32A1-related to Generalized epilepsy with febrile seizures plus, type 12, MIM# 620755
Mendeliome v1.1606 RGS6 Zornitza Stark Phenotypes for gene: RGS6 were changed from Cataract,MONDO:0005129; intellectual disability, MONDO:0001071; microcephaly, MONDO:0001149 to Neurodevelopmental disorder, MONDO:0700092, RGS6-related
Mendeliome v1.1596 CIAO1 Paul De Fazio changed review comment from: PMID:38196629 (note pre-print) describes 4 unrelated patients with core features of progressive muscle weakness, respiratory insufficiency, joint hyperlaxity, ankle tightness, calf pseudohypertrophy, elevated CK, and larning disabilities/difficulties. 2 patients presented with increased iron deposition in the brain. Age of recognition of myopathic symptoms varied from early childhood to adolescence.

PMID: 38411040 reports 2 unrelated patients. Patient 1 was born with microcephaly and borderline hypertonia, and died at 18 months of respiratory failure from bronchiolitis. Patient 2 presented with failure to thrive, a hyperkinetic movement disorder, and autism before deteriorating in late teens with muscle weakness, recurrent pneuomonia with respiratory insufficiency, and eventually death due to multi-organ failure with carnificating pneumonia, septic cardiomyopathy, and intracranial hemorrhages. Immune deficiency was ruled out.

All variants reported were homozygous or compound heterozygous missense variants, with the exception of one large in-frame deletion of exon 7. Cell line studies showed the variants resulted in reduced protein stability and downstream cellular defects which could be rescued by wild-type CIAO1.
Sources: Literature; to: PMID:38196629 (note pre-print) describes 4 unrelated patients with core features of progressive muscle weakness, respiratory insufficiency, joint hyperlaxity, ankle tightness, calf pseudohypertrophy, elevated CK, and larning disabilities/difficulties. 2 patients presented with increased iron deposition in the brain. Age of recognition of myopathic symptoms varied from early childhood to adolescence. Muscle biopsy showed variation in fiber size and an increase in internalized nuclei, as well as scattered degenerating/regenerating fibers and a mild to minimal increase in endomysial fibrosis. Electron microscopy revealed morphologically abnormal mitochondria.

PMID: 38411040 reports 2 unrelated patients. Patient 1 was born with microcephaly and borderline hypertonia, and died at 18 months of respiratory failure from bronchiolitis. Patient 2 presented with failure to thrive, a hyperkinetic movement disorder, and autism before deteriorating in late teens with muscle weakness, recurrent pneuomonia with respiratory insufficiency, and eventually death due to multi-organ failure with carnificating pneumonia, septic cardiomyopathy, and intracranial hemorrhages. Immune deficiency was ruled out.

All variants reported were homozygous or compound heterozygous missense variants, with the exception of one large in-frame deletion of exon 7. Cell line studies showed the variants resulted in reduced protein stability and downstream cellular defects which could be rescued by wild-type CIAO1.
Mendeliome v1.1596 MMS19 Paul De Fazio gene: MMS19 was added
gene: MMS19 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MMS19 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MMS19 were set to 38411040
Phenotypes for gene: MMS19 were set to Neuromuscular disease, MMS19-related (MONDO:0019056)
Penetrance for gene: MMS19 were set to unknown
Review for gene: MMS19 was set to RED
gene: MMS19 was marked as current diagnostic
Added comment: Single patient reported with postnatal microcephaly, bilateral cataracts, failure to thrive, progressive spastic tetraparesis, scoliosis, myoclonic epilepsy and precocious puberty. Cerebral MRI at age 4 years showed pontocerebellar atrophy and white matter abnormalities. Patient died age 13 after recurrent respiratory tract infections. A homozygous in-frame deletion p.(Glu213del) was identified. Cell line studies supported pathogenicity of the variant. A zebrafish knockout model also showed a detrimental effect of Mms19 deficincy.
Sources: Literature
Mendeliome v1.1596 CIAO1 Paul De Fazio gene: CIAO1 was added
gene: CIAO1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CIAO1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CIAO1 were set to 38411040; 38196629
Phenotypes for gene: CIAO1 were set to Neuromuscular disease, CIAO1-related (MONDO:0019056)
Penetrance for gene: CIAO1 were set to unknown
Review for gene: CIAO1 was set to GREEN
gene: CIAO1 was marked as current diagnostic
Added comment: PMID:38196629 (note pre-print) describes 4 unrelated patients with core features of progressive muscle weakness, respiratory insufficiency, joint hyperlaxity, ankle tightness, calf pseudohypertrophy, elevated CK, and larning disabilities/difficulties. 2 patients presented with increased iron deposition in the brain. Age of recognition of myopathic symptoms varied from early childhood to adolescence.

PMID: 38411040 reports 2 unrelated patients. Patient 1 was born with microcephaly and borderline hypertonia, and died at 18 months of respiratory failure from bronchiolitis. Patient 2 presented with failure to thrive, a hyperkinetic movement disorder, and autism before deteriorating in late teens with muscle weakness, recurrent pneuomonia with respiratory insufficiency, and eventually death due to multi-organ failure with carnificating pneumonia, septic cardiomyopathy, and intracranial hemorrhages. Immune deficiency was ruled out.

All variants reported were homozygous or compound heterozygous missense variants, with the exception of one large in-frame deletion of exon 7. Cell line studies showed the variants resulted in reduced protein stability and downstream cellular defects which could be rescued by wild-type CIAO1.
Sources: Literature
Mendeliome v1.1585 SNF8 Chern Lim gene: SNF8 was added
gene: SNF8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SNF8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SNF8 were set to 38423010
Phenotypes for gene: SNF8 were set to Neurodevelopmental disorder (MONDO:0700092), SNF8-related
Review for gene: SNF8 was set to GREEN
gene: SNF8 was marked as current diagnostic
Added comment: PMID: 38423010
- Nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8. In total, three putative LoF variants and four missense variants were identified.
- The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile) as compound heterozygous.
- Functional studies using fibroblasts derived from patients and zebrafish model showed LoF is the disease mech.
Sources: Literature
Mendeliome v1.1584 RGS6 Seb Lunke gene: RGS6 was added
gene: RGS6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RGS6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RGS6 were set to 38332109; 25525169
Phenotypes for gene: RGS6 were set to Cataract,MONDO:0005129; intellectual disability, MONDO:0001071; microcephaly, MONDO:0001149
Review for gene: RGS6 was set to RED
Added comment: Original paper from 2015 describes single consanguineous with two siblings affected by cataract, developmental delay, and microcephaly >3SD. A homozygous canonical splice variant predicted to lead to NMD in RGS6 was identified by WGS and linkage (rather than full WGS analysis). The 2024 paper speculates that the phenotype is driven by a change in RGS6 isoform balance rather than LoF using a knock-out mouse model. It is noted that the mice did not have microcephaly, and ID was assessed using social interaction. No mention of cataract in the mice.
Sources: Literature
Mendeliome v1.1581 TUBA4A Sarah Pantaleo gene: TUBA4A was added
gene: TUBA4A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TUBA4A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TUBA4A were set to PMID: 38413182
Phenotypes for gene: TUBA4A were set to Congenital myopathy MONDO:0019952
Review for gene: TUBA4A was set to AMBER
Added comment: One novel TUBA4A variant in two unrelated Chinese patients with sporadic congenital myopathy.

Identified candidate genes using laser capture micro dissection, proteomics, WES, clinical data, myopathological changes, electrophysiological exams and thigh muscle MRIs.

The variant is de novo in both patients, c.679C>T, p.(Leu227Phe). The prominent myopathological changes in both patients were muscle fibres with focal myofibrillar disorganisation and rimmed vacuoles. Immunofluorescence showed ubiqution-positive TUBA4A protein aggregates in the muscle fibres with rimmed vacuoles. Overexpression of Leu227Phe resulted in cytoplasmic aggregates which colocalised with ubiquitin in cellular model.

Patient 1 is 14yo and had delayed motor development milestones since infancy. Myopathic face, high-arched palate, waddling gait, winged scapula and muscle weakness in four limbs with lower extremities and proximal muscle more severely affected. Follow up at 14yo showed slight improvement in motor function compared with 3yo.

Patient 2 is 6yo and presented with motor retardation since birth. At 3yo, presented with mild ptosis and ophthalmoparesis, high-arched palate and muscle weakness involving both proximal and distal in all limbs.

No likely pathogenic variants in 116 other protein-encoding genes. Variants confirmed by Sanger sequencing and absent from gnomAD. ACMG predicts likely pathogenic classification.
Sources: Literature
Mendeliome v1.1580 NIT1 Paul De Fazio gene: NIT1 was added
gene: NIT1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NIT1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NIT1 were set to 38430071
Phenotypes for gene: NIT1 were set to Cerebrovascular disorder, NIT1-related (MONDO:0011057)
Penetrance for gene: NIT1 were set to unknown
gene: NIT1 was marked as current diagnostic
Added comment: 5 unrelated families reported with recessively inherited cerebral small vessel disease had compound hetereozygous or homozygous variants in NIT1. 1 family (3 siblings) had p.(Ala68*) in trans with p.(Arg243Trp), the remaining 4 families (1 individual each) were all homozygous for p.(Arg243Trp).

Patients presented in mid-adulthood with progressive movement disorders (e.g. dystonia, chorea, bradykinesia and tremor, gait disturbance, dysarthria) and had abnormal brain MRI findings (honeycomb appearance of the basal ganglia-thalamus complex, due to numerous strongly dilated PVS). 3 patients had non-lobar intracerebral hemorrhage. Slowly progressive cognitive decline was also a key feature.

Metabolic analysis in urine confirmed loss of NIT1 enzymatic function.

Note p.(Arg243Trp) has 1 homozygote in gnomAD v4, but permitted due to later presentation in reported patients.
Sources: Literature
Mendeliome v1.1559 FZD5 Zornitza Stark Phenotypes for gene: FZD5 were changed from Coloboma MONDO:0001476 to Microphthalmia/coloboma 11, MIM# 620731
Mendeliome v1.1558 FZD5 Zornitza Stark edited their review of gene: FZD5: Changed phenotypes: Microphthalmia/coloboma 11, MIM# 620731
Mendeliome v1.1552 HMBS Zornitza Stark Phenotypes for gene: HMBS were changed from Porphyria, acute intermittent, MIM#176000; Porphyria, acute intermittent, non-erythroid variant, MIM#176000 to Porphyria, acute intermittent, MIM#176000; Porphyria, acute intermittent, non-erythroid variant, MIM#176000; Encephalopathy, porphyria-related MIM#620704; Leukoencephalopathy, porphyria-related, MIM#620711
Mendeliome v1.1551 HMBS Zornitza Stark edited their review of gene: HMBS: Changed phenotypes: Porphyria, acute intermittent, MIM#176000, Porphyria, acute intermittent, non-erythroid variant, MIM#176000, Encephalopathy, porphyria-related MIM#620704, Leukoencephalopathy, porphyria-related, MIM#620711
Mendeliome v1.1535 MAX Zornitza Stark Phenotypes for gene: MAX were changed from {Pheochromocytoma, susceptibility to}, MIM# 171300; Syndromic disease (MONDO:0002254), MAX-related to {Pheochromocytoma, susceptibility to}, MIM# 171300; Polydactyly-macrocephaly syndrome, MIM# 620712
Mendeliome v1.1526 DLG5 Zornitza Stark Phenotypes for gene: DLG5 were changed from Ciliopathy, MONDO:0016044, DLG5-related; Cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations to Yuksel-Vogel-Bauer syndrome, MIM#620703
Mendeliome v1.1525 DLG5 Zornitza Stark changed review comment from: Four unrelated families reported, supportive Xenopus animal model data.
Sources: Literature; to: Four unrelated families reported, supportive Xenopus animal model data. Cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations.
Sources: Literature
Mendeliome v1.1513 SP9 Suliman Khan commented on gene: SP9: PMID: 38288683: reported 5 unrelated patients with de novo heterozygous variants (missense and PTV) in SP9 gene. In silico and in vitro studies suggested a novel form of interneuronopathy with variable severity depending on the presence of loss or gain of function variants. Patients with loss-of-function variants had ID, ASD, and epilepsy, whereas missense variants in the second C2H2 binding domain result in hypomorphic and neomorphic DNA binding functions that cause severe epileptic encephalopathy. The author suggested a novel form of interneuronopathy with variable severity depending on the presence of loss or gain of function variants.
Mendeliome v1.1485 ATP6V0A1 Elena Savva Phenotypes for gene: ATP6V0A1 were changed from Neurodevelopmental disorder MONDO:0700092, ATP6V0A1-associated to Developmental and epileptic encephalopathy 104 MIM#619970; Neurodevelopmental disorder with epilepsy and brain atrophy MIM#619971
Mendeliome v1.1468 PPFIA3 Zornitza Stark gene: PPFIA3 was added
gene: PPFIA3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PPFIA3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PPFIA3 were set to 37034625
Phenotypes for gene: PPFIA3 were set to Neurodevelopmental disorder, MONDO:0700092, PPFIA3-related
Review for gene: PPFIA3 was set to GREEN
Added comment: 19 individuals with mono-allelic variants presenting with features including developmental delay, intellectual disability, hypotonia, micro/macrocephaly, autism, and epilepsy.

One individual with compound het variants: insufficient evidence for bi-allelic variants causing disease.
Sources: Literature
Mendeliome v1.1459 SLC13A3 Daniel Flanagan gene: SLC13A3 was added
gene: SLC13A3 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: SLC13A3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC13A3 were set to https://www.neurology.org/doi/full/10.1212/NXG.0000000000200101 (No PMID)
Phenotypes for gene: SLC13A3 were set to Leukoencephalopathy, acute reversible, with increased urinary alpha-ketoglutarate (MIM# 618384)
Review for gene: SLC13A3 was set to GREEN
Added comment: Seven patients reported with biallelic SLC13A3 variants, causing acute reversible leukoencephalopathy and α-ketoglutarate accumulation. Patients presented with acute neurological deterioration after a febrile illness. 5/7 with ataxia, 4/7 had seizures, 1/7 developmental delay.
Sources: Expert list
Mendeliome v1.1457 BORCS8 Lauren Rogers changed review comment from: 3 unrelated families with five affected children with homozygous or compound heterozygous loss of function missense and PTC variants.

HEK293T cells show the missense variants are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution. The BORCS8 PTC frameshift variant is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution. Zebrafish KO of the orthologous brocs8 causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease.
Sources: Literature; to: 3 unrelated families with five affected children with homozygous or compound heterozygous loss of function missense and PTC variants. 5/5 hypotonia, failure to thrive, global developmental delay, profound intellectual disability, muscle weakness and atrophy, dysmorphic features. 3/5 with microcephaly, 3/5 with seizures, 4/5 with spasticity, 3/5 with scoliosis, 4/4 with optic atrophy.

HEK293T cells show the missense variants are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution. The BORCS8 PTC frameshift variant is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution. Zebrafish KO of the orthologous brocs8 causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease.
Sources: Literature
Mendeliome v1.1457 GTPBP1 Lucy Spencer gene: GTPBP1 was added
gene: GTPBP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GTPBP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GTPBP1 were set to 38118446
Phenotypes for gene: GTPBP1 were set to Neurodevelopmental disorder (MONDO#0700092), GTPBP1-related
Review for gene: GTPBP1 was set to GREEN
Added comment: PMID: 38118446- Cohort of individuals with variants in GTPBP2 (which has been previously described) and GTPBP1 (new) who have an identical neurodevelopmental syndrome. 4 homozygous individuals from 3 consanguineous families. 2 families have different NMD-predicted nonsense variants and the third has a missense, all are absent from gnomad v4.

The shared cardinal features of GTPBP1 and 2 related disease are microcephaly, profound neurodevelopmental impairment, and distinctive craniofacial features. Epilepsy was present in 10 of 20 individuals but its not clear if those individuals had GTPBP1 or 2 variants.
Sources: Literature
Mendeliome v1.1456 PUS3 Zornitza Stark Phenotypes for gene: PUS3 were changed from Mental retardation, autosomal recessive 55, MIM# 617051 to Neurodevelopmental disorder with microcephaly and gray sclerae, MIM# 617051
Mendeliome v1.1455 PUS3 Zornitza Stark edited their review of gene: PUS3: Changed phenotypes: Neurodevelopmental disorder with microcephaly and gray sclerae, MIM# 617051
Mendeliome v1.1448 RAP1B Zornitza Stark Phenotypes for gene: RAP1B were changed from Syndromic disease, MONDO:0002254, RAP1B-related; intellectual disability; microcephaly; thrombocytopaenia to Thrombocytopenia 1 with multiple congenital anomalies and dysmorphic facies, MIM# 620654
Mendeliome v1.1447 GPT2 Zornitza Stark Phenotypes for gene: GPT2 were changed from Mental retardation, autosomal recessive 49, MIM#616281 to Neurodevelopmental disorder with microcephaly and spastic paraplegia, MIM# 616281
Mendeliome v1.1446 GPT2 Zornitza Stark edited their review of gene: GPT2: Changed phenotypes: Neurodevelopmental disorder with microcephaly and spastic paraplegia, MIM# 616281
Mendeliome v1.1441 CASP2 Zornitza Stark Phenotypes for gene: CASP2 were changed from neurodevelopmental disorder MONDO:0700092, CASP2-related to Intellectual developmental disorder, autosomal recessive 80, with variant lissencephaly, MIM# 620653
Mendeliome v1.1440 CASP2 Zornitza Stark reviewed gene: CASP2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual developmental disorder, autosomal recessive 80, with variant lissencephaly, MIM# 620653; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1430 RRM1 Zornitza Stark Phenotypes for gene: RRM1 were changed from Multiple mitochondrial DNA deletion syndrome (MONDO:0016797) to Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 6, MIM# 620647
Mendeliome v1.1428 GABRA4 Zornitza Stark gene: GABRA4 was added
gene: GABRA4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GABRA4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GABRA4 were set to 35152403
Phenotypes for gene: GABRA4 were set to Developmental and epileptic encephalopathy MONDO:0100062, GABRA4-related
Review for gene: GABRA4 was set to RED
Added comment: Single individual with de novo missense variant reported, supportive functional data.
Sources: Literature
Mendeliome v1.1415 RAB1A Zornitza Stark gene: RAB1A was added
gene: RAB1A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RAB1A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RAB1A were set to 37924809
Phenotypes for gene: RAB1A were set to neurodevelopmental disorder MONDO:0700092, RAB1A-related
Review for gene: RAB1A was set to AMBER
Added comment: Four families and 5 individuals, 2/5 have speech delay and 4/5 have motor delay. Anxiety in 3/5 and autism in 2/5. Microcephaly in only one individual, spastic paraplegia observed in 2 individuals from one family. In 2 families variants were inherited from an affected parent.
Sources: Literature
Mendeliome v1.1408 CEP192 Chern Lim gene: CEP192 was added
gene: CEP192 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CEP192 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: CEP192 were set to 37981762
Phenotypes for gene: CEP192 were set to microcephaly, short stature, limb-extremity dysplasia, and reduced testicular size
Review for gene: CEP192 was set to RED
gene: CEP192 was marked as current diagnostic
Added comment: PMID: 37981762:
- In one family, chet missense p.His638Tyr and p.Asn1917Ser segregated with microcephaly, short stature, limb-extremity dysplasia, and reduced testicular size in two affected siblings. Both sibs also fulfilled dx for mosaic variegated aneuploidy (MVA) syndrome and have tetraploidy.
- A lower but substantial proportion of MVA/tetraploidy cells was observed in II-1, II-2, and II-4 (who are het for one of the variants).

- In the same family, each variants in heterozygous state segregated with infertility and/or reduced testicular size in the proband’s father and maternal uncle.
- Variant screening of CEP192 coding regions performed for 1264 unrelated males with idiopathic infertility.
- Asn1917Ser was also detected in three additional unrelated infertile males with reduced testicular volumes.
- Two other missense and two synonymous variants were repeatedly detected in infertile males.

- qPCR showed CEP192 expression was decreased in individuals with c.1912C>T His638Tyr, mini-gene assay showed that c.1912C>T His638Tyr led to the skipping of exon 14, predicted to result in NMD.
- Epithelial cells cultured in vitro from patients with biallelic variants showed the number of cells arrested during the prophase increased because of the failure of spindle formation.

- Embyronic mouse lethality in Cep192-/- (hom for His638Tyr), Cep192M/M (hom for Asn1917Ser) and Cep192-/M (chet).
- Embryos of Cep192M/M mice had significant increase of MVA and tetraploidy cells.
- Number of apoptotic cells increased in Cep192M/M embryos compared with that of Cep192+/+, similar result in Cep192-/- embryos.
- Male mice with Cep192 heterozygous variants replicated infertility

Conclusions:
- Association of this gene with autosomal recessive disease has not been established.
- Association of monoallelic variants in this gene with infertility is not well established:
- Two variants with some supportive evidence from mouse model.
Sources: Literature
Mendeliome v1.1408 SV2A Karina Sandoval changed review comment from: Monoallelic variants cause epilepsy. Biallelic variant in this 5yo (Hom p.Arg383Gln) reported to cause severe phenotype of drug-resistant epileptic encephalopathy with microcephaly, DD, movement disorder and growth retardation. Consanguineous.
This paper references 5 other families with both AR & AD
Family #1 – p.Arg383Gln, AR, 2 affected in family, parents healthy carriers
Family #2 – p.Arg570Cys, AD, 2 affected, inherited from affected mother (in gnomAD v2 1 het, absent from gnomAD v3)
Family #3 – p.Gly660Arg, AD, de novo
Family #4 – p.Gly660Arg, AD, segregated in 11 family members
Family #5 (this study) – p.Arg289Ter, AR, parents and 2 sibs asymptomatic carriers
Sources: Literature; to: Monoallelic variants cause epilepsy. Biallelic variant in this 5yo with p.Arg289Ter and another 5yo from another paper with homozygous p.Arg383Gln, reported to cause severe phenotype of drug-resistant epileptic encephalopathy with microcephaly, DD, movement disorder and growth retardation.
This paper references 5 other families with both AR & AD
Family #1 – p.Arg383Gln, AR, 2 affected in family, parents healthy carriers
Family #2 – p.Arg570Cys, AD, 2 affected, inherited from affected mother (in gnomAD v2 1 het, absent from gnomAD v3)
Family #3 – p.Gly660Arg, AD, de novo
Family #4 – p.Gly660Arg, AD, segregated in 11 family members
Family #5 (this study) – p.Arg289Ter, AR, parents and 2 sibs asymptomatic carriers
Sources: Literature
Mendeliome v1.1408 SV2A Karina Sandoval changed review comment from: Monoallelic variants cause epilepsy. Biallelic variant in this 5yo (Hom p.Arg383Gln) reported to cause severe phenotype of drug-resistant epileptic encephalopathy with microcephaly, DD, movement disorder and growth retardation. Consanguineous.
This paper references 5 other families with both AR & AD
Family #1 – p.Arg383Gln, AR, 2 affected in family, parents healthy carriers
Family #2 – p.Arg570Cys, AD, 2 affected, inherited from affected mother
Family #3 – p.Gly660Arg, AD, de novo
Family #4 – p.Gly660Arg, AD, segregated in 11 family members
Family #5 (this study) – p.Arg289Ter, AR, parents and 2 sibs asymptomatic carriers
Sources: Literature; to: Monoallelic variants cause epilepsy. Biallelic variant in this 5yo (Hom p.Arg383Gln) reported to cause severe phenotype of drug-resistant epileptic encephalopathy with microcephaly, DD, movement disorder and growth retardation. Consanguineous.
This paper references 5 other families with both AR & AD
Family #1 – p.Arg383Gln, AR, 2 affected in family, parents healthy carriers
Family #2 – p.Arg570Cys, AD, 2 affected, inherited from affected mother (in gnomAD v2 1 het, absent from gnomAD v3)
Family #3 – p.Gly660Arg, AD, de novo
Family #4 – p.Gly660Arg, AD, segregated in 11 family members
Family #5 (this study) – p.Arg289Ter, AR, parents and 2 sibs asymptomatic carriers
Sources: Literature
Mendeliome v1.1405 SV2A Karina Sandoval gene: SV2A was added
gene: SV2A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SV2A was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Publications for gene: SV2A were set to PMID: 37985816
Phenotypes for gene: SV2A were set to Epilepsy, MONDO:0005027
Review for gene: SV2A was set to GREEN
Added comment: Monoallelic variants cause epilepsy. Biallelic variant in this 5yo (Hom p.Arg383Gln) reported to cause severe phenotype of drug-resistant epileptic encephalopathy with microcephaly, DD, movement disorder and growth retardation. Consanguineous.
This paper references 5 other families with both AR & AD
Family #1 – p.Arg383Gln, AR, 2 affected in family, parents healthy carriers
Family #2 – p.Arg570Cys, AD, 2 affected, inherited from affected mother
Family #3 – p.Gly660Arg, AD, de novo
Family #4 – p.Gly660Arg, AD, segregated in 11 family members
Family #5 (this study) – p.Arg289Ter, AR, parents and 2 sibs asymptomatic carriers
Sources: Literature
Mendeliome v1.1401 SEL1L Sarah Pantaleo gene: SEL1L was added
gene: SEL1L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SEL1L was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SEL1L were set to PMID: 37943610; PMID: 37943617
Phenotypes for gene: SEL1L were set to Neurodevelopmental disorder, MONDO:0700092, SEL1L-related
Penetrance for gene: SEL1L were set to Complete
Added comment: Wang paper PMID: 37943610

SEL1L protein is involved in the SEL1L-HRD1 endoplasmic reticulum (ER)-associated degradation.

Report two biallelic missense variants in SEL1L in six children from three independent families presenting with developmental delay, intellectual disability, microcephaly, facial dysmorphisms, hypotonia and/or ataxia (termed ERAD-associated neurodevelopment disorder with onset in infancy (ENDI). The variants were hypomorphic and impaired ERAD function.

Identified by WES. Parents heterozygous and asymptomatic. P.(Gly585Asp) in Patient 1, p.(Met528Arg) in Patients 2 and 3 (siblings).

All variants cause substrate accumulation. The extent of substrate accumulation in knockin cells was modest compared to those in knockout cells, pointing to a hypomorphic nature.

They also had a variant in HRD1.



Weis paper PMID: 37943617

Third variant p.(Cys141Tyr), biallelic, causing premature death in five patients from a consanguineous family with early-onset neurodevelopmental disorders and agammaglobulinaemia due to severe SEL1L-HRD1 ERAD dysfunction.

This variant appears to have a more severe outcome, exhibiting B cell depletion and agammaglobulinaemia, causing the most severe dysfunction among all of the variants described by this group so far. They postulate that functionality of SEL1L-HRD1 ERAD is inversely correlated with disease severity in humans.

Their symptoms were dev delay, neurological disorder and agammaglobulinaemia in childhood. Along with severe axial hypotonia, short stature and microcephaly.

“Not a complete loss-of-function variant”.
Sources: Literature
Mendeliome v1.1396 TRAPPC4 Zornitza Stark Phenotypes for gene: TRAPPC4 were changed from intellectual disability; epilepsy; spasticity; microcephaly to Neurodevelopmental disorder with epilepsy, spasticity, and brain atrophy, MIM# 618741
Mendeliome v1.1381 KDR Zornitza Stark edited their review of gene: KDR: Added comment: PMID 34113005: Exome sequencing in a family with two siblings affected by ToF revealed biallelic missense variants in KDR. Studies in knock-in mice and in HEK 293T cells identified embryonic lethality for one variant when occurring in the homozygous state, and a significantly reduced VEGFR2 phosphorylation for both variants.

Rare variant burden analysis conducted in a set of 1,569 patients of European descent with ToF identified a 46-fold enrichment of protein-truncating variants (PTVs) in TOF cases compared to controls (P = 7 × 10-11). At this stage MOI unclear and insufficient evidence for either MOI.; Changed publications: 31980491, 29650961, 18931684, 34113005; Changed phenotypes: Pulmonary hypertension, Haemangioma, capillary infantile, somatic 602089, Tetralogy of Fallot, MONDO:0008542; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.1361 TUBGCP2 Zornitza Stark Phenotypes for gene: TUBGCP2 were changed from Lissencephaly; pachygyria; subcortical band heterotopia; microcephaly; intellectual disability to Pachygyria, microcephaly, developmental delay, and dysmorphic facies, with or without seizures, OMIM # 618737; Lissencephaly; pachygyria; subcortical band heterotopia; microcephaly; intellectual disability
Mendeliome v1.1360 TUBGCP2 Zornitza Stark edited their review of gene: TUBGCP2: Changed phenotypes: Pachygyria, microcephaly, developmental delay, and dysmorphic facies, with or without seizures, OMIM # 618737, Lissencephaly, pachygyria, subcortical band heterotopia, microcephaly, intellectual disability
Mendeliome v1.1338 SGSM3 Dean Phelan gene: SGSM3 was added
gene: SGSM3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SGSM3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SGSM3 were set to PMID: 37833060
Phenotypes for gene: SGSM3 were set to Neurodevelopmental disorder (MONDO:0700092), SGSM3-related
Review for gene: SGSM3 was set to AMBER
Added comment: PMID: 37833060
- 13 patients from 8 families of Ashkenazi Jewish origin all had the same homozygous frameshift variant (c.981dup). Predicted to cause NMD. The variant co-segregated with disease in all available family members. The affected individuals displayed mild global developmental delay and mild to moderate intellectual disability. Additional prevalent phenotypes observed included hypotonia, behavioural challenges and short stature. Considered a founder variant (1 in 52 Ashkenazi Jews carry the variant). Also present in other populations but no homozygotes in gnomAD.
Sources: Literature
Mendeliome v1.1330 CASP2 Lisa Norbart gene: CASP2 was added
gene: CASP2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CASP2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CASP2 were set to 37880421
Phenotypes for gene: CASP2 were set to neurodevelopmental disorder MONDO:0700092, CASP2-related
Penetrance for gene: CASP2 were set to Complete
Review for gene: CASP2 was set to GREEN
gene: CASP2 was marked as current diagnostic
Added comment: 7 patients from 5 families
4 families hom for PTCs, 1 family Chet for splice+PTC
RNA studies done for the splice to indicate usage of two cryptic splice donor sites

5/5 have ID/dev delay
1/5 has seizures
2/5 hypotonia
3/5 lissencephaly (pachygyria and cortical thickening)
Sources: Literature
Mendeliome v1.1327 AXIN1 Zornitza Stark edited their review of gene: AXIN1: Added comment: PMID: 37582359
- four families (7 individuals) with three homozygous truncating variants.
- all variant shown to result in reduced protein, though 1/3 would be NMD predicted
- Probands had macrocephaly (4/6), GDD (3/7), hip dysplasia (5/6), cardiac anomalies eg. VSD/ASD (3/7), cranial hyperostosis and vertebral endplate sclerosis; Changed rating: GREEN; Changed publications: 37582359; Changed phenotypes: Craniometadiaphyseal osteosclerosis with hip dysplasia, MIM# 620558; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1316 EPHA2 Zornitza Stark Phenotypes for gene: EPHA2 were changed from cataract 6 multiple types MONDO:0007288 to cataract 6 multiple types MONDO:0007288; microphthalmia, MONDO:0021129, EPHA2-related
Mendeliome v1.1311 SPTAN1 Zornitza Stark Phenotypes for gene: SPTAN1 were changed from Developmental and epileptic encephalopathy 5, MIM# 613477; Hereditary spastic paraplegia MONDO:0019064, SPTAN1-related; Neuronopathy, distal hereditary motor, 11, autosomal dominant, MIM# 620528 to Developmental and epileptic encephalopathy 5, MIM# 613477; Hereditary spastic paraplegia MONDO:0019064, SPTAN1-related; Neuronopathy, distal hereditary motor, 11, autosomal dominant, MIM# 620528; Autosomal dominant spastic paraplegia-91, with or without cerebellar ataxia (SPG91), MIM#620538
Mendeliome v1.1310 SPTAN1 Zornitza Stark edited their review of gene: SPTAN1: Changed phenotypes: Developmental and epileptic encephalopathy 5, MIM# 613477, Hereditary spastic paraplegia MONDO:0019064, SPTAN1-related, Neuronopathy, distal hereditary motor, 11, autosomal dominant, MIM# 620528, Autosomal dominant spastic paraplegia-91, with or without cerebellar ataxia (SPG91), MIM#620538
Mendeliome v1.1286 KCNH5 Zornitza Stark edited their review of gene: KCNH5: Changed phenotypes: Developmental and epileptic encephalopathy 112, MIM# 620537
Mendeliome v1.1286 KCNH5 Zornitza Stark Phenotypes for gene: KCNH5 were changed from Neurodevelopmental disorder MONDO#0700092, KCNH5-related to Developmental and epileptic encephalopathy 112, MIM# 620537
Mendeliome v1.1277 EOMES Zornitza Stark Phenotypes for gene: EOMES were changed from Microcephaly to Microcephaly, MONDO:0001149, EOMES-related
Mendeliome v1.1276 EOMES Zornitza Stark edited their review of gene: EOMES: Changed phenotypes: Microcephaly, MONDO:0001149, EOMES-related
Mendeliome v1.1263 PLS3 Zornitza Stark edited their review of gene: PLS3: Added comment: PMID 37751738: 8 unrelated families with affected males with an X-linked condition characterised by diaphragm defects, variable anterior body-wall anomalies, and/or facial dysmorphism. All were missense variants. A mouse knock in model of a variant identified in one of the CDH-affected families, c.1497G>C (p.Trp499Cys), shows partial perinatal lethality and recapitulates the key findings of the human phenotype, including diaphragm and abdominal-wall defects. Gain-of-function is a suggested mechanism.; Changed publications: 32655496, 25209159, 29736964, 29884797, 28777485, 24088043, 37751738; Changed phenotypes: Bone mineral density QTL18, osteoporosis - MIM#300910, congenital diaphragmatic hernia MONDO:0005711, PLS3-related; Changed mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v1.1262 MYCN Elena Savva Phenotypes for gene: MYCN were changed from Feingold syndrome 1; megalencephaly; ventriculomegaly; hypoplastic corpus callosum; intellectual disability; polydactyly; neuroblastoma to Neurodevelopmental disorder (MONDO:0700092), MYCN-related; Feingold syndrome 1 MIM#164280
Mendeliome v1.1251 COG3 Daniel Flanagan gene: COG3 was added
gene: COG3 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: COG3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COG3 were set to PMID: 37711075
Phenotypes for gene: COG3 were set to Neurodevelopmental disorder (MONDO#0700092), COG3-related
Review for gene: COG3 was set to AMBER
Added comment: Two COG3 homozygous missense variants in four individuals from two unrelated consanguineous families. Clinical phenotypes of affected individuals include global developmental delay, severe intellectual disability, microcephaly, epilepsy, facial dysmorphism, and variable neurological findings.
Sources: Expert list
Mendeliome v1.1249 MAST4 Ain Roesley gene: MAST4 was added
gene: MAST4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MAST4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MAST4 were set to 36910266; 33057194
Phenotypes for gene: MAST4 were set to neurodevelopmental disorder MONDO:0700092, MAST4-related
Penetrance for gene: MAST4 were set to Complete
Review for gene: MAST4 was set to GREEN
gene: MAST4 was marked as current diagnostic
Added comment: PMID: 36910266 - 4 families with 4 affecteds, all de novo missense

2x borderline microcephaly (-2SD)
2x gross motor delay
2x dysmorphism
4x ID + seizures
3x abnormal brain MRI findings

PMID: 33057194 - 5x de novos, 4x missense + 1x PTC
Cohort of individuals with severe developmental disorder
individual phenotypic information not provided


Recurrent variants are Thr1471Ile (3x) and Ser1181Phe)
Sources: Literature
Mendeliome v1.1245 ATRX Zornitza Stark Phenotypes for gene: ATRX were changed from Alpha-thalassemia/mental retardation syndrome, MIM# 301040; Intellectual disability-hypotonic facies syndrome, X-linked, MIM# 309580 to ATR-X-related syndrome MONDO:0016980
Mendeliome v1.1244 DLG5 Zornitza Stark Phenotypes for gene: DLG5 were changed from Cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations to Ciliopathy, MONDO:0016044, DLG5-related; Cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations
Mendeliome v1.1238 SPTAN1 Zornitza Stark Phenotypes for gene: SPTAN1 were changed from Developmental and epileptic encephalopathy 5, MIM# 613477; Hereditary spastic paraplegia MONDO:0019064, SPTAN1-related; hereditary motor neuropathy to Developmental and epileptic encephalopathy 5, MIM# 613477; Hereditary spastic paraplegia MONDO:0019064, SPTAN1-related; Neuronopathy, distal hereditary motor, 11, autosomal dominant, MIM# 620528
Mendeliome v1.1237 SPTAN1 Zornitza Stark edited their review of gene: SPTAN1: Changed phenotypes: Developmental and epileptic encephalopathy 5, MIM# 613477, Hereditary spastic paraplegia MONDO:0019064, SPTAN1-related, Neuronopathy, distal hereditary motor, 11, autosomal dominant, MIM# 620528
Mendeliome v1.1232 CSNK1E Zornitza Stark Phenotypes for gene: CSNK1E were changed from Epileptic encephalopathy to Developmental and epileptic encephalopathy, MONDO:0100062, CSNK1E-related
Mendeliome v1.1230 CSDE1 Zornitza Stark Phenotypes for gene: CSDE1 were changed from Autism; intellectual disability; seizures; macrocephaly to Neurodevelopmental disorder, MONDO:0700092, CSDE1-related
Mendeliome v1.1214 DEPDC5 Zornitza Stark Phenotypes for gene: DEPDC5 were changed from Epilepsy, familial focal, with variable foci 1, MIM#604364 to Epilepsy, familial focal, with variable foci 1, MIM#604364; Developmental and epileptic encephalopathy 111, MIM# 620504
Mendeliome v1.1200 ATXN2L Zornitza Stark Phenotypes for gene: ATXN2L were changed from macrocephaly; intellectual disability to Neurodevelopmental disorder, MONDO:0700092, ATXN2L-related
Mendeliome v1.1178 AGMO Zornitza Stark Phenotypes for gene: AGMO were changed from microcephaly; intellectual disability; epilepsy to Neurodevelopmental disorder, MONDO:0700092, AGMO-related
Mendeliome v1.1170 DBR1 Zornitza Stark Phenotypes for gene: DBR1 were changed from {Encephalitis, acute, infection (viral)-induced, susceptibility to, 11}, MIM# 619441; Viral infections of the brainstem; Ichthyosis (MONDO#0019269), DBR1-related to {Encephalitis, acute, infection (viral)-induced, susceptibility to, 11}, MIM# 619441; Viral infections of the brainstem; Xerosis and growth failure with immune and pulmonary dysfunction syndrome, MIM# 620510
Mendeliome v1.1169 TRAC Zornitza Stark Tag technically challenging tag was added to gene: TRAC.
Mendeliome v1.1159 DBR1 Zornitza Stark Phenotypes for gene: DBR1 were changed from {Encephalitis, acute, infection (viral)-induced, susceptibility to, 11}, MIM# 619441; Viral infections of the brainstem to {Encephalitis, acute, infection (viral)-induced, susceptibility to, 11}, MIM# 619441; Viral infections of the brainstem; Ichthyosis (MONDO#0019269), DBR1-related
Mendeliome v1.1158 DBR1 Zornitza Stark edited their review of gene: DBR1: Added comment: PMID: 37656279:
- A homozygous missense as a founder recessive DBR1 variant in four consanguineous families.
- Total of 7 affected children. WES done for one proband from each family.
- Consistent features include prematurity, severe intrauterine growth deficiency, congenital ichthyosis-like presentation (collodion membrane, severe skin peeling and xerosis), and death before the first year of life.
- RNA and protein studies using fibroblasts derived from a patient are supportive of pathogenicity: RNA-seq, rt-qPCR and western blotting, showing marked reduction of DBR1 level and intronic RNA lariat accumulation in the patient sample.
- Haplotype analysis revealed that the four families all share a haplotype extending at least 2.27 Mb around the c.200A>G p.(Tyr67Cys) DBR1 founder variant.
- Authors proposed this is a novel DBR1-related developmental disorder that is distinct from DBR1-related encephalitis susceptibility, and highlighted the apparent lack of correlation with the degree of DBR1 deficiency.; Changed publications: 29474921, 37656279; Changed phenotypes: {Encephalitis, acute, infection (viral)-induced, susceptibility to, 11}, MIM# 619441, Viral infections of the brainstem, Ichthyosis (MONDO#0019269), DBR1-related
Mendeliome v1.1156 RAB5C Rylee Peters changed review comment from: 12 individuals with nine different heterozygous de novo variants in RAB5C.
9 with missense, 1 inframe duplication and 2 stop-gains (clinically more severe).
All has mild-severe ID, 4/12 have epilepsy, 6/12 have macrocephaly (more than 3 SD).
Sources: Literature; to: 12 individuals with nine different heterozygous de novo variants in RAB5C.
9 with missense, 1 inframe duplication and 2 stop-gains (clinically more severe).
All have mild-severe ID, 4/12 have epilepsy, 6/12 have macrocephaly (more than 3 SD).
Sources: Literature
Mendeliome v1.1152 RAB5C Rylee Peters gene: RAB5C was added
gene: RAB5C was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RAB5C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RAB5C were set to PMID: 37552066
Phenotypes for gene: RAB5C were set to Neurodevelopmental disorder MONDO:0700092, RAB5C-related
Penetrance for gene: RAB5C were set to Complete
Review for gene: RAB5C was set to GREEN
gene: RAB5C was marked as current diagnostic
Added comment: 12 individuals with nine different heterozygous de novo variants in RAB5C.
9 with missense, 1 inframe duplication and 2 stop-gains (clinically more severe).
All has mild-severe ID, 4/12 have epilepsy, 6/12 have macrocephaly (more than 3 SD).
Sources: Literature
Mendeliome v1.1142 SOX11 Zornitza Stark Phenotypes for gene: SOX11 were changed from Coffin-Siris syndrome 9, MIM# 615866; Congenital abnormalities of the kidneys and urinary tract to Intellectual developmental disorder with microcephaly and with or without ocular malformations or hypogonadotropic hypogonadism, MIM# 615866; Congenital abnormalities of the kidneys and urinary tract
Mendeliome v1.1140 SOX11 Zornitza Stark edited their review of gene: SOX11: Added comment: Over 40 additional individuals reported, e.g. PMID 35341651. The phenotype that has emerged over time is distinct from patients with mutations in ARID1B (614556) and Coffin-Siris syndrome-1 (135900). Patients with IDDMOH tend to be microcephalic and have ocular motor apraxia, abnormal eye morphology, or hypogonadotropic hypogonadism.; Changed publications: 29459093, 24886874, 33086258, 33785884, 35642566, 35341651
Mendeliome v1.1140 SOX11 Zornitza Stark edited their review of gene: SOX11: Changed phenotypes: Intellectual developmental disorder with microcephaly and with or without ocular malformations or hypogonadotropic hypogonadism, MIM# 615866, Congenital abnormalities of the kidneys and urinary tract
Mendeliome v1.1140 RAP1B Zornitza Stark Phenotypes for gene: RAP1B were changed from RAP1B‐associated syndrome; intellectual disability; microcephaly; thrombocytopaenia to Syndromic disease, MONDO:0002254, RAP1B-related; intellectual disability; microcephaly; thrombocytopaenia
Mendeliome v1.1133 CRELD1 Zornitza Stark Phenotypes for gene: CRELD1 were changed from Atrioventricular septal defect, partial, with heterotaxy syndrome, MIM# 606217 to Developmental and epileptic encephalopathy, MONDO:0100062, CRELD1-related; Atrioventricular septal defect, partial, with heterotaxy syndrome, MIM# 606217
Mendeliome v1.1130 CRELD1 Zornitza Stark edited their review of gene: CRELD1: Added comment: Emerging association between bi-alleic variants in CRELD1 and DEE.; Changed rating: GREEN; Changed phenotypes: Developmental and epileptic encephalopathy, MONDO:0100062, CRELD1-related, Atrioventricular septal defect, partial, with heterotaxy syndrome, MIM# 606217; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.1112 ATP6V0C Zornitza Stark Phenotypes for gene: ATP6V0C were changed from Epilepsy; Intellectual Disability; microcephaly to Epilepsy, early-onset, with or without developmental delay, MIM#620465; Epilepsy; Intellectual Disability; microcephaly
Mendeliome v1.1111 ATP6V0C Zornitza Stark edited their review of gene: ATP6V0C: Changed phenotypes: Epilepsy, early-onset, with or without developmental delay, MIM#620465, Epilepsy, Intellectual Disability, microcephaly
Mendeliome v1.1110 RNH1 Zornitza Stark Phenotypes for gene: RNH1 were changed from Neurodevelopmental disorder, MONDO:0700092, RNH1-related; encephalopathy, acute, infection-induced (MONDO:0000166), RNH1-related to Neurodevelopmental disorder, MONDO:0700092, RNH1-related; {Encephalopathy, acute, infection-induced, susceptibiliyt to, 12}, MIM# 620461
Mendeliome v1.1077 AQP4 Zornitza Stark Phenotypes for gene: AQP4 were changed from ?Megalencephalic leukoencephalopathy with subcortical cysts 4, remitting MIM#620448 to Megalencephalic leukoencephalopathy with subcortical cysts 4, remitting MIM#620448
Mendeliome v1.1071 AQP4 Lucy Spencer gene: AQP4 was added
gene: AQP4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: AQP4 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: AQP4 were set to 37143309
Phenotypes for gene: AQP4 were set to ?Megalencephalic leukoencephalopathy with subcortical cysts 4, remitting MIM#620448
Review for gene: AQP4 was set to AMBER
Added comment: PMID: 37143309
Cohort of patients with an MRI based diagnosis of megalencephalic leukoencephalopathy with subcortical cysts (MLC). Missense variant in AQP4 seen homozygous in 2 siblings and het in the parents. Patients had macrocephaly, developmental delay, hypotonia, epilepsy, and cognitive deficit.

Western blots on generated MDCK cell lines showed no detectable expression of AQP4 protein from the cells with the patients variant. Immunofluorescence also showed no membrane expression. Overexpression studies in HEK293T cells showed WT was seen as mainly monomers or dimers where as variant protein formed large aggregates- likely due to the saturation of protein degradation pathways because of the overexpression.
Sources: Literature
Mendeliome v1.1071 GPRC5B Lucy Spencer gene: GPRC5B was added
gene: GPRC5B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GPRC5B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GPRC5B were set to 37143309
Phenotypes for gene: GPRC5B were set to Megalencephalic leukoencephalopathy with subcortical cysts 3 620447
Review for gene: GPRC5B was set to GREEN
Added comment: PMID: 37143309
Cohort of 5 patients with an MRI based diagnosis of megalencephalic leukoencephalopathy with subcortical cysts (MLC). 3 unrelated patients had variants in GPRC5B, 2 have the same inframe dup Ile175dup and the third has an in frame dup of Ala177. All 3 were de novo and unaffected siblings did not have the variants. All patients have macrocephaly, delayed motor development, seizures, all had varying degrees of cognitive deficits. 2 also had spasticity, ataxia and dystonia. MRI showed MLC, abnormal and swollen cerebral white matter.

Patient cell lines showed reduced regulatory volume decrease, and western blot showed a strong increase in GRPC5B levels in patient lymphoblasts. Together, these findings indicate disturbed volume regulation in lymphoblasts from patients with GPRC5B variants, potentially due to increased GPRC5B levels. Transfected cells caused increased volume-regulated anion channel activity.
Sources: Literature
Mendeliome v1.1057 SLC4A10 Krithika Murali gene: SLC4A10 was added
gene: SLC4A10 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC4A10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC4A10 were set to PMID: 37459438
Phenotypes for gene: SLC4A10 were set to Neurodevelopmental disorderMONDO:0700092, SLC4A10-related
Review for gene: SLC4A10 was set to GREEN
Added comment: PMID: 37459438 Fasham et al 2023 (Brain) report 10 affected individuals from 5 unrelated families with biallelic LoF variants in this gene with a novel neurodevelopmental disorder.

Phenotypic features include hypotonia in infancy, delayed psychomotor development, typically severe ID, progressive postnatal microcephaly, ASD traits, corpus callosal abnormalities and 'slit-like' lateral ventricles. These phenotypic features were recapitulated in knockout mice with additional supportive functional studies.

Isolated seizures was reported in 2/10 cases.
Sources: Literature
Mendeliome v1.1052 TEP1 Zornitza Stark gene: TEP1 was added
gene: TEP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TEP1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TEP1 were set to 34543729
Phenotypes for gene: TEP1 were set to Cerebral palsy, MONDO:0006497, TEP1-related
Review for gene: TEP1 was set to AMBER
Added comment: Wang et al. screened a large cohort of more than 600 CP patients from China and found several variants in TEP1, 11 of which were LoF, while no LoF variant was found in the control cohort. These children all had spastic CP. Among these 11 children, 6 children had birth asphyxia and neonatal encephalopathy. Compared to the total group with birth asphyxia (71/667), 6 patients with TEP1 LOF mutations had a significantly greater risk of birth asphyxia. They confirmed TEP1 as a risk factor for CP by cytological and animal models.

Uncertain if these are risk alleles vs indicative of a monogenic disorder. Note LoF variants in gnomad. As this was a cohort study, inheritance of these variants is unknown.
Sources: Literature
Mendeliome v1.1048 TMEM63B Zornitza Stark Phenotypes for gene: TMEM63B were changed from developmental and epileptic encephalopathy, MONDO:0100062 to developmental and epileptic encephalopathy, MONDO:0100062, TMEM63B-related
Mendeliome v1.1045 TMEM63B Achchuthan Shanmugasundram changed review comment from: There is sufficient evidence for this gene to be included with green rating in intellectual disability and epilepsy panels.

17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment were identified with ten distinct heterozygous variants inTMEM63B. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense or in-frame.

All individuals had global developmental delay, with moderate-to-profound intellectual disability and severe motor impairment.

All individuals had early-onset drug-resistant epilepsy, whose onset ranged from birth to 3 years but occurred within the first year in 14/17 (82%) and in the first month of life in 6/17 (35%).
Sources: Literature; to: There is sufficient evidence for this gene to be included with green rating in 'Intellectual disability syndromic and non-syndromic' and 'Genetic epilepsy' panels.

17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment were identified with ten distinct heterozygous variants inTMEM63B. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense or in-frame.

All individuals had global developmental delay, with moderate-to-profound intellectual disability and severe motor impairment.

All individuals had early-onset drug-resistant epilepsy, whose onset ranged from birth to 3 years but occurred within the first year in 14/17 (82%) and in the first month of life in 6/17 (35%).
Sources: Literature
Mendeliome v1.1045 TMEM63B Achchuthan Shanmugasundram gene: TMEM63B was added
gene: TMEM63B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TMEM63B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TMEM63B were set to 37421948
Phenotypes for gene: TMEM63B were set to developmental and epileptic encephalopathy, MONDO:0100062
Review for gene: TMEM63B was set to GREEN
Added comment: There is sufficient evidence for this gene to be included with green rating in intellectual disability and epilepsy panels.

17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment were identified with ten distinct heterozygous variants inTMEM63B. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense or in-frame.

All individuals had global developmental delay, with moderate-to-profound intellectual disability and severe motor impairment.

All individuals had early-onset drug-resistant epilepsy, whose onset ranged from birth to 3 years but occurred within the first year in 14/17 (82%) and in the first month of life in 6/17 (35%).
Sources: Literature
Mendeliome v1.1038 PIP5K1C Zornitza Stark Phenotypes for gene: PIP5K1C were changed from Lethal congenital contractural syndrome 3, MIM# 611369 to Neurodevelopmental disorder and microcephaly, MONDO:0700092, PIP5K1C-related; Lethal congenital contractural syndrome 3, MIM# 611369
Mendeliome v1.1030 CYHR1 Zornitza Stark Phenotypes for gene: CYHR1 were changed from Neurodevelopmental disorder and microcephaly to Neurodevelopmental disorder and microcephaly, MONDO:0700092, CYHR1-related
Mendeliome v1.1012 TTI1 Zornitza Stark Phenotypes for gene: TTI1 were changed from Neurodevelopmental disorder, MONDO:0700092, TTI1-related to Neurodevelopmental disorder with microcephaly and movement abnormalities, MIM# 620445
Mendeliome v1.1005 PIP5K1C Chirag Patel reviewed gene: PIP5K1C: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder and microcephaly; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v1.1001 DCAF15 Chirag Patel gene: DCAF15 was added
gene: DCAF15 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: DCAF15 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: DCAF15 were set to Cornelia de Lange syndrome
Review for gene: DCAF15 was set to AMBER
Added comment: ESHG 2023:
3 unrelated cases with CdLS (1 x TOP with MCA, 1 x death @20mths, 1 x living child)
Features suggestive of CdLS - DD, microcephaly, CHD, dysmorphism, visual/hearing impairment.

WES identified recurrent de novo variant (p.Ser470Phe) in DCAF15 gene. This mediates ubiquitination and degradation of target proteins, and interacts with cohesin complex members (SMC1/SMC3).

Protein analysis from individuals showed increased accumulation of ubiquitination-modified proteins and SM3 (GOF mechanism). EpiSign analysis showed same DNA methylation pattern as other CdLS cases/genes. Zebrafish model showed reduced body length, reduced head size, reduced oligodendrocytes, heart defect, aberrant motor neurons, and abnormal response to visual/auditory stimuli.
Sources: Other
Mendeliome v1.996 RIPK3 Zornitza Stark gene: RIPK3 was added
gene: RIPK3 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: RIPK3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RIPK3 were set to 37083451
Phenotypes for gene: RIPK3 were set to Hereditary susceptibility to infections, MONDO:0015979, RIPK3-related; Recurrent HSV encephalitis
Review for gene: RIPK3 was set to AMBER
Added comment: Single female patient with independent episodes of HSE at 6 and 17 months of age and with autoimmune encephalitis 1 month after the second episode of HSE with two heterozygous mutations of RIPK3 predicted to be loss of function (pLOF): p. Arg422* (c.1264 C > T, MAF 0.001568, CADD 35) and p. Pro493fs9* (c.1475 C > CC, MAF 0.002611, CADD 24.2). Extensive supportive functional data including RIPK3 knockout human pluripotent stem cell–derived cortical neurons.
Sources: Expert Review
Mendeliome v1.991 CYHR1 Chirag Patel gene: CYHR1 was added
gene: CYHR1 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: CYHR1 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: CYHR1 were set to Neurodevelopmental disorder and microcephaly
Review for gene: CYHR1 was set to AMBER
Added comment: ESHG 2023:
5 individuals from 3 families with biallelic LOF variants in CYHR1 (aka ZTRAF1). Presentation with microcephaly, hypotonia, DD, and ID. Expression studies showed mislocalisation of CYHR1. Mutant fibroblasts showed increased lysosomal markers and upregulated lysosomal proteins, leading to impaired autophagy. Zebrafish KO however did not show a phenotype.
Sources: Other
Mendeliome v1.972 C1GALT1C1 Zornitza Stark commented on gene: C1GALT1C1: Two maternal half-brothers with missense variant and aHUS phenotype reported, increasing evidence for association.
Mendeliome v1.957 ERI1 Elena Savva gene: ERI1 was added
gene: ERI1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ERI1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ERI1 were set to 37352860
Phenotypes for gene: ERI1 were set to Spondyloepimetaphyseal dysplasia (MONDO#0100510), ERI1-related, Intellectual disability (MONDO#0001071), ERI1-related
Review for gene: ERI1 was set to GREEN
Added comment: PMID: 37352860 - 8 individuals from 7 unrelated families
- Patients with biallelic missense show a MORE severe spondyloepimetaphyseal dysplasia, syndactyly, brachydactyly/clinodactyly/camptodactyly
- Patients with biallelic null/whole gene deletion had mild ID and digit anomalies including brachydactyly/clinodactyly/camptodactyly
- Patient chet for a missense and PTC variant has a blended phenotype with short stature, syndactyly, brachydactyly/clinodactyly/camptodactyly, mild ID and failure to thrive

- Missense variants were functionally shown to not be able to rescue 5.8S rRNA processing in KO HeLa cells
- K/O mice had neonatal lethality with growth defects, brachydactyly. Skeletal-specific K/O had mild platyspondyly, had more in keeping with patients with null variants than missense

More severe phenotype hypothesised due to "exonuclease-dead proteins may compete for the target RNA molecules with other exonucleases that have functional redundancy
with ERI1, staying bound to those RNA molecules"
Sources: Literature
Mendeliome v1.956 DRG1 Dean Phelan gene: DRG1 was added
gene: DRG1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DRG1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DRG1 were set to PMID: 37179472
Phenotypes for gene: DRG1 were set to Neurodevelopmental disorder (MONDO:0700092), DRG1-related
Review for gene: DRG1 was set to GREEN
Added comment: PMID: 37179472
- Biallelic variants were identified in four affected individuals from three distinct families with neurodevelopmental disorder with global developmental delay, primary microcephaly, short stature and craniofacial anomalies. Functional studies show the variants result in a loss of function.
Sources: Literature
Mendeliome v1.946 GCSH Zornitza Stark Phenotypes for gene: GCSH were changed from Glycine encephalopathy MIM#605899; neurodevelopmental disorder MONDO#0700092, GCHS-related to Multiple mitochondrial dysfunctions syndrome 7, MIM# 620423
Mendeliome v1.944 STAG2 Achchuthan Shanmugasundram reviewed gene: STAG2: Rating: GREEN; Mode of pathogenicity: None; Publications: 28296084, 29263825, 30158690, 31334757, 33014403, 37010288; Phenotypes: Holoprosencephaly 13, X-linked, OMIM:301043, Mullegama-Klein-Martinez syndrome, OMIM:301022; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v1.943 GLI2 Achchuthan Shanmugasundram reviewed gene: GLI2: Rating: GREEN; Mode of pathogenicity: None; Publications: 24744436, 37010288; Phenotypes: Culler-Jones syndrome, OMIM:615849, Holoprosencephaly 9, OMIM:610829; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.936 MYMX Bryony Thompson gene: MYMX was added
gene: MYMX was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MYMX was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MYMX were set to 35642635
Phenotypes for gene: MYMX were set to Carey-Fineman-Ziter syndrome MONDO:0009700
Review for gene: MYMX was set to AMBER
Added comment: Single family, two siblings with weakness of the facial musculature, hypomimic face, increased overbite, micrognathia, and facial dysmorphism with homozygous p.Arg46*. The phenotype resembles CFZ syndrome. The variant prevents fusion of myoblasts from patient-derived iPSCs. Mouse model recapitulates a lethal CFZS-like phenotype.
Sources: Literature
Mendeliome v1.928 RHOBTB2 Zornitza Stark reviewed gene: RHOBTB2: Rating: GREEN; Mode of pathogenicity: None; Publications: 37165955; Phenotypes: Epileptic encephalopathy, early infantile, 64, MIM#618004; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.911 TAPT1 Paul De Fazio reviewed gene: TAPT1: Rating: AMBER; Mode of pathogenicity: None; Publications: 36697720, 36652330; Phenotypes: Osteochondrodysplasia, complex lethal, Symoens-Barnes-Gistelinck type (MIM#616897); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.910 RNH1 Ain Roesley Phenotypes for gene: RNH1 were changed from Neurodevelopmental disorder, MONDO:0700092, RNH1-related to Neurodevelopmental disorder, MONDO:0700092, RNH1-related; encephalopathy, acute, infection-induced (MONDO:0000166), RNH1-related
Mendeliome v1.908 RNH1 Dean Phelan reviewed gene: RNH1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 37191094; Phenotypes: encephalopathy, acute, infection-induced (MONDO:0000166), RNH1-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.883 RANBP2 Bryony Thompson Phenotypes for gene: RANBP2 were changed from to familial acute necrotizing encephalopathy MONDO:0011953
Mendeliome v1.879 GATAD2A Bryony Thompson changed review comment from: https://doi.org/10.1016/j.xhgg.2023.100198 - Five unrelated individuals with a neurodevelopmental disorder identified with 3 missense & 2 LoF (4 de novo & 1 unknown inheritance). The shared clinical features with variable expressivity include global developmental delay (4/4), craniofacial dysmorphism (3/5), structural brain defects (2/3), musculoskeletal anomalies (3/5), vision/hearing defects (2/3), gastrointestinal/renal defects (2/3). Loss of function is the expected mechanism of disease. In vitro assays of one of the missense variants (p.Cys420Tyr) demonstrates disruption of GATAD2A integration with CHD3, CHD4, and CHD5
PMID: 17565372 - null mouse model is embryonic lethal.
Sources: Literature; to: PMID: 37181331 - Five unrelated individuals with a neurodevelopmental disorder identified with 3 missense & 2 LoF (4 de novo & 1 unknown inheritance). The shared clinical features with variable expressivity include global developmental delay (4/4), craniofacial dysmorphism (3/5), structural brain defects (2/3), musculoskeletal anomalies (3/5), vision/hearing defects (2/3), gastrointestinal/renal defects (2/3). Loss of function is the expected mechanism of disease. In vitro assays of one of the missense variants (p.Cys420Tyr) demonstrates disruption of GATAD2A integration with CHD3, CHD4, and CHD5
PMID: 17565372 - null mouse model is embryonic lethal.
Sources: Literature
Mendeliome v1.868 POLD3 Bryony Thompson gene: POLD3 was added
gene: POLD3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: POLD3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: POLD3 were set to 37030525; 36395985; 27524497
Phenotypes for gene: POLD3 were set to Severe combined immunodeficiency MONDO:0015974
Review for gene: POLD3 was set to AMBER
Added comment: Homozygous missense variant (NM_006591.3; p.Ile10Thr) identified in a single Lebanese patient, the product of a consanguineous family, presenting with a syndromic severe combined immunodeficiency with neurodevelopmental delay and hearing loss. POLD3 as well as POLD1 and POLD2 expression was abolished in the patient's cells. Null mouse models are embryonic lethal and demonstrate Pold3 is essential for DNA replication in murine B cells.
Sources: Literature
Mendeliome v1.842 LHX2 Manny Jacobs gene: LHX2 was added
gene: LHX2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LHX2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: LHX2 were set to PMID: 37057675
Phenotypes for gene: LHX2 were set to Neurodevelopmental disorder (MONDO: 0700092)
Review for gene: LHX2 was set to GREEN
Added comment: PMID: 37057675

Case series of 19 individuals across 18 families.
1 whole gene deletion, 7 missense, 10 predicted LoF variants.
Proposed loss-of-function mechanism.
Variable phenotype, with variable intellectual disability and behavioural (ASD/ADHD) features.
Microcephaly in 7 individuals.
1 variant inherited from a mildly affected parent, all other variants with parental genotype available shown to be de novo.
Sources: Literature
Mendeliome v1.830 GATAD2A Bryony Thompson gene: GATAD2A was added
gene: GATAD2A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GATAD2A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GATAD2A were set to https://doi.org/10.1016/j.xhgg.2023.100198; 17565372
Phenotypes for gene: GATAD2A were set to Neurodevelopmental disorder, MONDO:0700092, GATAD2A-related
Review for gene: GATAD2A was set to GREEN
Added comment: https://doi.org/10.1016/j.xhgg.2023.100198 - Five unrelated individuals with a neurodevelopmental disorder identified with 3 missense & 2 LoF (4 de novo & 1 unknown inheritance). The shared clinical features with variable expressivity include global developmental delay (4/4), craniofacial dysmorphism (3/5), structural brain defects (2/3), musculoskeletal anomalies (3/5), vision/hearing defects (2/3), gastrointestinal/renal defects (2/3). Loss of function is the expected mechanism of disease. In vitro assays of one of the missense variants (p.Cys420Tyr) demonstrates disruption of GATAD2A integration with CHD3, CHD4, and CHD5
PMID: 17565372 - null mouse model is embryonic lethal.
Sources: Literature
Mendeliome v1.820 DNM1 Zornitza Stark Phenotypes for gene: DNM1 were changed from Developmental and epileptic encephalopathy 31, OMIM:616346 to Developmental and epileptic encephalopathy 31A, autosomal dominant, MIM# 616346; Developmental and epileptic encephalopathy 31B, autosomal recessive, MIM# 620352
Mendeliome v1.819 DNM1 Zornitza Stark edited their review of gene: DNM1: Changed phenotypes: Developmental and epileptic encephalopathy 31A, autosomal dominant, MIM# 616346, Developmental and epileptic encephalopathy 31B, autosomal recessive, MIM# 620352
Mendeliome v1.819 INTS11 Achchuthan Shanmugasundram gene: INTS11 was added
gene: INTS11 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: INTS11 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: INTS11 were set to 37054711
Review for gene: INTS11 was set to GREEN
Added comment: Comment on gene rating: This gene should be rated GREEN in Intellectual disability panel as it has 10 unrelated cases and functional evidence in support of this association.

PMID:37054711 reported ten unrelated families with biallelic variants in INTS11 gene and they present with intellectual disability, global developmental and language delay, impaired motor development, and brain atrophy.

Functional studies in Drosophila showed that dIntS11 (fly ortholog of INTS11) is essential and expressed in the central nervous systems in a subset of neurons and most glia in larval and adult stages. In addition, genes with two variants (p.Arg17Leu and p.His414Tyr) fail to rescue the lethality of null mutants in the Drosophila model, indicating that they are strong loss-of-function variants. The other five variants (p.Gly55Ser, p.Leu138Phe, p.Lys396Glu, p.Val517Met and p.Ile553Glu) rescue lethality but cause a shortened lifespan and bang sensitivity and affect locomotor activity, indicating that they are partial loss-of-function variants.
Sources: Literature
Mendeliome v1.814 WARS Zornitza Stark Phenotypes for gene: WARS were changed from Neuronopathy, distal hereditary motor, type IX (OMIM:617721); juvenile to adult onset (15-23 years); Neurodevelopmental disorder (MONDO:0700092), WARS-related to Neuronopathy, distal hereditary motor, type IX (OMIM:617721); juvenile to adult onset (15-23 years); Neurodevelopmental disorder withmicrocephaly and speech delay, with or without brain abnormalities, MIM# 620317
Mendeliome v1.803 ROBO1 Zornitza Stark edited their review of gene: ROBO1: Added comment: Association with ID: GREEN for bi-allelic variants:

PMID:28286008 reported a boy with compound heterozygous variants that was presented with developmental delay in 13 months and had severe intellectual disability and hyperactivity at nine years of age. He was nonverbal and wheelchair dependent because of spastic diplegia and ataxia.

PMID:30692597 reported a five year old boy identified with a homozygous ROBO1 variant who had combined pituitary hormone deficiency, psychomotor developmental delay, severe intellectual disability, sensorineural hearing loss, strabismus and characteristic facial features.

PMID:35227688 reported eight patients including the boy reported in PMID:30692597. Of the other seven patients, three were presented with intellectual disability. Of these three patients, two harboured compound heterozygous and one harboured homozygous variants.

PMID:35348658 reported a patient identified with monoallelic de novo variant (p.D422G) who presented with early-onset epileptic encephalopathy and had severe developmental delay.; Changed phenotypes: Congenital heart disease, Pituitary anomalies, Nystagmus 8, congenital, autosomal recessive, MIM# 257400, intellectual disability, MONDO:0001071
Mendeliome v1.803 CAMSAP1 Zornitza Stark Phenotypes for gene: CAMSAP1 were changed from lissencephaly spectrum disorders (MONDO:0018838), CAMSAP1-related to Cortical dysplasia, complex, with other brain malformations 12, MIM# 620316
Mendeliome v1.802 RYR3 Zornitza Stark Phenotypes for gene: RYR3 were changed from Congenital myopathy 20, MIM# 620310 to Congenital myopathy 20, MIM# 620310; developmental and epileptic encephalopathy (MONDO:0100062)
Mendeliome v1.779 CRIPT Zornitza Stark Phenotypes for gene: CRIPT were changed from Short stature with microcephaly and distinctive facies (MIM#615789) to Short stature with microcephaly and distinctive facies (MIM#615789); Rothmund-Thomson syndrome MONDO:0010002
Mendeliome v1.776 CRIPT Karina Sandoval reviewed gene: CRIPT: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 37013901; Phenotypes: Short stature with microcephaly and distinctive facies (MIM#615789), Rothmund-Thomson syndrome MONDO:0010002; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.768 FILIP1 Paul De Fazio gene: FILIP1 was added
gene: FILIP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FILIP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FILIP1 were set to 36943452
Phenotypes for gene: FILIP1 were set to Arthrogryposis multiplex congenita MONDO:0015168
Penetrance for gene: FILIP1 were set to unknown
Review for gene: FILIP1 was set to GREEN
gene: FILIP1 was marked as current diagnostic
Added comment: 3 families, all consanguineous, reported with 3 different homozygous loss of function variants (2x NMD-predicted nonsense, 1x intragenic deletion of exons 3-6 of 6). In one family, the variant segregated in 3 affected siblings.

Phenotypes consist of congenital contractures affecting shoulder, elbow, hand, hip, knee and foot as well as scoliosis, reduced palmar and plantar skin folds, microcephaly (-1.5 to -4 SD), and facial dysmorphism.
Sources: Literature
Mendeliome v1.757 RYR3 Chern Lim reviewed gene: RYR3: Rating: AMBER; Mode of pathogenicity: None; Publications: 25262651; Phenotypes: developmental and epileptic encephalopathy (MONDO:0100062); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v1.717 RBSN Zornitza Stark gene: RBSN was added
gene: RBSN was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RBSN was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RBSN were set to 25233840; 29784638; 35652444
Phenotypes for gene: RBSN were set to intellectual disability, MONDO:0001071, RBSN-related
Review for gene: RBSN was set to GREEN
Added comment: Four unrelated families reported, consistent feature is ID.

PMID:25233840 reported a 6.5 year old female patient with a homozygous missense variant c.1273G > A (p.Gly425Arg) and her clinical presentation included intractable seizures, developmental delay, microcephaly, dysostosis, osteopenia, craniofacial dysmorphism, macrocytosis and megaloblastoid erythropoiesis.

PMID:29784638 reported three siblings with homozygous variant c.289G>C (p.Gly97Arg) in RBSN. The proband presented global developmental delay, had complete 46,XY male-to-female sex reversal and died at age 20 months after multiple infections. The other 2 affected siblings underwent unrelated-donor bone marrow or stem cell transplantation at 8 and 6.5 months of age, respectively. Both have severe intellectual disability and are nonambulatory and nonverbal.

PMID:35652444 reported two unrelated families (three siblings from a family of Iranian descent identified with homozygous variant c.547G>A (p.Gly183Arg) and four members from a family of indigenous Cree descent identified with homozygous variant c.538C>G (p.Arg180Gly)) with overlapping phenotypes including developmental delay, intellectual disability, distal motor axonal neuropathy and facial dysmorphism.
Sources: Literature
Mendeliome v1.702 KIF5B Achchuthan Shanmugasundram reviewed gene: KIF5B: Rating: ; Mode of pathogenicity: None; Publications: 36018820; Phenotypes: dilated cardiomyopathy, MONDO:0005021, ophthalmoplegia, MONDO:0003425, myopathy, MONDO:0005336, Hypotonia, HP:0001252, Seizure, HP:0001250; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.694 HMGB1 Ain Roesley Phenotypes for gene: HMGB1 were changed from Mirror image foot polydactyly; Neurodevelopmental disorder MONDO:0700092, HMGB1-related to brachyphalangy, polydactyly, and tibial aplasia/hypoplasia MIM#163905; Neurodevelopmental disorder MONDO:0700092, HMGB1-related
Mendeliome v1.691 HMGB1 Ain Roesley edited their review of gene: HMGB1: Added comment: PMID:36755093
4 new families with de novo protein truncating variants.

In addition with PMID 34159400 ( all de novos)

c.556_559delGAAG;p.(Glu186Argfs*42) - 1 family
c.551_554delAGAA;p.(Lys184Argfs*44) - 4 families; Changed rating: GREEN; Changed publications: 34159400, 36755093; Changed phenotypes: brachyphalangy, polydactyly, and tibial aplasia/hypoplasia MIM#163905; Set current diagnostic: yes
Mendeliome v1.684 CRIPT Suliman Khan reviewed gene: CRIPT: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 36630262; Phenotypes: Short stature with microcephaly and distinctive facies; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.664 ATP9A Zornitza Stark Phenotypes for gene: ATP9A were changed from Neurodevelopmental delay; Postnatal microcephaly; Failure to thrive; Gastrointestinal symptoms to Neurodevelopmental disorder with poor growth and behavioural abnormalities, MIM# 620242
Mendeliome v1.649 ASNA1 Naomi Baker gene: ASNA1 was added
gene: ASNA1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ASNA1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ASNA1 were set to 31461301; 16797549
Phenotypes for gene: ASNA1 were set to Dilated cardiomyopathy, MONDO:0001644, ASNA1-related
Review for gene: ASNA1 was set to RED
Added comment: Two siblings reported with biallelic variants - there were two variants on the paternal allele (c.867C>G p.(Cys289Trp) and c.913C>T p.(Gln305*)) and one variant on the maternal allele (c.488T>C p.(Val163Ala)). Unaffected sibling was heterozygous for maternal allele. Western blotting demonstrated reduced protein expression. Knockout of asna1 in zebrafish mode resulted in cardiac defects and early lethality. The Asna1 knockout mice displayed early embryonic lethality, consistent with a role of Asna1 in early embryonic development.
Sources: Literature
Mendeliome v1.628 CCDC84 Lucy Spencer gene: CCDC84 was added
gene: CCDC84 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CCDC84 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CCDC84 were set to 34009673
Phenotypes for gene: CCDC84 were set to Mosaic variegated aneuploidy syndrome 4 (MIM#620153)
Review for gene: CCDC84 was set to AMBER
Added comment: PMID: 34009673- patients with constitutional mosaic aneuploidy were found to have biallelic mutations in CENATAC(CCDC84). 2 adult siblings with mosaic aneuploidies, microcephaly, dev delay, and maculopathy. Both chet for a missense and a splice site deletion- but the paper days these both result in the creation of a novel splice site that leads to frameshifts and loss of the c-terminal 64 amino acids.

Gene is shown to be part of a spliceosome. CENATAC depletion or expression of disease mutants resulted in retention of introns in ~100 genes enriched for nucleocytoplasmic transport and cell cycle regulation, and caused chromosome segregation errors.

Functional analysis in CENATAC-depleted HeLa cells demonstrated chromosome congression defects and subsequent mitotic arrest, which could be fully rescued by wildtype but not mutant CENATAC. Expression of the MVA-associated mutants exacerbated the phenotype, suggesting that the mutant proteins dominantly repress the function of any residual wildtype protein.
Sources: Literature
Mendeliome v1.613 FGF13 Zornitza Stark Phenotypes for gene: FGF13 were changed from Developmental and epileptic encephalopathy 90, MIM# 301058; Intellectual disability; epilepsy to Developmental and epileptic encephalopathy 90, MIM# 301058; Intellectual developmental disorder, X-linked 110, MIM# 301095
Mendeliome v1.611 FGF13 Zornitza Stark edited their review of gene: FGF13: Changed phenotypes: Developmental and epileptic encephalopathy 90, MIM# 301058, Intellectual developmental disorder, X-linked 110, MIM# 301095
Mendeliome v1.611 ZNF668 Zornitza Stark Phenotypes for gene: ZNF668 were changed from DNA damage repair defect; microcephaly; growth deficiency; severe global developmental delay; brain malformation; facial dysmorphism to Neurodevelopmental disorder with poor growth, large ears, and dysmorphic facies, MIM# 620194
Mendeliome v1.610 SMC5 Zornitza Stark Phenotypes for gene: SMC5 were changed from Multiple congenital anomalies/dysmorphic syndrome, MONDO:0019042, SLF2-related; Atelis syndrome; microcephaly; short stature; ID to Atelis syndrome 2, MIM# 620185
Mendeliome v1.609 SLF2 Zornitza Stark Phenotypes for gene: SLF2 were changed from Multiple congenital anomalies/dysmorphic syndrome, MONDO:0019042, SLF2-related; Atelis syndrome; microcephaly; short stature; ID to Atelis syndrome 1, MIM# 620184
Mendeliome v1.601 TRPC5 Hazel Phillimore gene: TRPC5 was added
gene: TRPC5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TRPC5 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: TRPC5 were set to PMID: 36323681; 24817631; 23033978; 33504798; 28191890
Phenotypes for gene: TRPC5 were set to Intellectual disability; autistic spectrum disorder
Review for gene: TRPC5 was set to AMBER
Added comment: PMID: 36323681; Leitão E. et al. (2022) Nat Commun.13(1):6570:
Missense variant NM_012471.2:c.523C>T, p.(Arg175Cys in three brothers with intellectual disability (ID) and autistic spectrum disorder (ASD), inherited from an asymptomatic mother and absent in the maternal grandparents.
Whole cell patch clamp studies of HEK293 created by site-directed mutagenesis showed increased current of this calcium channel (constitutively opened).
(This variant is absent in gnomAD v2.1.1).

Also, the nonsense variant, c.965G> A, p.(Trp322*) was found in a high functioning ASD male (maternally inherited), NMD-predicted.

Other papers and TRPC5 variants that were cited to associate this gene with X-linked ID and/or ASD include:
PMID: 24817631; Mignon-Ravix, C. et al. (2014) Am. J.Med. Genet. A 164A: 1991–1997: A hemizygous 47-kb deletion in Xq23 including exon 1 of the TRPC5 gene. He had macrocephaly, delayed psychomotor development, speech delay, behavioural problems, and autistic features. Maternally inherited, and a family history compatible with X-linked inheritance (i.e., maternal great uncle was also affected, although not tested).

In addition, PMID: 36323681; Leitão E. et al. (2022) cites papers with the variants p.(Pro667Thr), p.(Arg71Gln) and p.(Trp225*).
NB. p.(Pro667Thr) is absent in gnomAD (v2.1.1), p.(Arg71Gln) is also absent (the alternative variant p.(Arg71Trp) is present once as heterozygous only). p.(Trp225*) is absent, and it should be noted that PTCs / LoF variants are very rare (pLI = 1).

However, looking further into the three references, the evidence is not as clear or as accurate as was stated.

The missense variant c.1999C>A, p.(Pro667Thr), was stated as de novo, but was actually maternally inherited but was still considered a candidate for severe intellectual disability (shown in the Appendix, Patient 93, with severe speech delay, autism spectrum disorder and Gilles de la Tourette). This patient also has a de novo MTF1 variant. Reference: PMID: 23033978; de Ligt, J. et al. (2012) N. Engl. J. Med. 367: 1921–1929).

Missense variant (de novo): c.212G>A, p.(Arg71Gln), was found as part of the Deciphering Developmental Disorders (DDD) study and is shown in individual 164 in Supplementary Table 2 of PMID: 33504798; Martin, HC. et al. (2021) Nat. Commun.12: 627. Also displayed in DECIPHER (DDD research variant) with several phenotype traits, but ID and ASD are not specifically mentioned.

Nonsense variant: c.674G>A. p.(Trp225*) was stated as de novo but was inherited (reference PMID: 28191890; Kosmicki, JA. et al. (2017) Nat. Genet. 49: 504–510. Supplement Table 7). This was a study of severe intellectual delay, developmental delay / autism. (NB. The de novo p.(Arg71Gln) variant from the DDD study is also listed (subject DDD 342 in Supplement 4 / Table 2).
Sources: Literature
Mendeliome v1.601 BSN Krithika Murali changed review comment from: Ye et al 2022, Neurogenetics identified 4 unrelated individuals with epilepsy and compound heterozygous BSN variants via trio WES (combination of null and missense). Homozygous knockout mouse models showed abnormal CNS transmission and seizure activity. None of the identified variants were present in population databases as homozygotes. One individual had ID and microcephaly but all other individuals with biallelic variants had normal development.

In addition, heterozygous variants were identified in unrelated affected individuals - 2 apparently co-segregating missense variants and 2 de novo null variants. These variants were either absent in population databases or rare. The authors note that affected individuals with heterozygous variants had milder disease - either requiring no therapy or monotherapy only. Heterozygous knockout mice had no phenotype and there were not enough affected individuals in the families to truly determine co-segregation. In addition, carrier parents of individuals with biallelic variants did not appear to be affected.

Association between biallelic variants and epilepsy stronger than for monoallelic.
Sources: Literature; to: Ye et al 2022, Neurogenetics - https://jmg.bmj.com/content/early/2022/12/12/jmg-2022-108865
Identified 4 unrelated individuals with epilepsy and compound heterozygous BSN variants via trio WES (combination of null and missense). Homozygous knockout mouse models showed abnormal CNS transmission and seizure activity. None of the identified variants were present in population databases as homozygotes. One individual had ID and microcephaly but all other individuals with biallelic variants had normal development.

In addition, heterozygous variants were identified in unrelated affected individuals - 2 apparently co-segregating missense variants and 2 de novo null variants. These variants were either absent in population databases or rare. The authors note that affected individuals with heterozygous variants had milder disease - either requiring no therapy or monotherapy only. Heterozygous knockout mice had no phenotype and there were not enough affected individuals in the families to truly determine co-segregation. In addition, carrier parents of individuals with biallelic variants did not appear to be affected.

Association between biallelic variants and epilepsy stronger than for monoallelic.
Sources: Literature
Mendeliome v1.588 BSN Krithika Murali gene: BSN was added
gene: BSN was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: BSN was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: BSN were set to Epilepsy MONDO:0005027
Review for gene: BSN was set to GREEN
Added comment: Ye et al 2022, Neurogenetics identified 4 unrelated individuals with epilepsy and compound heterozygous BSN variants via trio WES (combination of null and missense). Homozygous knockout mouse models showed abnormal CNS transmission and seizure activity. None of the identified variants were present in population databases as homozygotes. One individual had ID and microcephaly but all other individuals with biallelic variants had normal development.

In addition, heterozygous variants were identified in unrelated affected individuals - 2 apparently co-segregating missense variants and 2 de novo null variants. These variants were either absent in population databases or rare. The authors note that affected individuals with heterozygous variants had milder disease - either requiring no therapy or monotherapy only. Heterozygous knockout mice had no phenotype and there were not enough affected individuals in the families to truly determine co-segregation. In addition, carrier parents of individuals with biallelic variants did not appear to be affected.

Association between biallelic variants and epilepsy stronger than for monoallelic.
Sources: Literature
Mendeliome v1.576 TRA2B Elena Savva gene: TRA2B was added
gene: TRA2B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TRA2B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: TRA2B were set to PMID: 36549593
Phenotypes for gene: TRA2B were set to Neurodevelopmental disorder, TRA2B-related (MONDO#0700092)
Review for gene: TRA2B was set to GREEN
Added comment: PMID: 36549593
- 12 individuals with ID and dev delay. Additional features include infantile spams 6/12, hypotonia 12/12, dilated brain ventricles 6/12, microcephaly 5/12
- All variants result in the loss of 1/2 transcripts (start-losses or PTCs upstream of a second translation start position). Shorter transcript expression is increased, longer transcript expression is decreased.
- Apparently het mice K/O are normal, but complete K/O cannot develop embryonically.
- DN mechanism suggested
Sources: Literature
Mendeliome v1.571 BUB1 Zornitza Stark Phenotypes for gene: BUB1 were changed from Neurodevelopmental disorder, BUB1-related MONDO:0700092 to Primary microcephaly-30 (MCPH30), MIM#620183
Mendeliome v1.570 BUB1 Zornitza Stark edited their review of gene: BUB1: Changed phenotypes: primary microcephaly-30 (MCPH30), MIM#620183
Mendeliome v1.563 WDFY3 Zornitza Stark Phenotypes for gene: WDFY3 were changed from Microcephaly 18, primary, autosomal dominant, MIM#617520 to Microcephaly 18, primary, autosomal dominant, MIM#617520; Neurodevelopmental disorder with macrocephaly
Mendeliome v1.554 SETD2 Zornitza Stark edited their review of gene: SETD2: Added comment: PMID 32710489: 12 unrelated patients, ranging from 1 month to 12 years of age, with a multisystemic neurodevelopmental disorder associated with a specific de novo heterozygous mutation in the SETD2 gene (R1740W).

Key clinical features: severely impaired global development apparent from infancy, feeding difficulties with failure to thrive, small head circumference, and dysmorphic facial features. Affected individuals have impaired intellectual development and hypotonia; they do not achieve walking or meaningful speech. Other neurologic findings may include seizures, hearing loss, ophthalmologic defects, and brain imaging abnormalities. There is variable involvement of other organ systems, including skeletal, genitourinary, cardiac, and possibly endocrine.

Further 3 unrelated patients identified with mild to moderately impaired intellectual development associated with a specific de novo heterozygous mutation in the SETD2 gene (R1740Q).

These are distinct clinically from Luscan-Lumish syndrome, which is characterised by overgrowth.; Changed publications: 29681085, 32710489; Changed phenotypes: Luscan-Lumish syndrome, MIM#616831, Rabin-Pappas syndrome,MIM# 620155, Intellectual developmental disorder, autosomal dominant 70, MIM# 620157
Mendeliome v1.552 CLDN5 Suliman Khan reviewed gene: CLDN5: Rating: GREEN; Mode of pathogenicity: Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments; Publications: PMID: 36477332; Phenotypes: seizures, developmental delay, microcephaly, brain calcifications; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.547 CACNA2D1 Zornitza Stark Phenotypes for gene: CACNA2D1 were changed from Developmental and epileptic encephalopathy disorder MONDO:0100062 CACNA2D1-related to Developmental and epileptic encephalopathy 110, MIM# 620149
Mendeliome v1.546 FZR1 Zornitza Stark Phenotypes for gene: FZR1 were changed from Developmental and epileptic encephalopathy, FZR1-related, MONDO:0100062 to Developmental and epileptic encephalopathy 109, MIM# 620145
Mendeliome v1.545 FZR1 Zornitza Stark reviewed gene: FZR1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Developmental and epileptic encephalopathy 109, MIM# 620145; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.530 MPC2 Zornitza Stark gene: MPC2 was added
gene: MPC2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MPC2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MPC2 were set to 36417180
Phenotypes for gene: MPC2 were set to mitochondrial pyruvate carrier deficiency, MONDO:0013877, MPC2-related
Review for gene: MPC2 was set to AMBER
Added comment: Four patients from two unrelated consanguineous families reported with homozygous variants (missense and stop-loss). Siblings from family 1 were diagnosed prenatally with diffuse subcutaneous oedema, cardiomegaly, corpus callosum agenesis, ventriculomegaly and hypoplasia of the cerebellum. Siblings from family 2 had slightly different presentations, which included anoxo-ischemic encephalopathy, isolated dyspnea, neonatal respiratory distress, neonatal jaundice, hypotonia, visual impairment, microcephaly; both siblings had severe delayed psychomotor development. Immunoblot analysis of protein expression in lysates from patient-derived fibroblasts demonstrated reduced MPC1 and MPC2 protein levels.
Sources: Literature
Mendeliome v1.511 NPC1 Naomi Baker gene: NPC1 was added
gene: NPC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NPC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NPC1 were set to 36417180
Phenotypes for gene: NPC1 were set to mitochondrial pyruvate carrier deficiency, MONDO:0013877, MPC2-related
Review for gene: NPC1 was set to AMBER
Added comment: Four patients from two unrelated consanguineous families reported with homozygous variants (missense and stop-loss). Siblings from family 1 were diagnosed prenatally with diffuse subcutaneous oedema, cardiomegaly, corpus callosum agenesis, ventriculomegaly and hypoplasia of the cerebellum. Siblings from family 2 had slightly different presentations, which included anoxo-ischemic encephalopathy, isolated dyspnea, neonatal respiratory distress, neonatal jaundice, hypotonia, visual impairment, microcephaly; both siblings had severe delayed psychomotor development. Immunoblot analysis of protein expression in lysates from patient-derived fibroblasts demonstrated reduced MPC1 and MPC2 protein levels.
Sources: Literature
Mendeliome v1.504 UQCRH Chern Lim gene: UQCRH was added
gene: UQCRH was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UQCRH was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UQCRH were set to 34750991
Phenotypes for gene: UQCRH were set to Mitochondrial complex III deficiency, nuclear type 11, MIM#620137
Review for gene: UQCRH was set to AMBER
gene: UQCRH was marked as current diagnostic
Added comment: PMID: 34750991:
- Two affected cousins, presented with recurrent episodes of severe lactic acidosis, hyperammonaemia, hypoglycaemia and encephalopathy.
- Both have a 2.2 kb homozygous deletion of exons 2 and 3 of UQCRH, predicted to culminate in an in-frame deletion exons 2 and 3 of the four-exon UQCRH gene, resulting in a shortened product.
- Mouse model with the equivalent homozygous Uqcrh deletion (Uqcrh-/-) also presented with lactic acidosis and hyperammonaemia, but had a more severe, non-episodic phenotype, resulting in failure to thrive and early death.
- Patient fibroblasts and Uqcrh-/- mouse tissues showed a CIII defect.
- Expression of wild-type UQCRH in patient fibroblasts ameliorates the CIII defect.
Sources: Literature
Mendeliome v1.491 KIF26A Chirag Patel gene: KIF26A was added
gene: KIF26A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KIF26A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: KIF26A were set to PMID: 36228617
Phenotypes for gene: KIF26A were set to Congenital brain malformations, no OMIM #
Review for gene: KIF26A was set to GREEN
Added comment: 5 unrelated patients with biallelic loss-of-function variants in KIF26A (found through WES), exhibiting a spectrum of congenital brain malformations (schizencephaly, corpus callosum anomalies, polymicrgyria, and ventriculomegaly). Combining mice and human iPSC-derived organoid models, they discovered that loss of KIF26A causes excitatory neuron-specific defects in radial migration, localization, dendritic and axonal growth, and apoptosis, offering a convincing explanation of the disease etiology in patients. Single-cell RNA sequencing in KIF26A knockout organoids revealed transcriptional changes in MAPK, MYC, and E2F pathways.
Sources: Literature
Mendeliome v1.476 PDIA6 Chirag Patel edited their review of gene: PDIA6: Added comment: 2nd patient with large polycystic kidneys, death and end stage renal failure at 18 months, microcephaly, bilateral inguinal hernias, umbilical hernia, developmental delay, bilateral sensorineural hearing loss, visual impairment, steatorrhea, fibrotic changes in liver, and insulin-dependent diabetes. WGS found homozygous stop-gain variant (Tyr368*) in PDIA6. Segregation not performed.; Changed rating: AMBER; Changed publications: PMID: 35856135; Changed phenotypes: Polycystic kidney disease, infancy-onset diabetes, and microcephaly
Mendeliome v1.476 ARPC4 Zornitza Stark Phenotypes for gene: ARPC4 were changed from Microcephaly; mild motor delays; significant speech impairment to Neurodevelopmental disorder, ARPC4-related MONDO#0700092
Mendeliome v1.472 MTSS1 Zornitza Stark gene: MTSS1 was added
gene: MTSS1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MTSS1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MTSS1 were set to 36067766
Phenotypes for gene: MTSS1 were set to Intellectual disability, MTSS1-related (MONDO#0001071)
Review for gene: MTSS1 was set to GREEN
Added comment: Five individuals with the same heterozygous de novo variant in MTSS2 (NM_138383.2: c.2011C>T [p.Arg671Trp]) identified by exome sequencing.

The individuals presented with global developmental delay, mild intellectual disability, ophthalmological anomalies, microcephaly or relative microcephaly, and shared mild facial dysmorphisms.

Immunoblots of fibroblasts from two affected individuals revealed that the variant does not significantly alter MTSS2 levels. We modeled the variant in Drosophila and showed that the fly ortholog missing-in-metastasis (mim) was widely expressed in most neurons and a subset of glia of the CNS. Loss of mim led to a reduction in lifespan, impaired locomotor behavior, and reduced synaptic transmission in adult flies. Expression of the human MTSS2 reference cDNA rescued the mim loss-of-function (LoF) phenotypes, whereas the c.2011C>T variant had decreased rescue ability compared to the reference, suggesting it is a partial LoF allele. However, elevated expression of the variant, but not the reference MTSS2 cDNA, led to similar defects as observed by mim LoF, suggesting that the variant is toxic and may act as a dominant-negative allele when expressed in flies.
Sources: Literature
Mendeliome v1.471 TPR Zornitza Stark Phenotypes for gene: TPR were changed from intellectual disability, MONDO:0001071; cerebellar ataxia, MONDO:0000437; microcephaly, MONDO:0001149 to Multiple congenital anomalies/dysmorphic syndrome, MONDO:0019042, TPR-related
Mendeliome v1.468 SMC5 Zornitza Stark gene: SMC5 was added
gene: SMC5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SMC5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SMC5 were set to 36333305
Phenotypes for gene: SMC5 were set to Multiple congenital anomalies/dysmorphic syndrome, MONDO:0019042, SLF2-related; Atelis syndrome; microcephaly; short stature; ID
Review for gene: SMC5 was set to GREEN
Added comment: Four individuals from three families with a chromosome breakage disorder and bi-allelic variants in this gene. However, three of the individuals had the same homozygous missense variant. Evidence for functional impact of the variant was limited. However, zebrafish model recapitulated the phenotype and was not rescued by the introduction of this variant, arguing for functional effect. Borderline Amber/Green
Sources: Literature
Mendeliome v1.466 SLF2 Zornitza Stark gene: SLF2 was added
gene: SLF2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLF2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLF2 were set to 36333305
Phenotypes for gene: SLF2 were set to Multiple congenital anomalies/dysmorphic syndrome, MONDO:0019042, SLF2-related; Atelis syndrome; microcephaly; short stature; ID
Review for gene: SLF2 was set to GREEN
Added comment: Seven individuals from 6 families with a chromosome breakage disorder and bi-allelic variants in this gene (LoF). Functional data including zebrafish model.
Sources: Literature
Mendeliome v1.465 TPR Achchuthan Shanmugasundram gene: TPR was added
gene: TPR was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TPR was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TPR were set to 34494102
Phenotypes for gene: TPR were set to intellectual disability, MONDO:0001071; cerebellar ataxia, MONDO:0000437; microcephaly, MONDO:0001149
Review for gene: TPR was set to RED
Added comment: This gene should be added to the following diseases: Intellectual disability, microcephaly and ataxia.

Comment on classification of this gene: This gene should be added with a RED rating as the association is based on biallelic variants identified from a report of two siblings.

Two siblings harbouring variants c.6625C>T/ p.Arg2209Ter (identified in heterozygous state in both siblings and father) and c.2610 + 5G > A (identified in heterozygous state in both siblings and mother) were reported with ataxia, microcephaly and severe intellectual disability.

Functional analyses in patient fibroblasts provide evidence that the variants affect TPR splicing, reduce steady-state TPR levels, abnormal nuclear pore composition and density, and altered global RNA distribution.

This gene has not yet been associated with any phenotypes either in OMIM or in Gene2Phenotype.
Sources: Literature
Mendeliome v1.463 MAST3 Zornitza Stark Phenotypes for gene: MAST3 were changed from Developmental and epileptic encephalopathy to Developmental and epileptic encephalopathy 108, MIM#620115
Mendeliome v1.462 MAST3 Zornitza Stark edited their review of gene: MAST3: Changed phenotypes: Developmental and epileptic encephalopathy 108, MIM#620115
Mendeliome v1.442 CAMSAP1 Naomi Baker gene: CAMSAP1 was added
gene: CAMSAP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CAMSAP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CAMSAP1 were set to 36283405
Phenotypes for gene: CAMSAP1 were set to lissencephaly spectrum disorders (MONDO:0018838), CAMSAP1-related
Review for gene: CAMSAP1 was set to GREEN
Added comment: Five unrelated families with bi-allelic loss-of-function variants. Clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, lissencephaly, agenesis or severe hypogenesis of the corpus callosum, severe neurodevelopmental delay, cortical visual impairment, and seizures.
Sources: Literature
Mendeliome v1.403 ARNT2 Bryony Thompson gene: ARNT2 was added
gene: ARNT2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ARNT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ARNT2 were set to 11381139; 24022475
Phenotypes for gene: ARNT2 were set to Webb-Dattani syndrome MONDO:0014404
Review for gene: ARNT2 was set to AMBER
Added comment: A homozygous frameshift (c.1373_1374dupTC) in six affected children from a highly consanguineous family with a syndromic phenotype including microcephaly with fronto-temporal lobe hypoplasia, multiple pituitary hormone deficiency, seizures, severe visual impairment and abnormalities of the kidneys and urinary tract. In a Arnt2(-/-) mouse model embryos die perinatally and exhibit impaired hypothalamic development.
Sources: Literature
Mendeliome v1.378 SLC32A1 Zornitza Stark Phenotypes for gene: SLC32A1 were changed from Genetic epilepsy with febrile seizures plus to Genetic epilepsy with febrile seizures plus; Developmental and epileptic encephalopathy MONDO:0100062, SLC32A1-related
Mendeliome v1.368 GABRG1 Anna Ritchie gene: GABRG1 was added
gene: GABRG1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GABRG1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GABRG1 were set to PMID: 36121006
Phenotypes for gene: GABRG1 were set to Developmental and epileptic encephalopathy MONDO:0100062
Added comment: 2-year-old patient with epileptic encephalopathy, hypotonia, and global developmental delays. Clinical trio exome sequencing showed a novel, de novo missense variant in the GABRG1 gene.
Sources: Literature
Mendeliome v1.368 SLC32A1 Lucy Spencer reviewed gene: SLC32A1: Rating: GREEN; Mode of pathogenicity: None; Publications: 36073542; Phenotypes: developmental and epileptic encephalopathy MONDO:0100062, SLC32A1-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.359 MTSS1L Elena Savva gene: MTSS1L was added
gene: MTSS1L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MTSS1L was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MTSS1L were set to PMID: 36067766
Phenotypes for gene: MTSS1L were set to Intellectual disability, MTSS2-related (MONDO#0001071)
Review for gene: MTSS1L was set to GREEN
Added comment: Alt gene name: MTSS2

Huang (2022): recurring de novo missense variant (p.R671W) causing syndromic intellectual disability in 5 unrelated individuals.
- Individuals present with GDD, mild ID (5/5), nystagmus (3/5), optic atrophy (1/5), ptosis (2/5), sensorineural hearing loss (2/4), microcephaly or relative microcephaly (5/5), and shared mild facial dysmorphisms.
- Overexpression supports a DN mechanism
Sources: Literature
Mendeliome v1.355 RABGAP1 Zornitza Stark gene: RABGAP1 was added
gene: RABGAP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RABGAP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RABGAP1 were set to 36083289
Phenotypes for gene: RABGAP1 were set to Neurodevelopmental disorder, RABGAP1-related,MONDO:0700092
Review for gene: RABGAP1 was set to GREEN
Added comment: 5 individuals from three families reported with ID, microcephaly, SNHL and seizures. Mouse model recapitulated the phenotype.
Sources: Literature
Mendeliome v1.354 NAPB Paul De Fazio gene: NAPB was added
gene: NAPB was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NAPB was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NAPB were set to 26235277; 28097321; 33189936
Phenotypes for gene: NAPB were set to Developmental and epileptic encephalopathy 107 MIM#620033
Review for gene: NAPB was set to GREEN
gene: NAPB was marked as current diagnostic
Added comment: PMID 26235277: homozygous nonsense variant identified in a 6 year old girl by trio WES with early-onset epileptic encephalopathy characterised by multifocal seizures and profound GDD

PMID 28097321: exome sequencing in 152 consanguineous families with at least one member affected with ID. Homozygous nonsense variant identified in a patient with profound ID, seizures, feeding difficulties in infancy, muscularhypotonia, microcephaly, and impaired vision

PMID 33189936: homozygous canonical splice variant identified by trio exome sequencing in two siblings with seizures, intellectual disability and global developmental delay, microcephaly (<-3SD), and muscular hypotonia.
Sources: Literature
Mendeliome v1.354 GCSH Ain Roesley Phenotypes for gene: GCSH were changed from Glycine encephalopathy, MIM# 605899 to Glycine encephalopathy MIM#605899; neurodevelopmental disorder MONDO#0700092, GCHS-related
Mendeliome v1.352 GCSH Ain Roesley edited their review of gene: GCSH: Changed phenotypes: Glycine encephalopathy MIM#605899, neurodevelopmental disorder MONDO#0700092, GCHS-related
Mendeliome v1.351 GCSH Ain Roesley reviewed gene: GCSH: Rating: GREEN; Mode of pathogenicity: None; Publications: 36190515; Phenotypes: glycine encephalopathy MONDO#0011612, GCSH-related, neurodevelopmental disorder MONDO#0700092, GCHS-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v1.350 NSD2 Zornitza Stark Phenotypes for gene: NSD2 were changed from Rauch-Steindl syndrome, MIM# 619695; Microcephaly; intellectual disability to Rauch-Steindl syndrome, MIM# 619695; Microcephaly; intellectual disability; Neurodevelopmental disorder, NSD2-associated, GoF, MONDO:0700092
Mendeliome v1.348 NSD2 Zornitza Stark edited their review of gene: NSD2: Added comment: PMID 36189577: two individuals reported with a GoF variant, p.Glu1099Lys, and a distinct phenotype: intellectual disability, coarse/ square facial gestalt, abnormalities of the hands, and organomegaly.; Changed phenotypes: Rauch-Steindl syndrome, MIM# 619695, Microcephaly, intellectual disability, Neurodevelopmental disorder, NSD2-associated, GoF, MONDO:0700092
Mendeliome v1.346 TRAF3 Zornitza Stark changed review comment from: Single individual reported.; to: Single individual reported with HSV-induced encephalopathy.
Mendeliome v1.346 TRAF3 Zornitza Stark edited their review of gene: TRAF3: Added comment: PMID 35960817: Nine individuals from five unrelated families with childhood-onset immune diseases and recurrent infections. All patients had suffered recurrent ear and sinopulmonary infections, including pneumonias from encapsulated bacteria Streptococcus pneumoniae and Haemophilus influenza, resulting in early-onset bronchiectasis in several individuals; Changed rating: GREEN; Changed publications: 20832341, 35960817; Changed phenotypes: Autoinflammatory syndrome, TRAF3-related, MONDO:0019751, hypergammaglobulinemia, lymphadenopathy, splenomegaly, Sjögren’s syndrome, {?Encephalopathy, acute, infection-induced (herpes-specific), susceptibility to, 5}, MIM# 614849
Mendeliome v1.345 DOHH Zornitza Stark Phenotypes for gene: DOHH were changed from Neurodevelopmental disorder, DOHH-related (MONDO#0700092) to Neurodevelopmental disorder with microcephaly, cerebral atrophy, and visual impairment, MIM# 620066
Mendeliome v1.344 DOHH Zornitza Stark reviewed gene: DOHH: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with microcephaly, cerebral atrophy, and visual impairment, MIM# 620066; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.342 ACVR1 Zornitza Stark changed review comment from: Fibrodysplasia ossificans progressiva is a rare autosomal dominant disease with complete penetrance involving progressive ossification of skeletal muscle, fascia, tendons, and ligaments. FOP has a prevalence of approximately 1 in 2 million worldwide, and shows no geographic, ethnic, racial, or gender preference. Individuals with FOP appear normal at birth except for great toe abnormalities: the great toes are short, deviated, and monophalangic. Ossification occurs progressively over the course of a lifetime in an inevitable and unpredictable episodic manner.

Multiple unrelated families reported. The R206H variant is recurrent.

Note variants in this gene are also associated with congenital heart disease, PMID 29089047.; to: Fibrodysplasia ossificans progressiva is a rare autosomal dominant disease with complete penetrance involving progressive ossification of skeletal muscle, fascia, tendons, and ligaments. FOP has a prevalence of approximately 1 in 2 million worldwide, and shows no geographic, ethnic, racial, or gender preference. Individuals with FOP appear normal at birth except for great toe abnormalities: the great toes are short, deviated, and monophalangic. Ossification occurs progressively over the course of a lifetime in an inevitable and unpredictable episodic manner.

Multiple unrelated families reported. The R206H variant is recurrent.

Clinical trial with palovarotene

Note variants in this gene are also associated with congenital heart disease, PMID 29089047.
Mendeliome v1.342 ATRX Zornitza Stark Phenotypes for gene: ATRX were changed from Alpha-thalassemia/mental retardation syndrome; Mental retardation-hypotonic facies syndrome, X-linked to Alpha-thalassemia/mental retardation syndrome, MIM# 301040; Intellectual disability-hypotonic facies syndrome, X-linked, MIM# 309580
Mendeliome v1.341 PDCD6IP Zornitza Stark Phenotypes for gene: PDCD6IP were changed from Neurodevelopmental disorder MONDO:0700092; Microcephaly; intellectual disability to Microcephaly 29, primary, autosomal recessive, MIM# 620047; Microcephaly; intellectual disability
Mendeliome v1.340 PDCD6IP Zornitza Stark edited their review of gene: PDCD6IP: Changed phenotypes: Microcephaly 29, primary, autosomal recessive, MIM# 620047, Microcephaly, intellectual disability
Mendeliome v1.340 PDCD6IP Zornitza Stark edited their review of gene: PDCD6IP: Changed phenotypes: Microcephaly 29, primary, autosomal recessive , MIM# 620047, Microcephaly, intellectual disability
Mendeliome v1.328 PPP2R5C Zornitza Stark Phenotypes for gene: PPP2R5C were changed from macrocephaly; intellectual disability to Neurodevelopmental disorder, PPP2R5C-related (MONDO:070092); macrocephaly; intellectual disability
Mendeliome v1.320 UFSP2 Zornitza Stark Phenotypes for gene: UFSP2 were changed from Neurodevelopmental disorder; Hip dysplasia, Beukes type, MIM#142669; Spondyloepimetaphyseal dysplasia, Di Rocco type, MIM# 617974 to Developmental and epileptic encephalopathy 106, MIM# 620028; Hip dysplasia, Beukes type, MIM#142669; Spondyloepimetaphyseal dysplasia, Di Rocco type, MIM# 617974
Mendeliome v1.319 UFSP2 Zornitza Stark edited their review of gene: UFSP2: Changed phenotypes: Developmental and epileptic encephalopathy 106, MIM# 620028, Hip dysplasia, Beukes type, MIM#142669, Spondyloepimetaphyseal dysplasia, Di Rocco type, MIM# 617974
Mendeliome v1.319 TRAPPC10 Zornitza Stark Phenotypes for gene: TRAPPC10 were changed from neurodevelopmental disorder (MONDO:0700092), TRAPPC10-related to Neurodevelopmental disorder with microcephaly, short stature, and speech delay, MIM# 620027
Mendeliome v1.318 TRAPPC10 Zornitza Stark reviewed gene: TRAPPC10: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with microcephaly, short stature, and speech delay, MIM# 620027; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.315 CHKA Zornitza Stark Phenotypes for gene: CHKA were changed from Neurodevelopmental disorder, MONDO:0700092; Abnormal muscle tone; Global developmental delay; Intellectual disability; Seizures; Microcephaly; Abnormality of movement; Abnormality of nervous system morphology; Short stature to Neurodevelopmental disorder with microcephaly, movement abnormalities, and seizures, MIM#620023
Mendeliome v1.314 CHKA Zornitza Stark reviewed gene: CHKA: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with microcephaly, movement abnormalities, and seizures, MIM#620023; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.313 PPFIBP1 Zornitza Stark Phenotypes for gene: PPFIBP1 were changed from Neurodevelopmental disorder, MONDO:0700092, PPFIBP1-related to Neurodevelopmental disorder with seizures, microcephaly, and brain abnormalities, MIM# 620024
Mendeliome v1.312 PPFIBP1 Zornitza Stark edited their review of gene: PPFIBP1: Changed phenotypes: Neurodevelopmental disorder with seizures, microcephaly, and brain abnormalities, MIM# 620024
Mendeliome v1.310 SLC31A1 Daniel Flanagan gene: SLC31A1 was added
gene: SLC31A1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: SLC31A1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC31A1 were set to PMID: 35913762
Phenotypes for gene: SLC31A1 were set to Neurodevelopmental disorder, SLC31A1-related (MONDO#0700092)
Review for gene: SLC31A1 was set to RED
Added comment: SLC31A1 is also referred to as CTR1.
Monozygotic twins with hypotonia, global developmental delay, seizures, and rapid brain atrophy, consistent with profound central nervous system copper deficiency. Homozygous for a novel missense variant (p.(Arg95His)) in copper transporter CTR1, both parents heterozygous. A mouse knock-out model of CTR1 deficiency resulted in prenatal lethality.
Sources: Expert list
Mendeliome v1.302 COX11 Zornitza Stark gene: COX11 was added
gene: COX11 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: COX11 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COX11 were set to 36030551
Phenotypes for gene: COX11 were set to Mitochondrial disease (MONDO:0044970), COX11-related
Review for gene: COX11 was set to GREEN
Added comment: PMID: 36030551
- Biallelic variants in COX11 associated with infantile-onset mitochondrial encephalopathies in two unrelated consanguineous families, one with homozygous missense variant, another with homozygous frameshift variant.
- Functional studies supported pathogenicity of the missense variant, and showed that mutant COX11 fibroblasts had decreased ATP levels which could be rescued by CoQ10.
- RNA studies suggested the mutant transcript with p.(Val12Glyfs*21) is not degraded by nonsense mediated decay.
Sources: Literature
Mendeliome v1.279 BUD13 Alison Yeung gene: BUD13 was added
gene: BUD13 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: BUD13 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BUD13 were set to 35670808
Phenotypes for gene: BUD13 were set to Lipodystrophy, MONDO:0006573
Review for gene: BUD13 was set to AMBER
Added comment: 5 individuals with a lipodystrophy phenotype with a typical facial appearance, corneal clouding, achalasia, progressive hearing loss, and variable severity. Although 3 individuals showed stunted growth, intellectual disability, and died within the first decade of life, 2 are adults with normal intellectual development. All individuals harbored an identical homozygous nonsense variant affecting the retention and splicing complex component BUD13. Individuals from only two Algerian families.
Sources: Literature
Mendeliome v1.276 NOTCH1 Chern Lim changed review comment from: PMID: 35947102:
- Seven unrelated patients with leukoencephalopathy and calcifications, germline heterozygous de novo gain-of-function variants in NOTCH1.
- Missense and small inframe insertion variants in the negative regulatory region.; to: PMID: 35947102:
- Seven unrelated patients with leukoencephalopathy and calcifications, germline heterozygous de novo gain-of-function variants in NOTCH1.
- Other clinical features include intellectual disability, spasticity and etc. Childhood onset in most individuals however 15y and 40y reported in two individuals.
- Missense and small inframe insertion variants in the negative regulatory region.
Mendeliome v1.276 ADAMTS15 Naomi Baker changed review comment from: PMID: 35962790; Four different homozygous variants identified in five affected individuals from four unrelated consanguineous families presenting with congenital flexion contractures of the interphalangeal joints and hypoplastic or absent palmar creases. All patients also had a mild appearance of fetal finger pads and clinodactyly of the fifth finger. Other reported phenotypes include: ontractures of knee, Achilles tendon, and ankle (4/5), spine involvement (kyphoscoliosis and/or spinal stiffness) (4/5), and orthodontic features (small mouth, dental crowding, missing teeth, or arched palate) (4/5).
Sources: Literature; to: PMID: 35962790; Four different homozygous variants identified in five affected individuals from four unrelated consanguineous families presenting with congenital flexion contractures of the interphalangeal joints and hypoplastic or absent palmar creases. All patients also had a mild appearance of fetal finger pads and clinodactyly of the fifth finger. Other reported phenotypes include: contractures of knee, Achilles tendon, and ankle (4/5), spine involvement (kyphoscoliosis and/or spinal stiffness) (4/5), and orthodontic features (small mouth, dental crowding, missing teeth, or arched palate) (4/5).
Sources: Literature
Mendeliome v1.276 ADAMTS15 Naomi Baker gene: ADAMTS15 was added
gene: ADAMTS15 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ADAMTS15 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ADAMTS15 were set to PMID: 35962790
Phenotypes for gene: ADAMTS15 were set to Arthrogryposis (MONDO:0008779), ADMATS15-related
Review for gene: ADAMTS15 was set to GREEN
Added comment: PMID: 35962790; Four different homozygous variants identified in five affected individuals from four unrelated consanguineous families presenting with congenital flexion contractures of the interphalangeal joints and hypoplastic or absent palmar creases. All patients also had a mild appearance of fetal finger pads and clinodactyly of the fifth finger. Other reported phenotypes include: ontractures of knee, Achilles tendon, and ankle (4/5), spine involvement (kyphoscoliosis and/or spinal stiffness) (4/5), and orthodontic features (small mouth, dental crowding, missing teeth, or arched palate) (4/5).
Sources: Literature
Mendeliome v1.275 NOTCH1 Chern Lim reviewed gene: NOTCH1: Rating: GREEN; Mode of pathogenicity: Other; Publications: 35947102; Phenotypes: leukoencephalopathy and calcifications; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v1.242 PRIM1 Zornitza Stark Phenotypes for gene: PRIM1 were changed from Microcephalic primordial dwarfism, MONDO:0017950 to Primordial dwarfism-immunodeficiency-lipodystrophy syndrome, MIM# 620005
Mendeliome v1.212 PSMC1 Hazel Phillimore gene: PSMC1 was added
gene: PSMC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PSMC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PSMC1 were set to PMID: 35861243
Phenotypes for gene: PSMC1 were set to spastic paraplegia; severe developmental delay; severe intellectual disability; hearing loss; micropenis; undescended testes
Mode of pathogenicity for gene: PSMC1 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: PSMC1 was set to AMBER
Added comment: Homozygosity mapping on one large consanguineous Bedouin kindred showed three affected children (out of the ten) to be homozygous for NM_002802.3:c.983T>C; p.(Ile328Thr).

Drosophila rescue experiments were carried out. Transgenic studies using drosophila with the silenced ortholog Rpt2 gene were rescued by the human wild-type PSMC1.

Three of the ten offspring of healthy consanguineous parents of Bedouin Israeli ancestry were affected with a similar phenotype of failure to thrive, developmental delay and severe intellectual disability, spastic tetraplegia with central hypotonia, chorea, as well as hearing loss. None of the three achieved verbal communication or ambulation (sitting / standing) at any age. They had mild dysmorphism of borderline dolichocephaly and microcephaly, prominent bushy eyebrows, flat midface, long nasal bridge and micrognathia. All three had micropenis with undescended testes. One of the affected (as a toddler) underwent thorough endocrinological analysis: testosterone and gonadotropin levels were low.
Sources: Literature
Mendeliome v1.212 KIF15 Krithika Murali gene: KIF15 was added
gene: KIF15 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KIF15 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: KIF15 were set to 28150392
Phenotypes for gene: KIF15 were set to ?Braddock-Carey syndrome 2 - MIM#619981
Review for gene: KIF15 was set to GREEN
Added comment: PMID 28150392 Sleiman et al 2017 report one individual with homozygous R501* variant (NMD-predicted) from a consanguineous family. The child had thrombocytopenia, PRS, microcephaly -3SD by age 6, dysmorphic facies, bilateral external auditory canal atresia and deafness, microphthalmia, clinodactyly, short stature. Variant absent from gnomAD. Parents confirmed to be carriers and unaffected siblings were carriers/homozygous wild-type.

No other SNVs reported in ClinVar. Variant is absent from gnomAD. Authors note phenotypic similarities with Braddock-Carey syndrome (21q22 contiguous deletion also involving RUNX1).
Sources: Literature
Mendeliome v1.211 BMP3 Seb Lunke gene: BMP3 was added
gene: BMP3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: BMP3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: BMP3 were set to 35089417
Phenotypes for gene: BMP3 were set to coloboma, MONDO:0001476; microphthalmia, MONDO:0021129
Review for gene: BMP3 was set to AMBER
Added comment: Single missense variant identified segregating with disease following WES screen in a family with coloboma and/or microphthalmia in BMP3. Two additional unrelated patients identified with different missense in BMP3. Pathogenicity however largely on in-silicos, with one of the 3 missense having 29 hets in gnomAD. Additional functional work in bmp3 -/- zebra fish and some supporting evidence but not conclusive
Sources: Literature
Mendeliome v1.208 DOHH Daniel Flanagan gene: DOHH was added
gene: DOHH was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: DOHH was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DOHH were set to PMID: 35858628
Phenotypes for gene: DOHH were set to Neurodevelopmental disorder, DOHH-related (MONDO#0700092)
Review for gene: DOHH was set to GREEN
Added comment: Bi-allelic missense and truncating DOHH variants segregating with disease in five affected individuals from four unrelated families. Clinical features were developmental delay and/or intellectual disability (5/5), microcephaly (5/5), visual impairment (nystagmus (3/5), strabismus (3/5), and cortical visual impairment (1/5)) and congenital heart malformations (3/5 individuals).
Sources: Expert list
Mendeliome v1.198 CWH43 Zornitza Stark Phenotypes for gene: CWH43 were changed from normal pressure hydrocephalus to Hydrocephalus MONDO:0001150, CWH43-related
Mendeliome v1.196 CWH43 Zornitza Stark reviewed gene: CWH43: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Hydrocephalus MONDO:0001150, CWH43-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.196 CWH43 Anna Le Fevre gene: CWH43 was added
gene: CWH43 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CWH43 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CWH43 were set to PMID: 33459505; 34380733
Phenotypes for gene: CWH43 were set to normal pressure hydrocephalus
Penetrance for gene: CWH43 were set to Incomplete
Review for gene: CWH43 was set to AMBER
Added comment: Sources: Literature
Mendeliome v1.190 EIF2B1 Zornitza Stark Phenotypes for gene: EIF2B1 were changed from leukoencephalopathy with vanishing white matter MONDO:0011380; ataxia; spasticity; optic atrophy to leukoencephalopathy with vanishing white matter MONDO:0011380; ataxia; spasticity; optic atrophy; Neonatal diabetes mellitus, MONDO:0016391, EIF2B1-related
Mendeliome v1.179 EIF2B1 Elena Savva reviewed gene: EIF2B1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 31882561; Phenotypes: Leukoencephalopathy with vanishing white matter MIM#603896, permanent neonatal/early onset diabetes and transient liver dysfunction; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.158 C9orf84 Zornitza Stark changed review comment from: 8 families reported with bi-allelic variants in this gene and spermatogenic failure.
Sources: Literature; to: 8 families reported with bi-allelic variants in this gene and spermatogenic failure. A male germ cell-specific Shoc1 knockout mouse model recapitulates the phenotype (germline knockout: early lethality).

HGNC approved name is SHOC1.

Sources: Literature
Mendeliome v1.155 KMT2B Zornitza Stark edited their review of gene: KMT2B: Added comment: Nine individuals reported in PMID 33150406 with heterozygous variants in this gene and intellectual disability, speech delay, microcephaly, growth delay, feeding problems, and dysmorphic features, including epicanthic folds, posteriorly rotated ears, syndactyly/clinodactyly of toes, and fifth finger clinodactyly, normal MRIs and NO dystonia.; Changed publications: 27839873, 27992417, 33150406; Changed phenotypes: Dystonia 28, childhood-onset 617284, MONDO:0015004, Intellectual developmental disorder, autosomal dominant 68, MIM# 619934
Mendeliome v1.147 CLDN5 Zornitza Stark gene: CLDN5 was added
gene: CLDN5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CLDN5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CLDN5 were set to 35714222
Phenotypes for gene: CLDN5 were set to alternating hemiplegia, MONDO:0016210, CLDN5-related
Mode of pathogenicity for gene: CLDN5 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: CLDN5 was set to AMBER
Added comment: PMID: 35714222; Hashimoto, Y. et al. (2022): Two unrelated cases (early-onset) with alternating hemiplegia with microcephaly were shown to have the same de novo variant, NM_001363066.2:c.178G>A, p.(Gly60Arg).

One with Jewish / Tunisian ancestry: Onset was at 8 months, three episodes of febrile tonic-clonic 1 seizures of the four limbs, with eye rolling, loss of consciousness, transient left and right post-2 ictal hemiparesis and vomiting. The other with Asian / European ancestry: Onset was at 30 months with three iterative episodes of febrile and non-febrile hemiplegia and loss of 18 consciousness. The recurrent episodes alternatively involved the left-and 19 right-hand side, then generalised and were followed by post ictal hemiparesis.

CT scans of both showed brain calcifications and aberrant blood flow patterns. Transfected cell lines with this variant, c178G>A, showed higher chloride ion permeability and lower sodium ion permeability when compared to wildtype.
Sources: Literature
Mendeliome v1.130 SLC30A7 Naomi Baker gene: SLC30A7 was added
gene: SLC30A7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC30A7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SLC30A7 were set to PMID: 35751429
Phenotypes for gene: SLC30A7 were set to Joubert syndrome (MONDO:0018772), SLC30A7-related
Review for gene: SLC30A7 was set to AMBER
Added comment: PMID: 35751429: Two individuals reported with de novo variants, one missense and one delins resulting in missense. The first individual is a female with history of unilateral postaxial polydactyly, classic molar tooth sign on MRI, macrocephaly, ataxia, ocular motor apraxia, neurodevelopmental delay, and precocious puberty. The second individual had bilateral postaxial polydactyly, molar tooth sign, macrocephaly, developmental delay, and an extra oral frenulum. No functional studies reported.
Sources: Literature
Mendeliome v1.126 WNK3 Lucy Spencer gene: WNK3 was added
gene: WNK3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: WNK3 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: WNK3 were set to 35678782
Phenotypes for gene: WNK3 were set to Neurodevelopmental disorder, WNK3-related (MONDO#0700092)
Added comment: 6 maternally inherited hemizygous variants, 3 missense, 2 canonical splice, and a nonsense. Seen in 14 individuals from 6 families, all 14 are male who inherited hemizygous variants from their unaffected heterozygous mothers. The variants cosegregated with disease in 3 families with multiple affected individuals. All 14 patients have ID, 11 have speech delay, 10 have facial abnormalities, 5 have seizures, 6 with microcephaly and 7 with anomalies in brain imaging.
Sources: Literature
Mendeliome v1.125 WNT7B Zornitza Stark gene: WNT7B was added
gene: WNT7B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: WNT7B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: WNT7B were set to 35790350
Phenotypes for gene: WNT7B were set to Pulmonary hypoplasia, Diaphragmatic anomalies, Anophthalmia/microphthalmia and Cardiac defects syndrome; Multiple congenital anomalies/dysmorphic features syndrome MONDO:0043005, WNT7B-related
Review for gene: WNT7B was set to GREEN
Added comment: Three families reported with fetuses with multiple congenital anomalies and bi-allelic LoF variants. Two of the families had at the same variant. Supportive zebrafish model.
Sources: Literature
Mendeliome v1.123 TMEM63C Elena Savva gene: TMEM63C was added
gene: TMEM63C was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TMEM63C was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMEM63C were set to PMID: 35718349
Phenotypes for gene: TMEM63C were set to Hereditary spastic paraplegia, MONDO:0019064, TMEM63C-related
Review for gene: TMEM63C was set to GREEN
Added comment: PMID: 35718349 - Four NMD PTCs observed in at least 3 unrelated patients. Two segregated strongly in highly consanguineous families.
Common clinical details include mild ID, spastic paraplegia, hypereflexia, spasticity, delayed motor development. Single patient was microcephalic
Sources: Literature
Mendeliome v1.119 RELN Zornitza Stark edited their review of gene: RELN: Added comment: PMID 35769015: 13 individuals from seven families with monoallelic (heterozygous) variants of RELN and frontotemporal or temporal-predominant lissencephaly variant. Some individuals with monoallelic variants had moderate frontotemporal lissencephaly, but with normal cerebellar structure and intellectual disability with severe behavioural dysfunction. However, one adult had abnormal MRI with normal intelligence and neurological profile. Additional 7 individuals from 4 families with bi-allelic variants.; Changed publications: 35769015
Mendeliome v1.119 TAF8 Zornitza Stark changed review comment from: 8 individuals reported from 5 families, four of which were consanguineous. Clinical features included severe psychomotor retardation with almost absent development, feeding problems, microcephaly, growth retardation, spasticity and epilepsy. Six had the c.781-1G > A variant in homozygous state. This is likely to be a founder variant. One family with different compound heterozygous variants.
Sources: Literature; to: 8 individuals reported from 5 families, four of which were consanguineous. Clinical features included severe psychomotor retardation with almost absent development, feeding problems, microcephaly, growth retardation, spasticity and epilepsy. Six had the c.781-1G > A variant in homozygous state. Unclear if this is a founder variant, families of different ethnicities. One family with different compound heterozygous variants.
Sources: Literature
Mendeliome v1.118 TAF8 Zornitza Stark gene: TAF8 was added
gene: TAF8 was added to Mendeliome. Sources: Literature
founder tags were added to gene: TAF8.
Mode of inheritance for gene: TAF8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TAF8 were set to 29648665; 35759269
Phenotypes for gene: TAF8 were set to Neurodevelopmental disorder, MONDO:0700092, TAF8-related
Review for gene: TAF8 was set to GREEN
Added comment: 8 individuals reported from 5 families, four of which were consanguineous. Clinical features included severe psychomotor retardation with almost absent development, feeding problems, microcephaly, growth retardation, spasticity and epilepsy. Six had the c.781-1G > A variant in homozygous state. This is likely to be a founder variant. One family with different compound heterozygous variants.
Sources: Literature
Mendeliome v1.102 IFNAR2 Zornitza Stark edited their review of gene: IFNAR2: Added comment: Five children from Greenland, Canada, and Alaska presenting with viral diseases, including life-threatening COVID-19 or influenza, in addition to meningoencephalitis and/or hemophagocytic lymphohistiocytosis following live-attenuated viral vaccination; Changed rating: GREEN; Changed publications: 26424569, 35442417
Mendeliome v1.73 KCNC2 Zornitza Stark Phenotypes for gene: KCNC2 were changed from epileptic encephalopathy; spastic tetraplegia; opisthotonos attacks; intellectual disability; West syndrome to Developmental and epileptic encephalopathy 103, MIM# 619913
Mendeliome v1.70 KCNC2 Zornitza Stark reviewed gene: KCNC2: Rating: GREEN; Mode of pathogenicity: None; Publications: 35314505; Phenotypes: Developmental and epileptic encephalopathy 103, MIM# 619913; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.52 BUB1 Zornitza Stark Phenotypes for gene: BUB1 were changed from Intellectual disability and microcephaly to Neurodevelopmental disorder, BUB1-related MONDO:0700092
Mendeliome v1.49 RRM1 Daniel Flanagan gene: RRM1 was added
gene: RRM1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: RRM1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RRM1 were set to 35617047
Phenotypes for gene: RRM1 were set to Multiple mitochondrial DNA deletion syndrome (MONDO:0016797)
Review for gene: RRM1 was set to GREEN
Added comment: Homozygous missense were identified in 4 four probands (p.Arg381Cys or p.Arg381His) from three families, who presented with ptosis and ophthalmoplegia, plus other manifestations and multiple mtDNA deletions in muscle. Heterozygous carriers were unaffected. An additional proband was heterozygous for a different RRM1 missense (p.Asn427Lys), another variant not identified.
Sources: Expert list
Mendeliome v1.47 PAN2 Naomi Baker gene: PAN2 was added
gene: PAN2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PAN2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PAN2 were set to PMID:35304602; 29620724
Phenotypes for gene: PAN2 were set to Neurodevelopmental disorder, MONDO:0700092, PAN2-related
Review for gene: PAN2 was set to GREEN
Added comment: PMID:35304602 reports five individuals from 3 families with biallelic (homozygous) loss-of-function variants. Clinical presentation incudes mild-moderate intellectual disability, hypotonia, sensorineural hearing loss, EEG abnormalities, congenital heart defects (tetralogy of Fallot, septal defects, dilated aortic root), urinary tract malformations, ophthalmological anomalies, short stature with other skeletal anomalies, and craniofacial features including flat occiput, ptosis, long philtrum, and short neck.

PMID:29620724 reports one individual with biallelic (homozygous) loss-of-function variant who presented with global developmental delay, mild hypotonia, craniosynostosis, severe early-onset scoliosis, imperforate anus, and double urinary collecting system.
Sources: Literature
Mendeliome v1.44 BUB1 Paul De Fazio edited their review of gene: BUB1: Changed phenotypes: Neurodevelopmental disorder, BUB1-related MONDO:0700092, Intellectual disability and microcephaly
Mendeliome v1.44 BUB1 Paul De Fazio gene: BUB1 was added
gene: BUB1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: BUB1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BUB1 were set to 35044816; 19772675; 19117986; 23209306
Phenotypes for gene: BUB1 were set to Intellectual disability and microcephaly
Review for gene: BUB1 was set to GREEN
gene: BUB1 was marked as current diagnostic
Added comment: 2 unrelated patients with ID, microcephaly, short stature, dysmorphic features reported with biallelic variants:

P1 (3yo male): homozygous start-loss variant (2 hets and 0 hom in gnomAD). Functional testing showed a small amount of full-length protein was translated, and BUB1 recruitment to kinetochores was nearly undetectable.
P2 (16yo female): compound heterozygous for a canonical splice variant (1 het and no hom in gnomAD) and an NMD-predicted frameshift variant (absent from gnomAD). The splice variant was shown to result in an in-frame deletion of 54 amino acids in the kinase domain. P2 cells have reduced protein levels but essentially no kinase activity.

BUB1 patient cells have impaired mitotic fidelity.

Homozygous Bub1 disruption in mice is embryonic lethal (PMID:19772675). A hypomorphic mouse is viable with increased tumourigenesis with ageing and aneuploidy (PMID:19117986). A kinase-dead mouse does not show increased tumourigenesis but does have a high frequency of aneuploid cells (PMID:23209306)
Sources: Literature
Mendeliome v1.34 TRIM47 Zornitza Stark gene: TRIM47 was added
gene: TRIM47 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TRIM47 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TRIM47 were set to 35511193
Phenotypes for gene: TRIM47 were set to Genetic cerebral small vessel disease MONDO:0018787
Review for gene: TRIM47 was set to RED
Added comment: GWAS data: Combined evidence from summary-based Mendelian randomization studies and profiling of human loss-of-function allele carriers showed an inverse relation between TRIM47 expression in the brain and blood vessels and extensive small vessel disease severity. Observed significant enrichment of Trim47 in isolated brain vessel preparations compared to total brain fraction in mice, in line with the literature showing Trim47 enrichment in brain endothelial cells at single cell level. Functional evaluation of TRIM47 by small interfering RNAs-mediated knockdown in human brain endothelial cells showed increased endothelial permeability, an important hallmark of cerebral small vessel disease pathology.
Sources: Literature
Mendeliome v1.32 HIST1H4J Zornitza Stark Phenotypes for gene: HIST1H4J were changed from microcephaly; intellectual disability; dysmorphic features to Tessadori-van Haaften neurodevelopmental syndrome 2 , MIM# 619759
Mendeliome v1.29 SPTAN1 Zornitza Stark Phenotypes for gene: SPTAN1 were changed from Developmental and epileptic encephalopathy 5, MIM# 613477; hereditary motor neuropathy to Developmental and epileptic encephalopathy 5, MIM# 613477; Hereditary spastic paraplegia MONDO:0019064, SPTAN1-related; hereditary motor neuropathy
Mendeliome v1.28 SPTAN1 Zornitza Stark edited their review of gene: SPTAN1: Added comment: Leveille et al (2019) - 2 patients with HSP with biallelic missense SPTAN1 variants Previously described zebrafish, mouse, and rat animal models of SPTAN1 deficiency, all consistently showing axonal degeneration, fitting the pathological features of HSP in humans. Xie et al (2022) - 1 patient with complicated HSP and homozygous SPTAN1 mutation. Healthy parents and sister all carried the heterozygous mutation. Van de Vondel et al (2022) - 22 patients from 14 families with five novel heterozygous SPTAN1 variants. Presentations ranged from cerebellar ataxia, intellectual disability, epilepsy, and spastic paraplegia. A recurrent missense mutation (p.Arg19Trp) in 15 patients with spastic paraplegia. Through protein modeling they showed that mutated amino acids are located at crucial interlinking positions, interconnecting the three-helix bundle of a spectrin repeat.; Changed publications: 20493457, 22258530, 32811770, 35150594, 34526651, 31515523; Changed phenotypes: Developmental and epileptic encephalopathy 5, MIM# 613477, Hereditary spastic paraplegia MONDO:0019064, SPTAN1-related; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.19 PLCH1 Zornitza Stark Phenotypes for gene: PLCH1 were changed from Holoprosencephaly spectrum; Severe developmental delay; Brain malformations to Holoprosencephaly 14, MIM# 619895
Mendeliome v1.18 PLCH1 Zornitza Stark reviewed gene: PLCH1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Holoprosencephaly 14, MIM# 619895; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.14 SLC38A3 Zornitza Stark Phenotypes for gene: SLC38A3 were changed from Developmental epileptic encephalopathy MONDO:0100062, SLC38A3-related to Developmental and epileptic encephalopathy 102, MIM# 619881
Mendeliome v1.13 SLC38A3 Zornitza Stark reviewed gene: SLC38A3: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Developmental and epileptic encephalopathy 102, MIM# 619881; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.11 COPB2 Zornitza Stark Phenotypes for gene: COPB2 were changed from Microcephaly 19, primary, autosomal recessive, MIM# 617800; Osteoporosis and developmental delay to Microcephaly 19, primary, autosomal recessive, MIM# 617800; Osteoporosis, childhood- or juvenile-onset, with developmental delay, MIM# 619884
Mendeliome v1.2 ZNF526 Zornitza Stark Phenotypes for gene: ZNF526 were changed from Intellectual disability; Microcephaly; Cataracts; Epilepsy; Hypertonia; Dystonia to Dentici-Novelli neurodevelopmental syndrome, MIM# 619877
Mendeliome v0.14797 DNM1L Zornitza Stark Phenotypes for gene: DNM1L were changed from to Encephalopathy, lethal, due to defective mitochondrial peroxisomal fission 1 - MIM#614388 (AD, AR); Optic atrophy 5 - MIM#610708 (AD)
Mendeliome v0.14683 GEMIN4 Zornitza Stark Phenotypes for gene: GEMIN4 were changed from to Neurodevelopmental disorder with microcephaly, cataracts, and renal abnormalities, MIM# 617913
Mendeliome v0.14674 KATNB1 Elena Savva reviewed gene: KATNB1: Rating: GREEN; Mode of pathogenicity: None; Publications: 25521378, 25521379, 26640080; Phenotypes: Lissencephaly 6, with microcephaly MIM#616212; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14651 LRP2 Chirag Patel commented on gene: LRP2: Donnai-Barrow syndrome (DBS) was first described as a distinct disorder characterized by diaphragmatic hernia, exomphalos, absent corpus callosum, myopia, agenesis of the corpus callosum and proteinuria, and sensorineural deafness.

Kantarci et al. (2007) identified biallelic LRP2 mutations in 6 families with Donnai-Barrow syndrome and one family with facio-oculo-acoustico-renal syndrome.
Mendeliome v0.14647 GEMIN4 Chirag Patel reviewed gene: GEMIN4: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 25558065, 30237576, 27878435; Phenotypes: Neurodevelopmental disorder with microcephaly, cataracts, and renal abnormalities, MIM# 617913; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14640 GNB5 Chirag Patel reviewed gene: GNB5: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 27523599, 27677260, 28697420, 29368331; Phenotypes: Intellectual developmental disorder with cardiac arrhythmia, OMIM #617173, Language delay and ADHD/cognitive impairment with or without cardiac arrhythmia, OMIM # 617182, Early infantile epileptic encephalopathy (EIEE); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14628 GLE1 Zornitza Stark Phenotypes for gene: GLE1 were changed from to Lethal congenital contracture syndrome 1, MIM# 253310
Mendeliome v0.14616 GMPPA Zornitza Stark Phenotypes for gene: GMPPA were changed from to Alacrima, achalasia, and mental retardation syndrome, MIM# 615510
Mendeliome v0.14613 GMPPA Zornitza Stark reviewed gene: GMPPA: Rating: GREEN; Mode of pathogenicity: None; Publications: 24035193, 28574218; Phenotypes: Alacrima, achalasia, and mental retardation syndrome, MIM# 615510; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14592 GLE1 Chirag Patel reviewed gene: GLE1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 18204449, 22357925; Phenotypes: Lethal congenital contracture syndrome 1, MIM# 253310; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14582 PDCD6IP Zornitza Stark Phenotypes for gene: PDCD6IP were changed from Microcephaly; intellectual disability to Neurodevelopmental disorder MONDO:0700092; Microcephaly; intellectual disability
Mendeliome v0.14533 ATP6V1A Elena Savva Phenotypes for gene: ATP6V1A were changed from to Cutis laxa, autosomal recessive, type IID MIM#617403; Developmental and epileptic encephalopathy 93 MIM#618012
Mendeliome v0.14532 ATP6V1A Elena Savva reviewed gene: ATP6V1A: Rating: GREEN; Mode of pathogenicity: None; Publications: 29668857, 28065471, 33320377; Phenotypes: Cutis laxa, autosomal recessive, type IID MIM#617403, Developmental and epileptic encephalopathy 93 MIM#618012; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.14509 CPSF3 Zornitza Stark Phenotypes for gene: CPSF3 were changed from Neurodevelopmental disorder, CPSF3-related, MONDO:0700092 to Neurodevelopmental disorder with microcephaly, hypotonia, and seizures (NEDMHS), MIM#619876
Mendeliome v0.14508 CPSF3 Zornitza Stark reviewed gene: CPSF3: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with microcephaly, hypotonia, and seizures (NEDMHS), MIM#619876; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14494 MFF Zornitza Stark Phenotypes for gene: MFF were changed from to Encephalopathy due to defective mitochondrial and peroxisomal fission 2, MIM# 617086
Mendeliome v0.14491 MFF Zornitza Stark reviewed gene: MFF: Rating: GREEN; Mode of pathogenicity: None; Publications: 22499341, 26783368, 32181496]; Phenotypes: Encephalopathy due to defective mitochondrial and peroxisomal fission 2, MIM# 617086; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14459 MECP2 Zornitza Stark Phenotypes for gene: MECP2 were changed from to Rett syndrome, MIM# 312750; Intellectual developmental disorder, X-linked, syndromic 13, MIM# 300055; Encephalopathy, neonatal severe, MIM# 300673
Mendeliome v0.14456 MECP2 Zornitza Stark reviewed gene: MECP2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Rett syndrome, MIM# 312750, Intellectual developmental disorder, X-linked, syndromic 13, MIM# 300055, Encephalopathy, neonatal severe, MIM# 300673; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.14450 ARV1 Elena Savva Phenotypes for gene: ARV1 were changed from to DEVELOPMENTAL AND EPILEPTIC ENCEPHALOPATHY 38 MIM#61720; Dilated cardiomyopathy
Mendeliome v0.14404 OPHN1 Zornitza Stark commented on gene: OPHN1: OPHN1 variants cause cerebellar hypoplasia and distinctive facial appearance, macrocephaly is a feature. At least 8 families reported.
Mendeliome v0.14401 PCDH12 Zornitza Stark Phenotypes for gene: PCDH12 were changed from to Diencephalic-mesencephalic junction dysplasia syndrome 1, MIM# 251280
Mendeliome v0.14398 PCDH12 Zornitza Stark reviewed gene: PCDH12: Rating: GREEN; Mode of pathogenicity: None; Publications: 27164683, 30178464; Phenotypes: Diencephalic-mesencephalic junction dysplasia syndrome 1, MIM# 251280; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14381 RNASEH1 Zornitza Stark Phenotypes for gene: RNASEH1 were changed from to Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 2 MIM#616479
Mendeliome v0.14360 RYR1 Zornitza Stark Phenotypes for gene: RYR1 were changed from to {Malignant hyperthermia susceptibility 1} MIM#145600; Central core disease, MIM# 117000; King-Denborough syndrome , MIM#619542; Minicore myopathy with external ophthalmoplegia , MIM#255320; Neuromuscular disease, congenital, with uniform type 1 fiber, MIM# 117000
Mendeliome v0.14357 RYR1 Zornitza Stark reviewed gene: RYR1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Central core disease, MIM# 117000, King-Denborough syndrome , MIM#619542, Minicore myopathy with external ophthalmoplegia , MIM#255320, Neuromuscular disease, congenital, with uniform type 1 fiber, MIM# 117000; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.14343 GRIN2D Ain Roesley Phenotypes for gene: GRIN2D were changed from to Developmental and epileptic encephalopathy 46 MIM#617162
Mendeliome v0.14341 GRIN2D Ain Roesley reviewed gene: GRIN2D: Rating: GREEN; Mode of pathogenicity: None; Publications: 27616483, 30280376; Phenotypes: Developmental and epileptic encephalopathy 46 617162; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.14341 ARV1 Abhijit Kulkarni reviewed gene: ARV1: Rating: GREEN; Mode of pathogenicity: None; Publications: 35227294, 27270415, 25558065; Phenotypes: DEVELOPMENTAL AND EPILEPTIC ENCEPHALOPATHY 38 ( MIM:61720) Dilated cardiomyopathy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14291 DNM1L Krithika Murali reviewed gene: DNM1L: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Encephalopathy, lethal, due to defective mitochondrial peroxisomal fission 1 - MIM#614388 (AD, AR), Optic atrophy 5 - MIM#610708 (AD); Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.14291 DSCAM Krithika Murali edited their review of gene: DSCAM: Added comment: No OMIM gene disease association. Variants predominantly identified from large cohort studies with limited phenotypic information. Associations with ID, ASD, Hirschsprung disease reported. One homozygous splice site variant reported with no parental phenotypes provided.

PMID 34253863 Lim et al 2021 - 12 yo proband with severe autism spectrum disorder diagnosed age 3, de novo heterozygous c.2051 del p.(L684X) variant identified (absent from gnomAD). Skin fibroblast human iPSC cells generated from proband and healthy controls. Forebrain-like induced neuronal cells showed reduced mRNA expression for NMDA-R subunits.

PMID 28600779 Monies et al 2017 - Homozygous splice site variant identified in proband from consanguineous Saudi family. Proband had growth restriction, microcephaly, developmental delay. Parental phenotype not provided.

PMID 30095639 and PMID 23671607 - report association between DSCAM polymorphisms and Hirschsprung disease in Chinese and European populations.

PMID 27824329 Wang et al 2016 - 2 denovo mutations in mixed ID/ASD cohort of 1,045; including comparison of previously published cases 6 LOF out of 4,998 cases.

PMID 28191889 2 denovo LOF in 13,407 mixed ID/ASD cases plus 4 previosly published cases our ot 6158; conclude denovo LOF enriched in cases vs controls

PMID 21904980; mouse model – het LOF mice show hydrocephalus, decreased motor function and impaired motor learning ability,

Evidence for missense lacking currently; Changed publications: 34253863, 32807774, 28600779, 21904980, 28191889, 27824329, 30095639, 23671607
Mendeliome v0.14275 MYH3 Zornitza Stark Phenotypes for gene: MYH3 were changed from to Arthrogryposis, distal, type 2A (Freeman-Sheldon) 193700; Arthrogryposis, distal, type 2B3 (Sheldon-Hall) 618436; Contractures, pterygia, and spondylocarpostarsal fusion syndrome 1A 178110; Contractures, pterygia, and spondylocarpotarsal fusion syndrome 1B 618469
Mendeliome v0.14272 MYH3 Zornitza Stark reviewed gene: MYH3: Rating: GREEN; Mode of pathogenicity: None; Publications: 25957469, 26544689, 21531865, 18695058; Phenotypes: Arthrogryposis, distal, type 2A (Freeman-Sheldon) 193700, Arthrogryposis, distal, type 2B3 (Sheldon-Hall) 618436, Contractures, pterygia, and spondylocarpostarsal fusion syndrome 1A 178110, Contractures, pterygia, and spondylocarpotarsal fusion syndrome 1B 618469; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.14260 WDR4 Zornitza Stark Phenotypes for gene: WDR4 were changed from to Galloway-Mowat syndrome 6, OMIM #618347; Microcephaly, growth deficiency, seizures, and brain malformations, OMIM #618346
Mendeliome v0.14257 WDR4 Zornitza Stark reviewed gene: WDR4: Rating: GREEN; Mode of pathogenicity: None; Publications: 26416026, 30079490, 29597095, 28617965; Phenotypes: Galloway-Mowat syndrome 6, OMIM #618347, Microcephaly, growth deficiency, seizures, and brain malformations, OMIM #618346; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14244 RNASEH1 Belinda Chong reviewed gene: RNASEH1: Rating: GREEN; Mode of pathogenicity: None; Publications: 26094573, 31258551; Phenotypes: Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 2 MIM#616479; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14208 RHEB Zornitza Stark Phenotypes for gene: RHEB were changed from to Neurodevelopmental disorder MONDO:0700092, RHEB-related; Intellectual disability; Macrocephaly; Focal cortical dysplasia
Mendeliome v0.14205 RHEB Zornitza Stark reviewed gene: RHEB: Rating: GREEN; Mode of pathogenicity: None; Publications: 31337748, 29051493; Phenotypes: Neurodevelopmental disorder MONDO:0700092, RHEB-related, Intellectual disability, Macrocephaly, Focal cortical dysplasia; Mode of inheritance: Other
Mendeliome v0.14163 FRRS1L Bryony Thompson Phenotypes for gene: FRRS1L were changed from to Developmental and epileptic encephalopathy, 37 MONDO:0014859
Mendeliome v0.14158 FRRS1L Bryony Thompson reviewed gene: FRRS1L: Rating: GREEN; Mode of pathogenicity: None; Publications: 27236917, 27239025, 30692144; Phenotypes: Developmental and epileptic encephalopathy, 37 MONDO:0014859; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14134 SCN2A Zornitza Stark Phenotypes for gene: SCN2A were changed from to Episodic ataxia, type 9, MIM# 618924; Seizures, benign familial infantile, 3, MIM# 607745; Developmental and epileptic encephalopathy 11, MIM# 613721
Mendeliome v0.14132 SCN2A Zornitza Stark edited their review of gene: SCN2A: Changed phenotypes: Episodic ataxia, type 9, MIM# 618924, Seizures, benign familial infantile, 3, MIM# 607745, Developmental and epileptic encephalopathy 11, MIM# 613721
Mendeliome v0.14123 SLC1A2 Zornitza Stark Phenotypes for gene: SLC1A2 were changed from to Developmental and epileptic encephalopathy 41, MIM# 617105
Mendeliome v0.14119 SLC1A2 Zornitza Stark reviewed gene: SLC1A2: Rating: GREEN; Mode of pathogenicity: Other; Publications: 27476654, 28777935, 30937933, 23934111; Phenotypes: Developmental and epileptic encephalopathy 41, MIM# 617105; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.14115 SLC19A3 Zornitza Stark Phenotypes for gene: SLC19A3 were changed from to Thiamine metabolism dysfunction syndrome 2 (biotin- or thiamine-responsive encephalopathy type 2), MIM# 607483
Mendeliome v0.14112 SLC19A3 Zornitza Stark reviewed gene: SLC19A3: Rating: GREEN; Mode of pathogenicity: None; Publications: 15871139, 20065143, 23482991, 24878502, 23589815, 24166474, 26975589, 27896110; Phenotypes: Thiamine metabolism dysfunction syndrome 2 (biotin- or thiamine-responsive encephalopathy type 2), MIM# 607483; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14031 FH Bryony Thompson changed review comment from: Well established gene-disease associations. Loss of function is the mechanism of disease. Monoallelic variants associated with decreased fumarate hydratase enzyme activity cause FH tumour predisposition syndrome (also known as HLRCC; PMID: 11865300, 28300276). FH deficiency (also known as fumarase deficiency or fumaric aciduria) caused by biallelic variants results in severe neonatal and early infantile encephalopathy (PMID: 8200987, 20549362, 31746132). FH encodes for both mitochondrial and cytosolic FH enzyme isoforms, which catalyze hydration of fumarate to malate.; to: Well established gene-disease associations. Loss of function is the mechanism of disease. Monoallelic variants associated with decreased fumarate hydratase enzyme activity cause FH tumour predisposition syndrome (also known as HLRCC; PMID: 11865300, 28300276, 20301430). FH deficiency (also known as fumarase deficiency or fumaric aciduria) caused by biallelic variants results in severe neonatal and early infantile encephalopathy (PMID: 8200987, 20549362, 31746132, 20301679). FH encodes for both mitochondrial and cytosolic FH enzyme isoforms, which catalyze hydration of fumarate to malate.
Mendeliome v0.14016 GUCY1A3 Zornitza Stark Phenotypes for gene: GUCY1A3 were changed from to Moyamoya 6 with achalasia, MIM# 615750
Mendeliome v0.14013 GUCY1A3 Zornitza Stark reviewed gene: GUCY1A3: Rating: GREEN; Mode of pathogenicity: None; Publications: 24581742, 26777256, 34381413, 33109895; Phenotypes: Moyamoya 6 with achalasia, MIM# 615750; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13958 DNA2 Ain Roesley Phenotypes for gene: DNA2 were changed from to Seckel syndrome 8, MIM#615807; Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 6 MIM#615156
Mendeliome v0.13956 DNA2 Ain Roesley reviewed gene: DNA2: Rating: GREEN; Mode of pathogenicity: None; Publications: 24389050, 31045292, 23352259, 25635128, 28554558; Phenotypes: Seckel syndrome 8, MIM#615807, Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 6 MIM#615156; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.13932 LMBR1 Alison Yeung Phenotypes for gene: LMBR1 were changed from to Laurin-Sandrow syndrome, MIM# 135750; Polydactyly, preaxial type II 174500; Triphalangeal thumb, type I, MIM# 174500; Syndactyly, type IV, MIM# 186200; Acheiropody, MIM# 200500; Triphalangeal thumb-polysyndactyly syndrome, MIM# 174500; Hypoplastic or aplastic tibia with polydactyly, MIM# 188740
Mendeliome v0.13930 LMBR1 Alison Yeung reviewed gene: LMBR1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Laurin-Sandrow syndrome, MIM# 135750, Polydactyly, preaxial type II 174500, Triphalangeal thumb, type I, MIM# 174500, Syndactyly, type IV, MIM# 186200, Acheiropody, MIM# 200500, Triphalangeal thumb-polysyndactyly syndrome, MIM# 174500, Hypoplastic or aplastic tibia with polydactyly, MIM# 188740; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.13919 DGUOK Zornitza Stark Phenotypes for gene: DGUOK were changed from to Mitochondrial DNA depletion syndrome 3 (hepatocerebral type), MIM# 251880; Portal hypertension, noncirrhotic, 1, MIM# 617068; Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 4, MIM# 617070
Mendeliome v0.13916 DGUOK Zornitza Stark reviewed gene: DGUOK: Rating: GREEN; Mode of pathogenicity: None; Publications: 11687800, 12874104, 15887277, 23043144, 26874653; Phenotypes: Mitochondrial DNA depletion syndrome 3 (hepatocerebral type), MIM# 251880, Portal hypertension, noncirrhotic, 1, MIM# 617068, Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 4, MIM# 617070; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13864 ACTL6B Zornitza Stark edited their review of gene: ACTL6B: Changed phenotypes: Epileptic encephalopathy, early infantile, 76, MIM# 618468, Intellectual developmental disorder with severe speech and ambulation defects, MIM# 618470; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.13846 DARS2 Zornitza Stark Phenotypes for gene: DARS2 were changed from to Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation, MIM# 611105
Mendeliome v0.13843 DARS2 Zornitza Stark changed review comment from: Slowly progressive disorder with variable age of onset, multiple families reported.; to: Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is defined on the basis of a highly characteristic constellation of abnormalities observed by magnetic resonance imaging and spectroscopy (Scheper et al., 2007). Affected individuals develop slowly progressive cerebellar ataxia, spasticity, and dorsal column dysfunction, sometimes with a mild cognitive deficit or decline.
Mendeliome v0.13842 DARS2 Zornitza Stark reviewed gene: DARS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 17384640, 15002045, 16788019; Phenotypes: Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation, MIM# 611105; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13823 DTYMK Zornitza Stark Phenotypes for gene: DTYMK were changed from Intellectual disability; microcephaly to Neurodegeneration, childhood-onset, with progressive microcephaly (MIM# 619847)
Mendeliome v0.13812 SLC12A5 Zornitza Stark Phenotypes for gene: SLC12A5 were changed from to Developmental and epileptic encephalopathy 34, MIM# 616645; {Epilepsy, idiopathic generalized, susceptibility to, 14}, MIM# 616685
Mendeliome v0.13799 DTYMK Daniel Flanagan reviewed gene: DTYMK: Rating: GREEN; Mode of pathogenicity: None; Publications: 34918187, 31271740; Phenotypes: Neurodegeneration, childhood-onset, with progressive microcephaly (MIM# 619847); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13796 CDH4 Ain Roesley gene: CDH4 was added
gene: CDH4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CDH4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CDH4 were set to 35034853
Phenotypes for gene: CDH4 were set to coloboma MONDO#0001476, CDH4-related
Review for gene: CDH4 was set to RED
gene: CDH4 was marked as current diagnostic
Added comment: 1x family with AD coloboma

Also presented with ID and post natal microcephaly

zebrafish KO model
Sources: Literature
Mendeliome v0.13789 DNAH14 Chern Lim gene: DNAH14 was added
gene: DNAH14 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DNAH14 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DNAH14 were set to PMID: 35438214
Phenotypes for gene: DNAH14 were set to Neurodevelopmental disorder, DNAH14-related (MONDO#0700092)
Review for gene: DNAH14 was set to GREEN
gene: DNAH14 was marked as current diagnostic
Added comment: PMID: 35438214:
- Three previously unreported patients with compound heterozygous DNAH14 variants, including one nonsense, one frameshift, and four missense variants. A spectrum of neurological and developmental phenotypes was observed, including seizures, global developmental delay, microcephaly, and hypotonia.
Sources: Literature
Mendeliome v0.13784 DROSHA Lucy Spencer gene: DROSHA was added
gene: DROSHA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DROSHA was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: DROSHA were set to 35405010
Phenotypes for gene: DROSHA were set to Neurodevelopmental disorder (MONDO#0700092), DROSHA-related
Review for gene: DROSHA was set to AMBER
Added comment: 2 individuals with profound intellectual disability, epilepsy, white matter atrophy, microcephaly, and dysmorphic features, who carry damaging de novo heterozygous variants in DROSHA. Both variants are missense, absent from gnomad. Both individuals noted to have Rett-like features.

Functional studies in patient fibroblasts showed one of the missense altered the expression of mature miRNA. Fruit fly models with homozygous LOF variants die during larval stages. introduction of the missense seen in the patients was able to partially rescue this phenotype suggesting LOF is not the mechanism.
Sources: Literature
Mendeliome v0.13781 PPFIBP1 Zornitza Stark gene: PPFIBP1 was added
gene: PPFIBP1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: PPFIBP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PPFIBP1 were set to https://www.medrxiv.org/content/10.1101/2022.04.04.22273309v1
Phenotypes for gene: PPFIBP1 were set to Neurodevelopmental disorder, MONDO:0700092
Review for gene: PPFIBP1 was set to GREEN
Added comment: 16 individuals from 10 unrelated families reported with moderate to profound developmental delay, often refractory early-onset epilepsy and progressive microcephaly. Drosophila model.
Sources: Expert Review
Mendeliome v0.13713 SLC12A5 Samantha Ayres reviewed gene: SLC12A5: Rating: GREEN; Mode of pathogenicity: None; Publications: 26333769, 27436767, 24928908, 30763027, 24668262; Phenotypes: Developmental and epileptic encephalopathy 34, MIM# 616645, {Epilepsy, idiopathic generalized, susceptibility to, 14}, MIM# 616685; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.13664 COL4A1 Ain Roesley Phenotypes for gene: COL4A1 were changed from to Angiopathy, hereditary, with nephropathy, aneurysms, and muscle cramps MIM#611773; Brain small vessel disease with or without ocular anomalies MIM#175780; Microangiopathy and leukoencephalopathy, pontine, autosomal dominant MIM#618564
Mendeliome v0.13662 COL4A1 Ain Roesley reviewed gene: COL4A1: Rating: GREEN; Mode of pathogenicity: None; Publications: 24628545, 25719457, 21625620, 23225343, 23065703, 20818663, 20301768; Phenotypes: Angiopathy, hereditary, with nephropathy, aneurysms, and muscle cramps MIM#611773, Brain small vessel disease with or without ocular anomalies MIM#175780, Microangiopathy and leukoencephalopathy, pontine, autosomal dominant MIM#618564; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.13656 COL1A2 Ain Roesley edited their review of gene: COL1A2: Changed phenotypes: Combined osteogenesis imperfecta and Ehlers-Danlos syndrome 2, MIM# 619120, Ehlers-Danlos syndrome, arthrochalasia type, 2, MIM# 617821, Ehlers-Danlos syndrome, cardiac valvular type, MIM# 225320, Osteogenesis imperfecta, type II, MIM# 166210, Osteogenesis imperfecta, type III, MIM# 259420, Osteogenesis imperfecta, type IV, MIM# 166220
Mendeliome v0.13656 COL1A2 Ain Roesley Phenotypes for gene: COL1A2 were changed from to Combined osteogenesis imperfecta and Ehlers-Danlos syndrome 2, MIM# 619120; Ehlers-Danlos syndrome, arthrochalasia type, 2, MIM# 617821; Ehlers-Danlos syndrome, cardiac valvular type, MIM# 225320; Osteogenesis imperfecta, type II, MIM# 166210; Osteogenesis imperfecta, type III, MIM# 259420; Osteogenesis imperfecta, type IV, MIM# 166220
Mendeliome v0.13653 COL1A2 Ain Roesley reviewed gene: COL1A2: Rating: GREEN; Mode of pathogenicity: None; Publications: 28306229, 32091183, 2993307, 30821104; Phenotypes: Ehlers-Danlos syndrome, arthrochalasia type, 2 MIM#617821, Ehlers-Danlos syndrome, cardiac valvular type MIM#225320; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.13653 COL1A1 Ain Roesley changed review comment from: COL1A1 is mostly associated with osteogenesis imperfecta however, substitutions of arginine by cysteine in the triple helical domain) have been reported in individuals w/classic EDS & aneurysm & dissection of large vessels (PMID: 20301422;20301667)

The mild forms are usually caused by haploinsufficiency and result in a reduced amount of normal type I collagen, the severe and lethal forms result from dominant negative variants which produce structural defects in the collagen molecule (PMID:12362985).; to: COL1A1 is mostly associated with osteogenesis imperfecta however, substitutions of arginine by cysteine in the triple helical domain) have been reported in individuals w/classic EDS & aneurysm & dissection of large vessels (PMID: 20301422;20301667)

For skeletal phenotypes:
The mild forms are usually caused by haploinsufficiency and result in a reduced amount of normal type I collagen, the severe and lethal forms result from dominant negative variants which produce structural defects in the collagen molecule (PMID:12362985).
Mendeliome v0.13653 COL1A1 Ain Roesley changed review comment from: COL1A1 is mostly associated with osteogenesis imperfecta however, substitutions of arginine by cysteine in the triple helical domain) have been reported in individuals w/classic EDS & aneurysm & dissection of large vessels (PMID: 20301422;20301667); to: COL1A1 is mostly associated with osteogenesis imperfecta however, substitutions of arginine by cysteine in the triple helical domain) have been reported in individuals w/classic EDS & aneurysm & dissection of large vessels (PMID: 20301422;20301667)

The mild forms are usually caused by haploinsufficiency and result in a reduced amount of normal type I collagen, the severe and lethal forms result from dominant negative variants which produce structural defects in the collagen molecule (PMID:12362985).
Mendeliome v0.13653 COL1A1 Ain Roesley Phenotypes for gene: COL1A1 were changed from to Caffey disease MIM#114000; Combined osteogenesis imperfecta and Ehlers-Danlos syndrome 1 MIM#619115; Ehlers-Danlos syndrome, arthrochalasia type, 1 MIM#130060; Osteogenesis imperfecta, type I MIM#166200; Osteogenesis imperfecta, type II MIM#166210; Osteogenesis imperfecta, type III MIM#259420; Osteogenesis imperfecta, type IV MIM#166220
Mendeliome v0.13652 COL1A1 Ain Roesley reviewed gene: COL1A1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301422, 20301667, 30071989, 28981071, 12362985, 28956891; Phenotypes: Caffey disease MIM#114000, Combined osteogenesis imperfecta and Ehlers-Danlos syndrome 1 MIM#619115, Ehlers-Danlos syndrome, arthrochalasia type, 1 MIM#130060, Osteogenesis imperfecta, type I MIM#166200, Osteogenesis imperfecta, type II MIM#166210, Osteogenesis imperfecta, type III MIM#259420, Osteogenesis imperfecta, type IV MIM#166220; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.13637 HK1 Zornitza Stark edited their review of gene: HK1: Added comment: Mono-allelic variants and ID: PMID30778173, 7 patients from 6 unrelated families with denovo missense variants in the N-terminal half of HK1

Mono-allelic variants and RP: Seven families reported with the same heterozygous missense variant, p.Glu847Lys and RP from different ethnicities. Some supportive evidence. Variant is present in 3 hets in gnomad.

Bi-allelic variants and haemolytic anaemia: more than 10 families reported.; Changed publications: 19536174, 30778173, 25316723, 25190649, 31621442, 32814480, 7655856, 12393545, 33361148, 31119733, 27282571; Changed phenotypes: Neuropathy, hereditary motor and sensory, Russe type , MIM#605285, Haemolytic anaemia due to hexokinase deficiency, MIM# 235700, Neurodevelopmental disorder with visual defects and brain anomalies, MIM# 618547, Retinitis pigmentosa 79, MIM# 617460; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.13619 LIPT2 Zornitza Stark reviewed gene: LIPT2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Encephalopathy, neonatal severe, with lactic acidosis and brain abnormalities, MIM# 617668; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13616 SIK1 Zornitza Stark Phenotypes for gene: SIK1 were changed from to Developmental and epileptic encephalopathy 30, MIM#616341; developmental and epileptic encephalopathy, MONDO#0100062
Mendeliome v0.13599 HERC1 Zornitza Stark Phenotypes for gene: HERC1 were changed from to Macrocephaly, dysmorphic facies, and psychomotor retardation, MIM# 617011
Mendeliome v0.13596 HERC1 Zornitza Stark reviewed gene: HERC1: Rating: GREEN; Mode of pathogenicity: None; Publications: 28323226, 27108999, 26153217, 26138117, 20041218; Phenotypes: Macrocephaly, dysmorphic facies, and psychomotor retardation, MIM# 617011; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13596 HEPACAM Zornitza Stark Phenotypes for gene: HEPACAM were changed from to Megalencephalic leukoencephalopathy with subcortical cysts 2A, MIM# 613925; Megalencephalic leukoencephalopathy with subcortical cysts 2B, remitting, with or without mental retardation, MIM# 613926
Mendeliome v0.13593 HEPACAM Zornitza Stark reviewed gene: HEPACAM: Rating: GREEN; Mode of pathogenicity: None; Publications: 21419380, 21419380; Phenotypes: Megalencephalic leukoencephalopathy with subcortical cysts 2A, MIM# 613925, Megalencephalic leukoencephalopathy with subcortical cysts 2B, remitting, with or without mental retardation, MIM# 613926; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.13593 LIPT2 Alison Yeung Phenotypes for gene: LIPT2 were changed from to Encephalopathy, neonatal severe, with lactic acidosis and brain abnormalities, MIM#617668
Mendeliome v0.13585 LIPC Alison Yeung Added comment: Comment on mode of inheritance: PMID: 1671786, 12777476, 1883393, 22798447 - 7 cases from 3 unrelated families with hepatic lipase deficiency and biallelic variants.
PMID: 26423094 - null mouse had dyslipidemia on a high cholesterol and fat diet
PMID: 23219720, 22464213 - 2 cases with hyperalphalipoproteinemia and heterozygous variants, with supporting in vitro funcitonal assays
Mendeliome v0.13574 HCN1 Zornitza Stark Phenotypes for gene: HCN1 were changed from to Developmental and epileptic encephalopathy 24, MIM# 615871; Generalized epilepsy with febrile seizures plus, type 10, MIM# 618482
Mendeliome v0.13571 HCN1 Zornitza Stark reviewed gene: HCN1: Rating: GREEN; Mode of pathogenicity: None; Publications: 24747641, 30351409, 30351409; Phenotypes: Developmental and epileptic encephalopathy 24, MIM# 615871, Generalized epilepsy with febrile seizures plus, type 10, MIM# 618482; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13568 HBA2 Zornitza Stark Phenotypes for gene: HBA2 were changed from to Erythrocytosis 7, MIM# 617981; Heinz body anaemia, MIM# 140700; Haemoglobin H disease, deletional and nondeletional, MIM# 613978; Thalassaemia, alpha-, MIM# 604131
Mendeliome v0.13566 HBA2 Zornitza Stark reviewed gene: HBA2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Erythrocytosis 7, MIM# 617981, Heinz body anaemia, MIM# 140700, Haemoglobin H disease, deletional and nondeletional, MIM# 613978, Thalassaemia, alpha-, MIM# 604131; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.13565 HBA1 Zornitza Stark Phenotypes for gene: HBA1 were changed from to Erythrocytosis 7, MIM# 617981; Heinz body anemias, alpha-, MIM# 140700; Methemoglobinemia, alpha type , MIM#617973; Thalassemias, alpha-, MIM# 604131; Hemoglobin H disease, nondeletional, MIM# 613978
Mendeliome v0.13563 HBA1 Zornitza Stark reviewed gene: HBA1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Erythrocytosis 7, MIM# 617981, Heinz body anemias, alpha-, MIM# 140700, Methemoglobinemia, alpha type , MIM#617973, Thalassemias, alpha-, MIM# 604131, Hemoglobin H disease, nondeletional, MIM# 613978; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13543 SIK1 Samantha Ayres reviewed gene: SIK1: Rating: GREEN; Mode of pathogenicity: None; Publications: 25839329, 27966542, 35267137; Phenotypes: Developmental and epileptic encephalopathy 30, MIM#616341, developmental and epileptic encephalopathy, MONDO#0100062; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.13435 APOA1 Elena Savva Phenotypes for gene: APOA1 were changed from to Amyloidosis, 3 or more types MIM#105200; Hypoalphalipoproteinemia, primary, 2 MIM#618463; Hypoalphalipoproteinemia, primary, 2, intermediate MIM#619836
Mendeliome v0.13434 APOA1 Elena Savva reviewed gene: APOA1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Amyloidosis, 3 or more types MIM#105200, Hypoalphalipoproteinemia, primary, 2 MIM#618463, Hypoalphalipoproteinemia, primary, 2, intermediate MIM#619836; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.13398 PIK3CA Zornitza Stark Phenotypes for gene: PIK3CA were changed from to Megalencephaly-capillary malformation (MCAP) syndrome , MIM#602501; CLAPO syndrome, somatic, MIM# 613089; CLOVE syndrome, somatic, MIM# 612918
Mendeliome v0.13396 PIK3CA Zornitza Stark reviewed gene: PIK3CA: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Megalencephaly-capillary malformation (MCAP) syndrome , MIM#602501, CLAPO syndrome, somatic, MIM# 613089, CLOVE syndrome, somatic, MIM# 612918; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13396 PISD Zornitza Stark Phenotypes for gene: PISD were changed from to Liberfarb syndrome, MIM# 618889; Intellectual disability; cataracts; retinal degeneration; microcephaly; deafness; short stature; white matter abnormalities
Mendeliome v0.13393 PISD Zornitza Stark edited their review of gene: PISD: Changed phenotypes: Liberfarb syndrome, MIM# 618889, Intellectual disability, cataracts, retinal degeneration, microcephaly, deafness, short stature, white matter abnormalities
Mendeliome v0.13387 BSCL2 Zornitza Stark Phenotypes for gene: BSCL2 were changed from to Neuropathy, distal hereditary motor, type VC, MIM# 619112; Encephalopathy, progressive, with or without lipodystrophy, MIM#615924; Lipodystrophy, congenital generalized, type 2, MIM# 269700; Silver spastic paraplegia syndrome, MIM# 270685; Developmental and epileptic encephalopathy, BSCL2-related, dominant, MONDO:0100062
Mendeliome v0.13384 BSCL2 Zornitza Stark edited their review of gene: BSCL2: Changed phenotypes: Neuropathy, distal hereditary motor, type VC, MIM# 619112, Encephalopathy, progressive, with or without lipodystrophy, MIM#615924, Lipodystrophy, congenital generalized, type 2, MIM# 269700, Silver spastic paraplegia syndrome, MIM# 270685, Developmental and epileptic encephalopathy, BSCL2-related, dominant, MONDO:0100062; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.13367 PIK3R2 Zornitza Stark Phenotypes for gene: PIK3R2 were changed from to Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome 1, MIM# 603387
Mendeliome v0.13364 PIK3R2 Zornitza Stark reviewed gene: PIK3R2: Rating: GREEN; Mode of pathogenicity: None; Publications: 22729224, 23745724, 33604570; Phenotypes: Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome 1, MIM# 603387; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13361 PITX3 Zornitza Stark Phenotypes for gene: PITX3 were changed from Anterior segment dysgenesis 1, multiple subtypes, MIM# 107250; Cataract 11, multiple types, MIM# 610623; Microphthalmia to Anterior segment dysgenesis 1, multiple subtypes, MIM# 107250; Cataract 11, multiple types, MIM# 610623; Microphthalmia MONDO:0021129
Mendeliome v0.13360 PITX3 Zornitza Stark Phenotypes for gene: PITX3 were changed from to Anterior segment dysgenesis 1, multiple subtypes, MIM# 107250; Cataract 11, multiple types, MIM# 610623; Microphthalmia
Mendeliome v0.13357 PITX3 Zornitza Stark reviewed gene: PITX3: Rating: GREEN; Mode of pathogenicity: None; Publications: 29405783; Phenotypes: Anterior segment dysgenesis 1, multiple subtypes, MIM# 107250, Cataract 11, multiple types, MIM# 610623, Microphthalmia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13337 EIF2AK2 Zornitza Stark edited their review of gene: EIF2AK2: Changed phenotypes: Dystonia 33, MIM# 619687, Leukoencephalopathy, developmental delay, and episodic neurologic regression syndrome, MIM# 618877; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.13317 CIT Ain Roesley Phenotypes for gene: CIT were changed from Microcephaly 17, primary, autosomal recessive (MIM#617090) to Microcephaly 17, primary, autosomal recessive (MIM#617090)
Mendeliome v0.13317 CIT Ain Roesley Phenotypes for gene: CIT were changed from to Microcephaly 17, primary, autosomal recessive (MIM#617090)
Mendeliome v0.13315 CIT Ain Roesley reviewed gene: CIT: Rating: GREEN; Mode of pathogenicity: None; Publications: 27453578, 27503289, 27453579; Phenotypes: Microcephaly 17, primary, autosomal recessive (MIM#617090); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.13289 HSPG2 Zornitza Stark changed review comment from: Allelic disorders with some phenotypic overlap.

Schwartz-Jampel syndrome (SJS) is a rare autosomal recessive condition defined by the association of myotonia with chondrodysplasia; blepharophimosis is a key feature. More than 20 families reported.

Silverman-Handmaker dyssegmental dysplasia (DDSH) is a lethal autosomal recessive skeletal dysplasia with anisospondyly and micromelia. Individuals with DDSH also have a flat face, micrognathia, cleft palate and reduced joint mobility, and frequently have an encephalocele. The endochondral growth plate is short, the calcospherites (spherical calcium-phosphorus crystals produced by hypertrophic chondrocytes) are unfused, and there is mucoid degeneration of the resting cartilage. Two families reported.; to: Allelic disorders with some phenotypic overlap.

Schwartz-Jampel syndrome (SJS) is a rare autosomal recessive condition defined by the association of myotonia with chondrodysplasia; blepharophimosis is a key feature. More than 20 families reported.

Silverman-Handmaker dyssegmental dysplasia (DDSH) is a lethal autosomal recessive skeletal dysplasia with anisospondyly and micromelia. Individuals with DDSH also have a flat face, micrognathia, cleft palate and reduced joint mobility, and frequently have an encephalocele. The endochondral growth plate is short, the calcospherites (spherical calcium-phosphorus crystals produced by hypertrophic chondrocytes) are unfused, and there is mucoid degeneration of the resting cartilage. Two families reported. Appears associated with null variants.
Mendeliome v0.13236 POLG Zornitza Stark Phenotypes for gene: POLG were changed from to Mitochondrial DNA depletion syndrome 4A (Alpers type) MIM#203700; Mitochondrial DNA depletion syndrome 4B (MNGIE type) MIM#613662; Mitochondrial recessive ataxia syndrome (includes SANDO and SCAE) MIM#607459; Progressive external ophthalmoplegia, autosomal recessive 1 MIM#258450; Progressive external ophthalmoplegia, autosomal dominant 1, MIM# 157640
Mendeliome v0.13233 POLG Zornitza Stark reviewed gene: POLG: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Progressive external ophthalmoplegia, autosomal dominant 1, MIM# 157640; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.13206 FAT1 Zornitza Stark Phenotypes for gene: FAT1 were changed from syndromic disease MONDO:0002254; facial dysmorphism; colobomatous microphthalmia; ptosis; syndactyly with or without nephropathy to syndromic disease MONDO:0002254, FAT1-related; facial dysmorphism; colobomatous microphthalmia; ptosis; syndactyly with or without nephropathy
Mendeliome v0.13205 FASTKD2 Zornitza Stark Phenotypes for gene: FASTKD2 were changed from FASTKD2-related infantile mitochondrial encephalomyopathy MONDO:0015632 to Combined oxidative phosphorylation deficiency 44, MIM# 618855; FASTKD2-related infantile mitochondrial encephalomyopathy MONDO:0015632
Mendeliome v0.13175 SHH Zornitza Stark Added comment: Comment when marking as ready: DISPUTED association with schizencephaly
Mendeliome v0.13175 SHH Zornitza Stark Phenotypes for gene: SHH were changed from to Holoprosencephaly 3, MIM#142945; Microphthalmia with coloboma 5, MIM#611638; Single median maxillary central incisor, MIM#147250
Mendeliome v0.13153 PIDD1 Zornitza Stark Phenotypes for gene: PIDD1 were changed from Global developmental delay; Intellectual disability; Seizures; Autism; Behavioral abnormality; Psychosis; Pachygyria; Lissencephaly; Abnormality of the corpus callosum to Intellectual developmental disorder, autosomal recessive 75, with neuropsychiatric features and variant lissencephaly, MIM# 619827
Mendeliome v0.13152 PIDD1 Zornitza Stark edited their review of gene: PIDD1: Changed phenotypes: Intellectual developmental disorder, autosomal recessive 75, with neuropsychiatric features and variant lissencephaly, MIM# 619827
Mendeliome v0.13118 FAT1 Bryony Thompson Phenotypes for gene: FAT1 were changed from facial dysmorphism; colobomatous microphthalmia; ptosis; syndactyly with or without nephropathy to syndromic disease MONDO:0002254; facial dysmorphism; colobomatous microphthalmia; ptosis; syndactyly with or without nephropathy
Mendeliome v0.13117 FASTKD2 Bryony Thompson Phenotypes for gene: FASTKD2 were changed from to FASTKD2-related infantile mitochondrial encephalomyopathy MONDO:0015632
Mendeliome v0.13115 FASTKD2 Bryony Thompson reviewed gene: FASTKD2: Rating: GREEN; Mode of pathogenicity: None; Publications: 18771761, 28499982, 31944455, 34234304; Phenotypes: FASTKD2-related infantile mitochondrial encephalomyopathy MONDO:0015632; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13096 SHH Samantha Ayres reviewed gene: SHH: Rating: GREEN; Mode of pathogenicity: None; Publications: 21976454, 12503095, 22791840, 19057928, 19533790; Phenotypes: Holoprosencephaly 3, MIM#142945, Microphthalmia with coloboma 5, MIM#611638, Schizencephaly, MIM#269160, Single median maxillary central incisor, MIM#147250; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13058 PPP1R15B Zornitza Stark Phenotypes for gene: PPP1R15B were changed from to Microcephaly, short stature, and impaired glucose metabolism 2, MIM# 616817
Mendeliome v0.13054 PPP1R15B Zornitza Stark reviewed gene: PPP1R15B: Rating: AMBER; Mode of pathogenicity: None; Publications: 26159176, 26307080, 27640355; Phenotypes: Microcephaly, short stature, and impaired glucose metabolism 2, MIM# 616817; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12922 PTRH2 Zornitza Stark commented on gene: PTRH2: Infantile-onset multisystem neurologic, endocrine, and pancreatic disease-1 (IMNEPD1) is an autosomal recessive multisystemic disorder with variable expressivity. The core features usually include global developmental delay with impaired intellectual development and speech delay, ataxia, sensorineural hearing loss, and pancreatic insufficiency. Additional features may include peripheral neuropathy, postnatal microcephaly, dysmorphic facial features, and cerebellar atrophy.

More than 5 unrelated families reported. The Q85P missense variant is reported in several families, likely founder effect.
Mendeliome v0.12836 SLC25A12 Zornitza Stark Phenotypes for gene: SLC25A12 were changed from to Developmental and epileptic encephalopathy 39, MIM# 612949
Mendeliome v0.12833 SLC25A12 Zornitza Stark reviewed gene: SLC25A12: Rating: GREEN; Mode of pathogenicity: None; Publications: 19641205, 24515575, 35008954, 32700846, 31766059, 31514314; Phenotypes: Developmental and epileptic encephalopathy 39, MIM# 612949; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12827 SLC25A19 Zornitza Stark Phenotypes for gene: SLC25A19 were changed from to Microcephaly, Amish type, MIM#607196; Thiamine metabolism dysfunction syndrome 4 (progressive polyneuropathy type), MIM#613710
Mendeliome v0.12824 SLC25A19 Zornitza Stark reviewed gene: SLC25A19: Rating: GREEN; Mode of pathogenicity: None; Publications: 31506564, 31295743, 12185364, 19798730; Phenotypes: Microcephaly, Amish type, MIM#607196, Thiamine metabolism dysfunction syndrome 4 (progressive polyneuropathy type), MIM#613710; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12824 SLC25A22 Zornitza Stark Phenotypes for gene: SLC25A22 were changed from to Developmental and epileptic encephalopathy 3, MIM# 609304
Mendeliome v0.12821 SLC25A22 Zornitza Stark reviewed gene: SLC25A22: Rating: GREEN; Mode of pathogenicity: None; Publications: 15592994, 19780765, 24596948, 33821742, 33342683, 31285529; Phenotypes: Developmental and epileptic encephalopathy 3, MIM# 609304; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12809 TRAK1 Zornitza Stark Phenotypes for gene: TRAK1 were changed from to Developmental and epileptic encephalopathy 68, MIM# 618201
Mendeliome v0.12806 TRAK1 Zornitza Stark reviewed gene: TRAK1: Rating: GREEN; Mode of pathogenicity: None; Publications: 28940097, 28364549, 29846532, 28924745; Phenotypes: Developmental and epileptic encephalopathy 68, MIM# 618201; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12792 EXOC7 Bryony Thompson Phenotypes for gene: EXOC7 were changed from brain atrophy; seizures; developmental delay; microcephaly to Neurodevelopmental disorder with seizures and brain atrophy MIM#619072; brain atrophy; seizures; developmental delay; microcephaly
Mendeliome v0.12756 TPK1 Zornitza Stark Phenotypes for gene: TPK1 were changed from to Thiamine metabolism dysfunction syndrome 5 (episodic encephalopathy type), MIM# 614458
Mendeliome v0.12753 TPK1 Zornitza Stark reviewed gene: TPK1: Rating: GREEN; Mode of pathogenicity: None; Publications: 22152682, 33626592, 33231275, 33086386; Phenotypes: Thiamine metabolism dysfunction syndrome 5 (episodic encephalopathy type), MIM# 614458; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12733 CACNA2D1 Alison Yeung Phenotypes for gene: CACNA2D1 were changed from developmental and epileptic encephalopathy disorder MONDO:0100062 CACNA2D1-related to Developmental and epileptic encephalopathy disorder MONDO:0100062 CACNA2D1-related
Mendeliome v0.12731 CACNA2D1 Michelle Torres gene: CACNA2D1 was added
gene: CACNA2D1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CACNA2D1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CACNA2D1 were set to 35293990
Phenotypes for gene: CACNA2D1 were set to developmental and epileptic encephalopathy disorder MONDO:0100062 CACNA2D1-related
Review for gene: CACNA2D1 was set to GREEN
Added comment: PMID 35293990: WES of 2x unrelated individuals with early-onset developmental epileptic encephalopathy, microcephaly, severe hypotonia, absent speech, spasticity, choreiform movements, orofacial dyskinesia, and 2 cortical visual impairment, corpus callosum hypoplasia and progressive volume loss. Patient 2 also had a tiny patent foramen ovale.

Patient 1 is homozygous for p.(Ser275Asnfs*13). mRNA and protein expression were reduced to ~10% of WT in fibroblasts

Patient 2 is cHet for p.(Leu9Alafs*5) and p.(Gly209Asp). mRNA expression in patients fibroblasts was similar to controls, and protein expression reduced to 31-38%. Functional of the p.(Gly209Asp) showed impaired localization and mutagenesis showed complete loss of channel function.
Sources: Literature
Mendeliome v0.12728 TRAPPC10 Naomi Baker gene: TRAPPC10 was added
gene: TRAPPC10 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TRAPPC10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TRAPPC10 were set to PMID: 35298461; 30167849
Phenotypes for gene: TRAPPC10 were set to neurodevelopmental disorder (MONDO:0700092), TRAPPC10-related
Review for gene: TRAPPC10 was set to GREEN
Added comment: PMID: 35298461 – two Pakistani families reported with homozygous variants. Family 1 has frameshift variant in 8 affected individual and family 2 has missense variant in 2 affected individuals. Patients present with microcephaly, short stature, hypotonia, severe ID and behavioural abnormalities. Seizures also reported in 4/10 individuals. Paper also reported brain abnormalities in null mouse model and other functional in transfected cell lines.

PMID: 30167849 – initial report of family 2 above.
Sources: Literature
Mendeliome v0.12721 ADAM22 Alison Yeung Phenotypes for gene: ADAM22 were changed from Developmental and epileptic encephalopathy 61 (MIM#617933) to Developmental and epileptic encephalopathy 61 (MIM#617933)
Mendeliome v0.12721 ADAM22 Alison Yeung Phenotypes for gene: ADAM22 were changed from Epileptic encephalopathy, early infantile, 61, MIM# 617933 to Developmental and epileptic encephalopathy 61 (MIM#617933)
Mendeliome v0.12720 FUZ Anna Ritchie changed review comment from: Novel missense p.(Arg284Pro) mutation in FUZ identified in twins presenting with craniosynostosis. Loss of Fuz resulted in increased mineralisation in both in vitro embryonic primary osteoblast cultures and in fibroblasts undergoing an osteogenic challenge. No previous reports have implicated changes in human FUZ in craniosynostosis. However, variations in FUZ have been found in patients with neural tube defects.; to: Novel missense p.(Arg284Pro) mutation in FUZ identified in twins presenting with craniosynostosis. Loss of Fuz resulted in increased mineralisation in both in vitro embryonic primary osteoblast cultures and in fibroblasts undergoing an osteogenic challenge. No previous reports have implicated changes in human FUZ in craniosynostosis. However, variations in FUZ have been found in patients with neural tube defects.
Mendeliome v0.12714 AHSG Elena Savva gene: AHSG was added
gene: AHSG was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: AHSG was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: AHSG were set to PMID: 28054173; 9395485; 31288248; 17389622
Phenotypes for gene: AHSG were set to ?Alopecia-intellectual disability syndrome 1 MIM#203650; infantile cortical hyperostosis
Review for gene: AHSG was set to RED
Added comment: PMID: 28054173 - 7 relatives within a large consanguinous fam w/ alopecia and ID, and a hom missense (p.Arg317His). Modelling predicts this variant to be a phosphorylation site, functional studies show a difference in protein size. Unclear biological significance.
Alt change with stronger GS (p.(Arg317Cys)) is a common poly with 19 homozygotes in gnomAD.

No hom PTCs in gnomAD

PMID: 9395485 - K/O mouse model shows no gross anatomical abnormalities, were fertile and "healthy". No mentioned of ID, alopecia
PMID: 17389622 - K/O mouse model on the calcification resistant genetic background C57BL/6, shows uraemia and phosphate challenge. No mentioned of ID, alopecia

PMID: 31288248 - 1 hom infant (p.K2*, within 5' NMD escape region) with infantile cortical hyperostosis, loss of enzyme in patient serum shown by ELISA. No mentioned of ID, alopecia
Sources: Literature
Mendeliome v0.12713 ADAM22 Lucy Spencer reviewed gene: ADAM22: Rating: GREEN; Mode of pathogenicity: None; Publications: 35373813; Phenotypes: Developmental and epileptic encephalopathy 61 (MIM#617933); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12686 LIG3 Zornitza Stark Phenotypes for gene: LIG3 were changed from gut dysmotility; spasticity; ataxia; repetitive behaviours; neurogenic bladder; macular degeneration; leukoencephalopathy; cerebellar atrophy to Mitochondrial DNA depletion syndrome 20 (MNGIE type), MIM# 619780
Mendeliome v0.12676 SLC25A4 Zornitza Stark Phenotypes for gene: SLC25A4 were changed from to Mitochondrial DNA depletion syndrome 12A (cardiomyopathic type) AD, MIM#617184; Mitochondrial DNA depletion syndrome 12B (cardiomyopathic type) AR, MIM#615418; Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 2, MIM#609283
Mendeliome v0.12673 SLC25A4 Zornitza Stark reviewed gene: SLC25A4: Rating: GREEN; Mode of pathogenicity: None; Publications: 30046662, 30013777, 29654543, 28823815; Phenotypes: Mitochondrial DNA depletion syndrome 12A (cardiomyopathic type) AD, MIM#617184, Mitochondrial DNA depletion syndrome 12B (cardiomyopathic type) AR, MIM#615418, Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 2, MIM#609283; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.12673 SLC25A42 Zornitza Stark Phenotypes for gene: SLC25A42 were changed from to Metabolic crises, recurrent, with variable encephalomyopathic features and neurologic regression , MIM#618416
Mendeliome v0.12670 SLC25A42 Zornitza Stark reviewed gene: SLC25A42: Rating: GREEN; Mode of pathogenicity: None; Publications: 26541337, 29327420, 29923093, 34258143; Phenotypes: Metabolic crises, recurrent, with variable encephalomyopathic features and neurologic regression , MIM#618416; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12553 ANKLE2 Elena Savva Phenotypes for gene: ANKLE2 were changed from Microcephaly 16, primary, autosomal recessive, MIM# 616681 to Microcephaly 16, primary, autosomal recessive, MIM# 616681
Mendeliome v0.12552 ANKLE2 Elena Savva Phenotypes for gene: ANKLE2 were changed from Microcephaly 16, primary, autosomal recessive, MIM# 616681 to Microcephaly 16, primary, autosomal recessive, MIM# 616681
Mendeliome v0.12548 ANKLE2 Elena Savva Phenotypes for gene: ANKLE2 were changed from to Microcephaly 16, primary, autosomal recessive, MIM# 616681
Mendeliome v0.12517 AMT Elena Savva Phenotypes for gene: AMT were changed from to Glycine encephalopathy MIM#605899; disorder of glycine metabolism
Mendeliome v0.12498 TMEM98 Zornitza Stark Phenotypes for gene: TMEM98 were changed from to Nanophthalmos 4 MIM#615972
Mendeliome v0.12495 TMEM98 Zornitza Stark reviewed gene: TMEM98: Rating: GREEN; Mode of pathogenicity: None; Publications: 24852644, 26392740; Phenotypes: Nanophthalmos 4 MIM#615972; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12381 DVL2 Bryony Thompson gene: DVL2 was added
gene: DVL2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DVL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DVL2 were set to 35047859; 33599851; 30521570
Phenotypes for gene: DVL2 were set to Robinow syndrome MONDO:0019978
Review for gene: DVL2 was set to AMBER
Added comment: A single case with Robinow syndrome identified with a de novo frameshift variant in the last exon of the gene (c.2105dupC, p.Pro703Serfs*103). Also, a canine DVL2 frameshift variant has been associated with a Robinow-like syndrome in dogs, contributing to the brachycephalic phenotype and caudal vertebral anomalies.
Sources: Literature
Mendeliome v0.12365 TK2 Zornitza Stark Phenotypes for gene: TK2 were changed from to Mitochondrial DNA depletion syndrome 2 (myopathic type), MIM# 609560; Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 3; MIM# 617069
Mendeliome v0.12362 TK2 Zornitza Stark reviewed gene: TK2: Rating: GREEN; Mode of pathogenicity: None; Publications: 11687801, 12391347, 12873860, 35286480, 35280287, 35094997; Phenotypes: Mitochondrial DNA depletion syndrome 2 (myopathic type), MIM# 609560, Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 3, MIM# 617069; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12352 TICAM1 Zornitza Stark Phenotypes for gene: TICAM1 were changed from to {Encephalopathy, acute, infection-induced (herpes-specific), susceptibility to, 6}, MIM# 614850
Mendeliome v0.12349 TICAM1 Zornitza Stark reviewed gene: TICAM1: Rating: GREEN; Mode of pathogenicity: None; Publications: 22105173, 26513235; Phenotypes: {Encephalopathy, acute, infection-induced (herpes-specific), susceptibility to, 6}, MIM# 614850; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.12339 EIF2B4 Zornitza Stark Phenotypes for gene: EIF2B4 were changed from leukoencephalopathy with vanishing white matter MONDO:0011380; ataxia; spasticity; optic atrophy; primary ovarian failure to Leukoencephalopathy with vanishing white matter, MIM# 603896; leukoencephalopathy with vanishing white matter MONDO:0011380; ataxia; spasticity; optic atrophy; primary ovarian failure
Mendeliome v0.12338 PADI6 Zornitza Stark Phenotypes for gene: PADI6 were changed from to Pre-implantation embryonic lethality 2 MIM#617234; Multi locus imprinting disturbance in offspring; Recurrent hydatiform mole
Mendeliome v0.12332 PACS2 Zornitza Stark Phenotypes for gene: PACS2 were changed from to Developmental and epileptic encephalopathy 66 - MIM#618067
Mendeliome v0.12323 EIF2B5 Bryony Thompson Phenotypes for gene: EIF2B5 were changed from to leukoencephalopathy with vanishing white matter MONDO:0011380; ataxia; spasticity; optic atrophy; primary ovarian failure
Mendeliome v0.12316 EIF2B5 Bryony Thompson reviewed gene: EIF2B5: Rating: GREEN; Mode of pathogenicity: None; Publications: 11704758, 12325082, 12707859, 14694060, 15136689, 18263758, 25843247, 25761052; Phenotypes: leukoencephalopathy with vanishing white matter MONDO:0011380; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.12316 AKT3 Elena Savva Phenotypes for gene: AKT3 were changed from to Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome 2 MIM#615937
Mendeliome v0.12314 AKT3 Elena Savva reviewed gene: AKT3: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 22729224; Phenotypes: Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome 2 MIM#615937; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.12314 EIF2B4 Bryony Thompson Phenotypes for gene: EIF2B4 were changed from to leukoencephalopathy with vanishing white matter MONDO:0011380; ataxia; spasticity; optic atrophy; primary ovarian failure
Mendeliome v0.12311 EIF2B4 Bryony Thompson reviewed gene: EIF2B4: Rating: GREEN; Mode of pathogenicity: None; Publications: 11835386, 12707859, 18263758, 25843247, 25761052, 30014503; Phenotypes: leukoencephalopathy with vanishing white matter MONDO:0011380; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.12307 EIF2B3 Bryony Thompson Phenotypes for gene: EIF2B3 were changed from to leukoencephalopathy with vanishing white matter MONDO:0011380; ataxia; spasticity; optic atrophy
Mendeliome v0.12304 EIF2B3 Bryony Thompson reviewed gene: EIF2B3: Rating: GREEN; Mode of pathogenicity: None; Publications: 11835386, 19158808, 21484434, 18263758, 25843247, 25761052, 28904586, 28597716; Phenotypes: leukoencephalopathy with vanishing white matter MONDO:0011380; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.12301 EIF2B1 Bryony Thompson Phenotypes for gene: EIF2B1 were changed from to leukoencephalopathy with vanishing white matter MONDO:0011380; ataxia; spasticity; optic atrophy
Mendeliome v0.12298 EIF2B1 Bryony Thompson reviewed gene: EIF2B1: Rating: GREEN; Mode of pathogenicity: None; Publications: 11835386, 26285592, 15776425, 18263758, 25843247, 25761052, 30014503; Phenotypes: leukoencephalopathy with vanishing white matter MONDO:0011380, ataxia, spasticity, optic atrophy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.12285 PADI6 Krithika Murali reviewed gene: PADI6: Rating: GREEN; Mode of pathogenicity: None; Publications: 29693651, 33583041, 329228291, 33221824, 27545678; Phenotypes: Pre-implantation embryonic lethality 2 MIM#617234, Multi locus imprinting disturbance in offspring, Recurrent hydatiform mole; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.12284 PACS2 Krithika Murali reviewed gene: PACS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 29656858, 34894068, 34859793; Phenotypes: Developmental and epileptic encephalopathy 66 - MIM#618067; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12189 TGFB1 Zornitza Stark Phenotypes for gene: TGFB1 were changed from to Inflammatory bowel disease, immunodeficiency, and encephalopathy MIM# 618213; Camurati-Engelmann disease, MIM# 131300
Mendeliome v0.12186 TGFB1 Zornitza Stark reviewed gene: TGFB1: Rating: GREEN; Mode of pathogenicity: None; Publications: 29483653, 10973241, 35315241, 30721323; Phenotypes: Inflammatory bowel disease, immunodeficiency, and encephalopathy MIM# 618213, Camurati-Engelmann disease, MIM# 131300; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.12152 CASP8 Ain Roesley changed review comment from: Boderline red/amber

1 family (the 2nd family reported in PMID:25814141 was found to be distantly related to the one in PMID:12353035)

Mice with targeted T cell and B cell caspase-8 deficiency present normal thymocyte development but a marked decrease in peripheral blood T-cells. Besides, when challenged with the lymphocytic choriomeningitis virus (LCMV), these animals showed a significantly impaired immune response to the infection that included impaired CD8 cell expansion and an abrogated ability to generate virus-specific CD8+ cytotoxic T-cells.; to: Borderline red/amber

1 family (the 2nd family reported in PMID:25814141 was found to be distantly related to the one in PMID:12353035)

Mice with targeted T cell and B cell caspase-8 deficiency present normal thymocyte development but a marked decrease in peripheral blood T-cells. Besides, when challenged with the lymphocytic choriomeningitis virus (LCMV), these animals showed a significantly impaired immune response to the infection that included impaired CD8 cell expansion and an abrogated ability to generate virus-specific CD8+ cytotoxic T-cells.
Mendeliome v0.12139 CASK Ain Roesley Phenotypes for gene: CASK were changed from FG syndrome 4 MIM#300422; Intellectual developmental disorder and microcephaly with pontine and cerebellar hypoplasia MIM#300749; Mental retardation, with or without nystagmus MIM#300422 to FG syndrome 4 MIM#300422; Intellectual developmental disorder and microcephaly with pontine and cerebellar hypoplasia MIM#300749; Mental retardation, with or without nystagmus MIM#300422
Mendeliome v0.12138 CASK Ain Roesley Phenotypes for gene: CASK were changed from to FG syndrome 4 MIM#300422; Intellectual developmental disorder and microcephaly with pontine and cerebellar hypoplasia MIM#300749; Mental retardation, with or without nystagmus MIM#300422
Mendeliome v0.12134 CASK Ain Roesley reviewed gene: CASK: Rating: GREEN; Mode of pathogenicity: None; Publications: 24278995; Phenotypes: FG syndrome 4 MIM#300422, Intellectual developmental disorder and microcephaly with pontine and cerebellar hypoplasia MIM#300749, Mental retardation, with or without nystagmus MIM#300422; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes
Mendeliome v0.12115 SERAC1 Zornitza Stark Phenotypes for gene: SERAC1 were changed from to 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like syndrome, MIM# 614739
Mendeliome v0.12107 SCP2 Zornitza Stark reviewed gene: SCP2: Rating: AMBER; Mode of pathogenicity: None; Publications: 26497993; Phenotypes: Leukoencephalopathy with dystonia and motor neuropathy, MIM#613724; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12106 SCP2 Zornitza Stark Phenotypes for gene: SCP2 were changed from to Leukoencephalopathy with dystonia and motor neuropathy, MIM#613724
Mendeliome v0.12071 ACER3 Zornitza Stark edited their review of gene: ACER3: Added comment: Additional publication (Dehvani et al., 2021; PMID: 34281620) detailing three further unrelated cases, each with novel homozygous variants in the ACER3 gene. All individuals displayed features of progressive leukoencephalopathy, developmental delay, hypotonia, appendicular spasticity, and dystonia. Early development is apparently normal followed by symptoms of stagnation and neurologic regression (onset within first year of life).; Changed rating: GREEN; Changed publications: 32816236, 26792856, 34281620; Changed phenotypes: Leukodystrophy, progressive, early childhood-onset, MIM:617762
Mendeliome v0.12066 SERAC1 Samantha Ayres reviewed gene: SERAC1: Rating: GREEN; Mode of pathogenicity: None; Publications: 29205472, 32684373, 24741715; Phenotypes: 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like syndrome, MIM# 614739; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12062 SCP2 Samantha Ayres reviewed gene: SCP2: Rating: RED; Mode of pathogenicity: None; Publications: 16685654; Phenotypes: ?Leukoencephalopathy with dystonia and motor neuropathy, MIM#613724; Mode of inheritance: Unknown
Mendeliome v0.12035 SMARCE1 Zornitza Stark changed review comment from: Coffin-Siris syndrome is a rare congenital disorder characterized by delayed psychomotor development, intellectual disability, coarse facial features, and hypoplasia of the distal phalanges, particularly the fifth digit. Other features may also be observed, including congenital heart defects, hypoplasia of the corpus callosum, and poor overall growth with short stature and microcephaly.

Accounts for ~2% of Coffin Siris syndrome.; to: Coffin-Siris syndrome is a rare congenital disorder characterized by delayed psychomotor development, intellectual disability, coarse facial features, and hypoplasia of the distal phalanges, particularly the fifth digit. Other features may also be observed, including congenital heart defects, hypoplasia of the corpus callosum, and poor overall growth with short stature and microcephaly.

Accounts for ~2% of Coffin Siris syndrome.

Germline LoF variants also linked to familial meningioma.
Mendeliome v0.12022 SNORD118 Zornitza Stark Phenotypes for gene: SNORD118 were changed from to Leukoencephalopathy, brain calcifications, and cysts, MIM#614561
Mendeliome v0.12019 SNORD118 Zornitza Stark reviewed gene: SNORD118: Rating: GREEN; Mode of pathogenicity: None; Publications: 27571260; Phenotypes: Leukoencephalopathy, brain calcifications, and cysts, MIM#614561; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12006 GRIN1 Zornitza Stark Phenotypes for gene: GRIN1 were changed from Neurodevelopmental disorder with or without hyperkinetic movements and seizures, autosomal dominant, MIM# 614254; Neurodevelopmental disorder with or without hyperkinetic movements and seizures, autosomal recessive, MIM# 617820 to Developmental and epileptic encephalopathy 101, MIM# 619814; Neurodevelopmental disorder with or without hyperkinetic movements and seizures, autosomal dominant, MIM# 614254; Neurodevelopmental disorder with or without hyperkinetic movements and seizures, autosomal recessive, MIM# 617820
Mendeliome v0.12005 GRIN1 Zornitza Stark edited their review of gene: GRIN1: Changed phenotypes: Developmental and epileptic encephalopathy 101, MIM# 619814, Neurodevelopmental disorder with or without hyperkinetic movements and seizures, autosomal dominant, MIM# 614254, Neurodevelopmental disorder with or without hyperkinetic movements and seizures, autosomal recessive, MIM# 617820
Mendeliome v0.11932 TANGO2 Zornitza Stark Phenotypes for gene: TANGO2 were changed from to Metabolic encephalomyopathic crises, recurrent, with rhabdomyolysis, cardiac arrhythmias, and neurodegeneration, MIM# 616878
Mendeliome v0.11929 TANGO2 Zornitza Stark reviewed gene: TANGO2: Rating: GREEN; Mode of pathogenicity: None; Publications: 26805782, 30245509; Phenotypes: Metabolic encephalomyopathic crises, recurrent, with rhabdomyolysis, cardiac arrhythmias, and neurodegeneration, MIM# 616878; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11916 LAS1L Zornitza Stark edited their review of gene: LAS1L: Changed rating: GREEN; Changed phenotypes: Wilson-Turner syndrome, MIM# 309585, congenital lethal motor neuron disease
Mendeliome v0.11903 L1CAM Zornitza Stark Phenotypes for gene: L1CAM were changed from Hydrocephalus due to aqueductal stenosis, MIM# 307000; MASA syndrome, MIM# 303350; L1 syndrome, MONDO:0017140 to Hydrocephalus due to aqueductal stenosis, MIM# 307000; MASA syndrome, MIM# 303350; L1 syndrome, MONDO:0017140; Corpus callosum, partial agenesis of, MIM# 304100
Mendeliome v0.11902 L1CAM Zornitza Stark reviewed gene: L1CAM: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Hydrocephalus due to aqueductal stenosis, MIM# 307000, Corpus callosum, partial agenesis of, MIM# 304100; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.11880 NOG Zornitza Stark Phenotypes for gene: NOG were changed from to Brachydactyly, type B2 - MIM#611377; Multiple synostoses syndrome 1 (MIM#186500); Stapes ankylosis with broad thumbs and toes (MIM#184460); Symphalangism, proximal, 1A (MIM#185800); Tarsal-carpal coalition syndrome (MIM#186570)
Mendeliome v0.11864 L1CAM Alison Yeung Phenotypes for gene: L1CAM were changed from to Hydrocephalus due to aqueductal stenosis, MIM# 307000; MASA syndrome, MIM# 303350; L1 syndrome, MONDO:0017140
Mendeliome v0.11863 L1CAM Alison Yeung reviewed gene: L1CAM: Rating: GREEN; Mode of pathogenicity: None; Publications: 11438988, 7920660, 8401593, 19565280; Phenotypes: Hydrocephalus due to aqueductal stenosis, MIM# 307000, MASA syndrome, MIM# 303350; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes
Mendeliome v0.11860 NOG Krithika Murali reviewed gene: NOG: Rating: GREEN; Mode of pathogenicity: None; Publications: 11846737, 18440889, 12089654, 10080184, 15066478, 22088931, 17381491; Phenotypes: Brachydactyly, type B2 - MIM#611377, Multiple synostoses syndrome 1 (MIM#186500), Stapes ankylosis with broad thumbs and toes (MIM#184460), Symphalangism, proximal, 1A (MIM#185800), Tarsal-carpal coalition syndrome (MIM#186570); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.11819 NEXN Zornitza Stark Phenotypes for gene: NEXN were changed from to Lethal fetal cardiomyopathy; Hydrops fetalis; Cardiomyopathy, dilated 1CC - MIM#613122
Mendeliome v0.11792 NEXN Krithika Murali reviewed gene: NEXN: Rating: GREEN; Mode of pathogenicity: None; Publications: 33947203, 33949776, 35166435, 32058062; Phenotypes: Lethal fetal cardiomyopathy, Hydrops fetalis, Cardiomyopathy, dilated 1CC - MIM#613122; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.11777 SYNJ1 Zornitza Stark Phenotypes for gene: SYNJ1 were changed from to Developmental and epileptic encephalopathy 53, MIM# 617389; Parkinson disease 20, early-onset, MIM# 615530
Mendeliome v0.11774 SYNJ1 Zornitza Stark reviewed gene: SYNJ1: Rating: GREEN; Mode of pathogenicity: None; Publications: 32435303, 27435091, 23804563, 23804577, 27496670, 33841314; Phenotypes: Developmental and epileptic encephalopathy 53, MIM# 617389, Parkinson disease 20, early-onset, MIM# 615530; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11774 SZT2 Zornitza Stark Phenotypes for gene: SZT2 were changed from to Developmental and epileptic encephalopathy 18, OMIM #615476
Mendeliome v0.11771 SZT2 Zornitza Stark reviewed gene: SZT2: Rating: GREEN; Mode of pathogenicity: None; Publications: 23932106, 30560016, 30359774, 28556953, 32402703; Phenotypes: Developmental and epileptic encephalopathy 18, OMIM #615476; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11612 SLC6A9 Zornitza Stark Phenotypes for gene: SLC6A9 were changed from to Glycine encephalopathy with normal serum glycine, MIM# 617301
Mendeliome v0.11609 SLC6A9 Zornitza Stark reviewed gene: SLC6A9: Rating: GREEN; Mode of pathogenicity: None; Publications: 27481395, 27773429, 14622582, 33269555; Phenotypes: Glycine encephalopathy with normal serum glycine, MIM# 617301; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11540 NDUFAF4 Krithika Murali edited their review of gene: NDUFAF4: Added comment: 3 unrelated families reported with patient-specific functional evidence provided for each.

PMID: 32949790 - report two siblings with facial dysmorphism and lactic acidosis diagnosed neonatally with subsequent fatal early encephalopathy with apneic episodes, irritability, central hypoventilation, liver involvement and hyperammonemia. Cerebral white matter anomalies reported in one patient and cardiomyopathy in the other. WES identified homozygous nonsense NDUFAF4 variants with absent NDUFAF4 expression in patient fibroblasts. OXPHOS assembly studies demonstrated almost undetectable levels of fully assembled complex I and complex I–containing supercomplexes and an abnormal accumulation of SCIII2IV1 supercomplexes. Morphologically, fibroblasts showed rounder mitochondria and a diminished degree of branching of the mitochondrial network.

PMID: 28853723 - report one patient born at 38 weeks after IOL for IUGR. Presented age 7 months with developmental regression, growth failure and central hypotonia. Brain MRI revealed diffuse bilateral signal alterations in the basal ganglia and thalami and an EEG showed generalized slowing with multifocal spikes consistent with an epileptogenic focus. Homozygous missense NDUFAF4 variants identified. Lentiviral complementation of patient fibroblasts with wild-type NDUFAF4 rescued complex I deficiency and assembly defect

PMID 18179882 - report multiple affected individuals from one family. Most presented soon after birth with severe metabolic acidosis and high plasma lactate levels. Patients who survived longer were repeatedly admitted because of exacerbation of the acidosis during intercurrent infections. One long-term survivor had profound ID.; Changed publications: 32949790, 28853723, 18179882
Mendeliome v0.11540 UBA5 Zornitza Stark Phenotypes for gene: UBA5 were changed from to Spinocerebellar ataxia, autosomal recessive 24, MIM# 617133; Epileptic encephalopathy, early infantile, 44 617132; Hypomyelinating neuropathy
Mendeliome v0.11537 UBA5 Zornitza Stark edited their review of gene: UBA5: Changed rating: GREEN; Changed publications: 26872069, 27545681, 27545674, 32179706, 26872069; Changed phenotypes: Spinocerebellar ataxia, autosomal recessive 24, MIM# 617133, Epileptic encephalopathy, early infantile, 44 617132, Hypomyelinating neuropathy
Mendeliome v0.11442 TYROBP Zornitza Stark Phenotypes for gene: TYROBP were changed from to Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy 1, MIM# 221770
Mendeliome v0.11439 TYROBP Zornitza Stark reviewed gene: TYROBP: Rating: GREEN; Mode of pathogenicity: None; Publications: 10888890, 12370476, 27904822; Phenotypes: Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy 1, MIM# 221770; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11436 INSR Zornitza Stark Phenotypes for gene: INSR were changed from to Hyperinsulinemic hypoglycemia, familial, 5, MIM# 609968; Leprechaunism, MIM# 246200; Rabson-Mendenhall syndrome, MIM# 262190
Mendeliome v0.11433 INSR Zornitza Stark reviewed gene: INSR: Rating: GREEN; Mode of pathogenicity: None; Publications: 34965699; Phenotypes: Hyperinsulinemic hypoglycemia, familial, 5, MIM# 609968, Leprechaunism, MIM# 246200, Rabson-Mendenhall syndrome, MIM# 262190; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.11423 TYROBP Manny Jacobs reviewed gene: TYROBP: Rating: GREEN; Mode of pathogenicity: None; Publications: 27904822; Phenotypes: # 221770 POLYCYSTIC LIPOMEMBRANOUS OSTEODYSPLASIA WITH SCLEROSING LEUKOENCEPHALOPATHY 1; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11372 ITPA Zornitza Stark Phenotypes for gene: ITPA were changed from to Inosine triphosphatase deficiency MIM#613850; Developmental and epileptic encephalopathy 35 MIM#616647
Mendeliome v0.11370 ITPA Zornitza Stark reviewed gene: ITPA: Rating: GREEN; Mode of pathogenicity: None; Publications: 26224535, 19498443, 35234647, 35098521; Phenotypes: Developmental and epileptic encephalopathy 35, MIM# 616647; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11286 KIF5A Zornitza Stark edited their review of gene: KIF5A: Added comment: Neonatal intractable myoclonus is a severe neurologic disorder characterized by the onset of intractable myoclonic seizures soon after birth. Affected infants have intermittent apnea, abnormal eye movements, pallor of the optic nerve, and lack of developmental progress. Brain imaging shows a progressive leukoencephalopathy. At least 3 unrelated individuals with de novo LoF variants.

SPG10/CMT: variants are generally in the motor domain.; Changed publications: 30057544, 29892902, 28902413, 26403765, 25695920, 25008398, 27463701, 27414745; Changed phenotypes: Neuropathy, Spastic paraplegia 10, autosomal dominant, MIM# 604187, Myoclonus, intractable, neonatal, MIM# 617235
Mendeliome v0.11270 FBXO28 Zornitza Stark Phenotypes for gene: FBXO28 were changed from Developmental and epileptic encephalopathy to Developmental and epileptic encephalopathy 100, MIM# 619777
Mendeliome v0.11269 FBXO28 Zornitza Stark edited their review of gene: FBXO28: Changed phenotypes: Developmental and epileptic encephalopathy 100, MIM# 619777
Mendeliome v0.11189 EARS2 Bryony Thompson Phenotypes for gene: EARS2 were changed from to Leigh syndrome MONDO:0009723; Combined oxidative phosphorylation deficiency 12 MIM#614924; leukoencephalopathy-thalamus and brainstem anomalies-high lactate syndrome MONDO:0013971
Mendeliome v0.11186 EARS2 Bryony Thompson reviewed gene: EARS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 22492562, 23008233, 25854774, 26619324, 26893310, 27206875, 27571996, 27117034; Phenotypes: Leigh syndrome MONDO:0009723, Combined oxidative phosphorylation deficiency 12 MIM#614924, leukoencephalopathy-thalamus and brainstem anomalies-high lactate syndrome MONDO:0013971; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.11163 JAG1 Zornitza Stark changed review comment from: Two unrelated families reported with CMT type 2. Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Pre-existing rat model.
Sources: Literature; to: Association with Alagille is very well established.

Two unrelated families reported with CMT type 2. Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Pre-existing rat model.
Sources: Literature
Mendeliome v0.11145 ZNF335 Zornitza Stark Phenotypes for gene: ZNF335 were changed from to Microcephaly 10, primary, autosomal recessive (MIM#615095)
Mendeliome v0.11142 ZNF335 Zornitza Stark reviewed gene: ZNF335: Rating: GREEN; Mode of pathogenicity: None; Publications: 23178126, 27540107, 29652087; Phenotypes: Microcephaly 10, primary, autosomal recessive (MIM#615095); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11117 RRM2B Zornitza Stark Phenotypes for gene: RRM2B were changed from Mitochondrial DNA depletion syndrome 8A (encephalomyopathic type with renal tubulopathy) MIM#612075; Mitochondrial DNA depletion syndrome 8B (MNGIE type) MIM#612075 to Mitochondrial DNA depletion syndrome 8A (encephalomyopathic type with renal tubulopathy) MIM#612075; Mitochondrial DNA depletion syndrome 8B (MNGIE type) MIM#612075; Rod-cone dystrophy, sensorineural deafness, and Fanconi-type renal dysfunction, MIM# 268315
Mendeliome v0.11113 NSRP1 Zornitza Stark edited their review of gene: NSRP1: Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, NSRP1-related, Epilepsy, Cerebral palsy, microcephaly, Intellectual disability
Mendeliome v0.11110 RECQL Dean Phelan gene: RECQL was added
gene: RECQL was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RECQL was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RECQL were set to PMID: 35025765
Phenotypes for gene: RECQL were set to Photosensitivity; facial dysmorphism; xeropthalmia; skeletal abnormalities
Review for gene: RECQL was set to AMBER
Added comment: PMID: 35025765
- Homozygous missense variants identified in two seemingly unrelated families with a genome instability disorder. Both families had the same missense variant. Phenotype was progeroid facial features, skin photosensitivity, xeroderma, and slender elongated thumbs.
Sources: Literature
Mendeliome v0.11109 HIST1H4C Zornitza Stark Phenotypes for gene: HIST1H4C were changed from Growth delay, microcephaly and intellectual disability to Tessadori-van Haaften neurodevelopmental syndrome 1 MIM#619758
Mendeliome v0.11103 HIST1H4D Paul De Fazio gene: HIST1H4D was added
gene: HIST1H4D was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HIST1H4D was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HIST1H4D were set to 35202563
Phenotypes for gene: HIST1H4D were set to Neurodevelopmental disorder, HIST1H4D-related MONDO:0700092
Review for gene: HIST1H4D was set to AMBER
gene: HIST1H4D was marked as current diagnostic
Added comment: Single individual described with a de novo missense variant Arg41His (Arg40 in H4 nomenclature). Apart from language delay and moderate ID, phenotypes included facial dysmorphisms and cochlear abnormalities and arhinencephaly on MRI. Hearing was normal. Birth length, OFC, weight were all reduced (-2 to -2.5SD).
A zebrafish model has developmental defects.
Sources: Literature
Mendeliome v0.11099 CPSF3 Belinda Chong gene: CPSF3 was added
gene: CPSF3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CPSF3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CPSF3 were set to 35121750
Phenotypes for gene: CPSF3 were set to Intellectual disability syndrome
Review for gene: CPSF3 was set to GREEN
Added comment: study of a deficit of observed homozygous carriers of missense variants, versus an expected number in a set of 153,054 chip-genotyped Icelanders, to identify potentially pathogenic genotypes

Six homozygous carriers of missense variants in CPSF3 show severe intellectual disability, seizures, microcephaly, and abnormal muscle tone.

- Four identified through Icelandic geneology (p.Gly468Glu), three carrier couples total of four children who had died prematurely. Tested archival samples for two of these children, and confirm a homozygous genotype.
- Two of Mexican descent (p.Ile354Thr), first-degree cousins
Sources: Literature
Mendeliome v0.11095 NRCAM Ee Ming Wong gene: NRCAM was added
gene: NRCAM was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NRCAM was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NRCAM were set to PMID: 35108495
Phenotypes for gene: NRCAM were set to neurodevelopmental disorder, MONDO:0700092
Penetrance for gene: NRCAM were set to unknown
Review for gene: NRCAM was set to GREEN
gene: NRCAM was marked as current diagnostic
Added comment: -Ten individuals from 8 families with developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity.
- Affected individuals are biallelic for missense and/or LoF variants which are mainly in the fibronectin type III (Fn-III) domain
- Zebrafish mutants lacking the third Fn-III domain displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03) and a trend toward increased amounts of alpha-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections
Sources: Literature
Mendeliome v0.11092 CRLS1 Michelle Torres gene: CRLS1 was added
gene: CRLS1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CRLS1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CRLS1 were set to 35147173
Phenotypes for gene: CRLS1 were set to Mitochondrial disease MONDO:0044970 CRLS1-related
Added comment: - Three families (4 individuals) with cardiolipin deficiency.
- Two families (one consanguineous with 2 affected siblings) with homozygous the p.(Ile109Asn) had infantile progressive encephalopathy, bull’s eye maculopathy, auditory neuropathy, diabetes insipidus, autonomic instability, cardiac defects and early death.
- The fourth individual cHet p.(Ala172Asp) and p.(Leu217Phe) presented with chronic encephalopathy with neurodevelopmental regression, congenital nystagmus with decreased vision, sensorineural hearing loss, failure to thrive and acquired microcephaly.
- Functional studies on patient cells showed increased levels of the substrate of CRLS1 and impaired mitochondrial morphology and biogenesis
Sources: Literature
Mendeliome v0.11092 ZBTB7A Daniel Flanagan gene: ZBTB7A was added
gene: ZBTB7A was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: ZBTB7A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ZBTB7A were set to 34515416; 31645653
Phenotypes for gene: ZBTB7A were set to Macrocephaly, neurodevelopmental delay, lymphoid hyperplasia, and persistent fetal hemoglobin (MIM#619769)
Review for gene: ZBTB7A was set to GREEN
Added comment: PMID: 34515416. Monoallelic ZBTB7A variants identified in 12 individuals from 11 families, with macrocephaly (11/12), some degree of ID (12/12), autistic features (7/12) and hypertrophy of pharyngeal lymphoid tissue (12/12). Variants included LoF variants and missense, 8 variants were de novo.

PMID: 31645653. De novo ZBTB7A missense identified in a boy with macrocephaly, intellectual disability, and sleep apnea.
Sources: Expert list
Mendeliome v0.11090 HIST1H4J Elena Savva reviewed gene: HIST1H4J: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 35202563, 31804630; Phenotypes: Neurodevelopmental syndrome, microcephaly, intellectual disability, dysmorphic features; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.11086 PTCH1 Seb Lunke Phenotypes for gene: PTCH1 were changed from to Holoprosencephaly 7, MIM# 610828
Mendeliome v0.11083 PTCH1 Seb Lunke reviewed gene: PTCH1: Rating: GREEN; Mode of pathogenicity: None; Publications: 11941477, 17001668, 29575684; Phenotypes: Holoprosencephaly 7, MIM# 610828; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.11076 PPP2R3C Zornitza Stark gene: PPP2R3C was added
gene: PPP2R3C was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PPP2R3C was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PPP2R3C were set to 30893644; 34714774; 34750818
Phenotypes for gene: PPP2R3C were set to Gonadal dysgenesis, dysmorphic facies, retinal dystrophy, and myopathy, OMIM # 618419
Review for gene: PPP2R3C was set to GREEN
Added comment: Gonadal dysgenesis, dysmorphic facies, retinal dystrophy, and myopathy (GDRM) is characterized by 46,XY complete gonadal dysgenesis in association with extragonadal anomalies, low birth weight, typical facial gestalt, rod and cone dystrophy, sensorineural hearing loss, omphalocele, anal atresia, renal agenesis, skeletal abnormalities, dry and scaly skin, severe myopathy, and neuromotor delay. 11 unrelated families with syndromic complete gonadal dysgenesis. 9 families had 46,XY females with complete gonadal dysgenesis, but 2 families had 46,XX patients with hypergonadotropic hypogonadism, nonvisualized gonads, primary amenorrhea, and absence of secondary sexual characteristics. Variants segregated with disease in each family and were not found in ethnically matched controls or in public variant databases. The heterozygous fathers exhibited morphologic abnormalities of spermatozoa and reduced fertility.
Sources: Literature
Mendeliome v0.11074 CHKA Zornitza Stark Phenotypes for gene: CHKA were changed from Abnormal muscle tone; Global developmental delay; Intellectual disability; Seizures; Microcephaly; Abnormality of movement; Abnormality of nervous system morphology; Short stature to Neurodevelopmental disorder, MONDO:0700092; Abnormal muscle tone; Global developmental delay; Intellectual disability; Seizures; Microcephaly; Abnormality of movement; Abnormality of nervous system morphology; Short stature
Mendeliome v0.11071 CHKA Konstantinos Varvagiannis gene: CHKA was added
gene: CHKA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CHKA was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CHKA were set to 35202461
Phenotypes for gene: CHKA were set to Abnormal muscle tone; Global developmental delay; Intellectual disability; Seizures; Microcephaly; Abnormality of movement; Abnormality of nervous system morphology; Short stature
Penetrance for gene: CHKA were set to Complete
Review for gene: CHKA was set to GREEN
Added comment: Klöckner (2022 - PMID: 35202461) describe the phenotype of 6 individuals (from 5 unrelated families) harboring biallelic CHKA variants.

Shared features incl. abnormal muscle tone(6/6 - hypertonia or hypotonia, 3/6 each), DD/ID (6/6,severe in 4, severe/profound in 2), epilepsy (6/6 - onset: infancy - 3y2m | epileptic spasms or GS at onset), microcephaly (6/6), movement disorders (3/6 - incl. dyskinesia, rigidity, choreoatetotic movements). 2/5 individuals exhibited MRI abnormalities, notably hypomyelination. Short stature was observed in 4/6.

Eventual previous genetic testing was not discussed.

Exome sequencing (quattro ES for 2 sibs, trio ES for 1 individual, singleton for 3 probands) revealed biallelic CHKA variants in all affected individuals. Sanger sequencing was performed for confirmation and segregation studies.

Other variants (in suppl.) were not deemed to be causative for the neurodevelopmental phenotype.

3 different missense, 1 start-loss and 1 truncating variant were identified, namely (NM_0012772.2):
- c.421C>T/p.(Arg141Trp) [3 hmz subjects from 2 consanguineous families],
- c.580C>T/p.Pro194Ser [1 hmz individual born to consanguineous parents],
- c.2T>C/p.(Met1?) [1 hmz individual born to related parents],
- c.14dup/p.(Cys6Leufs*19) in trans with c.1021T>C/p.(Phe341Leu) in 1 individual.

CHKA encodes choline kinase alpha, an enzyme catalyzing the first step of phospholipid synthesis in the Kennedy pathway. The pathway is involved in de novo synthesis of glycerophospholipids, phosphatidylcholine and phosphatidylethanolamine being the most abundant in eukaryotic membranes.

CHKA with its paralog (CHKB) phosphorylates either choline or ethanolamine to phosphocholine or phosphoethanolamine respectively with conversion of ATP to ADP.

As the authors comment, biallelic pathogenic variants in CHKB cause a NDD with muscular dystrophy, hypotonia, ID, microcephaly and structural mitochondrial anomalies (MIM 602541). [Prominent mitochondrial patterning was observed in a single muscle biopsy available from an individual with biallelic CHKA variants].

Other disorders of the Kennedy pathway (due to biallelic PCYT2, SELENOI, PCYT1A variants) present with overlapping features incl. variable DD/ID (no-severe), microcephaly, seizures, visual impairment etc.

CHKA variants were either absent or observed once in gnomAD, affected highly conserved AAs with multiple in silico predictions in favor of a deleterious effect.

In silico modeling suggests structural effects for several of the missense variants (Arg141Trp, Pro194Ser presumably affect ADP binding, Phe341 lying close to the binding site of phosphocholine).

Each of the missense variants was expressed in yeast cells and W. Blot suggested expression at the expected molecular weight at comparative levels. The 3 aforementioned variants exhibited reduced catalytic activity (20%, 15%, 50% respectively).

NMD is thought to underly the deleterious effect of the frameshift one (not studied).

The start-loss variant is expected to result in significantly impaired expression and protein function as eventual utilization of the next possible start codon - occurring at position 123 - would remove 26% of the protein.

Chka(-/-) is embryonically lethal in mice, suggesting that complete loss is not compatible with life. Reduction of choline kinase activity by 30% in heterozygous mice did not appear to result in behavioral abnormalities although this was not studied in detail (PMID cited: 18029352). Finally, screening of 1566 mouse lines identified 198 genes whose disruption yields neuroanatomical phenotypes, Chka(+/-) mice being among these (PMID cited: 31371714).

There is no associated phenotype in OMIM, Gene2Phenotype or SysID.

Overall this gene can be considered for inclusion in the ID and epilepsy panes with green or amber rating (>3 individuals, >3 variants, variant studies, overlapping phenotype of disorders belonging to the same pathway, etc). Consider also inclusion in the microcephaly panel (where available this seemed to be of postnatal onset).
Sources: Literature
Mendeliome v0.11056 TBC1D24 Zornitza Stark Phenotypes for gene: TBC1D24 were changed from to Deafness, autosomal dominant 65 MIM#616044; Deafness, autosomal recessive 86 MIM#614617; Developmental and epileptic encephalopathy 16 MIM#615338; DOORS syndrome MIM#220500; Epilepsy, rolandic, with proxysmal exercise-induce dystonia and writer's cramp MIM#608105; Myoclonic epilepsy, infantile, familial MIM#605021
Mendeliome v0.11053 SUCLG1 Zornitza Stark Phenotypes for gene: SUCLG1 were changed from to Mitochondrial DNA depletion syndrome 9 (encephalomyopathic type with methylmalonic aciduria) MIM#245400
Mendeliome v0.11047 RRM2B Zornitza Stark Phenotypes for gene: RRM2B were changed from to Mitochondrial DNA depletion syndrome 8A (encephalomyopathic type with renal tubulopathy) MIM#612075; Mitochondrial DNA depletion syndrome 8B (MNGIE type) MIM#612075
Mendeliome v0.11044 RNASET2 Zornitza Stark Phenotypes for gene: RNASET2 were changed from to Leukoencephalopathy, cystic, without megalencephaly MIM#612951
Mendeliome v0.11011 TBC1D24 Ain Roesley reviewed gene: TBC1D24: Rating: GREEN; Mode of pathogenicity: None; Publications: 25719194; Phenotypes: Deafness, autosomal dominant 65 MIM#616044, Deafness, autosomal recessive 86 MIM#614617, Developmental and epileptic encephalopathy 16 MIM#615338, DOORS syndrome MIM#220500, Epilepsy, rolandic, with proxysmal exercise-induce dystonia and writer's cramp MIM#608105, Myoclonic epilepsy, infantile, familial MIM#605021; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.11011 SUCLG1 Ain Roesley reviewed gene: SUCLG1: Rating: GREEN; Mode of pathogenicity: None; Publications: 33230783, 28358460; Phenotypes: Mitochondrial DNA depletion syndrome 9 (encephalomyopathic type with methylmalonic aciduria) MIM#245400; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.11011 RRM2B Ain Roesley reviewed gene: RRM2B: Rating: GREEN; Mode of pathogenicity: None; Publications: 24741716; Phenotypes: Mitochondrial DNA depletion syndrome 8A (encephalomyopathic type with renal tubulopathy) MIM#612075, Mitochondrial DNA depletion syndrome 8B (MNGIE type) MIM#612075; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.11011 RNASET2 Ain Roesley reviewed gene: RNASET2: Rating: GREEN; Mode of pathogenicity: None; Publications: 31349848, 19525954, 27091087, 29336640, 18545798, 15851732; Phenotypes: Leukoencephalopathy, cystic, without megalencephaly MIM#612951; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.10999 RIN2 Zornitza Stark Phenotypes for gene: RIN2 were changed from to Macrocephaly, alopecia, cutis laxa, and scoliosis, MIM#613075
Mendeliome v0.10996 RIN2 Zornitza Stark reviewed gene: RIN2: Rating: GREEN; Mode of pathogenicity: None; Publications: 19631308, 20424861, 20954239, 24449201, 30769224; Phenotypes: Macrocephaly, alopecia, cutis laxa, and scoliosis, MIM#613075; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10938 THUMPD1 Chern Lim changed review comment from: Broly, M. et al. (2022), AJHG:
- 13 individuals from 8 families, loss of function variants (PTVs, one missense, one single AA del).
- Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism and ophthalmological abnormalities.
Sources: Other; to: Broly, M. et al. (2022), AJHG:
- 13 individuals from 8 families, biallelic loss of function variants (PTVs, one missense, one single AA del).
- Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism and ophthalmological abnormalities.
Sources: Other
Mendeliome v0.10938 THUMPD1 Chern Lim changed review comment from: Broly, M. et al. (2022):
- 13 individuals from 8 families, loss of function variants (PTVs, one missense, one single AA del).
- Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism and ophthalmological abnormalities.
Sources: Other; to: Broly, M. et al. (2022), AJHG:
- 13 individuals from 8 families, loss of function variants (PTVs, one missense, one single AA del).
- Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism and ophthalmological abnormalities.
Sources: Other
Mendeliome v0.10938 THUMPD1 Chern Lim changed review comment from: Broly, M. et al. (2022) manuscript accepted in AJHG:
- 13 individuals from 8 families, loss of function variants (PTVs, one missense, one single AA del).
- Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism and ophthalmological abnormalities.
Sources: Other; to: Broly, M. et al. (2022):
- 13 individuals from 8 families, loss of function variants (PTVs, one missense, one single AA del).
- Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism and ophthalmological abnormalities.
Sources: Other
Mendeliome v0.10938 THUMPD1 Chern Lim gene: THUMPD1 was added
gene: THUMPD1 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: THUMPD1 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: THUMPD1 were set to Syndromic form of intellectual disability associated with developmental delay, behavioral abnormalities, hearing loss and facial dysmorphism, AR
Review for gene: THUMPD1 was set to GREEN
gene: THUMPD1 was marked as current diagnostic
Added comment: Broly, M. et al. (2022) manuscript accepted in AJHG:
- 13 individuals from 8 families, loss of function variants (PTVs, one missense, one single AA del).
- Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism and ophthalmological abnormalities.
Sources: Other
Mendeliome v0.10932 PPP3CA Zornitza Stark Phenotypes for gene: PPP3CA were changed from to Developmental and epileptic encephalopathy 91, MIM#617711; Arthrogryposis, cleft palate, craniosynostosis and impaired intellectual development, MIM#618265
Mendeliome v0.10923 PPP3CA Chern Lim changed review comment from: PMID: 29432562:
- Overexpression studies using yeast showed missense variants in the autoinhibitory domain resulted in gain of function, missense variants in the catalytic domain resulted in loss of function (however dom-neg has not been ruled out).
- Loss-of-function and gain-of-function mutations of PPP3CA lead to early onset epileptic encephalopathy and multiple congenital abnormalities, respectively.

PMID: 32593294:
- Reported a patient with PTV in the C-term predicted to escape NMD, clinical features consistent with MIM#617711.
- Summarised that missense variants in catalytic domain and those upstream of autoinhibitory domain, PTVs in C-term predicted to escape NMD: LoF, MIM#617711. Missense in autoinhibitory domain: GoF, MIM#618265.; to: PMID: 29432562:
- Overexpression studies using yeast showed missense variants in the autoinhibitory domain resulted in gain of function, missense variants in the catalytic domain resulted in loss of function (however dom-neg has not been ruled out).
- Loss-of-function and gain-of-function mutations of PPP3CA lead to early onset epileptic encephalopathy and multiple congenital abnormalities, respectively.

PMID: 32593294:
- Reported a patient with PTV in the C-term predicted to escape NMD, clinical features consistent with MIM#617711.
- 15 variants have been reported. Summarised that missense variants in catalytic domain and those upstream of autoinhibitory domain, PTVs in C-term predicted to escape NMD: LoF, MIM#617711; missense in autoinhibitory domain: GoF, MIM#618265.
Mendeliome v0.10923 PPP3CA Chern Lim reviewed gene: PPP3CA: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 29432562, 32593294; Phenotypes: Developmental and epileptic encephalopathy 91, MIM#617711, Arthrogryposis, cleft palate, craniosynostosis and impaired intellectual development, MIM#618265; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.10870 HMGB1 Zornitza Stark Phenotypes for gene: HMGB1 were changed from Mirror image foot polydactyly; Developmental delay and microcephaly, no OMIM # to Mirror image foot polydactyly; Neurodevelopmental disorder MONDO:0700092, HMGB1-related
Mendeliome v0.10844 BAP1 Anna Ritchie changed review comment from: 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic neurodevelopmental disorder. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. All affected individuals harboring a de novo BAP1 variant had DD or ID (11/11) characterized notably by speech (11/ 11) and motor delay (6/11). Most of them had hypotonia (7/11), seizures (6/11), and abnormal behavior (8/10), including autism spectrum disorder, attention deficit hyperactivity disorder, and hypersensitivity. Almost all individuals showed dysmorphic facial features (10/11), and more than half (6/11) had skeletal mal- formations (involving the hands [4/11], feet [3/11], or spine [2/11],). Most of the individuals had growth failure (9/11), including four individuals with a very short stature.
Sources: Literature; to: 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic neurodevelopmental disorder. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. All affected individuals harboring a de novo BAP1 variant had DD or ID (11/11) characterized notably by speech (11/ 11) and motor delay (6/11). Most of them had hypotonia (7/11), seizures (6/11), and abnormal behavior (8/10), including autism spectrum disorder, attention deficit hyperactivity disorder, and hypersensitivity. Almost all individuals showed dysmorphic facial features (10/11), and more than half (6/11) had skeletal malformations (involving the hands [4/11], feet [3/11], or spine [2/11]). Most of the individuals had growth failure (9/11), including four individuals with a very short stature.
Sources: Literature
Mendeliome v0.10844 BAP1 Anna Ritchie changed review comment from: 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic neurodevelopmental disorder. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. Patients phenotypes also included developmental delay, speech and motor delay, seizures, hypotonia, abnormal behaviour, autism, attention deficit hyperactivity disorder, and hypersensitivity.
Sources: Literature; to: 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic neurodevelopmental disorder. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. All affected individuals harboring a de novo BAP1 variant had DD or ID (11/11) characterized notably by speech (11/ 11) and motor delay (6/11). Most of them had hypotonia (7/11), seizures (6/11), and abnormal behavior (8/10), including autism spectrum disorder, attention deficit hyperactivity disorder, and hypersensitivity. Almost all individuals showed dysmorphic facial features (10/11), and more than half (6/11) had skeletal mal- formations (involving the hands [4/11], feet [3/11], or spine [2/11],). Most of the individuals had growth failure (9/11), including four individuals with a very short stature.
Sources: Literature
Mendeliome v0.10843 TMEM53 Zornitza Stark Phenotypes for gene: TMEM53 were changed from Sclerosing bone disorder, macrocephaly, impaired vision, short stature to Primary bone dysplasia MONDO:0018230, TMEM53-related; Sclerosing bone disorder, macrocephaly, impaired vision, short stature
Mendeliome v0.10840 SLC38A3 Zornitza Stark Phenotypes for gene: SLC38A3 were changed from developmental epileptic encephalopathy, SLC38A3-related MONDO:0100062 to Developmental epileptic encephalopathy MONDO:0100062, SLC38A3-related
Mendeliome v0.10836 SLC38A3 Ain Roesley changed review comment from: 7 families 6 of whom are consanguineous but unique variants in all of them

Acquired microcephaly noted (8/10 with <-2 SD, 5/10 <-3 SD)

10/10 with axial hopotonia, absent speech, GDD/ID
9/10 with visual impairment
8/10 with seizures
8/10 with peripheral hypertonia
Sources: Literature; to: 7 families 6 of whom are consanguineous but unique variants in all of them

Acquired microcephaly noted (8/10 with >-2 SD, 5/10 >-3 SD)

10/10 with axial hopotonia, absent speech, GDD/ID
9/10 with visual impairment
8/10 with seizures
8/10 with peripheral hypertonia
Sources: Literature
Mendeliome v0.10836 TMEM53 Lucy Spencer gene: TMEM53 was added
gene: TMEM53 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TMEM53 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMEM53 were set to PMID: 33824347
Phenotypes for gene: TMEM53 were set to Sclerosing bone disorder, macrocephaly, impaired vision, short stature
Review for gene: TMEM53 was set to GREEN
Added comment: PMID: 33824347- Previously unknown type of sclerosing bone disorder in 4 independent families, bi-allelic LOF variants in TMEM53. 5 individuals from 4 families, all have proportional or short limbed stature, not identifiable at birth. Head deformities (macrocephaly, dolichocephaly, prominent forehead), epicanthic folds, thick vermilion of upper and lower lips. Vision diminished after early childhood due to optic nerve compression.

3 of 4 families confirmed consanguineous, and all affected members from all 4 families have homozygous variants inherited from heterozygous parents. 3 families have the same splicing variant proven to cause exon 2 skipping and an NMD frameshift by RT-PCR. The other family has a an NMD frameshift variant. So 4 families but only 2 variants.
Sources: Literature
Mendeliome v0.10836 SLC38A3 Ain Roesley gene: SLC38A3 was added
gene: SLC38A3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC38A3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC38A3 were set to 34605855
Phenotypes for gene: SLC38A3 were set to developmental epileptic encephalopathy, SLC38A3-related MONDO:0100062
Review for gene: SLC38A3 was set to GREEN
gene: SLC38A3 was marked as current diagnostic
Added comment: 7 families 6 of whom are consanguineous but unique variants in all of them

Acquired microcephaly noted (8/10 with <-2 SD, 5/10 <-3 SD)

10/10 with axial hopotonia, absent speech, GDD/ID
9/10 with visual impairment
8/10 with seizures
8/10 with peripheral hypertonia
Sources: Literature
Mendeliome v0.10836 FZR1 Alison Yeung gene: FZR1 was added
gene: FZR1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FZR1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FZR1 were set to 34788397
Phenotypes for gene: FZR1 were set to Developmental and epileptic encephalopathy, FZR1-related, MONDO:0100062
Review for gene: FZR1 was set to GREEN
Added comment: >3 unrelated individuals reported with de novo missense variants. Functional studies in Drosophila demonstrate missense variants cause LOF.
Sources: Literature
Mendeliome v0.10835 MAN2C1 Michelle Torres gene: MAN2C1 was added
gene: MAN2C1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MAN2C1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MAN2C1 were set to 35045343
Phenotypes for gene: MAN2C1 were set to neurodevelopmental disorder MONDO:0700092 MAN2C1-related
Review for gene: MAN2C1 was set to GREEN
Added comment: Six individuals from four different families, including two fetuses, exhibiting dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Variants include PTC and missense.
Sources: Literature
Mendeliome v0.10835 FRA10AC1 Zornitza Stark edited their review of gene: FRA10AC1: Added comment: PMID 34694367: 5 individuals from 3 unrelated families reported.

Variable ID, possibly related to variant type with LoF variants associated with more severe ID. All individuals had microcephaly, hypoplasia or agenesis of the corpus callosum, growth retardation, and craniofacial dysmorphism.; Changed rating: GREEN; Changed publications: 15203205, 34694367; Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, FRA10AC1-related; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10823 PLCB1 Zornitza Stark Phenotypes for gene: PLCB1 were changed from to Epileptic encephalopathy, early infantile, 12 (MIM#613722)
Mendeliome v0.10820 PLCB1 Zornitza Stark reviewed gene: PLCB1: Rating: GREEN; Mode of pathogenicity: None; Publications: 24684524, 20833646, 22690784, 26818157; Phenotypes: Epileptic encephalopathy, early infantile, 12 (MIM#613722); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10820 PLAA Zornitza Stark Phenotypes for gene: PLAA were changed from to Neurodevelopmental disorder with progressive microcephaly, spasticity, and brain anomalies, MIM# 617527
Mendeliome v0.10817 PLAA Zornitza Stark reviewed gene: PLAA: Rating: GREEN; Mode of pathogenicity: None; Publications: 28007986, 28413018, 31322726; Phenotypes: Neurodevelopmental disorder with progressive microcephaly, spasticity, and brain anomalies, MIM# 617527; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10813 NAA20 Zornitza Stark Phenotypes for gene: NAA20 were changed from Intellectual disability; Microcephaly; Neurodevelopmental disorder MONDO:0700092 to Intellectual developmental disorder, autosomal recessive 73, MIM# 619717
Mendeliome v0.10796 KIF26B Zornitza Stark gene: KIF26B was added
gene: KIF26B was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: KIF26B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KIF26B were set to 30151950
Phenotypes for gene: KIF26B were set to Progressive microcephaly, pontocerebellar hypoplasia, and arthrogryposis
Review for gene: KIF26B was set to RED
Added comment: 1 report only of infant with progressive microcephaly, pontocerebellar hypoplasia, and arthrogryposis secondary to the involvement of anterior horn cells and ventral (motor) nerves. Whole exome sequencing on the trio identified a de novo KIF26B missense variant (p.Gly546Ser). Functional analysis of the variant protein in cultured cells revealed a reduction in the KIF26B protein's ability to promote cell adhesion, a defect that potentially contributes to its pathogenicity.
Sources: Expert Review
Mendeliome v0.10780 NCAPD3 Zornitza Stark Phenotypes for gene: NCAPD3 were changed from to Microcephaly 22, primary, autosomal recessive, MIM# 617984
Mendeliome v0.10776 NCAPD3 Zornitza Stark reviewed gene: NCAPD3: Rating: AMBER; Mode of pathogenicity: None; Publications: 27737959; Phenotypes: Microcephaly 22, primary, autosomal recessive, MIM# 617984; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10708 MDH2 Zornitza Stark Phenotypes for gene: MDH2 were changed from to Developmental and epileptic encephalopathy 51 MIM#617339
Mendeliome v0.10705 FOXH1 Zornitza Stark Phenotypes for gene: FOXH1 were changed from to Congenital heart disease; holoprosencephaly
Mendeliome v0.10680 OTUD6B Zornitza Stark changed review comment from: IDDFSDA is a severe multisystem disorder characterized by global developmental delay, microcephaly, absent speech, hypotonia, growth retardation with prenatal onset, feeding difficulties, structural brain abnormalities, congenital malformations including congenital heart disease, and musculoskeletal features. In 2017, 12 patients from 6 unrelated families with IDDFSDA identified with 4 homozygous mutations in the OTUD6B gene (WES and Sanger, and segregated with the disorder in the families). Other cases reported since. Suitable for fetal anomalies panel.; to: IDDFSDA is a severe multisystem disorder characterized by global developmental delay, microcephaly, absent speech, hypotonia, growth retardation with prenatal onset, feeding difficulties, structural brain abnormalities, congenital malformations including congenital heart disease, and musculoskeletal features. In 2017, 12 patients from 6 unrelated families with IDDFSDA identified with 4 homozygous mutations in the OTUD6B gene (WES and Sanger, and segregated with the disorder in the families). Other cases reported since.
Mendeliome v0.10656 STRADA Zornitza Stark Phenotypes for gene: STRADA were changed from to Polyhydramnios, megalencephaly, and symptomatic epilepsy, OMIM:611087; Polyhydramnios, megalencephaly, and symptomatic epilepsy, MONDO:0012611
Mendeliome v0.10653 STRADA Zornitza Stark reviewed gene: STRADA: Rating: GREEN; Mode of pathogenicity: None; Publications: 17522105, 27170158, 28688840; Phenotypes: Polyhydramnios, megalencephaly, and symptomatic epilepsy, OMIM:611087, Polyhydramnios, megalencephaly, and symptomatic epilepsy, MONDO:0012611; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10640 FOXH1 Krithika Murali reviewed gene: FOXH1: Rating: AMBER; Mode of pathogenicity: None; Publications: 18538293, 19933292, 32003456, 12094232, 16304598; Phenotypes: Congenital heart disease, holoprosencephaly; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.10640 MDH2 Ain Roesley reviewed gene: MDH2: Rating: GREEN; Mode of pathogenicity: None; Publications: 34766628, 27989324; Phenotypes: Developmental and epileptic encephalopathy 51 MIM#617339; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.10640 LMBRD2 Zornitza Stark Phenotypes for gene: LMBRD2 were changed from Global developmental delay; Intellectual disability; Microcephaly; Seizures; Abnormality of nervous system morphology; Abnormality of the eye to Developmental delay with variable neurologic and brain abnormalities, MIM# 619694; Global developmental delay; Intellectual disability; Microcephaly; Seizures; Abnormality of nervous system morphology; Abnormality of the eye
Mendeliome v0.10639 LMBRD2 Zornitza Stark edited their review of gene: LMBRD2: Changed phenotypes: Developmental delay with variable neurologic and brain abnormalities, MIM# 619694, Global developmental delay, Intellectual disability, Microcephaly, Seizures, Abnormality of nervous system morphology, Abnormality of the eye
Mendeliome v0.10637 ANAPC7 Zornitza Stark gene: ANAPC7 was added
gene: ANAPC7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ANAPC7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ANAPC7 were set to 34942119
Phenotypes for gene: ANAPC7 were set to Ferguson-Bonni neurodevelopmental syndrome, MIM# 619699
Review for gene: ANAPC7 was set to AMBER
Added comment: 11 individuals of Amish heritage reported homozygous for an intragenic deletion. Clinical features included ID, hypotonia, deafness in 5, relatively small head size (but microcephaly only in 1), and occasional congenital anomalies.

Supportive mouse model.

Amber rating in light of this being a founder variant.
Sources: Literature
Mendeliome v0.10633 DISP1 Zornitza Stark Phenotypes for gene: DISP1 were changed from Holoprosencephaly to Holoprosencephaly, MONDO:0016296
Mendeliome v0.10601 NSD2 Zornitza Stark Phenotypes for gene: NSD2 were changed from Microcephaly; intellectual disability to Rauch-Steindl syndrome, MIM# 619695; Microcephaly; intellectual disability
Mendeliome v0.10600 NSD2 Zornitza Stark edited their review of gene: NSD2: Changed phenotypes: Rauch-Steindl syndrome, MIM# 619695, Microcephaly, intellectual disability
Mendeliome v0.10590 KCNT1 Zornitza Stark Phenotypes for gene: KCNT1 were changed from to Epilepsy, nocturnal frontal lobe, 5, MIM# 615005; Epileptic encephalopathy, early infantile, 14, MIM# 614959
Mendeliome v0.10587 KCNT1 Zornitza Stark reviewed gene: KCNT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 23086397, 23086396, 31872048, 31532509; Phenotypes: Epilepsy, nocturnal frontal lobe, 5, MIM# 615005, Epileptic encephalopathy, early infantile, 14, MIM# 614959; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.10584 NAA10 Zornitza Stark Phenotypes for gene: NAA10 were changed from Microphthalmia, syndromic 1 309800 to Microphthalmia, syndromic 1, MIM# 309800; Ogden syndrome MIM#300855
Mendeliome v0.10576 AARS Zornitza Stark Phenotypes for gene: AARS were changed from Epileptic encephalopathy, early infantile, 29, MIM# 616339; Charcot-Marie-Tooth disease, axonal, type 2N, MIM# 613287; trichothiodystrophy, MONDO:0018053; Leukoencephalopathy, hereditary diffuse, with spheroids 2, MIM# 619661 to Epileptic encephalopathy, early infantile, 29, MIM# 616339; Charcot-Marie-Tooth disease, axonal, type 2N, MIM# 613287; Spastic paraplegia 85, autosomal recessive, MIM# 619686; Ataxia, sensory, 1, autosomal dominant, MIM# 608984; Leukoencephalopathy, hereditary diffuse, with spheroids 2, MIM# 619661
Mendeliome v0.10573 VPS50 Zornitza Stark Phenotypes for gene: VPS50 were changed from Neonatal cholestatic liver disease; Failure to thrive; Profound global developmental delay; Postnatal microcephaly; Seizures; Abnormality of the corpus callosum to Neurodevelopmental disorder with microcephaly, seizures, and neonatal cholestasis , MIM#619685; Neonatal cholestatic liver disease; Failure to thrive; Profound global developmental delay; Postnatal microcephaly; Seizures; Abnormality of the corpus callosum
Mendeliome v0.10572 VPS50 Zornitza Stark edited their review of gene: VPS50: Changed phenotypes: Neurodevelopmental disorder with microcephaly, seizures, and neonatal cholestasis , MIM#619685, Neonatal cholestatic liver disease, Failure to thrive, Profound global developmental delay, Postnatal microcephaly, Seizures, Abnormality of the corpus callosum
Mendeliome v0.10572 AARS Zornitza Stark Phenotypes for gene: AARS were changed from Epileptic encephalopathy, early infantile, 29, MIM# 616339; Charcot-Marie-Tooth disease, axonal, type 2N, MIM# 613287; trichothiodystrophy, MONDO:0018053 to Epileptic encephalopathy, early infantile, 29, MIM# 616339; Charcot-Marie-Tooth disease, axonal, type 2N, MIM# 613287; trichothiodystrophy, MONDO:0018053; Leukoencephalopathy, hereditary diffuse, with spheroids 2, MIM# 619661
Mendeliome v0.10570 AARS Zornitza Stark edited their review of gene: AARS: Added comment: PMID 31775912: single multigenerational family with leukoencephalopathy segregating AARS1 variant.; Changed publications: 28493438, 25817015, 20045102, 22009580, 22206013, 30373780, 26032230, 31775912; Changed phenotypes: Epileptic encephalopathy, early infantile, 29, MIM# 616339, Charcot-Marie-Tooth disease, axonal, type 2N, MIM# 613287, Leukoencephalopathy, hereditary diffuse, with spheroids 2, MIM# 619661
Mendeliome v0.10564 PRDM13 Zornitza Stark Added comment: Comment when marking as ready: Bi-allelic variants: Recessive disease causing ID and DSD described in three reportedly unrelated families (2 consanguineous), but all are from Malta, and all share the same 13bp deletion spanning an exon-intron boundary. Mouse KO is embryonically lethal, and tissue specific KO failed to replicate many of the patients phenotypes, other than hypoplasia of the cerebellar vermis and hemispheres at P21.
Mendeliome v0.10561 CCND2 Alison Yeung Phenotypes for gene: CCND2 were changed from to Neurodevelopmental disorder, CCND2-related MONDO: 0700092; Microcephaly, MONDO: 0001149; Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome 3, MIM# 615938
Mendeliome v0.10556 NAA10 Ain Roesley edited their review of gene: NAA10: Added comment: For Ogden association:
lethal X-linked. 9 males from 3 families with recurrent Ser37Pro
All presenting the distinctive and recognizable phenotype, which includes mostly postnatal growth retardation, global severe developmental delay, characteristic craniofacial features, and structural cardiac anomalies and/or arrhythmias

For non-lethal syndromic ID:
reported in 10 males and (mostly de novo) in 37 females
variants causing this are missense located along the protein and 1 truncating

For syndromic microopththamia: variants are in the UTR; Changed mode of inheritance: Other
Mendeliome v0.10552 CCND2 Alison Yeung reviewed gene: CCND2: Rating: GREEN; Mode of pathogenicity: None; Publications: 34087052; Phenotypes: Neurodevelopmental disorder, CCND2-related MONDO# 0700092, Microcephaly, MONDO# 0001149; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.10552 GNAO1 Zornitza Stark Phenotypes for gene: GNAO1 were changed from Epileptic encephalopathy, early infantile, 17; Neurodevelopmental disorder with involuntary movements to Epileptic encephalopathy, early infantile, 17, MIM#615473; Neurodevelopmental disorder with involuntary movements, MIM# 617493
Mendeliome v0.10550 PAK2 Arina Puzriakova gene: PAK2 was added
gene: PAK2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PAK2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PAK2 were set to 33693784
Phenotypes for gene: PAK2 were set to Knobloch 2 syndrome
Review for gene: PAK2 was set to RED
Added comment: Antonarakis et al., 2021 (PMID: 33693784) reported two affected siblings from a non-consanguineous New Zealand family. Both had retinal detachment and interstitial parenchymal pulmonary changes on chest X-rays, but only one child had additional significant features such as cataract, posterior encephalocele, severe DD/ID with ASD, and epilepsy. WES revealed a heterozygous PAK2 variant (c.1303 G>A, p.Glu435Lys) in both individuals that apparently occurred de novo indicating parental germ-line mosaicism; however, mosaicism could not be detected by deep sequencing of blood parental DNA. Functional studies showed that the variant, located in the kinase domain, results in a partial loss of the kinase activity.
Sources: Literature
Mendeliome v0.10510 NAA20 Zornitza Stark gene: NAA20 was added
gene: NAA20 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NAA20 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NAA20 were set to 34230638
Phenotypes for gene: NAA20 were set to Intellectual disability; Microcephaly; Neurodevelopmental disorder MONDO:0700092
Review for gene: NAA20 was set to GREEN
Added comment: 2 consanguineous families with 5 affected individuals with developmental delay, intellectual disability, and microcephaly (-2-4SD). Exome and genome sequencing identified 2 different homozygous variants in NAA20 gene (p.Met54Val and p.Ala80Val), and segregated with affected individuals. N-terminal acetyltransferases modify proteins by adding an acetyl moiety to the first amino acid and are vital for protein and cell function. The NatB complex acetylates 20% of the human proteome and is composed of the catalytic subunit NAA20 and the auxiliary subunit NAA25. Both NAA20-M54V and NAA20-A80V were impaired in their capacity to form a NatB complex with NAA25, and in vitro acetylation assays revealed reduced catalytic activities toward different NatB substrates.
Sources: Literature
Mendeliome v0.10483 FREM1 Zornitza Stark Phenotypes for gene: FREM1 were changed from to Manitoba oculotrichoanal syndrome 248450; Bifid nose with or without anorectal and renal anomalies, MIM# 608980; Trigonocephaly 2, MIM# 614485
Mendeliome v0.10480 FREM1 Zornitza Stark reviewed gene: FREM1: Rating: GREEN; Mode of pathogenicity: None; Publications: 32016392, 21931569, 21507892, 19732862, 20301721, 28111185; Phenotypes: Manitoba oculotrichoanal syndrome 248450, Bifid nose with or without anorectal and renal anomalies, MIM# 608980, Trigonocephaly 2, MIM# 614485; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.10448 GPKOW Ain Roesley gene: GPKOW was added
gene: GPKOW was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GPKOW was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: GPKOW were set to 28612833
Phenotypes for gene: GPKOW were set to male-lethal microcephaly with intrauterine growth restriction
Penetrance for gene: GPKOW were set to unknown
Review for gene: GPKOW was set to RED
gene: GPKOW was marked as current diagnostic
Added comment: - multi-generational family with 5 deceased males (only 1 genotyped)
- X-exome sequencing identified NM_015698.4:c.331+5G>A, which segregated through the obligate carriers
- RNA from female carriers confirmed splicing defects, which leads to NMD

no additional reports since
Sources: Literature
Mendeliome v0.10404 BRWD3 Zornitza Stark changed review comment from: More than 10 unrelated families reported, overgrowth, and in particular macrocephaly.; to: More than 10 unrelated families reported with ID, overgrowth, and in particular macrocephaly.
Mendeliome v0.10404 BRWD3 Zornitza Stark changed review comment from: More than 10 unrelated families reported, overgrowth, and in particular macrocephaly reported.; to: More than 10 unrelated families reported, overgrowth, and in particular macrocephaly.
Mendeliome v0.10352 FLVCR2 Zornitza Stark Phenotypes for gene: FLVCR2 were changed from to Proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome, MIM# 225790
Mendeliome v0.10349 FLVCR2 Zornitza Stark reviewed gene: FLVCR2: Rating: GREEN; Mode of pathogenicity: None; Publications: 30712878, 20206334, 20518025, 20690116, 25677735; Phenotypes: Proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome, MIM# 225790; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10298 CTU2 Zornitza Stark Phenotypes for gene: CTU2 were changed from to Microcephaly, facial dysmorphism, renal agenesis, and ambiguous genitalia syndrome, MIM#618142
Mendeliome v0.10295 CTU2 Zornitza Stark reviewed gene: CTU2: Rating: GREEN; Mode of pathogenicity: None; Publications: 27480277, 26633546, 31301155; Phenotypes: Microcephaly, facial dysmorphism, renal agenesis, and ambiguous genitalia syndrome, MIM#618142; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10227 FBXL4 Zornitza Stark Phenotypes for gene: FBXL4 were changed from to Mitochondrial DNA depletion syndrome 13 (encephalomyopathic type) MIM#615471
Mendeliome v0.10219 FREM2 Zornitza Stark Phenotypes for gene: FREM2 were changed from to Cryptophthalmos, unilateral or bilateral, isolated MIM#123570; Fraser syndrome 2 MIM#617666
Mendeliome v0.10207 FBXL4 Ain Roesley reviewed gene: FBXL4: Rating: GREEN; Mode of pathogenicity: None; Publications: 28940506; Phenotypes: Mitochondrial DNA depletion syndrome 13 (encephalomyopathic type) MIM#615471; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.10206 FREM2 Ain Roesley reviewed gene: FREM2: Rating: GREEN; Mode of pathogenicity: None; Publications: 15838507, 18203166, 29688405, 33082983; Phenotypes: Cryptophthalmos, unilateral or bilateral, isolated MIM#123570, Fraser syndrome 2 MIM#617666; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.10204 EIF2B2 Zornitza Stark Phenotypes for gene: EIF2B2 were changed from to Leukoencephalopathy with vanishing white matter, MIM#603896; Ovarioleukodystrophy, MIM# 603896
Mendeliome v0.10201 EIF2B2 Zornitza Stark reviewed gene: EIF2B2: Rating: GREEN; Mode of pathogenicity: None; Publications: 21484434, 14566705, 28041799, 30266093, 28597716; Phenotypes: Leukoencephalopathy with vanishing white matter, MIM#603896, Ovarioleukodystrophy, MIM# 603896; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10153 DNMT3A Zornitza Stark Phenotypes for gene: DNMT3A were changed from Tatton-Brown-Rahman syndrome, OMIM# 615879; primordial dwarfism with intellectual disability and microcephaly to Tatton-Brown-Rahman syndrome, MIM# 615879; Heyn-Sproul-Jackson syndrome, MIM# 618724
Mendeliome v0.10148 NFIX Zornitza Stark Phenotypes for gene: NFIX were changed from to Sotos syndrome 2 (MIM#614753); Marshall-Smith syndrome, MIM# 602535
Mendeliome v0.10145 NFIX Zornitza Stark reviewed gene: NFIX: Rating: GREEN; Mode of pathogenicity: None; Publications: 33034087, 29897170, 30548146, 25118028; Phenotypes: Sotos syndrome 2 (MIM#614753), Marshall-Smith syndrome, MIM# 602535; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.10126 WWOX Zornitza Stark Phenotypes for gene: WWOX were changed from to Spinocerebellar ataxia, autosomal recessive 12, MIM# 614322; Developmental and epileptic encephalopathy 28, MIM# 616211
Mendeliome v0.10123 WWOX Zornitza Stark reviewed gene: WWOX: Rating: GREEN; Mode of pathogenicity: None; Publications: 24456803, 25411445, 32051108, 32037574, 24369382, 34831305, 33916893; Phenotypes: Spinocerebellar ataxia, autosomal recessive 12, MIM# 614322, Developmental and epileptic encephalopathy 28, MIM# 616211; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10104 ATP6V1B2 Zornitza Stark Phenotypes for gene: ATP6V1B2 were changed from to Zimmermann-Laband syndrome 2, MIM# 616455; Deafness, congenital, with onychodystrophy, autosomal dominant, MIM# 124480; Epileptic encephalopathy
Mendeliome v0.10101 ATP6V1B2 Zornitza Stark edited their review of gene: ATP6V1B2: Changed phenotypes: Zimmermann-Laband syndrome 2, MIM# 616455, Deafness, congenital, with onychodystrophy, autosomal dominant, MIM# 124480, Epileptic encephalopathy
Mendeliome v0.10101 GDF6 Ain Roesley reviewed gene: GDF6: Rating: GREEN; Mode of pathogenicity: None; Publications: 30733656, 29130651, 26643732, 19129173, 23307924, 32737436; Phenotypes: Klippel-Feil syndrome 1, autosomal dominantMIM#118100, Leber congenital amaurosis 17 (MIM#615360), Microphthalmia, isolated 4 (MIM#613094), Multiple synostoses syndrome 4 (MIM#617898); Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.10085 AP3B2 Zornitza Stark Phenotypes for gene: AP3B2 were changed from to Developmental and epileptic encephalopathy 48, MIM# 617276
Mendeliome v0.10082 AP3B2 Zornitza Stark reviewed gene: AP3B2: Rating: GREEN; Mode of pathogenicity: None; Publications: 27431290, 27866705, 32705489; Phenotypes: Developmental and epileptic encephalopathy 48, MIM# 617276; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10061 PLK1 Zornitza Stark gene: PLK1 was added
gene: PLK1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLK1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PLK1 were set to 33875846
Phenotypes for gene: PLK1 were set to Epilepsy; microcephaly; intellectual disability
Review for gene: PLK1 was set to GREEN
Added comment: More than 5 individuals reported.
Sources: Literature
Mendeliome v0.10058 PRRX1 Zornitza Stark Phenotypes for gene: PRRX1 were changed from to Agnathia-otocephaly complex, MIM# 202650
Mendeliome v0.10055 PRRX1 Zornitza Stark reviewed gene: PRRX1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21294718, 22211708, 22674740, 23444262; Phenotypes: Agnathia-otocephaly complex, MIM# 202650; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.10046 ATP9A Zornitza Stark reviewed gene: ATP9A: Rating: GREEN; Mode of pathogenicity: None; Publications: 34379057, 34764295; Phenotypes: Neurodevelopmental delay, Postnatal microcephaly, Failure to thrive, Gastrointestinal symptoms; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10030 LAMB1 Zornitza Stark Phenotypes for gene: LAMB1 were changed from Lissencephaly 5, MIM# 615191; Cystic leukoencephalopathy to Lissencephaly 5, MIM# 615191; Cystic leukoencephalopathy; Adult-onset leukoencephalopathy
Mendeliome v0.10027 LAMB1 Zornitza Stark edited their review of gene: LAMB1: Added comment: Association between mono-allelic variants and adult-onset leukoencephalopathy:

LAMB1 variants found in 5 families with cerebral small vessel disease. 4 are truncating frameshifts (and 2 of the families have the same frameshift), 1 is a canonical splice. All families had adult onset of symptoms ranging from 20-63yo. All have white matter hypersignals. ‘These variants are associated with a novel phenotype characterized by the association of a hippocampal type episodic memory defect and a diffuse vascular leukoencephalopathy.’; Changed publications: 23472759, 25925986, 29888467, 25925986, 32548278, 34606115; Changed phenotypes: Lissencephaly 5, MIM# 615191, Cystic leukoencephalopathy, Adult-onset leukoencephalopathy; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.10024 OGDHL Melanie Marty gene: OGDHL was added
gene: OGDHL was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: OGDHL was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: OGDHL were set to PMID: 34800363
Phenotypes for gene: OGDHL were set to Neurodevelopmental disorder featuring epilepsy, hearing loss, visual impairment, and ataxia
Review for gene: OGDHL was set to GREEN
Added comment: Nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing
loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum.

Homozygous and compound heterozygous variants reported. Variant types reported include missense, PTCs and a synonymous variant that was shown to affect splicing.

Functional studies with a CRISPR-Cas9-mediated tissue knockout with cDNA rescue system showed that the missense variants result in loss-of-function.
Sources: Literature
Mendeliome v0.10019 FOXR1 Paul De Fazio changed review comment from: 1 patient described with a de novo missense variant. Phenotypes include: postnatal microcephaly, progressive brain atrophy, skeletal abnormalities, brain abnormalities, ophthalmic abnormalities, neuromuscular abnornmalities, and dysmorphic features.

In vitro functional evidence is supportive of pathogenicity (variant causes protein instability and abnormal nuclear aggregation).

A mouse knockout has comparable phenotypes, and a severe survival deficit.

Rated amber (1 patient, functional evidence, mouse model).
Sources: Literature; to: 1 patient described with a de novo missense variant. Phenotypes include: postnatal microcephaly, progressive brain atrophy, skeletal abnormalities, brain abnormalities, ophthalmic abnormalities, neuromuscular abnormalities, and dysmorphic features. A variant in ATP1A3 was considered to have contributed to the final phenotype.

In vitro functional evidence is supportive of pathogenicity (variant causes protein instability and abnormal nuclear aggregation).

A mouse knockout has comparable phenotypes, and a severe survival deficit.

Rated amber (1 patient, functional evidence, mouse model).
Sources: Literature
Mendeliome v0.10019 SLIRP Belinda Chong gene: SLIRP was added
gene: SLIRP was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLIRP was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLIRP were set to 34426662
Phenotypes for gene: SLIRP were set to Mitochondrial encephalomyopathy with complex I and IV deficiency
Review for gene: SLIRP was set to RED
Added comment: Single Dutch non-consanguineous patient having mitochondrial encephalomyopathy with complex I and complex IV deficiency, whole exome sequencing revealed two compound heterozygous variants (NM_031210.5:c.248_252del; NP_112487.1:p.(Ile83Argfs*10) and NC_000014.8:g.78177003 A > G; NM_031210.5:c.98-178 A > G) in SLIRP. Report SLIRP variants as a novel cause of mitochondrial encephalomyopathy with OXPHOS deficiency
Sources: Literature
Mendeliome v0.10017 FOXR1 Paul De Fazio gene: FOXR1 was added
gene: FOXR1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FOXR1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: FOXR1 were set to 34723967
Phenotypes for gene: FOXR1 were set to Postnatal microcephaly, progressive brain atrophy and global developmental delay
Review for gene: FOXR1 was set to AMBER
gene: FOXR1 was marked as current diagnostic
Added comment: 1 patient described with a de novo missense variant. Phenotypes include: postnatal microcephaly, progressive brain atrophy, skeletal abnormalities, brain abnormalities, ophthalmic abnormalities, neuromuscular abnornmalities, and dysmorphic features.

In vitro functional evidence is supportive of pathogenicity (variant causes protein instability and abnormal nuclear aggregation).

A mouse knockout has comparable phenotypes, and a severe survival deficit.

Rated amber (1 patient, functional evidence, mouse model).
Sources: Literature
Mendeliome v0.10013 ARPC4 Bryony Thompson gene: ARPC4 was added
gene: ARPC4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ARPC4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ARPC4 were set to DOI:https://doi.org/10.1016/j.xhgg.2021.100072
Phenotypes for gene: ARPC4 were set to Microcephaly; mild motor delays; significant speech impairment
Review for gene: ARPC4 was set to GREEN
Added comment: 7 affected individuals from 6 families (gonadal mosaicism was confirmed in the mother of the 2 affected siblings) with a recurrent missense variant (NM_005718.4:c.472C>T; p.R158C). The variant was associated with a decreased amount of F-actin in cells from two affected individuals.
Sources: Literature
Mendeliome v0.10004 UNC93B1 Zornitza Stark Phenotypes for gene: UNC93B1 were changed from to Encephalopathy, acute, infection-induced (herpes-specific), susceptibility to, 1
Mendeliome v0.10000 UNC93B1 Zornitza Stark reviewed gene: UNC93B1: Rating: AMBER; Mode of pathogenicity: None; Publications: 29768176; Phenotypes: Encephalopathy, acute, infection-induced (herpes-specific), susceptibility to, 1; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9973 MTPAP Zornitza Stark Phenotypes for gene: MTPAP were changed from to Spastic ataxia 4, autosomal recessive 613672; Lethal encephalopathy
Mendeliome v0.9970 MTPAP Zornitza Stark reviewed gene: MTPAP: Rating: GREEN; Mode of pathogenicity: None; Publications: 20970105, 25008111, 26319014, 31779033; Phenotypes: Spastic ataxia 4, autosomal recessive 613672, Lethal encephalopathy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9965 GRIP1 Zornitza Stark changed review comment from: Typical features include cryptophthalmos, syndactyly, and abnormalities of the respiratory and urogenital tract. At least 5 families reported.; to: Typical features include cryptophthalmos, syndactyly, and abnormalities of the respiratory and urogenital tract. At least 5 families reported.

'Mild' bi-allelic variants also postulated to cause isolated CAKUT, PMID 24700879.
Mendeliome v0.9929 ACVR1 Zornitza Stark changed review comment from: Fibrodysplasia ossificans progressiva is a rare autosomal dominant disease with complete penetrance involving progressive ossification of skeletal muscle, fascia, tendons, and ligaments. FOP has a prevalence of approximately 1 in 2 million worldwide, and shows no geographic, ethnic, racial, or gender preference. Individuals with FOP appear normal at birth except for great toe abnormalities: the great toes are short, deviated, and monophalangic. Ossification occurs progressively over the course of a lifetime in an inevitable and unpredictable episodic manner.

Multiple unrelated families reported. The R206H variant is recurrent.; to: Fibrodysplasia ossificans progressiva is a rare autosomal dominant disease with complete penetrance involving progressive ossification of skeletal muscle, fascia, tendons, and ligaments. FOP has a prevalence of approximately 1 in 2 million worldwide, and shows no geographic, ethnic, racial, or gender preference. Individuals with FOP appear normal at birth except for great toe abnormalities: the great toes are short, deviated, and monophalangic. Ossification occurs progressively over the course of a lifetime in an inevitable and unpredictable episodic manner.

Multiple unrelated families reported. The R206H variant is recurrent.

Note variants in this gene are also associated with congenital heart disease, PMID 29089047.
Mendeliome v0.9899 POLR3H Bryony Thompson gene: POLR3H was added
gene: POLR3H was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: POLR3H was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: POLR3H were set to 34794894; 30830215
Phenotypes for gene: POLR3H were set to Primary ovarian insufficiency
Review for gene: POLR3H was set to AMBER
Added comment: A homozygous missense variant (p.Asp50Gly) was identified homozygous in 2 unrelated families. A mull mouse model was embryonic lethal, but a mouse model homozygous for the missense were viable and showed delayed pubertal development, characterised by late first oestrus or preputial separation.
Sources: Literature
Mendeliome v0.9823 MLC1 Zornitza Stark Phenotypes for gene: MLC1 were changed from to Megalencephalic leukoencephalopathy with subcortical cysts (MIM#604004)
Mendeliome v0.9791 CPT2 Zornitza Stark Phenotypes for gene: CPT2 were changed from to CPT II deficiency, infantile 600649; CPT II deficiency, lethal neonatal 608836; CPT II deficiency, myopathic, stress-induced 255110
Mendeliome v0.9788 CPT2 Zornitza Stark reviewed gene: CPT2: Rating: GREEN; Mode of pathogenicity: None; Publications: 11477613, 12410208, 8651281, 12410208, 8358442; Phenotypes: CPT II deficiency, infantile 600649, CPT II deficiency, lethal neonatal 608836, CPT II deficiency, myopathic, stress-induced 255110; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9779 MLC1 Daniel Flanagan reviewed gene: MLC1: Rating: GREEN; Mode of pathogenicity: None; Publications: 11254442, 18757878, 16652334; Phenotypes: Megalencephalic leukoencephalopathy with subcortical cysts (MIM#604004); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9765 ATP1A2 Zornitza Stark Phenotypes for gene: ATP1A2 were changed from Alternating hemiplegia of childhood 1, MIM#104290; Fetal akinesia, respiratory insufficiency, microcephaly, polymicrogyria, and dysmorphic facies, MIM# 619602; Developmental and epileptic encephalopathy, polymicrogyria to Alternating hemiplegia of childhood 1, MIM#104290; Fetal akinesia, respiratory insufficiency, microcephaly, polymicrogyria, and dysmorphic facies, MIM# 619602; Developmental and epileptic encephalopathy 98, MIM# 619605
Mendeliome v0.9764 ATP1A2 Zornitza Stark edited their review of gene: ATP1A2: Changed phenotypes: Alternating hemiplegia of childhood 1, MIM#104290, Fetal akinesia, respiratory insufficiency, microcephaly, polymicrogyria, and dysmorphic facies, MIM# 619602, Developmental and epileptic encephalopathy 98, MIM# 619605
Mendeliome v0.9764 ATP1A2 Zornitza Stark Phenotypes for gene: ATP1A2 were changed from Alternating hemiplegia of childhood 1, MIM#104290; Hydrops fetalis, microcephaly, arthrogryposis, extensive cortical malformations; Developmental and epileptic encephalopathy, polymicrogyria to Alternating hemiplegia of childhood 1, MIM#104290; Fetal akinesia, respiratory insufficiency, microcephaly, polymicrogyria, and dysmorphic facies, MIM# 619602; Developmental and epileptic encephalopathy, polymicrogyria
Mendeliome v0.9763 ATP1A2 Zornitza Stark edited their review of gene: ATP1A2: Changed phenotypes: Alternating hemiplegia of childhood 1, MIM#104290, Fetal akinesia, respiratory insufficiency, microcephaly, polymicrogyria, and dysmorphic facies, MIM# 619602, Developmental and epileptic encephalopathy, polymicrogyria
Mendeliome v0.9762 MED17 Zornitza Stark changed review comment from: 5 individuals from 3 families now reported with intellectual disability and variable other neurological features including ataxia and seizures.; to: Over 10 families now reported with intellectual disability and variable other neurological features including ataxia, microcephaly and seizures.

Note the c.1112T>C (p.L371P) variant is a founder variant in the Caucasus-Jewish families.
Mendeliome v0.9743 CHRND Zornitza Stark Phenotypes for gene: CHRND were changed from to Myasthenic syndrome, congenital, 3B, fast-channel, MIM#616322; Myasthenic syndrome, congenital, 3C, associated with acetylcholine receptor deficiency, MIM#616323; Myasthenic syndrome, congenital, 3A, slow-channel, MIM#616321; Multiple pterygium syndrome, lethal type, MIM# 253290; MONDO:0009668
Mendeliome v0.9740 CHRND Zornitza Stark reviewed gene: CHRND: Rating: GREEN; Mode of pathogenicity: None; Publications: 16916845, 11435464, 12499478, 18398509, 11782989, 29399782, 18252226; Phenotypes: Myasthenic syndrome, congenital, 3B, fast-channel, MIM#616322, Myasthenic syndrome, congenital, 3C, associated with acetylcholine receptor deficiency, MIM#616323, Myasthenic syndrome, congenital, 3A, slow-channel, MIM#616321, Multiple pterygium syndrome, lethal type, MIM# 253290, MONDO:0009668; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9740 CHRNA1 Zornitza Stark Phenotypes for gene: CHRNA1 were changed from to Multiple pterygium syndrome, lethal type, MIM# 253290; MONDO:0009668; Myasthenic syndrome, congenital, 1A, slow-channel, MIM# 601462; Myasthenic syndrome, congenital, 1B, fast-channel , MIM#608930
Mendeliome v0.9737 CHRNA1 Zornitza Stark reviewed gene: CHRNA1: Rating: GREEN; Mode of pathogenicity: None; Publications: 26910802, 10195214, 12588888, 15079006, 18806275, 7619526, 8872460, 9158151, 18252226; Phenotypes: Multiple pterygium syndrome, lethal type, MIM# 253290, MONDO:0009668, Myasthenic syndrome, congenital, 1A, slow-channel, MIM# 601462, Myasthenic syndrome, congenital, 1B, fast-channel , MIM#608930; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9713 CENPJ Zornitza Stark Phenotypes for gene: CENPJ were changed from to Microcephaly 6, primary, autosomal recessive, MIM# 608393, MONDO:0012029; Seckel syndrome 4, MIM# 613676, MONDO:0013358
Mendeliome v0.9710 CENPJ Zornitza Stark reviewed gene: CENPJ: Rating: GREEN; Mode of pathogenicity: None; Publications: 20522431, 23166506, 15793586, 20978018, 22775483, 32677750, 32549991; Phenotypes: Microcephaly 6, primary, autosomal recessive, MIM# 608393, MONDO:0012029, Seckel syndrome 4, MIM# 613676, MONDO:0013358; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9710 CDON Zornitza Stark Phenotypes for gene: CDON were changed from to Holoprosencephaly 11, MIM# 614226; MONDO:0013642
Mendeliome v0.9707 CDON Zornitza Stark reviewed gene: CDON: Rating: GREEN; Mode of pathogenicity: None; Publications: 21802063, 26529631, 26728615, 23071453; Phenotypes: Holoprosencephaly 11, MIM# 614226, MONDO:0013642; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9694 BRAT1 Zornitza Stark Phenotypes for gene: BRAT1 were changed from to Neurodevelopmental disorder with cerebellar atrophy and with or without seizures, MIM#618056; Rigidity and multifocal seizure syndrome, lethal neonatal, MIM# 614498
Mendeliome v0.9691 BRAT1 Zornitza Stark changed review comment from: At least 4 individuals reported from unrelated families and bi-allelic variants in this gene.
Sources: Expert list; to: Biallelic mutations in the BRAT1 gene, encoding BRCA1-associated ATM activator 1, result in variable phenotypes, from rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL) to neurodevelopmental disorder and cerebellar atrophy with or without seizures (NEDCAS), without obvious genotype-phenotype associations.

Multiple families reported with each.
Mendeliome v0.9691 BRAT1 Zornitza Stark edited their review of gene: BRAT1: Changed publications: 26483087, 26494257, 27282546, 22279524, 23035047, 25319849, 25500575, 34747546; Changed phenotypes: Neurodevelopmental disorder with cerebellar atrophy and with or without seizures, MIM#618056, Rigidity and multifocal seizure syndrome, lethal neonatal, MIM# 614498
Mendeliome v0.9682 BMPER Zornitza Stark commented on gene: BMPER: Perinatal lethal skeletal dysplasia.

The primary skeletal characteristics include small chest, abnormal vertebral segmentation, and posterior rib gaps containing incompletely differentiated mesenchymal tissue. Consistent craniofacial features include ocular hypertelorism, epicanthal folds, depressed nasal bridge with short nose, and low-set ears. The most commonly described extraskeletal finding is nephroblastomatosis with cystic kidneys, but other visceral findings have been described in some cases.

At least 5 unrelated families reported.
Mendeliome v0.9682 BMP4 Zornitza Stark Phenotypes for gene: BMP4 were changed from to Orofacial cleft 11 600625; Microphthalmia, syndromic 6, MIM# 607932
Mendeliome v0.9679 BMP4 Zornitza Stark reviewed gene: BMP4: Rating: GREEN; Mode of pathogenicity: None; Publications: 31053785, 19249007, 31909686, 21340693; Phenotypes: Orofacial cleft 11 600625, Microphthalmia, syndromic 6, MIM# 607932; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9670 BHLHA9 Zornitza Stark Phenotypes for gene: BHLHA9 were changed from to Syndactyly, mesoaxial synostotic, with phalangeal reduction, MIM# 609432
Mendeliome v0.9667 BHLHA9 Zornitza Stark reviewed gene: BHLHA9: Rating: GREEN; Mode of pathogenicity: None; Publications: 25466284, 34272776, 31912643, 31152918, 30107244; Phenotypes: Syndactyly, mesoaxial synostotic, with phalangeal reduction, MIM# 609432; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9631 ASXL1 Zornitza Stark changed review comment from: Bohring-Opitz syndrome is a malformation syndrome characterized by severe intrauterine growth retardation, poor feeding, profound ID, trigonocephaly, prominent metopic suture, exophthalmos, nevus flammeus of the face, upslanting palpebral fissures, hirsutism, and flexion of the elbows and wrists with deviation of the wrists and metacarpophalangeal joints -- many of these features would be identifiable antenatally.; to: Bohring-Opitz syndrome is a malformation syndrome characterized by severe intrauterine growth retardation, poor feeding, profound ID, trigonocephaly, prominent metopic suture, exophthalmos, nevus flammeus of the face, upslanting palpebral fissures, hirsutism, and flexion of the elbows and wrists with deviation of the wrists and metacarpophalangeal joints.

Multiple individuals reported.
Mendeliome v0.9616 MYH10 Krithika Murali gene: MYH10 was added
gene: MYH10 was added to Mendeliome. Sources: Expert list,Literature
Mode of inheritance for gene: MYH10 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MYH10 were set to 24825879; 24901346; 25356899; 22495309; 25003005
Phenotypes for gene: MYH10 were set to Microcephaly; Intellectual Disability
Review for gene: MYH10 was set to GREEN
Added comment: De novo variants were identified in 5 unrelated individuals with moderate-severe ID and developmental delay.

Other reported phenotypic features include microcephaly (4/5), IUGR/failure to thrive (4/5), cerebral atrophy (3/5), hydrocephalus (2/5), congenital bilateral hip dysplasia (2/5), cerebellar atrophy (1/5), congenital diaphragmatic hernia (1/5), cranial nerve palsy (1/5), nystagmus (1/5), dysplastic kidney (1/5).

Defects in heart development, body wall closure and other birth defects noted in mouse models.
Sources: Expert list, Literature
Mendeliome v0.9607 COG6 Zornitza Stark changed review comment from: More than 5 unrelated families reported. Key features include growth retardation, developmental delay, microcephaly, liver and gastrointestinal disease, joint contractures and episodic fever. Ectodermal signs such as hypohidrosis/hyperthermia, hyperkeratosis and tooth anomalies are prominent. Note Shaheen syndrome, MIM#615328 is an allelic disorder, with overlapping clinical features, but normal transferring isoforms recorded creating confusion about whether it represents a distinct entity.; to: More than 5 unrelated families reported. Key features include growth retardation, developmental delay, microcephaly, liver and gastrointestinal disease, joint contractures and episodic fever. Ectodermal signs such as hypohidrosis/hyperthermia, hyperkeratosis and tooth anomalies are prominent. Note Shaheen syndrome, MIM#615328 is an allelic disorder, with overlapping clinical features, but normal transferrin isoforms recorded creating confusion about whether it represents a distinct entity.
Mendeliome v0.9607 OTUD7A Zornitza Stark Phenotypes for gene: OTUD7A were changed from Epileptic encephalopathy, intellectual disability, no OMIM# yet to Intellectual disability; Epilepsy
Mendeliome v0.9590 NUP85 Eleanor Williams reviewed gene: NUP85: Rating: ; Mode of pathogenicity: None; Publications: 34170319; Phenotypes: intellectual disability, Primary autosomal recessive microcephaly and Seckel syndrome spectrum disorders (MCPH–SCKS); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9564 SPATA5L1 Paul De Fazio gene: SPATA5L1 was added
gene: SPATA5L1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SPATA5L1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SPATA5L1 were set to 34626583
Phenotypes for gene: SPATA5L1 were set to Intellectual disability; spastic-dystonic cerebral palsy; epilepsy; hearing loss
Review for gene: SPATA5L1 was set to GREEN
gene: SPATA5L1 was marked as current diagnostic
Added comment: 47 individuals from 26 unrelated families from various ethnicities with biallelic variants reported. Phenotypes include ID, hearing impairment, movement disorder, abnormal MRI, hypotonia, visual impairment, epilepsy, and microcephaly.
Sources: Literature
Mendeliome v0.9502 ETHE1 Zornitza Stark Phenotypes for gene: ETHE1 were changed from to Ethylmalonic encephalopathy, MIM#602473
Mendeliome v0.9499 ETHE1 Zornitza Stark reviewed gene: ETHE1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Ethylmalonic encephalopathy , MIM#602473; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9488 ETHE1 Melanie Marty reviewed gene: ETHE1: Rating: GREEN; Mode of pathogenicity: None; Publications: 14732903, 28933811; Phenotypes: Ethylmalonic encephalopathy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9406 FGF12 Zornitza Stark Phenotypes for gene: FGF12 were changed from to Developmental and epileptic encephalopathy 47, MIM# 617166
Mendeliome v0.9403 FGF12 Zornitza Stark reviewed gene: FGF12: Rating: GREEN; Mode of pathogenicity: None; Publications: 32645220, 27164707, 27830185, 27872899; Phenotypes: Developmental and epileptic encephalopathy 47, MIM# 617166; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9392 KCNC2 Daniel Flanagan gene: KCNC2 was added
gene: KCNC2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: KCNC2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KCNC2 were set to PMID:32392612; 31972370
Phenotypes for gene: KCNC2 were set to epileptic encephalopathy; spastic tetraplegia; opisthotonos attacks; intellectual disability; West syndrome
Review for gene: KCNC2 was set to AMBER
Added comment: PMID: 31972370. De novo missense variant (p.Val471Leu) identified in a child with early severe developmental and epileptic encephalopathy, spastic tetraplegia, opisthotonos attacks.

PMID: 32392612. De novo missense variant (p.Asp167Tyr) identified in a neurofibromatosis type 1 related West syndrome patient. Functional analysis showed a significant reduction of the mean potassium current and a shift in the voltage dependence of steady-state activation. Maternally inherited NF1 variant (p.T1951Nfs*5) also identified, the mother was "clinically unremarkable".
Sources: Expert list
Mendeliome v0.9392 OSTC Belinda Chong gene: OSTC was added
gene: OSTC was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: OSTC was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: OSTC were set to PMID: 32267060
Phenotypes for gene: OSTC were set to Oligosaccharyltransferase complex-congenital disorders of glycosylation
Review for gene: OSTC was set to RED
Added comment: A patient with microcephaly, dysmorphic facies, congenital heart defect, focal epilepsy, infantile spasms, skeletal dysplasia, and a type 1 serum transferrin isoelectrofocusing due to a novel CDG caused by a homozygous variant in the oligosaccharyltransferase complex noncatalytic subunit (OSTC) gene involved in glycosylation and confirmed by serum transferrin electrophoresis.
Patient was homozygous for a canonical splice variant (c.431 + 1G > A), mRNA from patient's fibroblast showed mRNA transcript reduced 80-90%/aberrant splicing - predicting NMD.
GnomAD - 10 hets, 0 hom
Sources: Literature
Sources: Literature
Mendeliome v0.9392 DENND5A Zornitza Stark Phenotypes for gene: DENND5A were changed from to Epileptic encephalopathy, early infantile, 49, MIM# 617281
Mendeliome v0.9389 DENND5A Zornitza Stark reviewed gene: DENND5A: Rating: GREEN; Mode of pathogenicity: None; Publications: 27431290, 27866705, 32705489; Phenotypes: Epileptic encephalopathy, early infantile, 49, MIM# 617281; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9383 KCNQ1OT1 Zornitza Stark gene: KCNQ1OT1 was added
gene: KCNQ1OT1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: KCNQ1OT1 was set to MONOALLELIC, autosomal or pseudoautosomal, maternally imprinted (paternal allele expressed)
Publications for gene: KCNQ1OT1 were set to 22205991; 15372379; 23511928; 30794780; 29377879; 10220444; 32447323; 33177595; 29047350
Phenotypes for gene: KCNQ1OT1 were set to Beckwith-Wiedemann syndrome OMIM:130650; Russell-Silver Syndrome
Review for gene: KCNQ1OT1 was set to AMBER
Added comment: Limited evidence that isolated intragenic variation in KCNQ1OT1 is definitively associated with a phenotype.

KCNQ1OT1 encodes the regulatory antisense non-coding RNA KCNQ1OT1 (KCNQ1 overlapping) and is located within the KCNQ1OT1:TSS DMR (imprinting control region 2; IC2) at 11p15.5. IC2 is located within KCNQ1 intron 10. KCNQ1OT1 is maternally imprinted and paternally expressed. On the paternal chromosome, KCNQ1OT1 is transcribed and represses in cis the flanking imprinted genes, including the growth inhibitor CDKN1C, which is normally transcribed from the maternal allele. In 50% of the BWS patients, loss of methylation (LOM) of IC2 leads to biallelic expression of KCNQ1OT1 and biallelic silencing of CDKN1C (PMID 30635621). Expression is increased in BWS due to IC2 epimutations or paternal UPD.

Single nucleotide variants within KCNQ1OT1 have not been definitively associated with human disease. A heterozygous maternally inherited non-coding variant was identified in an individual with isolated omphalocele. This variant was shown to alter the methylation pattern of the imprinted allele (PMID 29047350).

Eggerman et al (PMID 32447323) described a 132 base pair deletion within KCNQ1OT1 associated with growth retardation in the case of paternal but not maternal transmission. This intragenic deletion did not affect IC2 methylation.

Microdeletions of IC2 involving KCNQ1OT1 on the paternal allele have been identified in a small number of patients with Russell-Silver syndrome. Similarly, microdeletions of IC2 involving KCNQ1OT1 on the maternal allele have been identified in a small number of patients with BWS. These deletions also variably involve KCNQ1 or CDKN1C. LoF in CDKN1C is a known cause of BWS. There is some evidence to suggest that disruption of KCNQ1 prevents maternal methylation at IC2 (PMID 30778172).
Sources: Expert Review
Mendeliome v0.9380 TMEM218 Zornitza Stark Phenotypes for gene: TMEM218 were changed from Joubert syndrome; retinal dystrophy; polycystic kidneys; occipital encephalocele to Joubert syndrome 39, MIM#619562; retinal dystrophy; polycystic kidneys; occipital encephalocele
Mendeliome v0.9376 NSRP1 Zornitza Stark gene: NSRP1 was added
gene: NSRP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NSRP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NSRP1 were set to 34385670
Phenotypes for gene: NSRP1 were set to Epilepsy; Cerebral palsy; microcephaly; Intellectual disability
Review for gene: NSRP1 was set to GREEN
Added comment: Novel gene regulating splicing. Biallelic LoF pathogenic variants reported in 6 individuals from 3 unrelated families associated with a phenotype characterized by developmental delay, epilepsy, microcephaly, and spastic cerebral palsy.
Sources: Literature
Mendeliome v0.9351 AARS Zornitza Stark Phenotypes for gene: AARS were changed from Epileptic encephalopathy, early infantile, 29, MIM# 616339; Charcot-Marie-Tooth disease, axonal, type 2N, MIM# 613287 to Epileptic encephalopathy, early infantile, 29, MIM# 616339; Charcot-Marie-Tooth disease, axonal, type 2N, MIM# 613287; trichothiodystrophy, MONDO:0018053
Mendeliome v0.9349 CELF2 Zornitza Stark Phenotypes for gene: CELF2 were changed from Developmental and epileptic encephalopathy to Developmental and epileptic encephalopathy 97, MIM#619561
Mendeliome v0.9348 CELF2 Zornitza Stark edited their review of gene: CELF2: Changed phenotypes: Developmental and epileptic encephalopathy 97, MIM#619561
Mendeliome v0.9297 WLS Teresa Zhao changed review comment from: - We identified homozygous mutations in 10 affected persons from 5 unrelated families.
- Patients had multiorgan defects, including microcephal, facial dysmorphism, foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects.
- The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis.
Sources: Literature; to: - Homozygous mutations in 10 affected persons from 5 unrelated families.
- Patients had multiorgan defects, including microcephal, facial dysmorphism, foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects.
- The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis.
Sources: Literature
Mendeliome v0.9297 WLS Teresa Zhao gene: WLS was added
gene: WLS was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: WLS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: WLS were set to PMID: 34587386
Phenotypes for gene: WLS were set to Syndromic structural birth defects
Review for gene: WLS was set to GREEN
Added comment: - We identified homozygous mutations in 10 affected persons from 5 unrelated families.
- Patients had multiorgan defects, including microcephal, facial dysmorphism, foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects.
- The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis.
Sources: Literature
Mendeliome v0.9294 SARS Bryony Thompson gene: SARS was added
gene: SARS was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SARS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SARS were set to 28236339; 34570399
Phenotypes for gene: SARS were set to Intellectual disability
Review for gene: SARS was set to AMBER
Added comment: Summary - 2 unrelated families with overlapping ID phenotype, and supporting in vitro and patient cell assays.
PMID: 28236339 - an Iranian family (distantly related) segregating a homozygous missense (c.514G>A, p.Asp172Asn) with moderate ID, microcephaly, ataxia, speech impairment, and aggressive behaviour. Also, supporting in vitro functional assays demonstrating altered protein function.
PMID: 34570399 - a consanguineous Turkish family segregating a homozygous missense (c.638G>T, p.(Arg213Leu)) with developmental delay, central deafness, cardiomyopathy, and metabolic decompensation during fever leading to death. Also, reduced protein level and enzymatic activity in patient cells.
Sources: Literature
Mendeliome v0.9290 NFIB Zornitza Stark Phenotypes for gene: NFIB were changed from to Macrocephaly, acquired, with impaired intellectual development, MIM#618286
Mendeliome v0.9287 NFIB Zornitza Stark reviewed gene: NFIB: Rating: GREEN; Mode of pathogenicity: None; Publications: 30388402; Phenotypes: Macrocephaly, acquired, with impaired intellectual development, MIM#618286; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9285 EIF3F Zornitza Stark edited their review of gene: EIF3F: Added comment: Hüffmeier et al (2021) reported 21 patients who were homozygous/compound heterozygous for Phe232Val variant in EIF3F. All affected individuals had developmental delay and speech delay. About half had behavioural problems, altered muscular tone, hearing loss, and short stature. The study suggests that microcephaly, reduced sensitivity to pain, cleft lip/palate, gastrointestinal symptoms and ophthalmological symptoms are part of the phenotypic spectrum.; Changed publications: 30409806, 33736665; Changed phenotypes: Mental retardation, autosomal recessive 67, MIM# 618295
Mendeliome v0.9253 OPA1 Zornitza Stark Phenotypes for gene: OPA1 were changed from Mitochondrial DNA depletion syndrome 14 (encephalocardiomyopathic type)MIM# 6168963; Behr syndrome MIM#210000, AR; Optic atrophy 1, MIM#165500; Optic atrophy plus syndrome, MIM# 125250 to Mitochondrial DNA depletion syndrome 14 (encephalocardiomyopathic type)MIM# 616896; Behr syndrome MIM#210000, AR; Optic atrophy 1, MIM#165500; Optic atrophy plus syndrome, MIM# 125250
Mendeliome v0.9250 ATP6V0C Zornitza Stark gene: ATP6V0C was added
gene: ATP6V0C was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATP6V0C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ATP6V0C were set to 33190975; 33090716
Phenotypes for gene: ATP6V0C were set to Epilepsy; Intellectual Disability; microcephaly
Review for gene: ATP6V0C was set to AMBER
Added comment: 9 individuals reported with deletions and ID/seizures/microcephaly, minimum overlapping region implicates ATP6V0C as the causative gene. Single case report of de novo SNV and ID/seizures.
Sources: Literature
Mendeliome v0.9244 ARFGEF1 Zornitza Stark gene: ARFGEF1 was added
gene: ARFGEF1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: ARFGEF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ARFGEF1 were set to 34113008
Phenotypes for gene: ARFGEF1 were set to Intellectual disability; Epilepsy
Review for gene: ARFGEF1 was set to GREEN
Added comment: 13 individuals reported with variants in this gene and a neurodevelopmental disorder characterised by variable ID, seizures present in around half. Variants were inherited from mildly affected parents in 40% of families.
Sources: Expert Review
Mendeliome v0.9240 PRR12 Zornitza Stark Phenotypes for gene: PRR12 were changed from Intellectual disability; Iris abnormalities; Complex microphthalmia to Neuroocular syndrome, MIM#619539; Intellectual disability; Iris abnormalities; Complex microphthalmia
Mendeliome v0.9239 PRR12 Zornitza Stark edited their review of gene: PRR12: Changed phenotypes: Neuroocular syndrome, MIM#619539, Intellectual disability, Iris abnormalities, Complex microphthalmia
Mendeliome v0.9227 KIF4A Zornitza Stark edited their review of gene: KIF4A: Added comment: Further 11 families reported. Major structural brain abnormalities present in at least 3 (hydrocephalus), variable ID in several.; Changed rating: GREEN; Changed publications: 24812067, 34346154
Mendeliome v0.9186 AMPD2 Zornitza Stark edited their review of gene: AMPD2: Added comment: Well established gene-disease association. Clinical features include severely delayed psychomotor development, progressive microcephaly, spasticity, seizures, and brain abnormalities, including brain atrophy, thin corpus callosum, and delayed myelination.; Changed rating: GREEN; Changed publications: 23911318, 27066553
Mendeliome v0.9171 TAF2 Zornitza Stark edited their review of gene: TAF2: Added comment: New report of 4 individuals from 2 unrelated families, with severe intellectual disability, global developmental delay, postnatal microcephaly, feet deformities and thin corpus callosum. They had homozygous TAF2 missense variants detected by Exome Sequencing.; Changed rating: GREEN; Changed publications: 21937992, 22633631, 26350204, 24084144, 34474177
Mendeliome v0.9169 HMGB1 Zornitza Stark Phenotypes for gene: HMGB1 were changed from Mirror image foot polydactyly to Mirror image foot polydactyly; Developmental delay and microcephaly, no OMIM #
Mendeliome v0.9167 HMGB1 Chirag Patel reviewed gene: HMGB1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 34164801; Phenotypes: Developmental delay and microcephaly, no OMIM #; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9144 STEAP3 Zornitza Stark changed review comment from: Single family reported. Three affected sibs, variant inherited from unaffected father. Some supportive functional evidence.; to: Single family reported. Three affected sibs, variant inherited from unaffected father. Some supportive functional evidence.

Conflicting evidence (PMID 26675350): Large Chinese study (of normal and α-thalassemia subjects) investigated the prevalence of STEAP3 mutations in humans and their physiologic consequences. Discovered a relatively high prevalence of potentially harmful recessive alleles. However, whilst the identified STEAP3 mutations exhibited impaired ferrireductase activity in vitro, they had little or no effect on erythrocyte phenotypes
Mendeliome v0.9104 MAGEL2 Anna Le Fevre reviewed gene: MAGEL2: Rating: GREEN; Mode of pathogenicity: None; Publications: 33820833, 24076603, 31397880, 29599419, 30302899; Phenotypes: Schaaf-Yang syndrome, Chitayat-Hall Syndrome, Arthrogryposis; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, maternally imprinted (paternal allele expressed)
Mendeliome v0.9080 COPB2 Zornitza Stark Phenotypes for gene: COPB2 were changed from Microcephaly 19, primary, autosomal recessive, MIM# 617800 to Microcephaly 19, primary, autosomal recessive, MIM# 617800; Osteoporosis and developmental delay
Mendeliome v0.9068 ZNF668 Paul De Fazio changed review comment from: 5 individuals from 3 consanguineous families reported with different biallelic truncating (not NMD) variants in ZNF668. Phenotypes included microcephaly, growth deficiency, severe global developmental delay, brain malformation, and distinct facial dysmorphism.

Immunofluorescence indicated ZNF668 deficiency. An increased DNA damage phenotype was demonstrated in patient fibroblasts.
Sources: Literature; to: 2 consanguineous families reported with different biallelic truncating (not NMD) variants in ZNF668. Phenotypes included microcephaly, growth deficiency, severe global developmental delay, brain malformation, and distinct facial dysmorphism.

Immunofluorescence indicated ZNF668 deficiency. An increased DNA damage phenotype was demonstrated in patient fibroblasts.
Sources: Literature
Mendeliome v0.9067 ZNF668 Paul De Fazio changed review comment from: 5 individuals from 3 consanguineous families reported with different truncating (not NMD) variants in ZNF668. Phenotypes included microcephaly, growth deficiency, severe global developmental delay, brain malformation, and distinct facial dysmorphism.

Immunofluorescence indicated ZNF668 deficiency. An increased DNA damage phenotype was demonstrated in patient fibroblasts.
Sources: Literature; to: 5 individuals from 3 consanguineous families reported with different biallelic truncating (not NMD) variants in ZNF668. Phenotypes included microcephaly, growth deficiency, severe global developmental delay, brain malformation, and distinct facial dysmorphism.

Immunofluorescence indicated ZNF668 deficiency. An increased DNA damage phenotype was demonstrated in patient fibroblasts.
Sources: Literature
Mendeliome v0.9067 ZNF668 Paul De Fazio gene: ZNF668 was added
gene: ZNF668 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZNF668 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNF668 were set to 34313816; 26633546
Phenotypes for gene: ZNF668 were set to DNA damage repair defect; microcephaly; growth deficiency; severe global developmental delay; brain malformation; facial dysmorphism
Review for gene: ZNF668 was set to GREEN
gene: ZNF668 was marked as current diagnostic
Added comment: 5 individuals from 3 consanguineous families reported with different truncating (not NMD) variants in ZNF668. Phenotypes included microcephaly, growth deficiency, severe global developmental delay, brain malformation, and distinct facial dysmorphism.

Immunofluorescence indicated ZNF668 deficiency. An increased DNA damage phenotype was demonstrated in patient fibroblasts.
Sources: Literature
Mendeliome v0.9003 ROR2 Zornitza Stark Phenotypes for gene: ROR2 were changed from to Robinow syndrome, autosomal recessive MIM# 268310; hypertelorism; short stature; mesomelic shortening of the limbs; hypoplastic genitalia; rib/vertebral anomalies; abnormal morphogenesis of the face; Brachydactyly, type B1 MIM# 113000; hypoplasia/aplasia of distal phalanges and nails (2-5)
Mendeliome v0.9000 ROR2 Zornitza Stark reviewed gene: ROR2: Rating: GREEN; Mode of pathogenicity: None; Publications: 10932186, 10932187, 10986040, 19461659; Phenotypes: Robinow syndrome, autosomal recessive MIM# 268310, hypertelorism, short stature, mesomelic shortening of the limbs, hypoplastic genitalia, rib/vertebral anomalies, abnormal morphogenesis of the face, Brachydactyly, type B1 MIM# 113000, hypoplasia/aplasia of distal phalanges and nails (2-5); Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8980 NIID Bryony Thompson STR: NIID was added
STR: NIID was added to Mendeliome. Sources: Literature
Mode of inheritance for STR: NIID was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: NIID were set to 31178126; 31332381; 31819945; 33887199; 33943039; 32250060; 31332380; 32852534; 32989102; 34333668
Phenotypes for STR: NIID were set to Neuronal intranuclear inclusion disease MIM#603472; Oculopharyngodistal myopathy 3 MIM#619473; Tremor, hereditary essential, 6 MIM#618866
Review for STR: NIID was set to GREEN
STR: NIID was marked as clinically relevant
Added comment: NM_001364012.2:c.-164GGC[X]
Expanded repeat in NOTCH2NLC sequence is (GGC)9(GGA)2(GGC)2.
Large number of families and sporadic cases reported with expansions, with a range of neurodegenerative phenotypes, including: dementia, Parkinsonism/tremor, peripheral neuropathy, leukoencephalopathy, myopathy, motor neurone disease.
Normal repeat range: 4-40, 1 control had 61 repeats and may have been a presymptomatic carrier.
Intermediate range: 41-60 identified in Parkinson's disease
Pathogenic repeat range: >=60-520
Mechanism of disease is translation of repeat expansion into a toxic polyglycine protein, identified in both mouse models and tissue samples from affected individuals.
Sources: Literature
Mendeliome v0.8965 PRKDC Zornitza Stark Phenotypes for gene: PRKDC were changed from to Immunodeficiency 26, with or without neurologic abnormalities MIM# 615966; Absent T and B cells; normal NK cells; SCID; recurrent respiratory infections; microcephaly; seizures; developmental delay
Mendeliome v0.8962 PRKDC Zornitza Stark reviewed gene: PRKDC: Rating: GREEN; Mode of pathogenicity: None; Publications: 19075392, 23722905; Phenotypes: Immunodeficiency 26, with or without neurologic abnormalities MIM# 615966, Absent T and B cells, normal NK cells, SCID, recurrent respiratory infections, microcephaly, seizures, developmental delay; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8935 GLI2 Zornitza Stark Phenotypes for gene: GLI2 were changed from to Culler-Jones syndrome, MIM#615849; Holoprosencephaly 9, MIM# 61082)
Mendeliome v0.8932 GLI2 Zornitza Stark reviewed gene: GLI2: Rating: GREEN; Mode of pathogenicity: None; Publications: 14581620, 17096318, 33235745, 27585885, 15994174, 20685856, 30629636, 30583238; Phenotypes: Culler-Jones syndrome, MIM#615849, Holoprosencephaly 9, MIM# 61082); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8903 RNU4ATAC Zornitza Stark Phenotypes for gene: RNU4ATAC were changed from Microcephalic osteodysplastic primordial dwarfism, type I (MIM# 210710); Roifman syndrome (MIM# 616651); Lowry-Wood syndrome, MIM# 226960 to Microcephalic osteodysplastic primordial dwarfism, type I (MIM# 210710); Roifman syndrome (MIM# 616651); Lowry-Wood syndrome, MIM# 226960
Mendeliome v0.8902 RNU4ATAC Zornitza Stark Phenotypes for gene: RNU4ATAC were changed from Microcephalic osteodysplastic primordial dwarfism, type I (MIM# 210710); Roifman syndrome (MIM# 616651) to Microcephalic osteodysplastic primordial dwarfism, type I (MIM# 210710); Roifman syndrome (MIM# 616651); Lowry-Wood syndrome, MIM# 226960
Mendeliome v0.8900 RNU4ATAC Zornitza Stark edited their review of gene: RNU4ATAC: Added comment: Lowry-Wood syndrome (LWS) is characterized by multiple epiphyseal dysplasia and microcephaly. Patients exhibit intrauterine growth retardation and short stature, as well as developmental delay and intellectual disability. Retinal degeneration has been reported in some patients.

Four unrelated families reported.

Note features between the three RNU4ATAC-related conditions overlap and they may not represent distinct disorders.; Changed rating: GREEN; Changed publications: 29265708, 12605445; Changed phenotypes: Lowry-Wood syndrome, MIM# 226960; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8900 TRPS1 Zornitza Stark Phenotypes for gene: TRPS1 were changed from to Trichorhinophalangeal syndrome, type I, OMIM # 190350; Trichorhinophalangeal syndrome, type III, OMIM # 190351
Mendeliome v0.8897 TRPS1 Zornitza Stark reviewed gene: TRPS1: Rating: GREEN; Mode of pathogenicity: None; Publications: 11112658, 10615131; Phenotypes: Trichorhinophalangeal syndrome, type I, OMIM # 190350, Trichorhinophalangeal syndrome, type III, OMIM # 190351; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8888 SMC1A Zornitza Stark Phenotypes for gene: SMC1A were changed from Cornelia de Lange syndrome 2, MIM# 300590 to Cornelia de Lange syndrome 2, MIM# 300590; Epileptic encephalopathy, early infantile, 85, with or without midline brain defects, MIM# 301044
Mendeliome v0.8886 SMC1A Zornitza Stark reviewed gene: SMC1A: Rating: GREEN; Mode of pathogenicity: None; Publications: 29023665, 31409060, 31334757, 28166369; Phenotypes: Cornelia de Lange syndrome 2, MIM# 300590, Epileptic encephalopathy, early infantile, 85, with or without midline brain defects, MIM# 301044; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.8883 TOR1AIP1 Zornitza Stark Phenotypes for gene: TOR1AIP1 were changed from Muscular dystrophy, autosomal recessive, with rigid spine and distal joint contractures MIM#617072; Progeroid appearance; Cataracts; Microcephaly; Deafness; Contractures to Muscular dystrophy, autosomal recessive, with rigid spine and distal joint contractures MIM#617072; Congenital myasthenic syndrome
Mendeliome v0.8880 PAPPA2 Zornitza Stark gene: PAPPA2 was added
gene: PAPPA2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PAPPA2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PAPPA2 were set to 26902202; 34272725; 32739295
Phenotypes for gene: PAPPA2 were set to Short stature, Dauber-Argente type, MIM#619489
Review for gene: PAPPA2 was set to GREEN
Added comment: Short stature of the Dauber-Argente type (SSDA) is characterized by progressive postnatal growth failure, moderate microcephaly, thin long bones, and mildly decreased bone density. Patients have elevated circulating levels of total IGF1 due to impaired proteolysis of IGFBP3 and IGFBP5, resulting in reduced free IGF1.

7 individuals from 3 unrelated families reported, mouse model.
Sources: Literature
Mendeliome v0.8861 IGF2 Zornitza Stark changed review comment from: RSS phenotype.; to: Silver-Russell syndrome-3 (SRS3) is characterized by intrauterine growth retardation with relative macrocephaly, followed by feeding difficulties and postnatal growth restriction. Dysmorphic facial features include triangular face, prominent forehead, and low-set ears. Other variable features include limb defects, genitourinary and cardiovascular anomalies, hearing impairment, and developmental delay. Disruption of any gene in the HMGA2-PLAG1-IGF2 pathway results in a decrease in IGF2 expression and produces an SRS phenotype similar to that of patients carrying 11p15.5 epigenetic defects.

Begemann et al. (2015) performed exome sequencing in 4 affected people with severe growth restriction in one family, and identified a heterozygous nonsense mutation in the IGF2 gene that segregated fully with the disorder. Affected individuals inherited the mutation from their healthy fathers, and it originated from the healthy paternal grandmother. Clinical features occurred only in those who inherited the variant allele through paternal transmission, consistent with maternal imprinting of IGF2.

Many other cases reported since with de novo mutations in IGF2 present on the paternal allele.
Mendeliome v0.8853 PLAG1 Zornitza Stark edited their review of gene: PLAG1: Added comment: Additional families reported, upgrade to Green.

Silver-Russell syndrome-4 (SRS4) is characterised by intrauterine growth retardation followed by feeding difficulties and postnatal growth restriction. Dysmorphic facial features include triangular face and prominent forehead, and relative macrocephaly at birth may be observed. So far 4 families have been reported with some functional studies of the role of the gene in the growth pathway.

Abi Habib et al. (2018) reported 1 family (child, sister and mother) patient with Silver-Russell syndrome (with normal methylation on chromosomes 7, 11, and 14, and exclusion of maternal UPD and chromosomal rearrangements). Using WES they identified a heterozygous 1-bp deletion in the PLAG1 gene. The variant segregated with disease, and was not present in polymorphism databases or ExAC. They also reported another patient with a different heterozygous 1-bp deletion in the PLAG1 gene. This was not found in her unaffected twin brother, older brother, or parents. Experiments in Hep3b cells demonstrated that PLAG1 positively regulates expression of the IGF2 promoter P3, independently and via the HMGA2-PLAG1-IGF2 pathway. Disruption of any gene in the pathway results in a decrease in IGF2 expression and produces an SRS phenotype similar to that of patients carrying 11p15.5 epigenetic defects (SRS1; 180860), except for body asymmetry, which is not expected to occur since the molecular defects are present in all cells of the body, unlike the mosaic epigenetic changes at the 11p15.5 locus.

Inoue et al. (2020) reported 1 family with 2 affected people with Silver-Russell syndrome with a nonsense variant in the PLAG1 gene, which segregated with disease.

Vado et al. (2020) reported 1 family with multiple affected people with Silver-Russell syndrome with a frameshift variant in the PLAG1 gene, which segregated with disease.; Changed rating: GREEN; Changed publications: 28796236, 29913240, 33291420, 32546215
Mendeliome v0.8829 ARF3 Zornitza Stark gene: ARF3 was added
gene: ARF3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ARF3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ARF3 were set to 34346499
Phenotypes for gene: ARF3 were set to Global developmental delay; Intellectual disability; Seizures; Morphological abnormality of the central nervous system
Review for gene: ARF3 was set to AMBER
Added comment: Sakamoto et al (2021 - PMID: 34346499) provide some evidence that monoallelic ARF3 pathogenic variants may be associated with a NDD with brain abnormality.

Using trio exome sequencing, the authors identified 2 individuals with NDD harboring de novo ARF3 variants, namely: NM_001659.2:c.200A>T / p.Asp67Val and c.296G>T / p.Arg99Leu.

Individual 1 (with Asp67Val / age : 4y10m), appeared to be more severelely affected with prenatal onset progressive microcephaly, severe global DD, epilepsy. Upon MRI there was cerebellar and brainstem atrophy. Individual 2 (Arg99Leu / 14y) had severe DD and ID (IQ of 23), epilepsy and upon MRI cerebellar hypoplasia. This subject did not exhibit microcephaly. Common facial features incl. broad nose, full cheeks, small philtrum, strabismus, thin upper lips and abnormal jaw. There was no evidence of systemic involvement in both.

ARF3 encodes ADP-ribosylation factor 3. Adenosine diphosphate ribosylation factors (ARFs) are key proteins for regulation of cargo sorting at the Golgi network, with ARF3 mainly working at the trans-Golgi network. ARFs belong to the small GTP-binding protein (G protein) superfamily. ARF3 switches between an active GTP-bound form and an inactive GDP-bound form, regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) respectively.

Members of the ARF superfamily regulate various aspects of membrane traffic, among others in neurons.

There are 5 homologs of ARF families, divided in 3 classes. ARF3 and ARF1 belong to class I. Monoallelic ARF1 mutations are associated with Periventricular nodular heterotopia 8 (MIM 618185).

In vivo, in vitro and in silico studies for the 2 variants suggest that both impair the Golgi transport system although each variant most likely exerts a different effect (gain-of-function for Arg99Leu vs loss-of-function/dominant-negative for Asp67Val).

This was also reflected in somewhat different phenotype of the subjects with the respective variants. Common features included severe DD, epilepsy and brain abnormalities although Asp67Val was associated with diffuse brain atrophy as well as congenital microcephaly and Arg99Leu with cerebellar hypoplasia.

Evidence to support the effect of each variant include:

Arg99Leu:
Had identical Golgi localization to that of wt
Had increased binding activity with GGA1, a protein recruited by the GTP-bound active form of ARF3 to the TGN membrane (supporting GoF)
In silico structural analysis suggested it may fail to stabilize the conformation of Asp26, resulting in impaired GTP hydrolysis (GoF).
In transgenic fruit flies, evaluation of the ARF3 variant toxicity using the rough eye phenotype this variant was associated with increased severity of the r-e phenotype similar to a previously studied GoF variant (Gln71Leu)

Asp67Val:
Did not show a Golgi-like pattern of localization (similar to Thr31Asn a previously studied dominant-negative variant)
Displayed decreased protein stability
In silico structural analysis suggested that Asp67Val may lead to compromised binding of GTP or GDP (suggestive of LoF)
In transgenic Drosophila eye-specific expression of Asp67Val (similar to Thr31Asn, a known dominant-negative variant) was lethal possibly due to high toxicity in very small amounts in tissues outside the eye.

There is no associated phenotype in OMIM, G2P or SysID.
Sources: Literature
Mendeliome v0.8807 VPS50 Zornitza Stark gene: VPS50 was added
gene: VPS50 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: VPS50 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: VPS50 were set to 34037727
Phenotypes for gene: VPS50 were set to Neonatal cholestatic liver disease; Failure to thrive; Profound global developmental delay; Postnatal microcephaly; Seizures; Abnormality of the corpus callosum
Review for gene: VPS50 was set to AMBER
Added comment: Schneeberger et al (2021 - PMID: 34037727) describe the phenotype of 2 unrelated individuals with biallelic VPS50 variants.

Common features included transient neonatal cholestasis, failure to thrive, severe DD with failure to achieve milestones (last examination at 2y and 2y2m respectively), postnatal microcephaly, seizures (onset at 6m and 25m) and irritability. There was corpus callosum hypoplasia on brain imaging.

Both individuals were homozygous for variants private to each family (no/not known consanguinity applying to each case). The first individual was homozygous for a splicing variant (NM_017667.4:c.1978-1G>T) and had a similarly unaffected sister deceased with no available DNA for testing. The other individual was homozygous for an in-frame deletion (c.1823_1825delCAA / p.(Thr608del)).

VPS50 encodes a critical component of the endosome-associated recycling protein (EARP) complex, which functions in recycling endocytic vesicles back to the plasma membrane [OMIM based on Schindler et al]. The complex contains VPS50, VPS51, VPS52, VPS53, the three latter also being components of GARP (Golgi-associated-retrograde protein) complex. GARP contains VPS54 instead of VPS50 and is required for trafficking of proteins to the trans-golgi network. Thus VPS50 (also named syndetin) and VPS54 function in the EARP and GARP complexes, to define directional movement of their endocytic vesicles [OMIM based on Schindler et al]. The VPS50 subunit is required for recycling of the transferrin receptor.

As discussed by Schneeberger et al (refs provided in text):
- VPS50 has a high expression in mouse and human brain as well as throughout mouse brain development.
- Mice deficient for Vps50 have not been reported. vps50 knockdown in zebrafish results in severe developmental defects of the body axis. Knockout mice for other proteins of the EARP/GARP complex (e.g. Vps52, 53 and 54) display embryonic lethality.

Studies performed by Schneeberger et al included:
- Transcript analysis for the 1st variant demonstrated skipping of ex21 (in patient derived fabriblasts) leading to an in frame deletion of 81 bp (r.1978_2058del) with predicted loss of 27 residues (p.Leu660_Leu686del).
- Similar VPS50 mRNA levels but significant reduction of protein levels (~5% and ~8% of controls) were observed in fibroblasts from patients 1 and 2. Additionally, significant reductions in the amounts of VPS52 and VPS53 protein levels were observed despite mRNA levels similar to controls. Overall, this suggested drastic reduction of functional EARP complex levels.
- Lysosomes appeared to have similar morphology, cellular distribution and likely unaffected function in patient fibroblasts.
- Transferrin receptor recycling was shown to be delayed in patient fibroblasts suggestive of compromise of endocytic-recycling function.

As the authors comment, the phenotype of both individuals with biallelic VPS50 variants overlaps with the corresponding phenotype reported in 15 subjects with biallelic VPS53 or VPS51 mutations notably, severe DD/ID, microcephaly and early onset epilepsy, CC anomalies. Overall, for this group, they propose the term "GARP and/or EARP deficiency disorders".

There is no VPS50-associated phenotype in OMIM or G2P. SysID includes VPS50 among the ID candidate genes.
Sources: Literature
Mendeliome v0.8745 TMEM222 Zornitza Stark Phenotypes for gene: TMEM222 were changed from Intellectual disability; Epilepsy; Microcephaly to Neurodevelopmental disorder with motor and speech delay and behavioural abnormalities, MIM# 619470; Intellectual disability; Epilepsy; Microcephaly
Mendeliome v0.8744 TMEM222 Zornitza Stark edited their review of gene: TMEM222: Changed phenotypes: Neurodevelopmental disorder with motor and speech delay and behavioural abnormalities, MIM# 619470, Intellectual disability, Epilepsy, Microcephaly
Mendeliome v0.8741 TCF7L2 Zornitza Stark changed review comment from: 2 reviews
Konstantinos Varvagiannis (Other)
I don't know

Dias et al (2021 - PMID: 34003604) describe the phenotype of 11 unrelated individuals harboring de novo missense/truncating TCF7L2 variants.

Features included DD in childhood (motor delay in 8/11, speech delay in 11/11), intellectual abilities ranging from average cognitive functioning to mild/moderate ID (the latter observed in 5/11), myopia (6/11) , dysmorphic features, variable orthopedic findings, and neuropsychiatric comorbidities incl. ASD (4/11) / ADHD (4/11).

One additional (12th) individual was excluded from this summary due to concurrent diagnosis of hypoxic-ischemic injury.

TCF7L2 on 10q25 encodes transcription factor 7-like 2, a high mobility group (HMG) box-containing transcription factor. As the authors discuss, the protein mediates canonical Wnt signaling. Secreted Wnt proteins lead to release of beta-catenin (CTNNB1) which after translocation to the nucleus acts with DNA-binding factors incl. TCF7L2 to turn on Wnt-responsive target genes. As a result TCF7L2 acts with beta-catenin as a switch for transcriptional regulation. Multiple alternative spliced TCF7L2 transcripts mediate it's function and specificity of transcriptional repertoire in a variety of tissues and contexts.

Dias et al provide references for its role in nervous system development incl. neurogenesis and thalamic development.

Variants in all cases occurred as de novo events with pLoF (stopgain, frameshift, splicing) ones predicted to lead to NMD. Missense variants occurred in all cases in or adjacent to the HMG box domain [aa 350-417]. 5 different missense variants affecting 3 residues were reported incl. c.1142A>C, c.1143C>G (leading to Asn381Thr/Lys respectively), c.1250G>T (Trp417Leu), c.1267T>C, c.1268A>G (leading to Tyr423His/Cys) [NM_001146274.1].

The gene has a pLI of 0.99-1 gnomAD/ExAC while there is a region of missense constraint encompassing the HMG box domain (the latter is an evolutionary conserved region mediating interactions with DNA).

No phenotypic differences were observed among individuals with pLoF and missense SNVs, and haploinsufficiency is presumed to be the underlying mechanism.

There are no variant or other studies performed, nor any animal models discussed.

In supplementary table 2, the authors provide several references to previous large scale sequencing studies with brief/incomplete descriptions of individuals de novo TCF7L2 variants and neurodevelopmental disorder (ID/ASD - Iossifov, De Rubeis, Lelieveld, McRae/DDD study and many other Refs).

Heterozygous TCF7L2 variants are thought to confer susceptibility to type diabetes mellitus (MIM 125853). Individuals reported by Dias et al did not have endocrine abnormalities including DM. A study by Roychowdhury et al (2021 - PMID: 34265237) suggests that regulatory variants in TCF7L2 are associated with thoracic aneurysm.

There is no other associated phenotype (notably NDD) in OMIM.
G2P includes TCF7L2 in its DD panel (Disease : TC7L2-related DD, Confidence:confirmed, Monoallelic, LoF).
SysID includes this gene within the autism candidate genes and current primary ID genes.; to: Dias et al (2021 - PMID: 34003604) describe the phenotype of 11 unrelated individuals harboring de novo missense/truncating TCF7L2 variants.

Features included DD in childhood (motor delay in 8/11, speech delay in 11/11), intellectual abilities ranging from average cognitive functioning to mild/moderate ID (the latter observed in 5/11), myopia (6/11) , dysmorphic features, variable orthopedic findings, and neuropsychiatric comorbidities incl. ASD (4/11) / ADHD (4/11).

One additional (12th) individual was excluded from this summary due to concurrent diagnosis of hypoxic-ischemic injury.

TCF7L2 on 10q25 encodes transcription factor 7-like 2, a high mobility group (HMG) box-containing transcription factor. As the authors discuss, the protein mediates canonical Wnt signaling. Secreted Wnt proteins lead to release of beta-catenin (CTNNB1) which after translocation to the nucleus acts with DNA-binding factors incl. TCF7L2 to turn on Wnt-responsive target genes. As a result TCF7L2 acts with beta-catenin as a switch for transcriptional regulation. Multiple alternative spliced TCF7L2 transcripts mediate it's function and specificity of transcriptional repertoire in a variety of tissues and contexts.

Dias et al provide references for its role in nervous system development incl. neurogenesis and thalamic development.

Variants in all cases occurred as de novo events with pLoF (stopgain, frameshift, splicing) ones predicted to lead to NMD. Missense variants occurred in all cases in or adjacent to the HMG box domain [aa 350-417]. 5 different missense variants affecting 3 residues were reported incl. c.1142A>C, c.1143C>G (leading to Asn381Thr/Lys respectively), c.1250G>T (Trp417Leu), c.1267T>C, c.1268A>G (leading to Tyr423His/Cys) [NM_001146274.1].

The gene has a pLI of 0.99-1 gnomAD/ExAC while there is a region of missense constraint encompassing the HMG box domain (the latter is an evolutionary conserved region mediating interactions with DNA).

No phenotypic differences were observed among individuals with pLoF and missense SNVs, and haploinsufficiency is presumed to be the underlying mechanism.

There are no variant or other studies performed, nor any animal models discussed.

In supplementary table 2, the authors provide several references to previous large scale sequencing studies with brief/incomplete descriptions of individuals de novo TCF7L2 variants and neurodevelopmental disorder (ID/ASD - Iossifov, De Rubeis, Lelieveld, McRae/DDD study and many other Refs).

Heterozygous TCF7L2 variants are thought to confer susceptibility to type diabetes mellitus (MIM 125853). Individuals reported by Dias et al did not have endocrine abnormalities including DM. A study by Roychowdhury et al (2021 - PMID: 34265237) suggests that regulatory variants in TCF7L2 are associated with thoracic aneurysm.

There is no other associated phenotype (notably NDD) in OMIM.
G2P includes TCF7L2 in its DD panel (Disease : TC7L2-related DD, Confidence:confirmed, Monoallelic, LoF).
SysID includes this gene within the autism candidate genes and current primary ID genes.
Mendeliome v0.8736 PIDD1 Zornitza Stark gene: PIDD1 was added
gene: PIDD1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: PIDD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PIDD1 were set to 28397838; 29302074; 33414379; 34163010
Phenotypes for gene: PIDD1 were set to Global developmental delay; Intellectual disability; Seizures; Autism; Behavioral abnormality; Psychosis; Pachygyria; Lissencephaly; Abnormality of the corpus callosum
Review for gene: PIDD1 was set to GREEN
Added comment: There is enough evidence to include this gene in the current panel with green rating.

Biallelic PIDD1 pathogenic variants have been reported in 26 individuals (11 families) with DD (all), variable degrees of ID (mild to severe), behavioral (eg. aggression/self-mutilation in several, ADHD) and/or psychiatric abnormalities (ASD, psychosis in 5 belonging to 3 families), well-controlled epilepsy is some (9 subjects from 6 families) and MRI abnormalities notably abnormal gyration pattern (pachygyria with predominant anterior gradient) as well as corpus callosum anomalies (commonly thinning) in several. Dysmorphic features have been reported in almost all, although there has been no specific feature suggested.

The first reports on the phenotype associated with biallelic PIDD1 mutations were made by Harripaul et al (2018 - PMID: 28397838) and Hu et al (2019 - PMID: 29302074) [both studies investigating large cohorts of individuals with ID from consanguineous families].

Sheikh et al (2021 - PMID: 33414379) provided details on the phenotype of 15 individuals from 5 families including those from the previous 2 reports and studied provided evidence on the role of PIDD1 and the effect of variants.

Zaki et al (2021 - PMID: 34163010) reported 11 additional individuals from 6 consanguineous families, summarize the features of all subjects published in the literature and review the neuroradiological features of the disorder.

PIDD1 encodes p53-induced death domain protein 1. The protein is part of the PIDDosome, a multiprotein complex also composed of the bipartite linker protein CRADD (also known as RAIDD) and the proform of caspase-2 and induces apoptosis in response to DNA damage.

There are 5 potential PIDD1 mRNA transcript variants with NM_145886.4 corresponding to the longest. Similar to the protein encoded by CRADD, PIDD1 contains a death domain (DD - aa 774-893). Constitutive post-translational processing gives PIDD1-N, PIDD1-C the latter further processed into PIDD1-CC (by auto-cleavage). Serine residues at pos. 446 and 588 are involved in this autoprocessing generating PIDD1-C (aa 446-910) and PIDD1-CC (aa 774-893). The latter is needed for caspase-2 activation.

Most (if not all) individuals belonged to consanguineous families of different origins and harbored pLoF or missense variants.

Variants reported so far include : c.2587C>T; p.Gln863* / c.1909C>T ; p.Arg637* / c.2443C>T / p.Arg815Trp / c.2275-1G>A which upon trap assay was shown to lead to skipping of ex15 with direct splicing form exon14 to the terminal exon 16 (resulting to p.Arg759Glyfs*1 with exlcusion of the entire DD) / c.2584C>T; p.Arg862Trp / c.1340G>A; p.Trp447* / c.2116_2120del; p.Val706His*, c.1564_1565del; p.Gly602fs*26

Evidence so far provided includes:
- Biallelic CRADD variants cause a NDD disorder and a highly similar gyration pattern.
- Confirmation of splicing effect (eg. for c.2275-1G>A premature stop in position 760) or poor expression (NM_145886.3:c.2587C>T; p.Gln863*). Arg815Trp did not affect autoprocessing or protein stability.
- Abnormal localization pattern, loss of interaction with CRADD and failure to activate caspase-2 (MDM2 cleavage assay) [p.Gln863* and Arg815Trp]
- Available expression data from GTEx (PIDD1 having broad expression in multiple tissues, but higher in brain cerebellum) as well as BrainSpan and PsychEncode studies suggesting high coexpression of PIDD1, CRADD and CASP2 in many regions in the developing human brain.
- Variants in other genes encoding proteins interacting with PIDD1 (MADD, FADD, DNAJ, etc) are associated with NDD.

Pidd-1 ko mice (ex3-15 removal) lack however CNS-related phenotypes. These show decreased anxiety but no motor anomalies. This has also been the case with Cradd-/- mice displaying no significant CNS phenotypes without lamination defects.

There is currently no associated phenotype in OMIM. PIDD1 is listed in the DD panel of G2P (PIDD1-related NDD / biallelic / loss of function / probable) . SysID includes PIDD1 among the current primary ID genes.
Sources: Expert Review
Mendeliome v0.8734 COLGALT1 Bryony Thompson gene: COLGALT1 was added
gene: COLGALT1 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: COLGALT1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COLGALT1 were set to 30412317; 33709034; 31759980
Phenotypes for gene: COLGALT1 were set to Brain small vessel disease 3 MIM#618360
Review for gene: COLGALT1 was set to GREEN
Added comment: 3 unrelated cases with biallelic variants, and supporting functional assays. The main features of the cases were porencephalic cysts, leukoencephalopathy, lacunar infarcts, cerebral microbleeds/haemorrhages and calcifications. A null mouse model was embryonic lethal, but had defects in the vascular networks of the embryos.
Sources: Other
Mendeliome v0.8725 RNF168 Zornitza Stark Phenotypes for gene: RNF168 were changed from to RIDDLE syndrome MIM# 611943; Radiosensitivity; Immune Deficiency; Dysmorphic Features; Learning difficulties; Low IgG or IgA; Short stature; mild defect of motor control to ataxia; normal intelligence to learning difficulties; mild facial dysmorphism to microcephaly
Mendeliome v0.8713 RNF168 Danielle Ariti reviewed gene: RNF168: Rating: GREEN; Mode of pathogenicity: None; Publications: 19203578, 21394101, 29255463, 21552324; Phenotypes: RIDDLE syndrome MIM# 611943, Radiosensitivity, Immune Deficiency, Dysmorphic Features, Learning difficulties, Low IgG or IgA, Short stature, mild defect of motor control to ataxia, normal intelligence to learning difficulties, mild facial dysmorphism to microcephaly; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8686 OTX2 Zornitza Stark edited their review of gene: OTX2: Added comment: Three families reported with variants in OTX2 and otocyephaly-dysgnathia. Note variants were inherited in two of the families: in one family, from mother with microphthalmia (recognised OTX2 phenotype) and the other from an unaffected father. Lamb animal model reported.; Changed publications: 24167467, 25589041, 31969185; Changed phenotypes: Microphthalmia, syndromic 5, MIM# 610125, Pituitary hormone deficiency, combined, 6, MIM# 613986, Retinal dystrophy, early-onset, with or without pituitary dysfunction, MIM# 610125, Otocephaly-dysgnathia complex
Mendeliome v0.8683 TP73 Zornitza Stark Phenotypes for gene: TP73 were changed from Cortical malformation; Lissencephaly to Ciliary dyskinesia, primary, 47, and lissencephaly, MIM#619466; Cortical malformation; Lissencephaly
Mendeliome v0.8682 TP73 Zornitza Stark reviewed gene: TP73: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Ciliary dyskinesia, primary, 47, and lissencephaly, MIM#619466; Mode of inheritance: None
Mendeliome v0.8669 MAST3 Zornitza Stark gene: MAST3 was added
gene: MAST3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MAST3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MAST3 were set to 34185323
Phenotypes for gene: MAST3 were set to Developmental and epileptic encephalopathy
Review for gene: MAST3 was set to GREEN
Added comment: Eleven individuals reported with de novo missense variants in the STK domain, including two recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. Limited functional data.
Sources: Literature
Mendeliome v0.8648 MCM4 Zornitza Stark Phenotypes for gene: MCM4 were changed from to Immunodeficiency 54 MIM# 609981; Decreased NK cell number and function; Viral infections (EBV, HSV, VZV); Short stature; B cell lymphoma; Adrenal failure; Failure to thrive; Microcephaly; Increased chromosomal breakage; Hyperpigmentation; Lymphadenopathy
Mendeliome v0.8644 MCM4 Zornitza Stark reviewed gene: MCM4: Rating: AMBER; Mode of pathogenicity: None; Publications: 22354167, 22354170, 22499342; Phenotypes: Immunodeficiency 54 MIM# 609981, Decreased NK cell number and function, Viral infections (EBV, HSV, VZV), Short stature, B cell lymphoma, Adrenal failure, Failure to thrive, Microcephaly, Increased chromosomal breakage, Hyperpigmentation, Lymphadenopathy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8630 ERBB3 Zornitza Stark Phenotypes for gene: ERBB3 were changed from Lethal congenital contractural syndrome 2, MIM# 607598; Hirschsprung disease; Arthrogryposis; Complex neurocristinopathy to Lethal congenital contractural syndrome 2, MIM# 607598; Visceral neuropathy, familial, 1, autosomal recessive, MIM# 243180; Hirschsprung disease; Arthrogryposis; Complex neurocristinopathy
Mendeliome v0.8629 ERBB3 Zornitza Stark edited their review of gene: ERBB3: Changed phenotypes: Lethal congenital contractural syndrome 2, MIM# 607598, Visceral neuropathy, familial, 1, autosomal recessive, MIM# 243180, Complex neurocristinopathy
Mendeliome v0.8606 VRK1 Zornitza Stark changed review comment from: Complex phenotype with mixed peripheral and central neurological features. Two families reported where PCH was prominent and accompanied by ataxia. At least three families also reported where peripheral neuropathy dominated the clinical picture without PCH/ataxia.; to: Complex phenotype with mixed peripheral and central neurological features. Two families reported where PCH was prominent and accompanied by ataxia. At least three families also reported where peripheral neuropathy dominated the clinical picture without PCH/ataxia.

Further delineation of phenotype 2021:
PMID 34169149: expanding spectrum of neurologic disorders associated with VRK1. Two Hispanic individuals, one homozygous (R321C: VUS and LP/P in ClinVar) and one cHet (R321C+V236M, latter P and more recently VUS in ClinVar), with slowly progressive weakness and a clinical syndrome consistent with adult-onset spinal muscular atrophy WITHOUT pontocerebellar atrophy. No hom in gnomAD and both have been reported in cHet individuals with other features: R321C in association with adult-onset amyotrophic lateral sclerosis and V236M with rapidly progressive sensorimotor polyneuropathy and microcephaly. Authors suggest PMID 26583493 and 31837156 have similar reports. PMID 26583493 reports a 32yo Hispanic individual, cHet H119R+R321C, with early-onset amyotrophic lateral sclerosis, 5 years progressive weakness. PMID 31837156 reports two patients with adult-onset length-dependent motor neuropathy from unrelated consanguineous families of Moroccan Jewish descent, both hom for R387H.
Mendeliome v0.8601 CLCN3 Kristin Rigbye gene: CLCN3 was added
gene: CLCN3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CLCN3 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: CLCN3 were set to PMID: 34186028
Phenotypes for gene: CLCN3 were set to Neurodevelopmental disorder
Mode of pathogenicity for gene: CLCN3 was set to Other
Review for gene: CLCN3 was set to GREEN
Added comment: 11 individuals reported, 9 that carried 8 different rare heterozygous missense variants in CLCN3, and 2 siblings that were homozygous for an NMD-predicted frameshift variant likely abolishing ClC-3 function. All missense variants were confirmed to be de novo in eight individuals for whom parental data was available.

The 11 individuals in the cohort share clinical features of variable severity. All 11 have GDD or ID and dysmorphic features, and a majority has mood or behavioural disorders and structural brain abnormalities:
- Structural brain abnormalities on MRI (9/11) included partial or full agenesis of the corpus callosum (6/9), disorganized cerebellar folia (4/9), delayed myelination (3/9), decreased white matter volume (3/9), pons hypoplasia (3/9), and dysmorphic dentate nuclei (3/9). Six of those with brain abnormalities also presented with seizures.
- Nine have abnormal vision, including strabismus in four and inability to fix or follow in the two with homozygous loss-of-function variants.
- Hypotonia ranging from mild to severe was reported in 7 of the 11 individuals.
- Six have mood or behavioural disorders, particularly anxiety (3/6).
- Consistent dysmorphic facial features included microcephaly, prominent forehead, hypertelorism, down-slanting palpebral fissures, full cheeks, and micrognathia.

The severity of disease in the two siblings with homozygous disruption of ClC-3 is consistent with the drastic phenotype seen in Clcn3 KO mice. The disease was more severe in two siblings carrying homozygous loss-of-function variants with the presence of GDD, absent speech, seizures, and salt and pepper fundal pigmentation in both individuals, with one deceased at 14 months of age. The siblings also had significant neuroanatomical findings including diffusely decreased white matter volume, thin corpora callosa, small hippocampi, and disorganized cerebellar folia. Supporting biallelic inheritance for LoF variants, disruption of mouse Clcn3 results in drastic neurodegeneration with loss of the hippocampus a few months after birth and early retinal degeneration. Clcn3−/− mice display severe neurodegeneration, whereas heterozygous Clcn3+/− mice appear normal.

Patch-clamp studies were used to investigate four of the missense variants. These suggested a gain of function in two variants with increased current in HEK cells, however they also showed reduced rectification of voltage and a loss of transient current, plus decreased current amplitude, glycosylation and surface expression when expressed in oocytes, and were suspected to interfere with channel gating and a negative feedback mechanism. These effects were also shown to vary depending on pH levels. The current of the remaining two variants did not differ from WT. For heterozygous missense variants, the disruption induced may be at least partially conferred to mutant/WT homodimers and mutant/ClC-4 heterodimers.

Both loss and gain of function in this gene resulted in the same phenotype.
Sources: Literature
Mendeliome v0.8601 TNPO2 Elena Savva gene: TNPO2 was added
gene: TNPO2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TNPO2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: TNPO2 were set to PMID: 34314705
Phenotypes for gene: TNPO2 were set to Developmental delays, neurologic deficits and dysmorphic features
Mode of pathogenicity for gene: TNPO2 was set to Other
Review for gene: TNPO2 was set to GREEN
Added comment: PMID: 34314705 - all de novo missense variants with intellectual disability (9/9), speech impairment (15/15), motor impairment (15/15), ophthalmologic abnormalities (10/15), muscle tone abnormalities (11/15, primarily hypotonia), seizures (6/15, febrile to non-febrile), microcephaly (5/15) and MRI anomalies (7/13, 3/13 had cerebellar hypoplasia/dysplasia).

Null fly model was homozygous lethal, no obvious phenotypes in heterozygotes. Upregulated gene expression also resulted in lethality. Overexpression of some human variants in fly models resulted in "toxicity" and phenotypic defects, authors speculate two variants are GOF, 1 variant is LOF.

gnomAD: minimal PTCs present
Sources: Literature
Mendeliome v0.8600 AP1G1 Danielle Ariti gene: AP1G1 was added
gene: AP1G1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: AP1G1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: AP1G1 were set to 34102099
Phenotypes for gene: AP1G1 were set to Neurodevelopmental disorder (NDD); Intellectual Disability; Epilepsy
Mode of pathogenicity for gene: AP1G1 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: AP1G1 was set to GREEN
Added comment: Two bi-allelic homozygous missense variants were found in two distinct families with Italian and Pakistani origins; homozygous missense variants.

Eight de novo heterozygous variants were identified in nine isolated affected individuals from nine families; including five missense, two frameshift, and one intronic variant that disrupts the canonical splice acceptor site.

Knocking out AP1G1 Zebrafish model resulted in severe developmental abnormalities and increased lethality.

All individuals had neurodevelopmental disorder (NDD) including global developmental delay and ID, which varied in severity from mild to severe.
Sources: Literature
Mendeliome v0.8598 SPTBN1 Belinda Chong changed review comment from: PMID: 34211179
- Heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features.
- Show that these SPTBN1 variants lead to effects that affect βII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics.

PMID: 33847457
- Common features include global developmental delays, intellectual disability, and behavioral disturbances. Autistic features (4/6) and epilepsy (2/7) or abnormal electroencephalogram without overt seizures (1/7) were present in a subset.
- identified seven unrelated individuals with heterozygous SPTBN1 variants: two with de novo missense variants and five with predicted loss-of-function variants (found to be de novo in two, while one was inherited from a mother with a history of learning disabilities).
- Identification of loss-of-function variants suggests a haploinsufficiency mechanism, but additional functional studies are required to fully elucidate disease pathogenesis.
Sources: Literature; to: PMID: 34211179
- Heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures (9/29); behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features.
- Show that these SPTBN1 variants lead to effects that affect βII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics.

PMID: 33847457
- Common features include global developmental delays, intellectual disability, and behavioral disturbances. Autistic features (4/6) and epilepsy (2/7) or abnormal electroencephalogram without overt seizures (1/7) were present in a subset.
- identified seven unrelated individuals with heterozygous SPTBN1 variants: two with de novo missense variants and five with predicted loss-of-function variants (found to be de novo in two, while one was inherited from a mother with a history of learning disabilities).
- Identification of loss-of-function variants suggests a haploinsufficiency mechanism, but additional functional studies are required to fully elucidate disease pathogenesis.
Sources: Literature
Mendeliome v0.8586 SEMA3D Ain Roesley gene: SEMA3D was added
gene: SEMA3D was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SEMA3D was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: SEMA3D were set to 34159400
Penetrance for gene: SEMA3D were set to unknown
Review for gene: SEMA3D was set to RED
Added comment: 1x de novo missense in a proband with short stature, absent distal phalanges of the 5th fingers and toes, and dysplastic middle phalanges of the toes.

However, there is 4 hets in gnomAD v2
Sources: Literature
Mendeliome v0.8586 TP73 Ee Ming Wong reviewed gene: TP73: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 34077761; Phenotypes: chronic airway disease, brain malformation, lissencephaly; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.8586 SPTBN1 Belinda Chong gene: SPTBN1 was added
gene: SPTBN1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SPTBN1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: SPTBN1 were set to PMID: 34211179; PMID: 33847457
Phenotypes for gene: SPTBN1 were set to Neurodevelopmental Syndrome
Review for gene: SPTBN1 was set to GREEN
Added comment: PMID: 34211179
- Heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features.
- Show that these SPTBN1 variants lead to effects that affect βII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics.

PMID: 33847457
- Common features include global developmental delays, intellectual disability, and behavioral disturbances. Autistic features (4/6) and epilepsy (2/7) or abnormal electroencephalogram without overt seizures (1/7) were present in a subset.
- identified seven unrelated individuals with heterozygous SPTBN1 variants: two with de novo missense variants and five with predicted loss-of-function variants (found to be de novo in two, while one was inherited from a mother with a history of learning disabilities).
- Identification of loss-of-function variants suggests a haploinsufficiency mechanism, but additional functional studies are required to fully elucidate disease pathogenesis.
Sources: Literature
Mendeliome v0.8574 ERBB3 Zornitza Stark edited their review of gene: ERBB3: Changed phenotypes: Lethal congenital contractural syndrome 2, MIM# 607598, Complex neurocristinopathy
Mendeliome v0.8574 ERBB3 Zornitza Stark Phenotypes for gene: ERBB3 were changed from Lethal congenital contractural syndrome 2, MIM# 607598; Hirschsprung disease; Arthrogryposis; Neurodevelopmental disorder with gut dysmotility to Lethal congenital contractural syndrome 2, MIM# 607598; Hirschsprung disease; Arthrogryposis; Complex neurocristinopathy
Mendeliome v0.8573 ERBB3 Zornitza Stark Phenotypes for gene: ERBB3 were changed from Lethal congenital contractural syndrome 2, MIM# 607598; Hirschsprung disease; Arthrogryposis to Lethal congenital contractural syndrome 2, MIM# 607598; Hirschsprung disease; Arthrogryposis; Neurodevelopmental disorder with gut dysmotility
Mendeliome v0.8571 ERBB3 Zornitza Stark changed review comment from: Two families reported with contractures, positional approach used in gene discovery (2007). Another family reported more recently with a multi-system disorder but without contractures.; to: Lethal congenital contractual syndrome: Two families reported with contractures, positional approach used in gene discovery (2007). Another family reported more recently with a multi-system disorder but without contractures.
Mendeliome v0.8571 ERBB3 Zornitza Stark edited their review of gene: ERBB3: Added comment: PMID 33497358: 6 individuals from 4 unrelated families reported with severe gut dysmotility and neurodevelopmental disorder. Note variants in this gene have also recently been linked to Hirschsprung's disease.; Changed rating: GREEN; Changed publications: 17701904, 31752936, 33497358; Changed phenotypes: Lethal congenital contractural syndrome 2, MIM# 607598, Neurodevelopmental disorder with gut dysmotility
Mendeliome v0.8565 TYMP Zornitza Stark Phenotypes for gene: TYMP were changed from to Mitochondrial DNA depletion syndrome 1 (MNGIE type), MIM# 603041; MNGIE: ptosis, ophthalmoplegia & ophthalmoparesis, hearing loss, neuropathy
Mendeliome v0.8562 TYMP Zornitza Stark reviewed gene: TYMP: Rating: GREEN; Mode of pathogenicity: None; Publications: 9924029, 14757860; Phenotypes: Mitochondrial DNA depletion syndrome 1 (MNGIE type), MIM# 603041, MNGIE: ptosis, ophthalmoplegia & ophthalmoparesis, hearing loss, neuropathy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8499 NUAK2 Zornitza Stark Phenotypes for gene: NUAK2 were changed from Anencephaly to Anencephaly 2, MIM# 619452
Mendeliome v0.8498 NUAK2 Zornitza Stark edited their review of gene: NUAK2: Changed phenotypes: Anencephaly 2, MIM# 619452
Mendeliome v0.8498 DBR1 Zornitza Stark Phenotypes for gene: DBR1 were changed from Viral infections of the brainstem to {Encephalitis, acute, infection (viral)-induced, susceptibility to, 11}, MIM# 619441; Viral infections of the brainstem
Mendeliome v0.8497 DBR1 Zornitza Stark edited their review of gene: DBR1: Changed phenotypes: {Encephalitis, acute, infection (viral)-induced, susceptibility to, 11}, MIM# 619441, Viral infections of the brainstem
Mendeliome v0.8496 RRP7A Zornitza Stark Phenotypes for gene: RRP7A were changed from Microcephaly to Microcephaly 28, primary, autosomal recessive MIM#619453
Mendeliome v0.8495 RRP7A Zornitza Stark edited their review of gene: RRP7A: Changed phenotypes: Microcephaly 28, primary, autosomal recessive MIM#619453
Mendeliome v0.8462 RAD21 Zornitza Stark Phenotypes for gene: RAD21 were changed from ?Mungan syndrome, 611376; Cornelia de Lange syndrome 4, 614701; Holoprocencephaly to Mungan syndrome, 611376; Cornelia de Lange syndrome 4, 614701; Holoprocencephaly
Mendeliome v0.8449 ZNF148 Natalie Tan gene: ZNF148 was added
gene: ZNF148 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZNF148 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ZNF148 were set to PMID: 27964749
Phenotypes for gene: ZNF148 were set to Global developmental delay, absent or hypoplastic corpus callosum, and dysmorphic facies; MIM#617260
Review for gene: ZNF148 was set to GREEN
Added comment: Four unrelated individuals with de novo heterozygous nonsense or frameshift mutations (all resulting in premature termination codons in the last exon of ZNF148, predicted to escape nonsense-mediated mRNA decay and result in expression of a truncated protein). Phenotype characterised by underdevelopment of the corpus callosum, mild to moderate developmental delay and ID, variable microcephaly or mild macrocephaly, short stature, feeding problems, facial dysmorphisms, and cardiac and renal malformations. No functional studies to date.
Sources: Literature
Mendeliome v0.8407 KIF7 Zornitza Stark Phenotypes for gene: KIF7 were changed from to Joubert syndrome 12, MIM# 200990; Acrocallosal syndrome, MIM# 200990; MONDO:0008708; Hydrolethalus syndrome 2, MIM# 614120
Mendeliome v0.8392 POLG2 Zornitza Stark Phenotypes for gene: POLG2 were changed from to Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 4, MIM# 610131; Mitochondrial DNA depletion syndrome 16 , MIM# 618528
Mendeliome v0.8389 POLG2 Zornitza Stark reviewed gene: POLG2: Rating: GREEN; Mode of pathogenicity: None; Publications: 16685652, 21555342, 27592148, 31778857; Phenotypes: Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 4, MIM# 610131, Mitochondrial DNA depletion syndrome 16 , MIM# 618528; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8361 CEP55 Zornitza Stark Phenotypes for gene: CEP55 were changed from to Multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia, and hydranencephaly, MIM# 236500
Mendeliome v0.8358 CEP55 Zornitza Stark reviewed gene: CEP55: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia, and hydranencephaly, MIM# 236500; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8333 KIF20A Zornitza Stark gene: KIF20A was added
gene: KIF20A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KIF20A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: KIF20A were set to 29357359
Phenotypes for gene: KIF20A were set to Cardiomyopathy, familial restrictive, 6, MIM# 619433
Review for gene: KIF20A was set to GREEN
Added comment: Single family reported, two affected sibs, perinatal lethal cardiomyopathy, compound het variants in this gene.
Sources: Literature
Mendeliome v0.8318 ATG7 Zornitza Stark changed review comment from: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The ore severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature; to: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The more severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature
Mendeliome v0.8318 ATG7 Zornitza Stark changed review comment from: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The ore severely affected individuals had spastic paraplegia and inability to walk.
Sources: Literature; to: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The ore severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature
Mendeliome v0.8317 ATG7 Zornitza Stark gene: ATG7 was added
gene: ATG7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATG7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ATG7 were set to 34161705
Phenotypes for gene: ATG7 were set to Spinocerebellar ataxia, SCAR31, MIM#619422
Review for gene: ATG7 was set to GREEN
Added comment: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The ore severely affected individuals had spastic paraplegia and inability to walk.
Sources: Literature
Mendeliome v0.8312 C2orf69 Zornitza Stark gene: C2orf69 was added
gene: C2orf69 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: C2orf69 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: C2orf69 were set to 34038740; 33945503
Phenotypes for gene: C2orf69 were set to Combined oxidative phosphorylation deficiency-53 (COXPD53), MIM#619423
Review for gene: C2orf69 was set to GREEN
Added comment: PMID 34038740: 20 affected children from 8 unrelated families reported, presenting with fatal syndrome consisting of severe autoinflammation and progredient leukoencephalopathy with recurrent seizures; 12 of these subjects, whose DNA was available, segregated homozygous loss-of-function C2orf69 variants. Endogenous C2ORF69 was found to be (1) loosely bound to mitochondria, (2) affects mitochondrial membrane potential and oxidative respiration in cultured neurons, and (3) controls the levels of the glycogen branching enzyme 1 (GBE1) consistent with a glycogen-storage-associated mitochondriopathy. Zebrafish model.

PMID 33945503: 8 individuals from 5 families reported with muscle hypotonia, developmental delay, progressive microcephaly, and brain MRI abnormalities. Age at onset ranged from birth to 6 months of age. Six patients had vision impairment, liver abnormalities, inflammation/inflammatory arthritis, and 5 patients had seizures.
Sources: Literature
Mendeliome v0.8293 RAB3GAP1 Zornitza Stark changed review comment from: Rare autosomal recessive syndrome characterized by microcephaly, microphthalmia, microcornea, congenital cataracts, optic atrophy, cortical dysplasia, in particular corpus callosum hypoplasia, severe mental retardation, spastic diplegia, and hypogonadism. Multiple families reported.; to: Warburg micro: Rare autosomal recessive syndrome characterized by microcephaly, microphthalmia, microcornea, congenital cataracts, optic atrophy, cortical dysplasia, in particular corpus callosum hypoplasia, severe ID, spastic diplegia, and hypogonadism. Multiple families reported.

Martsolf syndrome is characterised by cataracts, mild to severe ID, dysmorphic features. Two families reported.
Mendeliome v0.8292 RING1 Eleanor Williams gene: RING1 was added
gene: RING1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RING1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: RING1 were set to 29386386
Phenotypes for gene: RING1 were set to microcephaly; intellectual disability
Review for gene: RING1 was set to RED
Added comment: Not associated with any phenotype in OMIM.

PMID: 29386386 - Pierce et al 2018 - report a 13 yo female with a de novo RING1 p.R95Q variant and syndromic neurodevelopmental disabilities. Early motor and language development were normal but were delayed after the first year of life. Cognitive testing showed a verbal IQ of 55 and a visual performance IQ of 63. Head circumference at birth was -4.9 SD, and -4.2 SD at age 13 which falls into the severe microcephaly category. C. elegans with either the missense mutation or complete knockout of spat-3 (the suggested RING1 ortholog) were defective in monoubiquitylation of histone H2A and had defects in neuronal migration and axon guidance.
Sources: Literature
Mendeliome v0.8292 IRX5 Eleanor Williams changed review comment from: Associated with Hamamy syndrome #611174 (AR) in OMIM. Hamamy syndrome is characterised by craniofacial dysmorphism, hearing loss, skeletal anomalies, microcytic hypochromic anemia and congenital heart defects. Severe myopia has also been reported. Homozygous missense variants in IRX5 were reported in 2 families with this condition.

Cone dystrophy
-------------------
PMID: 33891002 - Khol et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments.

Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected.

They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.; to: Associated with Hamamy syndrome #611174 (AR) in OMIM. Hamamy syndrome is characterised by craniofacial dysmorphism, hearing loss, skeletal anomalies, microcytic hypochromic anemia and congenital heart defects. Severe myopia has also been reported. Homozygous missense variants in IRX5 were reported in 2 families with this condition (PMID: 22581230;17230486)

Duplication of gene
-------------------
PMID: 33891002 - Kohl et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments.

Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected.

They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.

Loss of function/gene
---------
PMID: 28041643 - Carss et al 2017 - screened a cohort of 722 individuals with inherited retinal disease using WES/WGS. 1 case reported with a biallelic deletion in IRX5 reported which leads to a frameshift ENST00000394636.4; c.1362_1366delTAAAG, p.Lys455ProfsTer19 in a patient with retinitis pigmentosa.

PMID: 32045705 - Apuzzo et al 2020 - report 2 cases of loss of a region in 16q12.1q21 which encompasses IRX5 and IRX6 and many other genes, which together with 3 other previous reports of deletions in this region help define a syndrome with features that include dysmorphic features, short stature, microcephaly, global developmental delay/intellectual disability, autism spectrum disorder (ASD) and ocular abnormalities (nystagmus and strabismus).
Mendeliome v0.8289 HID1 Zornitza Stark gene: HID1 was added
gene: HID1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HID1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HID1 were set to 33999436
Phenotypes for gene: HID1 were set to Syndromic infantile encephalopathy; Hypopituitarism
Review for gene: HID1 was set to GREEN
Added comment: 7 individuals from 6 unrelated families reported. Clinical features included: hypopituitarism in combination with brain atrophy, thin corpus callosum, severe developmental delay, visual impairment, and epilepsy
Sources: Literature
Mendeliome v0.8272 ATP1A2 Zornitza Stark Phenotypes for gene: ATP1A2 were changed from to Alternating hemiplegia of childhood 1, MIM#104290; Hydrops fetalis, microcephaly, arthrogryposis, extensive cortical malformations; Developmental and epileptic encephalopathy, polymicrogyria
Mendeliome v0.8269 ATP1A2 Zornitza Stark edited their review of gene: ATP1A2: Added comment: Association with alternating hemiplegia is well established.

PMID 31608932: Three individuals from two unrelated families reported with balleliic LoF variants in this gene and hydrops/congenital abnormalities. Mouse model is perinatal lethal.

PMID 33880529: six individuals with de novo missense variants reported and DD/EE/PMG.; Changed rating: GREEN; Changed publications: 31608932, 33880529; Changed phenotypes: Alternating hemiplegia of childhood 1, MIM#104290, Hydrops fetalis, microcephaly, arthrogryposis, extensive cortical malformations, Developmental and epileptic encephalopathy, polymicrogyria; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8268 ATP1A3 Zornitza Stark edited their review of gene: ATP1A3: Changed phenotypes: Alternating hemiplegia of childhood 2, MIM# 614820, CAPOS syndrome, MIM# 601338, Dystonia-12, MIM# 128235, Polymicrogyria, Developmental and epileptic encephalopathy
Mendeliome v0.8262 DNM1 Zornitza Stark Phenotypes for gene: DNM1 were changed from to Developmental and epileptic encephalopathy 31, OMIM:616346
Mendeliome v0.8259 DNM1 Zornitza Stark reviewed gene: DNM1: Rating: GREEN; Mode of pathogenicity: None; Publications: 25262651, 27066543, 33372033, 34172529; Phenotypes: Developmental and epileptic encephalopathy 31, OMIM:616346; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8229 ATP9A Arina Puzriakova gene: ATP9A was added
gene: ATP9A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATP9A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ATP9A were set to http://dx.doi.org/10.1136/jmedgenet-2021-107843
Phenotypes for gene: ATP9A were set to Neurodevelopmental delay; Postnatal microcephaly; Failure to thrive; Gastrointestinal symptoms
Review for gene: ATP9A was set to AMBER
Added comment: Vogt et al. 2021 report on 3 individuals from 2 unrelated consanguineous families with different homozygous truncating variants in ATP9A, presenting with DD/ID of variable degree (2 mild, 1 severe), postnatal microcephaly (OFC range: −2.33 SD to −3.58 SD), failure to thrive, and gastrointestinal symptoms. Patient-derived fibroblasts showed reduced expression of ATP9A, and consistent with previous findings also overexpression of interacting partners, ARPC3 and SNX3.
Sources: Literature
Mendeliome v0.8201 NUF2 Dean Phelan gene: NUF2 was added
gene: NUF2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NUF2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: NUF2 were set to PMID: 33721060
Phenotypes for gene: NUF2 were set to microcephaly; short stature; bilateral vocal cord paralysis; micrognathia; atrial septal defect
Review for gene: NUF2 was set to RED
Added comment: PMID: 33721060 - de novo missense variant identified in one male patient with microcephaly and short stature, with additional features, such as bilateral vocal cord paralysis, micrognathia and atrial septal defect.
Sources: Literature
Mendeliome v0.8201 ERGIC3 Elena Savva gene: ERGIC3 was added
gene: ERGIC3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ERGIC3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ERGIC3 were set to PMID: 33710394; 31585110
Phenotypes for gene: ERGIC3 were set to Intellectual disability
Review for gene: ERGIC3 was set to AMBER
Added comment: PMID: 33710394 - two homozygous sibs with mild ID, a novel canonical splice (c.717+1G>A). Absent in gnomAD, no splice studies. Classed as a VUS.

PMID: 31585110 - 1 hom (p.Gln233Argfs*10) in a male 8yo with Growth retardation, Microcephaly, Learning disability, Facial dysmorphism, Abnormal pigmentation.
Sources: Literature
Mendeliome v0.8176 SNORA31 Zornitza Stark Phenotypes for gene: SNORA31 were changed from Susceptibility to HSV1 encephalitis to {Encephalopathy, acute, infection-induced (herpes-specific), susceptibility to, 1}, MIM# 619396
Mendeliome v0.8175 SNORA31 Zornitza Stark edited their review of gene: SNORA31: Changed phenotypes: {Encephalopathy, acute, infection-induced (herpes-specific), susceptibility to, 1}, MIM# 619396
Mendeliome v0.8130 C21orf2 Zornitza Stark changed review comment from: Axial spondylometaphyseal dysplasia (SMDAX) is characterized by postnatal growth failure, including rhizomelic short stature in early childhood that evolves into short trunk in late childhood, and thoracic hypoplasia that may cause mild to moderate respiratory problems in the neonatal period and later susceptibility to airway infection. Impaired visual acuity comes to medical attention in early life and vision rapidly deteriorates. Retinal changes are diagnosed as retinitis pigmentosa or pigmentary retinal degeneration on funduscopic examination and as cone-rod dystrophy on ERG. Radiologic hallmarks include short ribs with flared and cupped anterior ends, mild spondylar dysplasia, lacy iliac crests, and metaphyseal irregularities essentially confined to the proximal femora. At least 7 unrelated families reported.

7 families also reported with isolated retinal dystrophy.; to: Axial spondylometaphyseal dysplasia (SMDAX) is characterized by postnatal growth failure, including rhizomelic short stature in early childhood that evolves into short trunk in late childhood, and thoracic hypoplasia that may cause mild to moderate respiratory problems in the neonatal period and later susceptibility to airway infection. Impaired visual acuity comes to medical attention in early life and vision rapidly deteriorates. Retinal changes are diagnosed as retinitis pigmentosa or pigmentary retinal degeneration on funduscopic examination and as cone-rod dystrophy on ERG. Radiologic hallmarks include short ribs with flared and cupped anterior ends, mild spondylar dysplasia, lacy iliac crests, and metaphyseal irregularities essentially confined to the proximal femora. At least 7 unrelated families reported.

7 families also reported with isolated retinal dystrophy.

New HGNC approved name is CFAP410.
Mendeliome v0.8106 PPP2R1A Zornitza Stark changed review comment from: Intellectual disability with variable other features, including CC abnormalities and microcephaly.; to: Intellectual disability with variable other features, including CC abnormalities and microcephaly/macrocephaly.
Mendeliome v0.8106 PPP2R1A Zornitza Stark Phenotypes for gene: PPP2R1A were changed from to Mental retardation, autosomal dominant 36, MIM#616362; Microcephaly-corpus callosum hypoplasia-intellectual disability-facial dysmorphism syndrome, MONDO:0014605
Mendeliome v0.8103 PPP2R1A Zornitza Stark reviewed gene: PPP2R1A: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Mental retardation, autosomal dominant 36, MIM#616362, Microcephaly-corpus callosum hypoplasia-intellectual disability-facial dysmorphism syndrome, MONDO:0014605; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8049 ARCN1 Zornitza Stark Phenotypes for gene: ARCN1 were changed from to Short stature, rhizomelic, with microcephaly, micrognathia, and developmental delay (MIM#617164)
Mendeliome v0.8046 ARCN1 Zornitza Stark reviewed gene: ARCN1: Rating: GREEN; Mode of pathogenicity: None; Publications: 27476655, 33154040; Phenotypes: Short stature, rhizomelic, with microcephaly, micrognathia, and developmental delay (MIM#617164); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8040 SLC13A5 Zornitza Stark Phenotypes for gene: SLC13A5 were changed from to Developmental and epileptic encephalopathy 25, with amelogenesis imperfecta MIM#615905; MONDO:0014392
Mendeliome v0.8037 SLC13A5 Zornitza Stark reviewed gene: SLC13A5: Rating: GREEN; Mode of pathogenicity: None; Publications: 24995870, 26384929; Phenotypes: Developmental and epileptic encephalopathy 25, with amelogenesis imperfecta MIM#615905, MONDO:0014392; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7985 NIID Bryony Thompson STR: NIID was added
STR: NIID was added to Mendeliome. Sources: Literature
Mode of inheritance for STR: NIID was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: NIID were set to 31178126; 31332381; 31819945; 33887199; 33943039; 32250060; 31332380; 32852534; 32989102
Phenotypes for STR: NIID were set to Neuronal intranuclear inclusion disease MIM#603472; Tremor, hereditary essential, 6 MIM#618866
Review for STR: NIID was set to GREEN
STR: NIID was marked as clinically relevant
Added comment: NM_001364012.2:c.-164GGC[(66_517)]
Large number of families and sporadic cases reported with expansions, with a range of neurodegenerative phenotypes, including: dementia, Parkinsonism/tremor, peripheral neuropathy, leukoencephalopathy, myopathy, motor neurone disease.
Normal repeat range: 7-60
Pathogenic repeat range: >=61-500
Mechanism of disease is translation of repeat expansion into a toxic polyglycine protein, identified in both mouse models and tissue samples from affected individuals.
Sources: Literature
Mendeliome v0.7981 CNTNAP1 Zornitza Stark Phenotypes for gene: CNTNAP1 were changed from to Hypomyelinating neuropathy, congenital, 3, MIM#618186; Lethal congenital contracture syndrome 7, MIM# 616286
Mendeliome v0.7978 CNTNAP1 Zornitza Stark reviewed gene: CNTNAP1: Rating: GREEN; Mode of pathogenicity: None; Publications: 28374019, 29511323, 27668699; Phenotypes: Hypomyelinating neuropathy, congenital, 3, MIM#618186, Lethal congenital contracture syndrome 7, MIM# 616286; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7978 GLDN Zornitza Stark Phenotypes for gene: GLDN were changed from to Lethal congenital contracture syndrome 11, MIM# 617194; MONDO:0014965
Mendeliome v0.7975 GLDN Zornitza Stark reviewed gene: GLDN: Rating: GREEN; Mode of pathogenicity: None; Publications: 27616481, 32812332, 28726266; Phenotypes: Lethal congenital contracture syndrome 11, MIM# 617194, MONDO:0014965; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7974 ZBTB42 Zornitza Stark gene: ZBTB42 was added
gene: ZBTB42 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: ZBTB42 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZBTB42 were set to 25055871
Phenotypes for gene: ZBTB42 were set to Lethal congenital contracture syndrome 6, MIM# 616248
Review for gene: ZBTB42 was set to AMBER
Added comment: Homozygous missense variant reported in a family with three stillbirths and a phenotype consistent with LCCS. Supportive zebrafish model.
Sources: Expert Review
Mendeliome v0.7973 MYBPC1 Zornitza Stark Phenotypes for gene: MYBPC1 were changed from to Arthrogryposis, distal, type 1B 614335; Lethal congenital contracture syndrome 4, MIM# 614915; Myopathy, congenital, with tremor MIM#618524
Mendeliome v0.7970 MYBPC1 Zornitza Stark reviewed gene: MYBPC1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20045868, 22610851, 23873045, 26661508, 31264822, 31025394; Phenotypes: Arthrogryposis, distal, type 1B 614335, Lethal congenital contracture syndrome 4, MIM# 614915, Myopathy, congenital, with tremor MIM#618524; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7970 ERBB3 Zornitza Stark Phenotypes for gene: ERBB3 were changed from Lethal congenital contractural syndrome 2, MIM# 607598 to Lethal congenital contractural syndrome 2, MIM# 607598; Hirschsprung disease; Arthrogryposis
Mendeliome v0.7968 ADCY6 Zornitza Stark Phenotypes for gene: ADCY6 were changed from Lethal congenital contracture syndrome 8, OMIM # 616287 to Lethal congenital contracture syndrome 8, OMIM # 616287; MONDO:0014570
Mendeliome v0.7967 ADGRG6 Zornitza Stark edited their review of gene: ADGRG6: Changed phenotypes: Lethal congenital contracture syndrome 9, MIM #616503, MONDO:0014670
Mendeliome v0.7958 CHRNG Zornitza Stark Phenotypes for gene: CHRNG were changed from to Escobar syndrome, MIM# 265000; Multiple pterygium syndrome, lethal type, MIM# 253290; MONDO:0009926; MONDO:0009668
Mendeliome v0.7955 CHRNG Zornitza Stark reviewed gene: CHRNG: Rating: GREEN; Mode of pathogenicity: None; Publications: 16826520, 16826531, 22167768; Phenotypes: Escobar syndrome, MIM# 265000, Multiple pterygium syndrome, lethal type, MIM# 253290, MONDO:0009926, MONDO:0009668; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7951 KIF17 Zornitza Stark gene: KIF17 was added
gene: KIF17 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KIF17 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: KIF17 were set to 33922911; 30458707; 28341548
Phenotypes for gene: KIF17 were set to Microphthalmia; Coloboma
Review for gene: KIF17 was set to RED
Added comment: Two siblings reported with MAC spectrum and homozygous missense variant in this gene. Some pre-existing data linking KIF17 to eye development.
Sources: Literature
Mendeliome v0.7944 SCN7A Zornitza Stark gene: SCN7A was added
gene: SCN7A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SCN7A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SCN7A were set to 32732226
Phenotypes for gene: SCN7A were set to Holoprosencephaly
Review for gene: SCN7A was set to RED
Added comment: Novel candidate gene identified in a fetus with holoprosencephaly detected by ultrasound. Autopsy showed multiple congenital abnormalities including IUGR, microcephaly, bilateral, ablepharon, corpus callosum agenesis, myelomeningocele, tracheal atresia, absent nipples, unilateral simian crease, and hypoplastic phalanges. Compound heterozygous variants including a truncating variant were found by exome sequencing with concordant segregation.
Sources: Literature
Mendeliome v0.7942 WDR91 Zornitza Stark Phenotypes for gene: WDR91 were changed from to Hydrocephalus; cerebellar hypoplasia; hygroma
Mendeliome v0.7938 WDR91 Zornitza Stark commented on gene: WDR91: PMID 32732226: Novel candidate gene identified in a fetus with hygroma and hydrocephaly detected by fetal ultrasound. Autopsy showed multiple congenital abnormalities including hygroma, macrocephaly, abnormal ears, unilateral simian crease, hydrocephaly, cerebellar hypoplasia, and interventricular communication. A homozygous truncating variant was found by exome sequencing with concordant segregation among 4 affected fetus, 2 healthy sibs and both parents. Mouse models support role in brain development.
Mendeliome v0.7938 WDR91 Zornitza Stark reviewed gene: WDR91: Rating: AMBER; Mode of pathogenicity: None; Publications: 34028500, 28860274, 32732226; Phenotypes: Hydrocephalus, cerebellar hypoplasia, hygroma; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7937 ZNF3 Zornitza Stark gene: ZNF3 was added
gene: ZNF3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZNF3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNF3 were set to 32732226
Phenotypes for gene: ZNF3 were set to Hydrocephalus; cleft palate; microphthalmia
Review for gene: ZNF3 was set to RED
Added comment: Novel candidate gene identified in a fetus with hydrocephaly and facial cleft detected by fetal ultrasound. Autopsy showed multiple congenital abnormalities including a median cleft palate, partial maxillar agenesis, bilateral severe microphthalmia, arhinencephaly, partial thalamic fusion. A homozygous truncating variant (c.396A>G/ p.*132Trpext*69) in ZNF3 was found by exome sequencing.
Sources: Literature
Mendeliome v0.7929 TUBA1A Zornitza Stark Phenotypes for gene: TUBA1A were changed from to Lissencephaly 3, MIM# 611603; Congenital fibrosis of the extraocular muscles, AD
Mendeliome v0.7926 TUBA1A Zornitza Stark reviewed gene: TUBA1A: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Lissencephaly 3, MIM# 611603; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7913 EIF5A Zornitza Stark Phenotypes for gene: EIF5A were changed from Intellectual disability; microcephaly; dysmorphism to Faundes-Banka syndrome, MIM# 619376; Intellectual disability; microcephaly; dysmorphism
Mendeliome v0.7912 EIF5A Zornitza Stark edited their review of gene: EIF5A: Changed phenotypes: Faundes-Banka syndrome, MIM# 619376, Intellectual disability, microcephaly, dysmorphism
Mendeliome v0.7905 PLG Zornitza Stark changed review comment from: Association between mono-allelic variants and HAE: Over 20 families reported with a recurrent variant, p.Lys330Glu. Single family reported with a different variant. Note bi-allelic variants are associated with a separate disorder.

Bi-allelic variants and plasminogen deficiency: congenital plasminogen deficiency is characterised clinically by chronic mucosal pseudomembranous lesions consisting of subepithelial fibrin deposition and inflammation. The most common clinical manifestation is ligneous ('wood-like') conjunctivitis, a redness and subsequent formation of pseudomembranes mostly on the palpebral surfaces of the eye that progress to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa. The lesions may be triggered by local injury and/or infection and often recur after local excision. Pseudomembranous lesions of other mucous membranes often occur in the mouth, nasopharynx, trachea, and female genital tract. Some affected children also have congenital occlusive hydrocephalus. At least 3 unrelated families reported.; to: Association between mono-allelic variants and HAE: Over 20 families reported with a recurrent variant, p.Lys330Glu. Single family reported with a different variant. Note bi-allelic variants are associated with a separate disorder.

Bi-allelic variants and plasminogen deficiency: congenital plasminogen deficiency is characterised clinically by chronic mucosal pseudomembranous lesions consisting of subepithelial fibrin deposition and inflammation. The most common clinical manifestation is ligneous ('wood-like') conjunctivitis, a redness and subsequent formation of pseudomembranes mostly on the palpebral surfaces of the eye that progress to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa. The lesions may be triggered by local injury and/or infection and often recur after local excision. Pseudomembranous lesions of other mucous membranes often occur in the mouth, nasopharynx, trachea, and female genital tract. Some affected children also have congenital occlusive hydrocephalus. Over 20 unrelated families reported.
Mendeliome v0.7896 ATXN2L Seb Lunke gene: ATXN2L was added
gene: ATXN2L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATXN2L was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ATXN2L were set to 33283965; 33057194
Phenotypes for gene: ATXN2L were set to macrocephaly; intellectual disability
Review for gene: ATXN2L was set to AMBER
Added comment: Sources: Literature
Mendeliome v0.7891 SLC30A5 Melanie Marty gene: SLC30A5 was added
gene: SLC30A5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC30A5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC30A5 were set to 33547425; 12095919
Phenotypes for gene: SLC30A5 were set to Perinatal lethal cardiomyopathy
Review for gene: SLC30A5 was set to AMBER
Added comment: Four affected children from two unrelated families with cardiomyopathy, hydrops fetalis, or cystic hygroma that all deceased perinatally. 2 different homozygous PTCs variants found. Knockout of SLC30A5 in mouse models showed reduced body growth and reduced bone density. About 60% of the mice died due to bradyarrhythmia.
Sources: Literature
Mendeliome v0.7891 KCNB1 Zornitza Stark Phenotypes for gene: KCNB1 were changed from to Epileptic encephalopathy, early infantile, 26, MIM# 616056
Mendeliome v0.7888 KCNB1 Zornitza Stark reviewed gene: KCNB1: Rating: GREEN; Mode of pathogenicity: None; Publications: 31600826, 31513310; Phenotypes: Epileptic encephalopathy, early infantile, 26, MIM# 616056; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7867 IQSEC2 Zornitza Stark Phenotypes for gene: IQSEC2 were changed from Mental retardation, X-linked 1/78, MIM#309530 to Mental retardation, X-linked 1/78, MIM# 309530, MONDO:0010656; Severe intellectual disability-progressive postnatal microcephaly- midline stereotypic hand movements syndrome MONDO:0018347
Mendeliome v0.7865 IQSEC2 Zornitza Stark reviewed gene: IQSEC2: Rating: GREEN; Mode of pathogenicity: None; Publications: 33368194, 20473311, 23674175; Phenotypes: Mental retardation, X-linked 1/78, MIM# 309530, MONDO:0010656, Severe intellectual disability-progressive postnatal microcephaly- midline stereotypic hand movements syndrome MONDO:0018347; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.7865 EEF1A2 Zornitza Stark Phenotypes for gene: EEF1A2 were changed from Epileptic encephalopathy, early infantile, 33, MIM# 616409; Mental retardation, autosomal dominant 38, MIM# 616393 to Mental retardation, autosomal dominant 38, MIM# 616393; MONDO:0014617; Developmental and epileptic encephalopathy 33, MIM# 616409; MONDO:0014625
Mendeliome v0.7863 EEF1A2 Zornitza Stark reviewed gene: EEF1A2: Rating: GREEN; Mode of pathogenicity: None; Publications: 24697219, 32196822, 32160274, 32062104, 31893083; Phenotypes: Mental retardation, autosomal dominant 38, MIM# 616393, MONDO:0014617, Developmental and epileptic encephalopathy 33, MIM# 616409, MONDO:0014625; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7749 MCM7 Arina Puzriakova gene: MCM7 was added
gene: MCM7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MCM7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MCM7 were set to 33654309; 34059554
Phenotypes for gene: MCM7 were set to Meier-Gorlin syndrome; Microcephaly; Intellectual disability; Lipodystrophy; Adrenal insufficiency
Review for gene: MCM7 was set to AMBER
Added comment: MCM7 is a component of the MCM complex, a DNA helicase which is essential for DNA replication. Other components have been linked to disease with phenotypes including microcephaly and ID. MCM7 is not associated with any phenotype in OMIM or G2P at present.
------
Currently there are 3 unrelated pedigrees in literature with different biallelic MCM7 variants associated with disease (see below). Although there is some functional data in support of variant-level deleteriousness or gene-level pathogenicity, the clinical gestalt is very different between the 3 families.

- PMID: 33654309 (2021) - Two unrelated individuals with different compound het variants in MCM7 but disparate clinical features. One patient had typical Meier-Gorlin syndrome (including growth retardation, microcephaly, congenital lung emphysema, absent breast development, microtia, facial dysmorphism) whereas the second case had a multi-system disorder with neonatal progeroid appearance, lipodystrophy and adrenal insufficiency. While small at birth, the second patient did not demonstrate reduced stature or microcephaly at age 14.5 years. Both individuals had normal neurodevelopment.
Functional studies using patient-derived fibroblasts demonstrate that the identified MCM7 variants were deleterious at either transcript or protein levels and through interfering with MCM complex formation, impact efficiency of S phase progression.

- PMID: 34059554 (2021) - Homozygous missense variant identified in three affected individuals from a consanguineous family with severe primary microcephaly, severe ID and behavioural abnormalities. Knockdown of Mcm7 in mouse neuroblastoma cells lead to reduced cell viability and proliferation with increased apoptosis, which were rescued by overexpression of wild-type but not mutant MCM7.
Sources: Literature
Mendeliome v0.7722 CLCN2 Zornitza Stark Phenotypes for gene: CLCN2 were changed from to Leukoencephalopathy with ataxia, MIM# 615651; Hyperaldosteronism, familial, type II, MIM# 605635
Mendeliome v0.7719 CLCN2 Zornitza Stark reviewed gene: CLCN2: Rating: GREEN; Mode of pathogenicity: None; Publications: 29403011, 29403012, 23707145; Phenotypes: Leukoencephalopathy with ataxia, MIM# 615651, Hyperaldosteronism, familial, type II, MIM# 605635; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7713 COX16 Zornitza Stark Phenotypes for gene: COX16 were changed from Hypertrophic cardiomyopathy; encephalopathy; severe fatal lactic acidosis to Mitochondrial complex IV deficiency, nuclear type 22, MIM# 619355; Hypertrophic cardiomyopathy; encephalopathy; severe fatal lactic acidosis
Mendeliome v0.7712 NSF Zornitza Stark Phenotypes for gene: NSF were changed from Seizures; EEG with burst suppression; Global developmental delay; Intellectual disability to Developmental and epileptic encephalopathy 96, MIM# 619340; Seizures; EEG with burst suppression; Global developmental delay; Intellectual disability
Mendeliome v0.7711 NSF Zornitza Stark edited their review of gene: NSF: Changed phenotypes: Developmental and epileptic encephalopathy 96, MIM# 619340, Seizures, EEG with burst suppression, Global developmental delay, Intellectual disability
Mendeliome v0.7680 PARP6 Zornitza Stark gene: PARP6 was added
gene: PARP6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PARP6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PARP6 were set to Cells 2021, 10(6), 1289; https://doi.org/10.3390/cells10061289
Phenotypes for gene: PARP6 were set to Intellectual disability; Epilepsy; Microcephaly
Review for gene: PARP6 was set to GREEN
Added comment: Four unrelated individuals reported with de novo variants in this gene and a neurodevelopmental phenotype. Supportive functional data. One pair of siblings with a homozygous missense: limited evidence for bi-allelic variants causing disease.
Sources: Literature
Mendeliome v0.7652 KCNA2 Elena Savva reviewed gene: KCNA2: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 33802230, 29050392; Phenotypes: Developmental and epileptic encephalopathy 32, MIM#616366; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.7648 SCN1A Zornitza Stark Phenotypes for gene: SCN1A were changed from Epileptic encephalopathy, early infantile, 6 (Dravet syndrome), MIM# 607208; Genetic Epilepsy Febrile Seizures plus (GEFS+) Syndrome; Febrile seizures; Arthrogryposis multiplex congenita to Epileptic encephalopathy, early infantile, 6 (Dravet syndrome), MIM# 607208; Developmental and epileptic encephalopathy 6B, non-Dravet, MIM# 619317; Genetic Epilepsy Febrile Seizures plus (GEFS+) Syndrome; Febrile seizures; Arthrogryposis multiplex congenita
Mendeliome v0.7647 SCN1A Zornitza Stark edited their review of gene: SCN1A: Changed phenotypes: Epileptic encephalopathy, early infantile, 6 (Dravet syndrome), MIM# 607208, Developmental and epileptic encephalopathy 6B, non-Dravet, MIM# 619317, Genetic Epilepsy Febrile Seizures plus (GEFS+) Syndrome, Febrile seizures, Arthrogryposis multiplex congenita
Mendeliome v0.7621 SMARCA5 Zornitza Stark gene: SMARCA5 was added
gene: SMARCA5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SMARCA5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SMARCA5 were set to 33980485
Phenotypes for gene: SMARCA5 were set to Neurodevelopmental disorder; microcephaly; dysmorphic features
Review for gene: SMARCA5 was set to GREEN
Added comment: 12 individuals reported with either de novo or appropriately segregating variants in this gene and mild developmental delay, frequent postnatal short stature and microcephaly, and recurrent dysmorphic features. Functional data supports gene-disease association.
Sources: Literature
Mendeliome v0.7561 CAPN15 Zornitza Stark Phenotypes for gene: CAPN15 were changed from microphthalmia HP:0000568; coloboma HP:0000589 to Oculogastrointestinal neurodevelopmental syndrome, MIM# 619318; microphthalmia HP:0000568; coloboma HP:0000589
Mendeliome v0.7559 CAPN15 Zornitza Stark reviewed gene: CAPN15: Rating: GREEN; Mode of pathogenicity: None; Publications: 33410501; Phenotypes: Oculogastrointestinal neurodevelopmental syndrome, MIM# 619318, microphthalmia HP:0000568, coloboma HP:0000589; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7549 TMEM222 Zornitza Stark gene: TMEM222 was added
gene: TMEM222 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TMEM222 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMEM222 were set to 33824500
Phenotypes for gene: TMEM222 were set to Intellectual disability; Epilepsy; Microcephaly
Review for gene: TMEM222 was set to GREEN
Added comment: Polla et al (2021 - PMID: 33824500) report 17 individuals from 9 unrelated families, with biallelic TMEM222 pathogenic variants. The phenotype included motor, speech delay and moderate to severe ID (as universal features). Other manifestations included hypotonia (10/15), broad gait (5/12), seizures (7/17 - belonging to 6/9 families), MRI abnormalities (5/8). Variable behavioral abnormalities were observed (aggressive behavior, shy character, stereotypic movements etc). Abnormal OFC was a feature in several with microcephaly in 7 subjects from 4 families (measurements not available for all 17). Nonspecific facial features were reported in 10/17.
Sources: Literature
Mendeliome v0.7502 YWHAG Zornitza Stark Added comment: Comment when marking as ready: Developmental and epileptic encephalopathy-56 (DEE56) is a neurodevelopmental disorder characterized by early-onset seizures in most patients, followed by impaired intellectual development, variable behavioral abnormalities, and sometimes additional neurologic features, such as ataxia
Mendeliome v0.7502 YWHAG Zornitza Stark Phenotypes for gene: YWHAG were changed from to Developmental and epileptic encephalopathy 56, (MIMI#617665)
Mendeliome v0.7491 YWHAG Ain Roesley reviewed gene: YWHAG: Rating: GREEN; Mode of pathogenicity: None; Publications: 33393734, 33590706, 31926053, 33767733; Phenotypes: Developmental and epileptic encephalopathy 56, (MIMI#617665); Mode of inheritance: None
Mendeliome v0.7485 MED25 Zornitza Stark Phenotypes for gene: MED25 were changed from to Basel-Vanagait-Smirin-Yosef syndrome, MIM# 616449; Congenital cataract-microcephaly-naevus flammeus syndrome MONDO:0014643
Mendeliome v0.7482 MED25 Zornitza Stark reviewed gene: MED25: Rating: GREEN; Mode of pathogenicity: None; Publications: 25792360, 32816121; Phenotypes: Basel-Vanagait-Smirin-Yosef syndrome, MIM# 616449, Congenital cataract-microcephaly-naevus flammeus syndrome MONDO:0014643; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7473 GJB1 Zornitza Stark Phenotypes for gene: GJB1 were changed from to Charcot-Marie-Tooth neuropathy, X-linked dominant, 1, MIM# 302800; MONDO:0010549; reversible posterior leukoencephalopathy
Mendeliome v0.7470 NEPRO Chern Lim gene: NEPRO was added
gene: NEPRO was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NEPRO was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NEPRO were set to 26633546; 29620724; 31250547
Phenotypes for gene: NEPRO were set to Anauxetic dysplasia 3, MIM618853
Review for gene: NEPRO was set to AMBER
Added comment: PMIDs 26633546, 29620724: 2 families with the same homozygous missense variant, haplotype analysis confirmed the founder nature of the variant.

PMID 31250547: 1 family with homozygous novel missense

All 5 affected individuals have severe short stature, brachydactyly, skin laxity, joint hypermobility, and joint dislocations. They also have short metacarpals, broad middle phalanges, and metaphyseal irregularities. No functional studies.
Sources: Literature
Mendeliome v0.7470 GJB1 Zornitza Stark reviewed gene: GJB1: Rating: GREEN; Mode of pathogenicity: None; Publications: 8266101, 17100997, 17353473, 31842800; Phenotypes: Charcot-Marie-Tooth neuropathy, X-linked dominant, 1, MIM# 302800, MONDO:0010549, reversible posterior leukoencephalopathy; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.7464 SIN3B Elena Savva gene: SIN3B was added
gene: SIN3B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SIN3B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: SIN3B were set to PMID: 33811806
Phenotypes for gene: SIN3B were set to Syndromic intellectual disability/autism spectrum disorder
Review for gene: SIN3B was set to GREEN
Added comment: PMID: 33811806
- 9 affected patients, all de novo (2 PTCs, 2 missense, multigenic CNVs)
- syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant ASD, congenital malformations, corpus callosum defects, and impaired growth.
- CNVs encompassing the gene have been found
Sources: Literature
Mendeliome v0.7464 CDC40 Zornitza Stark Phenotypes for gene: CDC40 were changed from Pontocerebellar hypoplasia; microcephaly; seizures to Pontocerebellar hypoplasia, type 15, MIM# 619302; microcephaly; seizures
Mendeliome v0.7463 CDC40 Zornitza Stark edited their review of gene: CDC40: Changed phenotypes: Pontocerebellar hypoplasia, type 15, MIM# 619302, microcephaly, seizures
Mendeliome v0.7463 PPIL1 Zornitza Stark Phenotypes for gene: PPIL1 were changed from Pontocerebellar hypoplasia; microcephaly; seizures to Pontocerebellar hypoplasia, type 14, MIM# 619301; microcephaly; seizures
Mendeliome v0.7462 PPIL1 Zornitza Stark edited their review of gene: PPIL1: Changed phenotypes: Pontocerebellar hypoplasia, type 14, MIM# 619301, microcephaly, seizures
Mendeliome v0.7444 COA6 Zornitza Stark Phenotypes for gene: COA6 were changed from to Mitochondrial complex IV deficiency, nuclear type 13, MIM# 616501; Cardioencephalomyopathy, fatal infantile, MONDO:0014668
Mendeliome v0.7441 COA6 Zornitza Stark reviewed gene: COA6: Rating: GREEN; Mode of pathogenicity: None; Publications: 24549041, 25339201, 31851937, 26160915; Phenotypes: Mitochondrial complex IV deficiency, nuclear type 13, MIM# 616501, Cardioencephalomyopathy, fatal infantile, MONDO:0014668; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7437 PPP2R5C Sue White gene: PPP2R5C was added
gene: PPP2R5C was added to Mendeliome. Sources: Research
Mode of inheritance for gene: PPP2R5C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: PPP2R5C were set to macrocephaly; intellectual disability
Penetrance for gene: PPP2R5C were set to Complete
Review for gene: PPP2R5C was set to AMBER
Added comment: Emerging unpublished evidence of monoallelic missense variants causing intellectual disability and macrocephaly
Sources: Research
Mendeliome v0.7374 KCNJ6 Zornitza Stark changed review comment from: Keppen-Lubinsky syndrome characterised by severely delayed psychomotor development, hypertonia, hyperreflexia, generalized lipodystrophy giving an aged appearance, and distinctive dysmorphic features, including microcephaly, prominent eyes, narrow nasal bridge, and open mouth.

Three unrelated individuals reported with de novo variants in this gene (one recurred in 2), mouse model.; to: Keppen-Lubinsky syndrome characterised by severely delayed psychomotor development, hypertonia, hyperreflexia, generalized lipodystrophy giving an aged appearance, and distinctive dysmorphic features, including microcephaly, prominent eyes, narrow nasal bridge, and open mouth.

Four unrelated individuals reported with de novo variants in this gene (one recurred in 2), mouse model. One of the individuals did not have lipodystrophy but had a prominent hyperkinetic movement disorder.
Mendeliome v0.7362 LIG3 Zornitza Stark gene: LIG3 was added
gene: LIG3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LIG3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LIG3 were set to 33855352
Phenotypes for gene: LIG3 were set to gut dysmotility; spasticity; ataxia; repetitive behaviours; neurogenic bladder; macular degeneration; leukoencephalopathy; cerebellar atrophy
Review for gene: LIG3 was set to GREEN
Added comment: Three unrelated families and functional data.
Sources: Literature
Mendeliome v0.7343 ABCB6 Zornitza Stark Phenotypes for gene: ABCB6 were changed from to Pseudohyperkalemia, familial, 2, due to red cell leak, MIM# 609153; Microphthalmia, isolated, with coloboma 7, MIM# 614497; Dyschromatosis universalis hereditaria 3, MIM# 615402
Mendeliome v0.7340 ABCB6 Zornitza Stark reviewed gene: ABCB6: Rating: GREEN; Mode of pathogenicity: None; Publications: 23180570; Phenotypes: Pseudohyperkalemia, familial, 2, due to red cell leak, MIM# 609153, Microphthalmia, isolated, with coloboma 7, MIM# 614497, Dyschromatosis universalis hereditaria 3, MIM# 615402; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7339 PRDM15 Zornitza Stark gene: PRDM15 was added
gene: PRDM15 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRDM15 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PRDM15 were set to 31950080
Phenotypes for gene: PRDM15 were set to Steroid resistant nephrotic syndrome; Holoprosencephaly
Review for gene: PRDM15 was set to AMBER
Added comment: Four consanguineous families reported with same homozygous variant, C844Y, shown to be LoF. Syndromic SRNS including HPE, brain malformations, polydactyly, congenital heart disease. Mouse model, extensive functional data focused on the brain phenotype. Two additional homozygous missense identified with isolated SRNS.
Sources: Literature
Mendeliome v0.7338 ZIC2 Zornitza Stark Phenotypes for gene: ZIC2 were changed from to Holoprosencephaly 5, MIM# 609637; MONDO:0012322
Mendeliome v0.7335 ZIC2 Zornitza Stark reviewed gene: ZIC2: Rating: GREEN; Mode of pathogenicity: None; Publications: 9771712, 11285244; Phenotypes: Holoprosencephaly 5, MIM# 609637, MONDO:0012322; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7335 TGIF1 Zornitza Stark Phenotypes for gene: TGIF1 were changed from to Holoprosencephaly 4, MIM# 142946; MONDO:0007734
Mendeliome v0.7332 TGIF1 Zornitza Stark reviewed gene: TGIF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 10835638, 16323008; Phenotypes: Holoprosencephaly 4, MIM# 142946, MONDO:0007734; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7332 SIX3 Zornitza Stark Phenotypes for gene: SIX3 were changed from to Holoprosencephaly 2, MIM# 157170; MONDO:0007999
Mendeliome v0.7329 SIX3 Zornitza Stark reviewed gene: SIX3: Rating: GREEN; Mode of pathogenicity: None; Publications: 10369266, 16323008, 19346217; Phenotypes: Holoprosencephaly 2, MIM# 157170, MONDO:0007999; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7329 DISP1 Zornitza Stark Phenotypes for gene: DISP1 were changed from to Holoprosencephaly
Mendeliome v0.7325 DISP1 Zornitza Stark reviewed gene: DISP1: Rating: AMBER; Mode of pathogenicity: None; Publications: 19184110, 26748417, 23542665; Phenotypes: Holoprosencephaly; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7308 XRCC4 Zornitza Stark Phenotypes for gene: XRCC4 were changed from Short stature, microcephaly, and endocrine dysfunction (MIM#616541) to Short stature, microcephaly, and endocrine dysfunction, MIM# 616541; MONDO:0014686
Mendeliome v0.7307 XRCC4 Zornitza Stark reviewed gene: XRCC4: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Short stature, microcephaly, and endocrine dysfunction, MIM# 616541, MONDO:0014686; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7291 NEUROD2 Zornitza Stark Phenotypes for gene: NEUROD2 were changed from Epileptic encephalopathy, early infantile, 72, MIM# 618374 to Epileptic encephalopathy, early infantile, 72, MIM# 618374; Intellectual disability
Mendeliome v0.7289 NEUROD2 Zornitza Stark edited their review of gene: NEUROD2: Added comment: Additional two individuals reported with de novo variants and predominantly ID phenotype.; Changed publications: 33438828, 30323019; Changed phenotypes: Epileptic encephalopathy, early infantile, 72, MIM# 618374
Mendeliome v0.7249 NDUFB11 Kristin Rigbye changed review comment from: Variable syndromic features have been observed in affected individuals, however anaemia and cardiomyopathy appear to be consistent features in males and females, respectively (PMID: 28050600, PMID: 30423443, PMID: 27488349).

Affected females have previously been reported with inherited pathogenic variants from their unaffected mothers. It has been suggested that this may be due to patterns of somatic X-chromosome inactivation, mosaicism or additional genetic or external factors (PMID: 28050600).

Affected females have been reported with null alleles, whereas affected males have only been identified with missense variants or a recurrent single residue in-frame deletion, suggesting that some residual enzyme activity is required for males to be viable, whereas complete loss of function variants may be lethal when hemizygous (PMID: 30423443).
Note: female carriers of missense variants have not been reported as clinically affected.

Western blots from cells of male patients with the recurrent F93del variant showed reduced protein levels, and recombinant cells demonstrated a proliferation defect, consistent with the anaemia phenotype (PMID: 27488349).; to: Variable syndromic features have been observed in affected individuals, however anaemia and cardiomyopathy appear to be consistent features in males and females, respectively (PMID: 28050600, PMID: 30423443, PMID: 27488349).

It has been suggested that heterozygous females do not display the severe phenotype associated with mitochondrial complex 1 deficiency due to highly skewed XCI favouring expression of the wild type allele, whereas these null variants result in a severe lethal disorder in hemizygous males (PMID: 25772934).

Affected females have previously been reported with inherited pathogenic variants from their unaffected mothers. It has been suggested that this may be due to patterns of somatic X-chromosome inactivation, mosaicism or additional genetic or external factors (PMID: 28050600).

Affected females have been reported with null alleles, whereas affected males have only been identified with missense variants or a recurrent single residue in-frame deletion, suggesting that some residual enzyme activity is required for males to be viable, whereas complete loss of function variants may be lethal when hemizygous (PMID: 30423443).
Note: female carriers of missense variants have not been reported as clinically affected.

Western blots from cells of male patients with the recurrent F93del variant showed reduced protein levels, and recombinant cells demonstrated a proliferation defect, consistent with the anaemia phenotype (PMID: 27488349).
Mendeliome v0.7212 NDUFA8 Zornitza Stark Phenotypes for gene: NDUFA8 were changed from NDUFA8-related mitochondrial disease; Developmental delay; microcehaly; seizures to Mitochondrial complex I deficiency, nuclear type 37, MIM# 619272; Developmental delay; microcehaly; seizures
Mendeliome v0.7209 NDUFA8 Zornitza Stark edited their review of gene: NDUFA8: Changed rating: AMBER; Changed publications: 32385911, 33153867; Changed phenotypes: Mitochondrial complex I deficiency, nuclear type 37, MIM# 619272, Developmental delay, microcehaly, seizures
Mendeliome v0.7209 YIPF5 Zornitza Stark Phenotypes for gene: YIPF5 were changed from Neonatal diabetes; microcephaly; seizures to Microcephaly, epilepsy, and diabetes syndrome 2 , MIM#619278
Mendeliome v0.7208 YIPF5 Zornitza Stark edited their review of gene: YIPF5: Changed phenotypes: Microcephaly, epilepsy, and diabetes syndrome 2 , MIM#619278
Mendeliome v0.7206 KCNH1 Zornitza Stark Phenotypes for gene: KCNH1 were changed from to Temple-Baraitser syndrome, OMIM:611816; Zimmermann-Laband syndrome 1, OMIM:135500; Intellectual disability; Encephalopathy without features of TBS/ZLS
Mendeliome v0.7203 KCNH1 Zornitza Stark reviewed gene: KCNH1: Rating: GREEN; Mode of pathogenicity: None; Publications: 33811134; Phenotypes: Temple-Baraitser syndrome, OMIM:611816, Zimmermann-Laband syndrome 1, OMIM:135500, Intellectual disability, Encephalopathy without features of TBS/ZLS; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7192 ADCY6 Zornitza Stark changed review comment from: Laquerriere et al. (2014): 2 sibs from a consanguineous family with an axoglial form of lethal congenital contracture syndrome, and homozygous missense ADCY6 mutation (R1116C). The parents were heterozygous for the mutation. Knocked down ADCY6 orthologs in zebrafish showed a loss of myelin basic protein expression in the peripheral nervous system but no defects in Schwann cell migration and axonal growth. Gonzaga‐Jauregui et al. (2015): 1 patient with congenital hypotonia, distal joint contractures, hypomyelinating neuropathy, and vocal cord paralysis, and a homozygous missense ADCY6 variant. No functional studies. Deceased sister with a similar phenotype with hypotonia, areflexia, and hypomyelinating neuropathy who died at 18 months of respiratory insufficiency. Agolini et al. (2020): 1 patient with severe form of AMC, with two novel compound heterozygous variants in ADCY6 (parents confirmed carriers), but no functional studies.
Sources: Literature; to: - PMID: 33820833 (2021) - Further 2 sibs reported with a homozygous c.3346C>T:p.Arg1116Cys variant in the ADCY6 gene. The family was identified from a cohort of 315 genetically undiagnosed and unrelated AMC families. Arthrogryposis and IUGR were detected prenatally.

Laquerriere et al. (2014): 2 sibs from a consanguineous family with an axoglial form of lethal congenital contracture syndrome, and homozygous missense ADCY6 mutation (R1116C). The parents were heterozygous for the mutation. Knocked down ADCY6 orthologs in zebrafish showed a loss of myelin basic protein expression in the peripheral nervous system but no defects in Schwann cell migration and axonal growth. Gonzaga‐Jauregui et al. (2015): 1 patient with congenital hypotonia, distal joint contractures, hypomyelinating neuropathy, and vocal cord paralysis, and a homozygous missense ADCY6 variant. No functional studies. Deceased sister with a similar phenotype with hypotonia, areflexia, and hypomyelinating neuropathy who died at 18 months of respiratory insufficiency. Agolini et al. (2020): 1 patient with severe form of AMC, with two novel compound heterozygous variants in ADCY6 (parents confirmed carriers), but no functional studies.
Sources: Literature
Mendeliome v0.7191 UNC50 Arina Puzriakova gene: UNC50 was added
gene: UNC50 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UNC50 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UNC50 were set to 29016857; 33820833
Phenotypes for gene: UNC50 were set to Arthrogryposis multiplex congenita
Review for gene: UNC50 was set to AMBER
Added comment: UNC50 is currently not associated with any phenotype in OMIM (last edited on 02/01/2018) or Gene2Phenotype.

- PMID: 29016857 (2017) - Homozygosity mapping of disease loci combined with WES in a single male from a consanguineous family presenting with lethal AMC revealed a homozygous frameshift deletion in UNC50 gene (c.750_751del:p.Cys251Phefs*4). Functional studies in C. elegans showed the variant caused loss of acetylcholine receptor expression in the muscle.

- PMID: 33820833 (2021) - Single individual reported with the same homozygous c.750_751del:p.Cys251Phefs*4 variant in UNC50 as previously described. The case was identified from a cohort of 315 genetically undiagnosed and unrelated AMC families. Arthrogryposis and tetra ventricular dilation were detected prenatally.

-- Note: it isn't definitively clear whether these are different individuals. Both are singleton males born to consanguineous parents, with the same variant and similar phenotype. Also both infants died at 28 w.g. However, the 2021 paper (PMID:33820833) states their patient was selected from a cohort of cases without a molecular diagnosis and indicate the UNC50 gene had already previously been identified in relation to this phenotype, highlighting the earlier paper (PMID:29016857). There is also no mention of tetra ventricular dilation in the first case, so it is likely that these do represent distinct individuals. Additional cases needed to provide clarity.
Sources: Literature
Mendeliome v0.7191 PLCH1 Arina Puzriakova gene: PLCH1 was added
gene: PLCH1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLCH1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PLCH1 were set to 33820834
Phenotypes for gene: PLCH1 were set to Holoprosencephaly spectrum; Severe developmental delay; Brain malformations
Review for gene: PLCH1 was set to AMBER
Added comment: PLCH1 is currently not associated with any phenotype in OMIM (last edited on 16/06/2009) or Gene2Phenotype.

- PMID: 33820834 (2021) - Two sibling pairs from two unrelated families with a holoprosencephaly spectrum phenotype and different homozygous PLCH1 variants (c.2065C>T, p.Arg689* and c.4235delA, p.Cys1079ValfsTer16, respectively). One family presented with congenital hydrocephalus, epilepsy, significant developmental delay and a monoventricle or fused thalami; while sibs from the second family had alobar holoprosencephaly and cyclopia. 3/4 individuals also displayed a cleft palate and congenital heart disease.
Human embryo immunohistochemistry showed PLCH1 to be expressed in the notorcord, developing spinal cord (in a ventral to dorsal gradient), dorsal root ganglia, cerebellum and dermatomyosome.
Sources: Literature
Mendeliome v0.7187 PDIA6 Zornitza Stark gene: PDIA6 was added
gene: PDIA6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PDIA6 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: PDIA6 were set to Asphyxiating thoracic dystrophy (ATD) syndrome and infantile‐onset diabetes
Review for gene: PDIA6 was set to AMBER
Added comment: Amber in view of the good quality functional data.

1 case with asphyxiating thoracic dystrophy (ATD) syndrome and infantile‐onset diabetes. Whole exome sequencing revealed a homozygous frameshift variant in the PDIA6 gene. RNA expression was reduced in a gene dosage‐dependent manner, supporting a loss‐of‐function effect of this variant. Phenotypic correlation with the previously reported mouse model recapitulated the growth defect and delay, early lethality, coagulation, diabetes, immunological, and polycystic kidney disease phenotypes. The phenotype of the current patient is consistent with phenotypes associated with the disruption of PDIA6 and the sensors of UPR in mice and humans.
Sources: Literature
Mendeliome v0.7186 EXOSC1 Zornitza Stark gene: EXOSC1 was added
gene: EXOSC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EXOSC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EXOSC1 were set to 33463720
Phenotypes for gene: EXOSC1 were set to Pontocerebellar hypoplasia
Review for gene: EXOSC1 was set to RED
Added comment: An 8‐months‐old male with developmental delay, microcephaly, subtle dysmorphism, hypotonia, pontocerebellar hypoplasia and delayed myelination. Similarly affected elder sibling succumbed at the age of 4‐years 6‐months. Exome sequencing revealed a homozygous missense variant (c.104C >T, p.Ser35Leu) in EXOSC1. In silico mutagenesis revealed loss of a polar contact with neighbouring Leu37 residue. Quantitative real‐time PCR indicated no appreciable differences in EXOSC1 transcript levels. Immunoblotting and blue native PAGE revealed reduction in the EXOSC1 protein levels and EXO9 complex in the proband, respectively. Of note, bi‐allelic variants in other exosome subunits EXOSC3, EXOSC8 and EXOSC9 have been reported to cause pontocerebellar hypoplasia type 1B, type 1C and type 1D, respectively.
Sources: Literature
Mendeliome v0.7172 FAT1 Ee Ming Wong changed review comment from: - 5 consanguineous families with homozygous frameshift mutations in FAN1
- FAN1 KO mice had microphthalmia, with fully penetrant coloboma which was not observed in heterozygous mice
- in human retinal pigment epithelium (RPE) cells, FAN1 knockdown resulted in compromised early cell-cell junction integrity and filament organisation; to: - 5 consanguineous families with homozygous frameshift mutations in FAT1
- FAT1 KO mice had microphthalmia, with fully penetrant coloboma which was not observed in heterozygous mice
- in human retinal pigment epithelium (RPE) cells, FAT1 knockdown resulted in compromised early cell-cell junction integrity and filament organisation
Mendeliome v0.7161 PSAP Zornitza Stark Phenotypes for gene: PSAP were changed from Parkinson disease, AD; Combined SAP deficiency 611721; Gaucher disease, atypical, MIM# 610539; Krabbe disease, atypical, MIM# 611722; Metachromatic leukodystrophy due to SAP-b deficiency, MIM# 249900 to Parkinson disease, AD; Combined SAP deficiency, MIM# 611721; Encephalopathy due to prosaposin deficiency, MONDO:0012719; Krabbe disease, atypical, MIM# 611722; MONDO:0012720; Metachromatic leukodystrophy due to SAP-b deficiency, MIM# 249900; MONDO:0009590; Gaucher disease, atypical, MIM# 610539; MONDO:0012517
Mendeliome v0.7160 PSAP Zornitza Stark edited their review of gene: PSAP: Changed phenotypes: Combined SAP deficiency, MIM# 611721, Encephalopathy due to prosaposin deficiency, MONDO:0012719, Krabbe disease, atypical, MIM# 611722, MONDO:0012720, Metachromatic leukodystrophy due to SAP-b deficiency, MIM# 249900, MONDO:0009590, Gaucher disease, atypical, MIM# 610539, MONDO:0012517
Mendeliome v0.7080 NDUFB7 Bryony Thompson gene: NDUFB7 was added
gene: NDUFB7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NDUFB7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NDUFB7 were set to 33502047; 27626371
Phenotypes for gene: NDUFB7 were set to Congenital lactic acidosis; hypertrophic cardiomyopathy
Review for gene: NDUFB7 was set to AMBER
Added comment: Single patient with a homozygous variant impacting RNA splicing (c.113-10C>G) with intrauterine growth restriction and anaemia, which displayed postpartum hypertrophic cardiomyopathy, lactic acidosis, encephalopathy, and a severe complex I defect with fatal outcome. Also, a supporting knockout cell line model demonstrating impaired complex I assembly.
Sources: Literature
Mendeliome v0.7059 CCDC88C Zornitza Stark Phenotypes for gene: CCDC88C were changed from Spinocerebellar ataxia 40, MIM#616053; Hydrocephalus, nonsyndromic, autosomal recessive 236600; Eearly-onset pure hereditary spastic paraplegia to Spinocerebellar ataxia 40, MIM#616053; Hydrocephalus, nonsyndromic, autosomal recessive 236600; Early-onset pure hereditary spastic paraplegia
Mendeliome v0.7058 CCDC88C Zornitza Stark Phenotypes for gene: CCDC88C were changed from Spinocerebellar ataxia 40, MIM#616053; Hydrocephalus, nonsyndromic, autosomal recessive 236600 AR to Spinocerebellar ataxia 40, MIM#616053; Hydrocephalus, nonsyndromic, autosomal recessive 236600; Eearly-onset pure hereditary spastic paraplegia
Mendeliome v0.7053 ZMPSTE24 Zornitza Stark Phenotypes for gene: ZMPSTE24 were changed from Mandibuloacral dysplasia with type B lipodystrophy, MIM# 608612; MONDO:0012074; Restrictive dermopathy, lethal, MIM# 275210 to Mandibuloacral dysplasia with type B lipodystrophy, MIM# 608612; MONDO:0012074; Restrictive dermopathy, lethal, MIM# 275210; MONDO:0010143
Mendeliome v0.7052 ZMPSTE24 Zornitza Stark Phenotypes for gene: ZMPSTE24 were changed from to Mandibuloacral dysplasia with type B lipodystrophy, MIM# 608612; MONDO:0012074; Restrictive dermopathy, lethal, MIM# 275210
Mendeliome v0.7049 ZMPSTE24 Zornitza Stark reviewed gene: ZMPSTE24: Rating: GREEN; Mode of pathogenicity: None; Publications: 11923874, 22718200, 29794150, 29208544, 12913070, 27410998, 27409638, 15937076, 16671095, 22718200, 29794150, 24169522; Phenotypes: Mandibuloacral dysplasia with type B lipodystrophy, MIM# 608612, MONDO:0012074, Restrictive dermopathy, lethal, MIM# 275210; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7029 COPB1 Zornitza Stark Phenotypes for gene: COPB1 were changed from Severe intellectual disability; variable microcephaly; cataracts to Baralle-Macken syndrome, MIM# 619255; Severe intellectual disability; variable microcephaly; cataracts
Mendeliome v0.7028 COPB1 Zornitza Stark edited their review of gene: COPB1: Changed phenotypes: Baralle-Macken syndrome, MIM# 619255, Severe intellectual disability, variable microcephaly, cataracts
Mendeliome v0.7004 PRIM1 Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature
Mendeliome v0.7003 PRIM1 Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature
Mendeliome v0.7003 PRIM1 Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature
Mendeliome v0.7003 PRIM1 Zornitza Stark gene: PRIM1 was added
gene: PRIM1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRIM1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PRIM1 were set to 33060134
Phenotypes for gene: PRIM1 were set to Microcephalic primordial dwarfism, MONDO:0017950
Review for gene: PRIM1 was set to AMBER
Added comment: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature
Mendeliome v0.7001 TTC5 Zornitza Stark Phenotypes for gene: TTC5 were changed from Central hypotonia; Global developmental delay; Intellectual disability; Abnormality of nervous system morphology; Microcephaly; Abnormality of the face; Behavioral abnormality; Abnormality of the genitourinary system to Neurodevelopmental disorder with cerebral atrophy and variable facial dysmorphism , MIM#619244; Central hypotonia; Global developmental delay; Intellectual disability; Abnormality of nervous system morphology; Microcephaly; Abnormality of the face; Behavioral abnormality; Abnormality of the genitourinary system
Mendeliome v0.7000 TTC5 Zornitza Stark edited their review of gene: TTC5: Changed phenotypes: Neurodevelopmental disorder with cerebral atrophy and variable facial dysmorphism , MIM#619244, Central hypotonia, Global developmental delay, Intellectual disability, Abnormality of nervous system morphology, Microcephaly, Abnormality of the face, Behavioral abnormality, Abnormality of the genitourinary system
Mendeliome v0.6995 NUP37 Zornitza Stark Phenotypes for gene: NUP37 were changed from Nephrotic syndrome to Nephrotic syndrome; Microcephaly 24, primary, autosomal recessive, MIM# 618179
Mendeliome v0.6994 NUP37 Zornitza Stark changed review comment from: Single family reported with nephrotic syndrome.
Sources: Literature; to: Single family reported with nephrotic syndrome and microcephaly.
Sources: Literature
Mendeliome v0.6994 NUP37 Zornitza Stark edited their review of gene: NUP37: Changed phenotypes: Nephrotic syndrome, Microcephaly 24, primary, autosomal recessive, MIM# 618179
Mendeliome v0.6994 COPB2 Zornitza Stark gene: COPB2 was added
gene: COPB2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: COPB2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COPB2 were set to 29036432
Phenotypes for gene: COPB2 were set to Microcephaly 19, primary, autosomal recessive, MIM# 617800
Review for gene: COPB2 was set to RED
Added comment: Two sibs with homozygous missense variant in this gene, mice homozygous for this variant had normal brain size however. Mice compound het for null allele and missense variant had some brain features, suggesting the missense variant is hypomorphic.
Sources: Expert list
Mendeliome v0.6993 WDR62 Zornitza Stark Phenotypes for gene: WDR62 were changed from to Microcephaly 2, primary, autosomal recessive, with or without cortical malformations, MIM# 604317; MONDO:0011435
Mendeliome v0.6990 WDR62 Zornitza Stark reviewed gene: WDR62: Rating: GREEN; Mode of pathogenicity: None; Publications: 20890279, 20729831, 20890278, 21496009, 21834044, 22775483, 32677750, 31788460; Phenotypes: Microcephaly 2, primary, autosomal recessive, with or without cortical malformations, MIM# 604317, MONDO:0011435; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6990 TRMT10A Zornitza Stark Phenotypes for gene: TRMT10A were changed from to Microcephaly, short stature, and impaired glucose metabolism 1, MIM# 616033; MONDO:0000208
Mendeliome v0.6987 TRMT10A Zornitza Stark reviewed gene: TRMT10A: Rating: GREEN; Mode of pathogenicity: None; Publications: 24204302, 25053765, 33448213, 33067246, 26535115, 26526202, 26297882; Phenotypes: Microcephaly, short stature, and impaired glucose metabolism 1, MIM# 616033, MONDO:0000208; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6983 TOP3A Zornitza Stark Phenotypes for gene: TOP3A were changed from to Microcephaly, growth restriction, and increased sister chromatid exchange 2, MIM# 618097; Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 5, MIM#618098
Mendeliome v0.6980 TOP3A Zornitza Stark reviewed gene: TOP3A: Rating: GREEN; Mode of pathogenicity: None; Publications: 30057030, 33631320; Phenotypes: Microcephaly, growth restriction, and increased sister chromatid exchange 2, MIM# 618097, Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 5, MIM#618098; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6980 STIL Zornitza Stark Phenotypes for gene: STIL were changed from to Microcephaly 7, primary, autosomal recessive, MIM# 612703; MONDO:0012989
Mendeliome v0.6977 STIL Zornitza Stark reviewed gene: STIL: Rating: GREEN; Mode of pathogenicity: None; Publications: 19215732, 22989186, 25218063, 33132204, 32677750, 29230157; Phenotypes: Microcephaly 7, primary, autosomal recessive, MIM# 612703, MONDO:0012989; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6975 STAMBP Zornitza Stark Phenotypes for gene: STAMBP were changed from to Microcephaly-capillary malformation syndrome, MIM# 614261; MONDO:0013659
Mendeliome v0.6972 STAMBP Zornitza Stark reviewed gene: STAMBP: Rating: GREEN; Mode of pathogenicity: None; Publications: 23542699, 31638258, 29907875, 27531570, 25692795, 25266620; Phenotypes: Microcephaly-capillary malformation syndrome, MIM# 614261, MONDO:0013659; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6972 PCNT Zornitza Stark Phenotypes for gene: PCNT were changed from to Microcephalic osteodysplastic primordial dwarfism, type II, MIM# 210720; MONDO:0008872
Mendeliome v0.6969 PCNT Zornitza Stark reviewed gene: PCNT: Rating: GREEN; Mode of pathogenicity: None; Publications: 18174396, 12210304, 30922925, 33460028, 32557621, 32267100; Phenotypes: Microcephalic osteodysplastic primordial dwarfism, type II, MIM# 210720, MONDO:0008872; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6969 NHEJ1 Zornitza Stark Phenotypes for gene: NHEJ1 were changed from to Severe combined immunodeficiency with microcephaly, growth retardation, and sensitivity to ionizing radiation, MIM# 611291; Cernunnos-XLF deficiency MONDO:0012650
Mendeliome v0.6966 NHEJ1 Zornitza Stark reviewed gene: NHEJ1: Rating: GREEN; Mode of pathogenicity: None; Publications: 30898087, 30666249, 28741180, 25288157, 24511403, 21721379, 21535335; Phenotypes: Severe combined immunodeficiency with microcephaly, growth retardation, and sensitivity to ionizing radiation, MIM# 611291, Cernunnos-XLF deficiency MONDO:0012650; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6963 MSMO1 Zornitza Stark Phenotypes for gene: MSMO1 were changed from to Microcephaly, congenital cataract, and psoriasiform dermatitis, MIM# 616834; MONDO:0014793; Disorders of the metabolism of sterols
Mendeliome v0.6960 MSMO1 Zornitza Stark reviewed gene: MSMO1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21285510, 24144731, 28673550, 33161406; Phenotypes: Microcephaly, congenital cataract, and psoriasiform dermatitis, MIM# 616834, MONDO:0014793; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6960 MCPH1 Zornitza Stark Phenotypes for gene: MCPH1 were changed from to Microcephaly 1, primary, autosomal recessive, MIM# 251200; MONDO:0009617
Mendeliome v0.6957 MCPH1 Zornitza Stark reviewed gene: MCPH1: Rating: GREEN; Mode of pathogenicity: None; Publications: 12046007, 15199523, 16311745, 20978018, 32294449, 30351297, 29026105; Phenotypes: Microcephaly 1, primary, autosomal recessive, MIM# 251200, MONDO:0009617; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6953 LARP7 Zornitza Stark Phenotypes for gene: LARP7 were changed from to Alazami syndrome, MIM# 615071; Microcephalic primordial dwarfism, Alazami type MONDO:0014031
Mendeliome v0.6950 LARP7 Zornitza Stark reviewed gene: LARP7: Rating: GREEN; Mode of pathogenicity: None; Publications: 22865833, 21937992, 30006060, 33569879; Phenotypes: Alazami syndrome, MIM# 615071, Microcephalic primordial dwarfism, Alazami type MONDO:0014031; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6950 KNL1 Zornitza Stark Phenotypes for gene: KNL1 were changed from to Microcephaly 4, primary, autosomal recessive, MIM# 604321; MONDO:0011437
Mendeliome v0.6947 KNL1 Zornitza Stark reviewed gene: KNL1: Rating: GREEN; Mode of pathogenicity: None; Publications: 22983954, 26626498, 27149178, 30304678, 27784895; Phenotypes: Microcephaly 4, primary, autosomal recessive, MIM# 604321, MONDO:0011437; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6943 KIF11 Zornitza Stark Phenotypes for gene: KIF11 were changed from to Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation, MIM# 152950; MONDO:0007918
Mendeliome v0.6940 KIF11 Zornitza Stark reviewed gene: KIF11: Rating: GREEN; Mode of pathogenicity: None; Publications: 22284827, 25115524, 25124931, 27212378, 32730767, 31993640, 25996076; Phenotypes: Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation, MIM# 152950, MONDO:0007918; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6940 IER3IP1 Zornitza Stark Phenotypes for gene: IER3IP1 were changed from to Microcephaly, epilepsy, and diabetes syndrome, MIM# 614231; Primary microcephaly-epilepsy-permanent neonatal diabetes syndrome, MONDO:0013647
Mendeliome v0.6937 IER3IP1 Zornitza Stark reviewed gene: IER3IP1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21835305, 22991235, 24138066, 28711742; Phenotypes: Microcephaly, epilepsy, and diabetes syndrome, MIM# 614231, Primary microcephaly-epilepsy-permanent neonatal diabetes syndrome, MONDO:0013647; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6937 EFTUD2 Zornitza Stark Phenotypes for gene: EFTUD2 were changed from to Mandibulofacial dysostosis, Guion-Almeida type, MIM# 610536; Mandibulofacial dysostosis-microcephaly syndrome MONDO:0012516
Mendeliome v0.6934 EFTUD2 Zornitza Stark reviewed gene: EFTUD2: Rating: GREEN; Mode of pathogenicity: None; Publications: 22305528, 23188108, 33601405, 33262786, 26507355; Phenotypes: Mandibulofacial dysostosis, Guion-Almeida type, MIM# 610536, Mandibulofacial dysostosis-microcephaly syndrome MONDO:0012516; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6934 CEP152 Zornitza Stark Phenotypes for gene: CEP152 were changed from to Microcephaly 9, primary, autosomal recessive, MIM# 614852; MONDO:0013923; Seckel syndrome 5, MIM# 613823; MONDO:0013443
Mendeliome v0.6931 CEP152 Zornitza Stark reviewed gene: CEP152: Rating: GREEN; Mode of pathogenicity: None; Publications: 20598275, 22775483, 21131973, 23199753; Phenotypes: Microcephaly 9, primary, autosomal recessive, MIM# 614852, MONDO:0013923, Seckel syndrome 5, MIM# 613823, MONDO:0013443; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6908 SMCHD1 Zornitza Stark edited their review of gene: SMCHD1: Added comment: Bosma arhinia microphthalmia syndrome (BAMS) is characterized by severe hypoplasia of the nose and eyes, palatal abnormalities, deficient taste and smell, inguinal hernias, hypogonadotropic hypogonadism with cryptorchidism, and normal intelligence. Choanal atresia is a feature. More than 30 unrelated individuals reported. Caused by gain of function missense variants with the extended ATPase domain.; Changed rating: GREEN; Changed mode of pathogenicity: Other; Changed publications: 28067909; Changed phenotypes: Bosma arhinia microphthalmia syndrome, MIM# 603457, Arhinia, choanal atresia, microphthalmia MONDO:0011323; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6908 SMCHD1 Zornitza Stark Phenotypes for gene: SMCHD1 were changed from Bosma arhinia microphthalmia syndrome, MIM 603457; Fascioscapulohumeral muscular dystrophy 2, digenic to Bosma arhinia microphthalmia syndrome, MIM 603457; Arhinia, choanal atresia, microphthalmia MONDO:0011323; Fascioscapulohumeral muscular dystrophy 2, digenic
Mendeliome v0.6809 SATB1 Zornitza Stark Phenotypes for gene: SATB1 were changed from Developmental delay with dysmorphic facies and dental anomalies, MIM# 619228; Neurodevelopmental disorder; intellectual disability; epilepsy; microcephaly to Kohlschutter-Tonz syndrome-like, MIM# 619229; Developmental delay with dysmorphic facies and dental anomalies, MIM# 619228; Neurodevelopmental disorder; intellectual disability; epilepsy; microcephaly
Mendeliome v0.6808 SATB1 Zornitza Stark edited their review of gene: SATB1: Added comment: Kohlschutter-Tonz syndrome-like (KTZSL) is characterized by global developmental delay with moderately to severely impaired intellectual development, poor or absent speech, and delayed motor skills. Although the severity of the disorder varies, many patients are nonverbal and have hypotonia with inability to sit or walk. Early-onset epilepsy is common and may be refractory to treatment, leading to epileptic encephalopathy and further interruption of developmental progress. Most patients have feeding difficulties with poor overall growth and dysmorphic facial features, as well as significant dental anomalies resembling amelogenesis imperfecta. This phenotype was reported in 28 patients (patients 13 to 40, PMID 33513338), including 9 patients from 3 families. Most variants were de novo, though some were inherited, suggestive of incomplete penetrance and variable expressivity.; Changed phenotypes: Developmental delay with dysmorphic facies and dental anomalies, MIM# 619228, Kohlschutter-Tonz syndrome-like, MIM# 619229
Mendeliome v0.6808 SATB1 Zornitza Stark Phenotypes for gene: SATB1 were changed from Neurodevelopmental disorder; intellectual disability; epilepsy; microcephaly to Developmental delay with dysmorphic facies and dental anomalies, MIM# 619228; Neurodevelopmental disorder; intellectual disability; epilepsy; microcephaly
Mendeliome v0.6779 RANBP2 Bryony Thompson reviewed gene: RANBP2: Rating: GREEN; Mode of pathogenicity: None; Publications: 19118815, 25128471, 25522933, 32048120; Phenotypes: {Encephalopathy, acute, infection-induced, 3, susceptibility to} MIM#608033; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6747 DOCK7 Zornitza Stark Phenotypes for gene: DOCK7 were changed from Developmental and epileptic encephalopathy 23 MIM#615859 to Developmental and epileptic encephalopathy 23 MIM#615859; MONDO:0014371
Mendeliome v0.6746 DOCK7 Zornitza Stark Phenotypes for gene: DOCK7 were changed from to Developmental and epileptic encephalopathy 23 MIM#615859
Mendeliome v0.6736 DOCK7 Paul De Fazio reviewed gene: DOCK7: Rating: GREEN; Mode of pathogenicity: None; Publications: 24814191, 30771731, 30807358; Phenotypes: Developmental and epileptic encephalopathy 23 MIM#615859; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.6725 COPB1 Zornitza Stark gene: COPB1 was added
gene: COPB1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: COPB1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COPB1 were set to 33632302
Phenotypes for gene: COPB1 were set to Severe intellectual disability; variable microcephaly; cataracts
Review for gene: COPB1 was set to AMBER
Added comment: Two unrelated families, some supportive functional data.
Sources: Literature
Mendeliome v0.6724 SLC1A4 Zornitza Stark Phenotypes for gene: SLC1A4 were changed from Spastic tetraplegia, thin corpus callosum, and progressive microcephaly, MIM# 616657 to Spastic tetraplegia, thin corpus callosum, and progressive microcephaly, MIM# 616657; MONDO:0014725
Mendeliome v0.6723 SLC1A4 Zornitza Stark Phenotypes for gene: SLC1A4 were changed from to Spastic tetraplegia, thin corpus callosum, and progressive microcephaly, MIM# 616657
Mendeliome v0.6646 CDK5RAP2 Zornitza Stark Phenotypes for gene: CDK5RAP2 were changed from to Microcephaly 3, primary, autosomal recessive, MIM# 604804; MONDO:0011488
Mendeliome v0.6643 CDK5RAP2 Zornitza Stark reviewed gene: CDK5RAP2: Rating: GREEN; Mode of pathogenicity: None; Publications: 15793586, 22887808, 23995685, 23726037, 27761245, 20460369, 32677750, 32015000; Phenotypes: Microcephaly 3, primary, autosomal recessive, MIM# 604804, MONDO:0011488; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6639 DONSON Zornitza Stark Phenotypes for gene: DONSON were changed from to Microcephaly, short stature, and limb abnormalities, MIM# 617604; Microcephaly-micromelia syndrome, MIM# 251230; MONDO:0009619
Mendeliome v0.6636 DONSON Zornitza Stark reviewed gene: DONSON: Rating: GREEN; Mode of pathogenicity: None; Publications: 28191891, 28630177, 28191891; Phenotypes: Microcephaly, short stature, and limb abnormalities, MIM# 617604, Microcephaly-micromelia syndrome, MIM# 251230, MONDO:0009619; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6565 EEF2 Zornitza Stark Phenotypes for gene: EEF2 were changed from Neurodevelopmental disorder; macrocephaly; hydrocephalus; Spinocerebellar ataxia 26, MIM#609306 to Neurodevelopmental disorder, macrocephaly, hydrocephalus; Spinocerebellar ataxia 26, MIM#609306
Mendeliome v0.6564 EEF2 Zornitza Stark Phenotypes for gene: EEF2 were changed from Neurodevelopmental disorder, hydrocephalus; Spinocerebellar ataxia 26, MIM#609306 to Neurodevelopmental disorder; macrocephaly; hydrocephalus; Spinocerebellar ataxia 26, MIM#609306
Mendeliome v0.6563 EEF2 Zornitza Stark edited their review of gene: EEF2: Added comment: Phenotype reported in PMID 33355653 is distinct from the adult-onset SCA reported in PMID: 23001565. Evidence for association with SCA remains limited.; Changed rating: GREEN; Changed publications: 33355653; Changed phenotypes: Neurodevelopmental disorder, macrocephaly, hydrocephalus
Mendeliome v0.6563 EEF2 Zornitza Stark Phenotypes for gene: EEF2 were changed from Spinocerebellar ataxia 26, MIM#609306 to Neurodevelopmental disorder, hydrocephalus; Spinocerebellar ataxia 26, MIM#609306
Mendeliome v0.6555 GDF5 Zornitza Stark Phenotypes for gene: GDF5 were changed from to Type A1C brachydactyly (MIM#615072); Type A2 brachydactyly, (MIM#112600); Type C brachydactyly (MIM#113100); Grebe type chondrodysplasia (MIM#200700); Du Pan syndrome (MIM#228900); Multiple synostoses syndrome 2 (MIM#610017); Proximal Symphalangism 1B (MIM#615298)
Mendeliome v0.6554 GDF5 Zornitza Stark reviewed gene: GDF5: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Type A1C brachydactyly (MIM#615072), Type A2 brachydactyly, (MIM#112600), Type C brachydactyly (MIM#113100), Grebe type chondrodysplasia (MIM#200700), Du Pan syndrome (MIM#228900), Multiple synostoses syndrome 2 (MIM#610017), Proximal Symphalangism 1B (MIM#615298); Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.6539 GDF5 Ain Roesley reviewed gene: GDF5: Rating: GREEN; Mode of pathogenicity: None; Publications: 33333243; Phenotypes: Type A1C brachydactyly (MIM#615072), Type A2 brachydactyly, (MIM#112600), Type C brachydactyly (MIM#113100), Grebe type chondrodysplasia (MIM#200700), Du Pan syndrome (MIM#228900), Multiple synostoses syndrome 2 (MIM#610017), Proximal Symphalangism 1B (MIM#615298); Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.6538 EIF5A Zornitza Stark gene: EIF5A was added
gene: EIF5A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EIF5A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: EIF5A were set to 33547280
Phenotypes for gene: EIF5A were set to Intellectual disability; microcephaly; dysmorphism
Review for gene: EIF5A was set to GREEN
Added comment: 7 unrelated individuals reported with de novo variants in this gene and variable combinations of developmental delay, microcephaly, micrognathia and dysmorphism.
Sources: Literature
Mendeliome v0.6536 POLRMT Zornitza Stark gene: POLRMT was added
gene: POLRMT was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: POLRMT was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: POLRMT were set to 33602924
Phenotypes for gene: POLRMT were set to Mitochondrial disorder; intellectual disability; hypotonia
Review for gene: POLRMT was set to GREEN
Added comment: 8 individuals from 7 families reported. 5 families with bi-allelic variants and 2 with heterozygous variants. Affected individuals presented with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype.
Sources: Literature
Mendeliome v0.6531 KARS Zornitza Stark edited their review of gene: KARS: Changed phenotypes: Leukoencephalopathy with or without deafness (LEPID), MIM#619147, Deafness, autosomal recessive 89, MIM# 613916, Congenital deafness and adult-onset progressive leukoencephalopathy (DEAPLE), MIM#619196
Mendeliome v0.6531 KARS Zornitza Stark Phenotypes for gene: KARS were changed from Leukoencephalopathy with or without deafness (LEPID), MIM#619147; Deafness, autosomal recessive 89, MIM# 613916 to Leukoencephalopathy with or without deafness (LEPID), MIM#619147; Deafness, autosomal recessive 89, MIM# 613916; Congenital deafness and adult-onset progressive leukoencephalopathy (DEAPLE), MIM#619196
Mendeliome v0.6530 KARS Zornitza Stark Phenotypes for gene: KARS were changed from to Leukoencephalopathy with or without deafness (LEPID), MIM#619147; Deafness, autosomal recessive 89, MIM# 613916
Mendeliome v0.6527 KARS Zornitza Stark reviewed gene: KARS: Rating: GREEN; Mode of pathogenicity: None; Publications: 26741492, 31618474, 28887846, 25330800, 29615062, 30252186, 28496994, 23768514, 14975237; Phenotypes: Leukoencephalopathy with or without deafness (LEPID), MIM#619147, Deafness, autosomal recessive 89, MIM# 613916; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6513 SPTAN1 Zornitza Stark Phenotypes for gene: SPTAN1 were changed from to Developmental and epileptic encephalopathy 5, MIM# 613477; hereditary motor neuropathy
Mendeliome v0.6510 SPTAN1 Zornitza Stark reviewed gene: SPTAN1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20493457, 22258530, 32811770; Phenotypes: Developmental and epileptic encephalopathy 5, MIM# 613477; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6475 GLI3 Zornitza Stark Phenotypes for gene: GLI3 were changed from to Polydactyly, postaxial, types A1 and B, MIM#174200; Greig cephalopolysyndactyly syndrome MIM#175700; Polydactyly, preaxial, type IV MIM#174700; Pallister-Hall syndrome MIM#146510
Mendeliome v0.6462 GLI3 Elena Savva reviewed gene: GLI3: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 32591344, 18000979, 24736735; Phenotypes: Polydactyly, postaxial, types A1 and B, MIM#174200, Greig cephalopolysyndactyly syndrome MIM#175700, Polydactyly, preaxial, type IV MIM#174700, Pallister-Hall syndrome MIM#146510; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v0.6440 TOGARAM1 Zornitza Stark Phenotypes for gene: TOGARAM1 were changed from Cleft of the lip and palate; Microphthalmia; Cerebral dysgenesis; Hydrocephalus to Joubert syndrome 37, MIM# 619185
Mendeliome v0.6413 LMNB2 Zornitza Stark Phenotypes for gene: LMNB2 were changed from {Lipodystrophy, partial, acquired, susceptibility to} 608709; Congenital microcephaly, Intellectual disability to {Lipodystrophy, partial, acquired, susceptibility to} 608709; Microcephaly 27, primary, autosomal dominant, MIM# 619180; Congenital microcephaly, Intellectual disability
Mendeliome v0.6412 LMNB2 Zornitza Stark edited their review of gene: LMNB2: Changed phenotypes: {Lipodystrophy, partial, acquired, susceptibility to} 608709, Microcephaly 27, primary, autosomal dominant, MIM# 619180, Congenital microcephaly, Intellectual disability
Mendeliome v0.6412 LMNB1 Zornitza Stark Phenotypes for gene: LMNB1 were changed from Global developmental delay, Intellectual disability, Microcephaly, Short stature, Seizures, Abnormality of the corpus callosum, Cortical gyral simplification, Feeding difficulties, Scoliosis; Leukodystrophy, adult-onset, autosomal dominant, MIM#169500 to Microcephaly 26, primary, autosomal dominant, MIM# 619179; Global developmental delay, Intellectual disability, Microcephaly, Short stature, Seizures, Abnormality of the corpus callosum, Cortical gyral simplification, Feeding difficulties, Scoliosis; Leukodystrophy, adult-onset, autosomal dominant, MIM#169500
Mendeliome v0.6411 LMNB1 Zornitza Stark edited their review of gene: LMNB1: Changed phenotypes: Microcephaly 26, primary, autosomal dominant, MIM# 619179, Global developmental delay, Intellectual disability, Microcephaly, Short stature, Seizures, Abnormality of the corpus callosum, Cortical gyral simplification, Feeding difficulties, Scoliosis, Leukodystrophy, adult-onset, autosomal dominant, MIM#169500
Mendeliome v0.6411 FGF13 Zornitza Stark Phenotypes for gene: FGF13 were changed from Intellectual disability; epilepsy to Developmental and epileptic encephalopathy 90, MIM# 301058; Intellectual disability; epilepsy
Mendeliome v0.6410 FGF13 Zornitza Stark edited their review of gene: FGF13: Changed phenotypes: Developmental and epileptic encephalopathy 90, MIM# 301058, Intellectual disability, epilepsy
Mendeliome v0.6394 SHROOM3 Zornitza Stark gene: SHROOM3 was added
gene: SHROOM3 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: SHROOM3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SHROOM3 were set to 32621286
Phenotypes for gene: SHROOM3 were set to Anencephaly; cleft lip and palate
Review for gene: SHROOM3 was set to AMBER
Added comment: Animal model and other functional data link SHROOM3 to neural tube development. Single family reported with bi-allelic LoF in a fetus with anencephaly and CL/P.
Sources: Expert Review
Mendeliome v0.6314 OTUD5 Zornitza Stark Phenotypes for gene: OTUD5 were changed from X-linked severe neurodevelopmental delay, hydrocephalus, and early lethality to Multiple congenital anomalies-neurodevelopmental syndrome, X-linked, MIM# 301056
Mendeliome v0.6311 OTUD5 Zornitza Stark edited their review of gene: OTUD5: Added comment: PMID 33523931: Another 10 individuals from 7 families reported, promote to Green. X-linked multiple congenital anomalies-neurodevelopmental syndrome (MCAND) is an X-linked recessive congenital multisystemic disorder characterized by poor growth, global developmental delay with impaired intellectual development, and variable abnormalities of the cardiac, skeletal, and genitourinary systems. Most affected individuals also have hypotonia and dysmorphic craniofacial features. Brain imaging typically shows enlarged ventricles and thin corpus callosum; some have microcephaly, whereas others have hydrocephalus. The severity of the disorder is highly variable, ranging from death in early infancy to survival into the second or third decade.; Changed rating: GREEN; Changed publications: 33131077, 33523931; Changed phenotypes: Multiple congenital anomalies-neurodevelopmental syndrome, X-linked, MIM# 301056
Mendeliome v0.6307 CETP Bryony Thompson Phenotypes for gene: CETP were changed from to Hyperalphalipoproteinemia MIM#143470; Disorders of high density lipoprotein metabolism
Mendeliome v0.6303 CETP Bryony Thompson reviewed gene: CETP: Rating: ; Mode of pathogenicity: None; Publications: 12070157, 2586614, 27604308, 2215607, 2390095; Phenotypes: Hyperalphalipoproteinemia MIM#143470, Disorders of high density lipoprotein metabolism; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6273 HAL Zornitza Stark Marked gene: HAL as ready
Mendeliome v0.6273 HAL Zornitza Stark Gene: hal has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6273 HAL Zornitza Stark Phenotypes for gene: HAL were changed from to Histidinemia MIM#235800; Disorders of histidine, tryptophan or lysine metabolism
Mendeliome v0.6272 HAL Zornitza Stark Publications for gene: HAL were set to
Mendeliome v0.6271 HAL Zornitza Stark Mode of inheritance for gene: HAL was changed from Unknown to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6270 HAL Zornitza Stark Classified gene: HAL as Amber List (moderate evidence)
Mendeliome v0.6270 HAL Zornitza Stark Gene: hal has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6269 HAL Zornitza Stark reviewed gene: HAL: Rating: AMBER; Mode of pathogenicity: None; Publications: 27604308, 15806399, 20156889; Phenotypes: Histidinemia MIM#235800, Disorders of histidine, tryptophan or lysine metabolism; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6247 RPIA Zornitza Stark reviewed gene: RPIA: Rating: GREEN; Mode of pathogenicity: None; Publications: 14988808, 31056085, 31247379; Phenotypes: Ribose 5-phosphate isomerase deficiency, MIM# 608611, Leukoencephalopathy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6207 PRUNE1 Eleanor Williams reviewed gene: PRUNE1: Rating: GREEN; Mode of pathogenicity: None; Publications: 33105479; Phenotypes: Neurodevelopmental disorder with microcephaly, hypotonia, and variable brain anomalies , MIM#617481; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6184 HIRA Paul De Fazio gene: HIRA was added
gene: HIRA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HIRA was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HIRA were set to 33417013; 28135719; 25363760
Phenotypes for gene: HIRA were set to Neurodevelopmental disorder
Review for gene: HIRA was set to GREEN
gene: HIRA was marked as current diagnostic
Added comment: Two unrelated patients with different de novo loss of function variants identified in PMID 33417013:

Individual 1: intragenic deletion, phenotype included psychomotor retardation, ID, growth retardation, microcephaly, and facial features reminiscent of 22q deletion syndrome.
Individual 2: canonical splice variant, phenotype mostly confined to ASD

Another two de novo variants were identified in the literature by the authors of that paper, one stop-gain (DDD study, PMID 28135719) and one missense (large autism cohort, PMID 25363760).

PMID 33417013 also showed that HIRA knockdown in mice results in neurodevelopmental abnormalities.

Rated Green due to 4 unrelated individuals (albeit 2 in large cohort studies) and a mouse model. NB: HIRA is within the common 22q deletion region.
Sources: Literature
Mendeliome v0.6179 EYA3 Paul De Fazio gene: EYA3 was added
gene: EYA3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EYA3 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: EYA3 were set to 33475861
Phenotypes for gene: EYA3 were set to Oculo-auriculo-vertebral spectrum (OAVS)
Review for gene: EYA3 was set to RED
gene: EYA3 was marked as current diagnostic
Added comment: 3 individuals with OAVS from two unrelated families with the same missense variant, p.(Asn358Ser). Variant has 20 heterozygotes in gnomAD. Unaffected carriers in both families were also identified - unknown if incomplete penetrance or nonsegregation.

Functional studies indicate the variant increases protein half life, and gene knockdown in zebrafish had an effect on craniofacial development.

Rated Red due to both families sharing the variant and uncertainty about incomplete penetrance versus nonsegregation.
Sources: Literature
Mendeliome v0.6174 OTUD5 Zornitza Stark gene: OTUD5 was added
gene: OTUD5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: OTUD5 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: OTUD5 were set to 33131077
Phenotypes for gene: OTUD5 were set to X-linked severe neurodevelopmental delay, hydrocephalus, and early lethality
Review for gene: OTUD5 was set to RED
Added comment: 13 male patients from a single family with three generations affected. Patients presented prenatally or during the neonatal period with IUGR, ventriculomegaly, hydrocephalus, hypotonia, congenital heart defects, hypospadias, and severe neurodevelopmental delay. The disease is typically fatal during infancy, mainly due to sepsis (pneumonias). Female carriers are asymptomatic. WGS in four individuals identified a unique candidate variant in the OTUD5 gene (NM_017602.3:c.598G > A, p.Glu200Lys). The variant cosegregated with the disease in 10 tested individuals. No functional studies.
Sources: Literature
Mendeliome v0.6171 SATB1 Zornitza Stark Phenotypes for gene: SATB1 were changed from Developmental disorders to Neurodevelopmental disorder; intellectual disability; epilepsy; microcephaly
Mendeliome v0.6167 ENO1 Kristin Rigbye gene: ENO1 was added
gene: ENO1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ENO1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ENO1 were set to 32488097
Phenotypes for gene: ENO1 were set to Polymicrogyria
Review for gene: ENO1 was set to RED
Added comment: ENO1 identified as a polymicrogyria candidate gene from the smallest case of 1p36 duplication reported to date, in a 35yo F (onset at 8mo) presenting intellectual disability, microcephaly, epilepsy and perisylvian polymicrogyria. The duplication only encompassed 2 genes, ENO1 and RERE, and gene expression analysis performed using the patient cells revealed reduced expression, mimicking haploinsufficiency. Eno1 inactivation in rats was shown to cause a brain development defect. According to OMIM, ENO1 is deleted in glioblastoma, which is tolerated by the expression of ENO2.
Sources: Literature
Mendeliome v0.6165 CCDC186 Zornitza Stark gene: CCDC186 was added
gene: CCDC186 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CCDC186 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CCDC186 were set to 33259146
Phenotypes for gene: CCDC186 were set to Epileptic encephalopathy
Review for gene: CCDC186 was set to RED
Added comment: One individual reported with bi-allelic truncating variant and EE.
Sources: Literature
Mendeliome v0.6164 KCNN2 Ain Roesley gene: KCNN2 was added
gene: KCNN2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KCNN2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: KCNN2 were set to 33242881
Phenotypes for gene: KCNN2 were set to neurodevelopmental movement disorders
Penetrance for gene: KCNN2 were set to unknown
Review for gene: KCNN2 was set to GREEN
Added comment: - 11 probands all de novo except for 1 mother-daughter pair.
- a mix of null and missense variants
- 2/11 with microcephaly, 10/11 motor delay, 7/11 language delay (excluding 2 with regression), all with varying degrees of ID, 3/11 seizures, 7/11 movement disorder, 4/11 cerebellar ataxia, 6/11 MRI anomalies

additional variants were noted in 2 patients: 1x cHet for variants in MED12L and 1x de novo TNK2 variant

patch clamp functional studies were also done
Sources: Literature
Mendeliome v0.6124 HNRNPU Zornitza Stark Phenotypes for gene: HNRNPU were changed from Epileptic encephalopathy, early infantile, 54, MIM#617391 to Developmental and epileptic encephalopathy 54 MIM# 617391
Mendeliome v0.6123 HNRNPU Elena Savva reviewed gene: HNRNPU: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 28944577, 28393272; Phenotypes: Developmental and epileptic encephalopathy 54 MIM# 617391; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.6035 SCAMP5 Zornitza Stark edited their review of gene: SCAMP5: Added comment: PMID 33390987: Four unrelated individuals reported with same de novo missense variant, p. Gly180Trp. The onset age of seizures was ranged from 6 to 15 months. Patients had different types of seizures, including focal seizures, generalized tonic-clonic seizures and tonic seizure. One patient showed typical autism spectrum disorder (ASD) symptoms. Electroencephalogram (EEG) findings presented as focal or multifocal discharges, sometimes spreading to generalization. Brain magnetic resonance imaging (MRI) abnormalities were present in each patient. Severe intellectual disability and language and motor developmental disorders were found in our patients, with all patients having poor language development and were nonverbal at last follow-up. All but one of the patients could walk independently in childhood, but the ability to walk independently in one patient had deteriorated with age. All patients had abnormal neurological exam findings, mostly signs of extrapyramidal system involvement. Dysmorphic features were found in 2/4 patients, mainly in the face and trunk.; Changed publications: 31439720, 33390987
Mendeliome v0.6032 ZNF526 Zornitza Stark Phenotypes for gene: ZNF526 were changed from to Intellectual disability; Microcephaly; Cataracts; Epilepsy; Hypertonia; Dystonia
Mendeliome v0.6026 ZNF526 Arina Puzriakova reviewed gene: ZNF526: Rating: GREEN; Mode of pathogenicity: None; Publications: 21937992, 25558065, 33397746; Phenotypes: Intellectual disability, Microcephaly, Cataracts, Epilepsy, Hypertonia, Dystonia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6018 CELF2 Zornitza Stark gene: CELF2 was added
gene: CELF2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CELF2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CELF2 were set to 33131106
Phenotypes for gene: CELF2 were set to Developmental and epileptic encephalopathy
Review for gene: CELF2 was set to GREEN
Added comment: Five unrelated individuals reported. Four with de novo variants, and one inherited from a mosaic mother. Notably, all identified variants, except for c.272‐1G>C, were clustered within 20 amino acid residues of the C‐terminus, which might be a nuclear localization signal.
Sources: Literature
Mendeliome v0.6002 RABL2A Eleanor Williams gene: RABL2A was added
gene: RABL2A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RABL2A was set to Unknown
Publications for gene: RABL2A were set to 33075816
Phenotypes for gene: RABL2A were set to male infertility; ciliopathy
Review for gene: RABL2A was set to RED
Added comment: PMID: 33075816 - Ding et al 2020 - with the aim of identifying variants that affect male fertility, the authors report on mice expressing two RABL2A SNPs found to be rare (MAF between 2% and 0.02% in gnomAD, with a deleterious prediction from SIFT and PolyPhen-2, and to affect protein stability. Mice homozygous for these variants (p.L119F and p.V158F) were found to be show ciliopathy-associated disorders including male infertility, early growth retardation, excessive weight gain in adulthood, heterotaxia, pre-axial polydactyly, neural tube defects and hydrocephalus.
Sources: Literature
Mendeliome v0.5914 DPH2 Paul De Fazio changed review comment from: One family reported (PMID:32576952) with biallelic (one missense, one nonsense) variants in DPH2, with phenotype similar to DPH1 deficiency.

Another family was previously reported with biallelic nonsense variants (PMID:27421267) with a comparable phenotype, this family also has biallelic variants in KALRN and the authors thought those variants more likely causative.

In vitro functional assays support reduced diphthamide synthesis activity for the variants identified in PMID:32576952.
Sources: Literature; to: One 19 month old reported (PMID:32576952) with biallelic (one missense, one nonsense) variants in DPH2, with phenotype similar to DPH1 deficiency (gross motor delay, not walking, fine motor and expressive language delays, macrocephaly)

Another family (sibs) was previously reported with biallelic nonsense variants (PMID:27421267) with a comparable phenotype, this family also has biallelic variants in KALRN and the authors thought those variants more likely causative. Patients had ID and microcephaly (in contrast to the 19 month old above).

In vitro functional assays support reduced diphthamide synthesis activity for the variants identified in PMID:32576952.
Sources: Literature
Mendeliome v0.5914 FBRSL1 Elena Savva gene: FBRSL1 was added
gene: FBRSL1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FBRSL1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: FBRSL1 were set to PMID: 32424618
Phenotypes for gene: FBRSL1 were set to Malformation and intellectual disability syndrome
Review for gene: FBRSL1 was set to GREEN
Added comment: Three children with de novo PTCs that escape NMD, and an overlapping syndromic phenotype with respiratory insufficiency, postnatal growth restriction, microcephaly, global developmental delay and other malformations. 2/3 had heart defects, cleft palate and hearing impairement.
Supported by Xenopus oocyte functional studies
Sources: Literature
Mendeliome v0.5861 YIF1B Zornitza Stark Phenotypes for gene: YIF1B were changed from Central hypotonia; Failure to thrive; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Spasticity; Abnormality of movement to Kaya-Barakat-Masson syndrome, MIM# 619125; Central hypotonia; Failure to thrive; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Spasticity; Abnormality of movement
Mendeliome v0.5860 YIF1B Zornitza Stark edited their review of gene: YIF1B: Changed phenotypes: Kaya-Barakat-Masson syndrome, MIM# 619125, Central hypotonia, Failure to thrive, Microcephaly, Global developmental delay, Intellectual disability, Seizures, Spasticity, Abnormality of movement
Mendeliome v0.5857 PRR12 Zornitza Stark Phenotypes for gene: PRR12 were changed from to Intellectual disability; Iris abnormalities; Complex microphthalmia
Mendeliome v0.5854 PRR12 Zornitza Stark reviewed gene: PRR12: Rating: GREEN; Mode of pathogenicity: None; Publications: 33314030, 29556724; Phenotypes: Intellectual disability, Iris abnormalities, Complex microphthalmia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5854 PRSS56 Zornitza Stark Phenotypes for gene: PRSS56 were changed from to Microphthalmia, isolated 6, MIM# 613517
Mendeliome v0.5851 PRSS56 Zornitza Stark reviewed gene: PRSS56: Rating: GREEN; Mode of pathogenicity: None; Publications: 21532570, 23127749, 31992737; Phenotypes: Microphthalmia, isolated 6, MIM# 613517; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5851 GJA8 Zornitza Stark Phenotypes for gene: GJA8 were changed from to Cataract 1, multiple types, MIM# 116200; Microphthalmia
Mendeliome v0.5848 GJA8 Zornitza Stark reviewed gene: GJA8: Rating: GREEN; Mode of pathogenicity: None; Publications: 30498267, 29464339, 10480374, 18006672; Phenotypes: Cataract 1, multiple types, MIM# 116200, Microphthalmia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5843 STRA6 Zornitza Stark Phenotypes for gene: STRA6 were changed from to Microphthalmia, isolated, with coloboma 8, MIM# 601186; Microphthalmia, syndromic 9, MIM# 601186
Mendeliome v0.5840 STRA6 Zornitza Stark reviewed gene: STRA6: Rating: GREEN; Mode of pathogenicity: None; Publications: 17273977, 17503335, 19213032, 26373900, 30880327, 26373900, 25457163; Phenotypes: Microphthalmia, isolated, with coloboma 8, MIM# 601186, Microphthalmia, syndromic 9, MIM# 601186; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5840 SOX2 Zornitza Stark Phenotypes for gene: SOX2 were changed from to Microphthalmia, syndromic 3, MIM# 206900; Optic nerve hypoplasia and abnormalities of the central nervous system, MIM# 206900
Mendeliome v0.5837 SOX2 Zornitza Stark reviewed gene: SOX2: Rating: GREEN; Mode of pathogenicity: None; Publications: 30450772, 28121235, 25542770, 24498598, 24211324, 24033328, 21326281; Phenotypes: Microphthalmia, syndromic 3, MIM# 206900, Optic nerve hypoplasia and abnormalities of the central nervous system, MIM# 206900; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5830 RAX Zornitza Stark Phenotypes for gene: RAX were changed from Microphthalmia, isolated 3, MIM# 611038 to Microphthalmia, isolated 3, MIM# 611038
Mendeliome v0.5829 RAX Zornitza Stark Phenotypes for gene: RAX were changed from to Microphthalmia, isolated 3, MIM# 611038
Mendeliome v0.5826 RAX Zornitza Stark reviewed gene: RAX: Rating: GREEN; Mode of pathogenicity: None; Publications: 14662654, 18783408, 30811539, 24033328, 22524605; Phenotypes: Microphthalmia, isolated 3, MIM# 611038; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5826 RARB Zornitza Stark Phenotypes for gene: RARB were changed from to Microphthalmia, syndromic 12, MIM# 615524
Mendeliome v0.5822 RARB Zornitza Stark reviewed gene: RARB: Rating: GREEN; Mode of pathogenicity: Other; Publications: 30880327, 30281527, 24075189, 27120018, 25457163, 17506106; Phenotypes: Microphthalmia, syndromic 12, MIM# 615524; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.5816 SMOC1 Zornitza Stark Phenotypes for gene: SMOC1 were changed from to Microphthalmia with limb anomalies, MIM# 206920
Mendeliome v0.5813 SMOC1 Zornitza Stark reviewed gene: SMOC1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21194678, 21194680, 30445150; Phenotypes: Microphthalmia with limb anomalies, MIM# 206920; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5813 MFRP Zornitza Stark Phenotypes for gene: MFRP were changed from to Microphthalmia, isolated 5, MIM# 611040
Mendeliome v0.5810 MFRP Zornitza Stark reviewed gene: MFRP: Rating: GREEN; Mode of pathogenicity: None; Publications: 17167404, 18554571, 20361016; Phenotypes: Microphthalmia, isolated 5, MIM# 611040; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5810 MAB21L2 Zornitza Stark Phenotypes for gene: MAB21L2 were changed from to Microphthalmia/coloboma and skeletal dysplasia syndrome, MIM# 615877
Mendeliome v0.5807 MAB21L2 Zornitza Stark changed review comment from: More than 7 unrelated families reported with microphthalmia/anophthalmia/coloboma and rhizomelia. Two individuals with the c.151C > T (p.Arg51Cys) variant also had ID. One family reported with eye phenotype and bi-allelic missense variants, LIMITED evidence for bi-allelic disease. Three different animal models support gene-disease association.; to: More than 7 unrelated families reported with microphthalmia/anophthalmia/coloboma and rhizomelia. Several individuals with the c.151C > T (p.Arg51Cys) variant also had ID. One family reported with eye phenotype and bi-allelic missense variants, LIMITED evidence for bi-allelic disease. Three different animal models support gene-disease association.
Mendeliome v0.5807 MAB21L2 Zornitza Stark reviewed gene: MAB21L2: Rating: GREEN; Mode of pathogenicity: None; Publications: 24906020, 25719200, 31037784, 30375740, 30073347, 26116559; Phenotypes: Microphthalmia/coloboma and skeletal dysplasia syndrome, MIM# 615877; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5798 RBP4 Zornitza Stark Phenotypes for gene: RBP4 were changed from to Microphthalmia, isolated, with coloboma 10 MIM#616428; Retinal dystrophy, iris coloboma, and comedogenic acne syndrome MIM#615147
Mendeliome v0.5795 RBP4 Zornitza Stark reviewed gene: RBP4: Rating: GREEN; Mode of pathogenicity: None; Publications: 25910211, 29178648, 23189188, 9888420, 32323592; Phenotypes: Microphthalmia, isolated, with coloboma 10 MIM#616428, Retinal dystrophy, iris coloboma, and comedogenic acne syndrome MIM#615147; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.5795 VAX1 Zornitza Stark Phenotypes for gene: VAX1 were changed from to Microphthalmia, syndromic 11, MIM# 614402
Mendeliome v0.5791 VAX1 Zornitza Stark reviewed gene: VAX1: Rating: RED; Mode of pathogenicity: None; Publications: 22095910; Phenotypes: Microphthalmia, syndromic 11, MIM# 614402; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5791 VSX2 Zornitza Stark Phenotypes for gene: VSX2 were changed from to Microphthalmia with coloboma 3, MIM# 610092; Microphthalmia, isolated 2, MIM# 610093
Mendeliome v0.5788 VSX2 Zornitza Stark reviewed gene: VSX2: Rating: GREEN; Mode of pathogenicity: None; Publications: 15257456, 17661825, 31884615, 28121235, 27301076, 24033328; Phenotypes: Microphthalmia with coloboma 3, MIM# 610092, Microphthalmia, isolated 2, MIM# 610093; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5785 ALDH1A3 Zornitza Stark Phenotypes for gene: ALDH1A3 were changed from to Microphthalmia, isolated 8, MIM# 615113
Mendeliome v0.5782 ALDH1A3 Zornitza Stark reviewed gene: ALDH1A3: Rating: GREEN; Mode of pathogenicity: None; Publications: 23312594, 23591992, 30200890, 28890889, 26873617, 24777706; Phenotypes: Microphthalmia, isolated 8, MIM# 615113; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5777 GAD1 Zornitza Stark Phenotypes for gene: GAD1 were changed from Cerebral palsy, spastic quadriplegic, 1, MIM#603513 to Cerebral palsy, spastic quadriplegic, 1, MIM#603513; Developmental and epileptic encephalopathy 89, MIM# 619124
Mendeliome v0.5776 GAD1 Zornitza Stark edited their review of gene: GAD1: Changed phenotypes: Cerebral palsy, spastic quadriplegic, 1, MIM#603513, Developmental and epileptic encephalopathy 89, MIM# 619124
Mendeliome v0.5736 SUCLA2 Zornitza Stark Phenotypes for gene: SUCLA2 were changed from to Mitochondrial DNA depletion syndrome 5 (encephalomyopathic with or without methylmalonic aciduria), MIM# 612073, MONDO:0012791
Mendeliome v0.5733 SUCLA2 Zornitza Stark edited their review of gene: SUCLA2: Changed phenotypes: Mitochondrial DNA depletion syndrome 5 (encephalomyopathic with or without methylmalonic aciduria), MIM# 612073, MONDO:0012791
Mendeliome v0.5733 SUCLA2 Zornitza Stark reviewed gene: SUCLA2: Rating: GREEN; Mode of pathogenicity: None; Publications: 15877282, 17287286, 17301081, 23759946, 33231368, 33230181, 28243576, 27913098, 27651038; Phenotypes: Mitochondrial DNA depletion syndrome 5 (encephalomyopathic with or without methylmalonic aciduria), MIM# 612073; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5653 SHMT2 Zornitza Stark Phenotypes for gene: SHMT2 were changed from Congenital microcephaly; Infantile axial hypotonia; Spastic paraparesis; Global developmental delay; Intellectual disability; Abnormality of the corpus callosum; Abnormal cortical gyration; Hypertrophic cardiomyopathy; Abnormality of the face; Proximal placement of thumb; 2-3 toe syndactyly to Neurodevelopmental disorder with cardiomyopathy, spasticity, and brain abnormalities (NEDCASB), MIM#619121; Congenital microcephaly; Infantile axial hypotonia; Spastic paraparesis; Global developmental delay; Intellectual disability; Abnormality of the corpus callosum; Abnormal cortical gyration; Hypertrophic cardiomyopathy; Abnormality of the face; Proximal placement of thumb; 2-3 toe syndactyly
Mendeliome v0.5652 SHMT2 Zornitza Stark edited their review of gene: SHMT2: Changed phenotypes: Neurodevelopmental disorder with cardiomyopathy, spasticity, and brain abnormalities (NEDCASB), MIM#619121, Congenital microcephaly, Infantile axial hypotonia, Spastic paraparesis, Global developmental delay, Intellectual disability, Abnormality of the corpus callosum, Abnormal cortical gyration, Hypertrophic cardiomyopathy, Abnormality of the face, Proximal placement of thumb, 2-3 toe syndactyly
Mendeliome v0.5609 CDC40 Zornitza Stark gene: CDC40 was added
gene: CDC40 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CDC40 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CDC40 were set to 33220177
Phenotypes for gene: CDC40 were set to Pontocerebellar hypoplasia; microcephaly; seizures
Review for gene: CDC40 was set to RED
Added comment: Single individual reported with bi-allelic variants in the gene and PCH, microcephaly, hypotonia, seizures, severe DD/ID, thrombocytopaenia, anaemia. Interaction with PPIL1 and mouse model support gene-disease association. Gene referred to as PRP17 in paper.
Sources: Literature
Mendeliome v0.5607 PPIL1 Zornitza Stark gene: PPIL1 was added
gene: PPIL1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PPIL1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PPIL1 were set to 33220177
Phenotypes for gene: PPIL1 were set to Pontocerebellar hypoplasia; microcephaly; seizures
Review for gene: PPIL1 was set to GREEN
Added comment: 17 individuals from 9 unrelated families reported with bi-allelic variants in the gene and PCH, microcephaly, hypotonia, seizures, severe DD/ID. Mouse models support gene-disease association.
Sources: Literature
Mendeliome v0.5583 RAP1B Zornitza Stark Phenotypes for gene: RAP1B were changed from to RAP1B‐associated syndrome; intellectual disability; microcephaly; thrombocytopaenia
Mendeliome v0.5579 RAP1B Zornitza Stark reviewed gene: RAP1B: Rating: AMBER; Mode of pathogenicity: None; Publications: 32627184; Phenotypes: RAP1B‐associated syndrome, intellectual disability, microcephaly, thrombocytopaenia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5577 FBXO28 Zornitza Stark gene: FBXO28 was added
gene: FBXO28 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FBXO28 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FBXO28 were set to 33280099
Phenotypes for gene: FBXO28 were set to Developmental and epileptic encephalopathy
Review for gene: FBXO28 was set to GREEN
Added comment: Nine new individuals with FBXO28 pathogenic variants (four missense, including one recurrent, three nonsense, and one frameshift) and all 10 known cases reviewed to delineate the phenotypic spectrum. All had epilepsy and 9 of 10 had DEE, including infantile spasms (3) and a progressive myoclonic epilepsy (1). Median age at seizure onset was 22.5 months (range 8 months to 5 years). Nine of 10 patients had intellectual disability, which was profound in six of nine and severe in three of nine. Movement disorders occurred in eight of 10 patients, six of 10 had hypotonia, four of 10 had acquired microcephaly, and five of 10 had dysmorphic features.
Sources: Literature
Mendeliome v0.5572 GDF6 Zornitza Stark Phenotypes for gene: GDF6 were changed from Klippel-Feil syndrome 1, autosomal dominant 118100; Leber congenital amaurosis 17 615360; Microphthalmia with coloboma 6, digenic 613703; Microphthalmia, isolated 4 613094; Multiple synostoses syndrome 4 617898 to Klippel-Feil syndrome 1, autosomal dominant 118100; Leber congenital amaurosis 17 615360; Microphthalmia with coloboma 6, digenic 613703; Microphthalmia, isolated 4 613094; Multiple synostoses syndrome 4 617898; CAKUT
Mendeliome v0.5571 GDF6 Zornitza Stark Phenotypes for gene: GDF6 were changed from to Klippel-Feil syndrome 1, autosomal dominant 118100; Leber congenital amaurosis 17 615360; Microphthalmia with coloboma 6, digenic 613703; Microphthalmia, isolated 4 613094; Multiple synostoses syndrome 4 617898
Mendeliome v0.5567 GDF6 Belinda Chong reviewed gene: GDF6: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 32737436; Phenotypes: Klippel-Feil syndrome 1, autosomal dominant 118100, Leber congenital amaurosis 17 615360, Microphthalmia with coloboma 6, digenic 613703, Microphthalmia, isolated 4 613094, Multiple synostoses syndrome 4 617898; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.5567 VPS4A Kristin Rigbye changed review comment from: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain.
1x homozygous missense in the MIT domain (milder phenotype and unaffected parents).
Demonstrated defective CD71 trafficking in all 3 patients.

PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly).
Demonstrated that the variants had a dominant-negative effect on VPS4A function.
"The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Sources: Literature; to: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain.
1x homozygous missense in the MIT domain (milder phenotype and unaffected parents - possibly just a simple LoF mechanism for AR inheritance).
Demonstrated defective CD71 trafficking in all 3 patients.

PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly).
Demonstrated that the variants had a dominant-negative effect on VPS4A function.

"The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Mendeliome v0.5567 VPS4A Elena Savva changed review comment from: Comment when marking as ready: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain. 1x homozygous missense in the MIT domain (milder phenotype and unaffected parents). Demonstrated defective CD71 trafficking in all 3 patients. PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly). Demonstrated that the variants had a dominant-negative effect on VPS4A function. "The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."; to: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain.
1x homozygous missense in the MIT domain (milder phenotype and unaffected parents).
Demonstrated defective CD71 trafficking in all 3 patients.

Comment when marking as ready: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain. 1x homozygous missense in the MIT domain (milder phenotype and unaffected parents). Demonstrated defective CD71 trafficking in all 3 patients. PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly). Demonstrated that the variants had a dominant-negative effect on VPS4A function. "The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Mendeliome v0.5567 VPS4A Elena Savva Added comment: Comment when marking as ready: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain. 1x homozygous missense in the MIT domain (milder phenotype and unaffected parents). Demonstrated defective CD71 trafficking in all 3 patients. PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly). Demonstrated that the variants had a dominant-negative effect on VPS4A function. "The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Mendeliome v0.5558 VPS4A Kristin Rigbye gene: VPS4A was added
gene: VPS4A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: VPS4A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: VPS4A were set to PMID: 33186543; 33186545
Phenotypes for gene: VPS4A were set to Neurodevelopmental disorder
Review for gene: VPS4A was set to GREEN
Added comment: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain.
1x homozygous missense in the MIT domain (milder phenotype and unaffected parents).
Demonstrated defective CD71 trafficking in all 3 patients.

PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly).
Demonstrated that the variants had a dominant-negative effect on VPS4A function.
"The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Sources: Literature
Mendeliome v0.5555 RRP7A Zornitza Stark gene: RRP7A was added
gene: RRP7A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RRP7A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RRP7A were set to 33199730
Phenotypes for gene: RRP7A were set to Microcephaly
Review for gene: RRP7A was set to AMBER
Added comment: 10 affected individuals from a single large consanguineous family where bi-allelic variant segregated with severe microcephaly (-6-8SD), variable ID. Supportive functional data from mouse and zebrafish.
Sources: Literature
Mendeliome v0.5553 KDM4B Kristin Rigbye gene: KDM4B was added
gene: KDM4B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KDM4B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KDM4B were set to PMID: 33232677
Phenotypes for gene: KDM4B were set to Global developmental delay, intellectual disability and neuroanatomical defects
Review for gene: KDM4B was set to GREEN
Added comment: Nine individuals with mono-allelic de novo or inherited variants in KDM4B.

All individuals presented with dysmorphic features and global developmental delay (GDD) with language and motor skills most affected. Three individuals had a history of seizures, and four had anomalies on brain imaging ranging from agenesis of the corpus callosum with hydrocephalus to cystic formations, abnormal hippocampi, and polymicrogyria.

In a knockout mouse the total brain volume was significantly reduced with decreased
size of the hippocampal dentate gyrus, partial agenesis of the corpus callosum, and ventriculomegaly.
Sources: Literature
Mendeliome v0.5553 MINPP1 Zornitza Stark gene: MINPP1 was added
gene: MINPP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MINPP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MINPP1 were set to 33257696
Phenotypes for gene: MINPP1 were set to Pontocerebellar hypoplasia
Review for gene: MINPP1 was set to GREEN
Added comment: 8 individuals from 6 unrelated families reported with bi-allelic LOF variants. All presented with almost complete absence of motor and cognitive development, progressive or congenital microcephaly, spastic tetraplegia or dystonia, and vision impairments. For most, the first symptoms included neonatal severe axial hypotonia and epilepsy that started during the first months or years of life. Prenatal symptoms of microcephaly associated with increased thalami echogenicity were detected in one, while the seven other individuals presented with progressive microcephaly. Some exhibited rapidly progressive phenotype and the affected children died in their infancy or middle-childhood. Strikingly, all the affected children had a unique brain MRI showing a mild to severe PCH, fluid-filled posterior fossa, with dilated lateral ventricles. In addition, severe atrophy at the level of the basal ganglia or thalami often associated with typical T2 hypersignal were identified in all the patients MRI.

Supportive functional data showing accumulation of highly phosphorylated inositols, mostly inositol hexakisphosphate (IP6), detected in HEK293 cells, fibroblasts, iPSCs and differentiating neurons lacking MINPP1. In mutant cells, higher IP6 level is expected to be associated with an increased chelation of intracellular cations, such as iron or calcium, resulting in decreased levels of available ions.
Sources: Literature
Mendeliome v0.5547 HHAT Zornitza Stark gene: HHAT was added
gene: HHAT was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: HHAT was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HHAT were set to 24784881; 30912300
Phenotypes for gene: HHAT were set to Nivelon-Nivelon-Mabille syndrome 600092
Review for gene: HHAT was set to AMBER
Added comment: Two unrelated families reported. Clinical features include progressive microcephaly, cerebellar vermis hypoplasia, and skeletal dysplasia. Variable features include infantile-onset seizures, dwarfism, generalized chondrodysplasia, and micromelia.
Sources: Expert list
Mendeliome v0.5546 KAT5 Zornitza Stark Phenotypes for gene: KAT5 were changed from Severe global developmental delay; Intellectual disability; Seizures; Microcephaly; Behavioral abnormality; Sleep disturbance; Morphological abnormality of the central nervous system; Short stature; Oral cleft; Abnormality of the face to Neurodevelopmental disorder with dysmorphic facies, sleep disturbance, and brain abnormalities (NEDFASB), MIM#619103; Severe global developmental delay; Intellectual disability; Seizures; Microcephaly; Behavioral abnormality; Sleep disturbance; Morphological abnormality of the central nervous system; Short stature; Oral cleft; Abnormality of the face
Mendeliome v0.5526 YIPF5 Zornitza Stark gene: YIPF5 was added
gene: YIPF5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: YIPF5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: YIPF5 were set to 33164986
Phenotypes for gene: YIPF5 were set to Neonatal diabetes; microcephaly; seizures
Review for gene: YIPF5 was set to GREEN
Added comment: Six individuals from 5 unrelated consanguineous families reported with bi-allelic variants in this gene and neonatal/early-onset diabetes, severe microcephaly, and epilepsy. Functional data supports gene-disease association.
Sources: Literature
Mendeliome v0.5507 CAPN15 Eleanor Williams changed review comment from: PMID: 32885237 - Zha et al 2020 - report 5 individuals with microphthalmia and/or coloboma from 4 independent families who, through WES, were identified as carrying homozygous or compound heterozygous missense variants in CAPN15 that are predicted to be damanging. the variants segregated with the disease in all 4 families, with parents being unaffected heterozygous carriers. Several individuals had additional phenotypes including growth deficits (2 families), developmental delay (2 families) and hearing loss (2 families).
Sources: Literature; to: PMID: 32885237 - Zha et al 2020 - report 5 individuals with microphthalmia and/or coloboma from 4 independent families who, through WES, were identified as carrying homozygous or compound heterozygous missense variants in CAPN15 that are predicted to be damanging. the variants segregated with the disease in all 4 families, with parents being unaffected heterozygous carriers. Several individuals had additional phenotypes including growth deficits (2 families), developmental delay (2 families) and hearing loss (2 families). Capn15 knockout mice showed similar severe developmental eye defects, including anophthalmia, microphthalmia and cataract, and diminished growth.

Sources: Literature
Mendeliome v0.5507 CAPN15 Eleanor Williams gene: CAPN15 was added
gene: CAPN15 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CAPN15 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CAPN15 were set to 32885237
Phenotypes for gene: CAPN15 were set to microphthalmia HP:0000568; coloboma HP:0000589
Review for gene: CAPN15 was set to GREEN
Added comment: PMID: 32885237 - Zha et al 2020 - report 5 individuals with microphthalmia and/or coloboma from 4 independent families who, through WES, were identified as carrying homozygous or compound heterozygous missense variants in CAPN15 that are predicted to be damanging. the variants segregated with the disease in all 4 families, with parents being unaffected heterozygous carriers. Several individuals had additional phenotypes including growth deficits (2 families), developmental delay (2 families) and hearing loss (2 families).
Sources: Literature
Mendeliome v0.5507 MYF5 Zornitza Stark Phenotypes for gene: MYF5 were changed from to Ophthalmoplegia, external, with rib and vertebral anomalies, OMIM 61855
Mendeliome v0.5504 MYF5 Zornitza Stark reviewed gene: MYF5: Rating: GREEN; Mode of pathogenicity: None; Publications: 29887215, 15386014, 1423602, 9268580, 8918877; Phenotypes: Ophthalmoplegia, external, with rib and vertebral anomalies, OMIM 61855; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5502 COX16 Bryony Thompson gene: COX16 was added
gene: COX16 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: COX16 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COX16 were set to 33169484
Phenotypes for gene: COX16 were set to Hypertrophic cardiomyopathy; encephalopathy; severe fatal lactic acidosis
Review for gene: COX16 was set to AMBER
Added comment: 2 unrelated patients with the same homozygous (non-consanguineous) nonsense variant c.244C>T (p.Arg82*), and isolated complex IV deficiency present in both patient fibroblasts/skeletal muscle biopsy. COX16 is involved in the biogenesis of complex IV, the terminal complex of the mitochondrial respiratory chain (RC)
Sources: Literature
Mendeliome v0.5490 PIGP Zornitza Stark Phenotypes for gene: PIGP were changed from Epileptic encephalopathy, early infantile, 55, MIM# 617599 to Developmental and epileptic encephalopathy 55, MIM# 617599
Mendeliome v0.5487 PIGH Zornitza Stark edited their review of gene: PIGH: Added comment: Further three families reported.

Common clinical features include developmental delay/intellectual disability and hypotonia. Variable clinical features include seizures, autism spectrum disorder, apraxia, severe language delay, dysarthria, feeding difficulties, facial dysmorphisms, microcephaly, strabismus, and musculoskeletal anomalies.; Changed publications: 29573052, 29603516, 33156547
Mendeliome v0.5487 PIGB Zornitza Stark Phenotypes for gene: PIGB were changed from Epileptic encephalopathy, early infantile, 80; OMIM #618580 to Developmental and epileptic encephalopathy 80, MIM# 618580
Mendeliome v0.5486 PIGB Zornitza Stark edited their review of gene: PIGB: Changed phenotypes: Developmental and epileptic encephalopathy 80, MIM# 618580
Mendeliome v0.5473 TMEM218 Bryony Thompson gene: TMEM218 was added
gene: TMEM218 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TMEM218 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMEM218 were set to https://doi.org/10.1016/j.xhgg.2020.100016; 25161209
Phenotypes for gene: TMEM218 were set to Joubert syndrome; retinal dystrophy; polycystic kidneys; occipital encephalocele
Review for gene: TMEM218 was set to GREEN
Added comment: 11 cases in 6 families with homozygous or compound heterozygous missense and nonsense (1) variants, with a Joubert/Meckel syndrome phenotype. Clinical features included the molar tooth sign (N=2), occipital encephalocele (N=5, all fetuses), retinal dystrophy (N=4, all living individuals), polycystic kidneys (N=2), and polydactyly (N=2), without liver involvement. A null mouse model had nephronophthisis and retinal degeneration. No OMIM entry.
Sources: Literature
Mendeliome v0.5470 TLE6 Zornitza Stark gene: TLE6 was added
gene: TLE6 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: TLE6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TLE6 were set to 26537248; 31897846
Phenotypes for gene: TLE6 were set to Preimplantation embryonic lethality, MIM# 616814
Review for gene: TLE6 was set to GREEN
Added comment: At least 5 individuals reported with bi-allelic variants and early embryonic lethality.
Sources: Expert Review
Mendeliome v0.5393 NARS Zornitza Stark Phenotypes for gene: NARS were changed from Abnormal muscle tone; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Ataxia; Abnormality of the face; Demyelinating peripheral neuropathy to Neurodevelopmental disorder with microcephaly, impaired language, and gait abnormalities (NEDMILG), MIM#619091; Neurodevelopmental disorder with microcephaly, impaired language, epilepsy, and gait abnormalities (NEDMILEG), MIM#619092; Abnormal muscle tone; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Ataxia; Abnormality of the face; Demyelinating peripheral neuropathy
Mendeliome v0.5392 NARS Zornitza Stark edited their review of gene: NARS: Changed phenotypes: Neurodevelopmental disorder with microcephaly, impaired language, and gait abnormalities (NEDMILG), MIM#619091, Neurodevelopmental disorder with microcephaly, impaired language, epilepsy, and gait abnormalities (NEDMILEG), MIM#619092, Abnormal muscle tone, Microcephaly, Global developmental delay, Intellectual disability, Seizures, Ataxia, Abnormality of the face, Demyelinating peripheral neuropathy
Mendeliome v0.5378 MYRF Zornitza Stark Phenotypes for gene: MYRF were changed from Nanophthalmos; High hyperopia to Nanophthalmos and high hyperopia; Cardiac-urogenital syndrome, MIM# 618280; Encephalitis/encephalopathy, mild, with reversible myelin vacuolization, MIM# 618113
Mendeliome v0.5376 MYRF Zornitza Stark edited their review of gene: MYRF: Added comment: Association with Encephalitis/encephalopathy, mild, with reversible myelin vacuolization 618113: limited evidence, two multiplex families with same missense variant (likely founder effect) reported (p.Gln403Arg); Changed publications: 31048900, 31172260, 31266062, 31700225, 29446546, 29446546, 30532227, 31069960, 29265453; Changed phenotypes: Nanophthalmos and high hyperopia, Cardiac-urogenital syndrome, MIM# 618280, Encephalitis/encephalopathy, mild, with reversible myelin vacuolization, MIM# 618113
Mendeliome v0.5376 MYRF Zornitza Stark edited their review of gene: MYRF: Added comment: Cardiac-urogenital syndrome is characterized by partial anomalous pulmonary venous return in association with tracheal anomalies, pulmonary hypoplasia, congenital diaphragmatic hernia, thyroid fibrosis, thymic involution, cleft spleen, penoscrotal hypospadias, and cryptorchidism. More than 10 unrelated individuals reported.; Changed publications: 31048900, 31172260, 31266062, 31700225, 29446546, 29446546, 30532227, 31069960; Changed phenotypes: Nanophthalmos and high hyperopia, Cardiac-urogenital syndrome, MIM# 618280
Mendeliome v0.5376 MYRF Zornitza Stark changed review comment from: Multiple affected individuals reported.
Sources: Expert list; to: Multiple affected individuals reported with nanophthalmos and high hyperopia and C-terminal frameshift variants, with or without dextrocardia or congenital diaphragmatic hernia.
Sources: Expert list
Mendeliome v0.5373 GABBR2 Zornitza Stark edited their review of gene: GABBR2: Changed publications: 29100083, 28061363, 28135719, 28856709, 29369404, 29377213, 25262651, 28856709; Changed phenotypes: Neurodevelopmental disorder with poor language and loss of hand skills, 617903, Developmental and epileptic encephalopathy 59, MIM# 617904
Mendeliome v0.5369 FGFR1 Zornitza Stark Phenotypes for gene: FGFR1 were changed from to Encephalocraniocutaneous lipomatosis, somatic mosaic 613001; Hartsfield syndrome 615465; Hypogonadotropic hypogonadism 2 with or without anosmia 147950; Jackson-Weiss syndrome 123150; Osteoglophonic dysplasia 166250; Pfeiffer syndrome 101600; Trigonocephaly 1 190440
Mendeliome v0.5361 KCNQ2 Zornitza Stark Phenotypes for gene: KCNQ2 were changed from to Epileptic encephalopathy, early infantile, 7, 613720; Seizures, benign neonatal, 1, 121200; Myokymia, 121200
Mendeliome v0.5357 KCNQ2 Elena Savva reviewed gene: KCNQ2: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID 25959266, 32917465, 24318194; Phenotypes: Epileptic encephalopathy, early infantile, 7, 613720, Seizures, benign neonatal, 1, 121200, Myokymia, 121200; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v0.5357 FGFR1 Elena Savva reviewed gene: FGFR1: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 18034870, 23812909, 26942290; Phenotypes: Encephalocraniocutaneous lipomatosis, somatic mosaic 613001, Hartsfield syndrome 615465, Hypogonadotropic hypogonadism 2 with or without anosmia 147950, Jackson-Weiss syndrome 123150, Osteoglophonic dysplasia 166250, Pfeiffer syndrome 101600, Trigonocephaly 1 190440; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.5353 FOXJ1 Zornitza Stark Phenotypes for gene: FOXJ1 were changed from hydrocephalus; chronic destructive airway disease; randomization of left/right body asymmetry to Ciliary dyskinesia, primary, 43, MIM#618699; hydrocephalus; chronic destructive airway disease; randomization of left/right body asymmetry
Mendeliome v0.5352 FOXJ1 Zornitza Stark edited their review of gene: FOXJ1: Changed phenotypes: Ciliary dyskinesia, primary, 43, MIM#618699, hydrocephalus, chronic destructive airway disease, randomization of left/right body asymmetry
Mendeliome v0.5315 ZFHX4 Bryony Thompson changed review comment from: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 16 de novo variants (5 frameshift, 5 missense, 4 stopgain, 2 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature; to: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 16 de novo variants (5 frameshift, 5 missense, 4 stopgain, 2 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
PMID: 24038936 - a single case with developmental delay, macrocephaly, ventriculomegaly, hypermetropia, recurrent
infections, dysmorphism and a de novo deletion of the last 7 exons of the gene.
Sources: Literature
Mendeliome v0.5278 H3F3A Bryony Thompson reviewed gene: H3F3A: Rating: AMBER; Mode of pathogenicity: None; Publications: 33057194, 31942419; Phenotypes: Developmental disorders, intellectual disability, microcephaly, severe developmental delay; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5229 PRKAR1B Konstantinos Varvagiannis gene: PRKAR1B was added
gene: PRKAR1B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRKAR1B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PRKAR1B were set to https://doi.org/10.1101/2020.09.10.20190314; 25414040
Phenotypes for gene: PRKAR1B were set to Global developmental delay; Intellectual disability; Autism; Attention deficit hyperactivity disorder; Aggressive behavior; Abnormality of movement; Upslanted palpebral fissure
Penetrance for gene: PRKAR1B were set to unknown
Review for gene: PRKAR1B was set to AMBER
Added comment: Please consider inclusion of this gene with amber rating pending publication of the preprint and/or additional evidence.

Marbach et al. (2020 - medRxiv : https://doi.org/10.1101/2020.09.10.20190314 - last author : C. Schaaf) report 6 unrelated individuals with heterozygous missense PRKAR1B variants.

All presented formal ASD diagnosis (6/6), global developmental delay (6/6) and intellectual disability (all - formal evaluations were lacking though). Additional features included neurologic anomalies (movement disorders : dyspraxia, apraxia, clumsiness in all, with tremor/dystonia or involuntary movements as single occurrences). Three displayed high pain tolerance. Regression in speech was a feature in two. Additional behavior anomalies included ADHD (4-5/6) or aggression (3/6). There was no consistent pattern of malformations, physical anomalies or facial features (with the exception of uplsanted palpebral fissures reported in 4).

3 different missense variants were identified (NM_00116470:c.1003C>T - p.Arg335Trp, c.586G>A - p.Glu196Lys, c.500_501delAAinsTT - p.Gln167Leu) with Arg355Trp being a recurrent one within this cohort (4/6 subjects). A possible splicing effect may apply for the MNV. All variants are absent from gnomAD and the SNVs had CADD scores > 24.

In all cases were parental samples were available (5/6), the variant had occurred as a de novo event.

Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes. As the authors comment, the RIβ subunit is primarily expressed in brain with higher expression in cortex and hypothalamus.

The functional consequences of the variants at cellular level were not studied.

Previous studies have demonstrated that downregulation of RIβ in murine hippocampal cultures, reduced phosphorylation of CREB, a transcription factor involved in long-term memory formation. The authors speculate that a similar effect on cAMP/PKA/CREB cascade may mediate the cognitive effects in humans. RIβ deficient mice also display diminished nociceptive pain, similar to the human phenotype. [Several refs provided].

The authors cite the study by Kaplanis et al (2020 - PMID: 33057194), where in a large sample of 31,058 trio exomes of children with developmental disorders, PRKAR1B was among the genes with significant enrichment for de novo missense variants. [The gene has a pLI score of 0.18 in gnomAD / o/e = 0.26 - so pLoF variants may not be deleterious].

Please note that a specific PRKAR1B variant (NM_002735.2:c.149T>G - p.Leu50Arg) has been previous reported to segregate with a late-onset neurodegenerative disorder characterized by dementia and/or parkinsonism within a large pedigree with 12 affected individuals [Wong et al 2014 - PMID: 25414040].
Sources: Literature
Mendeliome v0.5222 MPP5 Konstantinos Varvagiannis gene: MPP5 was added
gene: MPP5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MPP5 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: MPP5 were set to 33073849
Phenotypes for gene: MPP5 were set to Global developmental delay; Intellectual disability; Delayed speech and language development; Developmental regression; Behavioral abnormality
Penetrance for gene: MPP5 were set to unknown
Review for gene: MPP5 was set to GREEN
Added comment: Sterling et al (2020 - PMID: 33073849) provide information on the phenotype of 3 individuals with de novo MPP5 variants.

Common features included global developmental delay, intellectual disability (3/3 - severe in 2/3), speech delay/regression (the latter in at least 2) and behavioral abnormalities. Variable other features were reported, among others microcephaly (1/3), abnormal vision (1/3 : CVI, retinal dystrophy, nystagmus), brain MRI abnormalities (2/3), late-onset seizures (1/3). These subjects displayed variable and non-specific dysmorphic features.

All were investigated by exome sequencing (previous investigations not mentioned).

One subject was found to harbor a de novo mosaic (5/25 reads) stopgain variant, further confirmed by Sanger sequencing [NM_022474.4:c.1555C>T - p.(Arg519Ter). The specific variant is reported once in gnomAD (1/251338). Two de novo missense variants were identified in the remaining individuals [c.1289A>G - p.Glu430Gly / c.974A>C - p.His325Pro). All variants had in silico predictions in favor of a deleterious effect (CADD score >24).

The authors comment that MPP5 encodes an apical complex protein with asymmetric localization to the apical side of polarized cells. It is expressed in brain, peripheral nervous system and other tissues. MPP5 is a member of the membrane-associated guanylate kinase family of proteins (MAGUK p55 subfamily), determining cell polarity at tight junctions.

Previous animal models suggest that complete Mpp5(Pals1) KO in mice leads to near absence of cerebral cortical neurons. Htz KO display reduction in size of cerebral cortex and hippocampus. The gene is expressed in proliferating cell populations of cerebellum and important for establishment cerebellar architecture. Conditional KO of Mpp5(Pals1) in retinal progenitor cells mimics the retinal pathology observed in LCA. [Several refs. provided]

The authors studied a heterozygous CNS-specific Mpp5 KO mouse model. These mice presented microcephaly, decreased cerebellar volume and cortical thickness, decreased ependymal cells and Mpp5 at the apical surface of cortical vertrical zone. The proportion of cortical cells undergoing apoptotic cell death was increased. Mice displayed behavioral abnormalities (hyperactivity) and visual deficits, with ERG traces further suggesting retinal blindness.

Overall the mouse model was thought to recapitulate the behavioral abnormalities observed in affected subjects as well as individual rare features such as microcephaly and abnormal vision.

Haploinsufficiency (rather than a dominant negative effect) is favored as the underlying disease mechanism. This is also in line with a dose dependent effect observed in mice.
Sources: Literature
Mendeliome v0.5200 ODC1 Zornitza Stark Phenotypes for gene: ODC1 were changed from Intellectual disability; macrocephaly; dysmorphism to Neurodevelopmental disorder with alopecia and brain imaging abnormalities (NEDABIA), MIM#619075
Mendeliome v0.5196 SCN8A Zornitza Stark Phenotypes for gene: SCN8A were changed from to Developmental and epileptic encephalopathy 13, MIM#614558, dominant and recessive; Myoclonus, familial, 2, MIM# 618364; paroxysmal kinesigenic dyskinesias; Cognitive impairment with or without cerebellar ataxia, MIM# 614306
Mendeliome v0.5192 SCN8A Zornitza Stark reviewed gene: SCN8A: Rating: GREEN; Mode of pathogenicity: Other; Publications: 31625145, 29726066, 27098556, 28702509, 16236810, 31904124, 31887642, 31675620; Phenotypes: Developmental and epileptic encephalopathy 13, MIM#614558, dominant and recessive, Myoclonus, familial, 2, MIM# 618364, paroxysmal kinesigenic dyskinesias, Cognitive impairment with or without cerebellar ataxia, MIM# 614306; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.5182 HBB Zornitza Stark Phenotypes for gene: HBB were changed from to Delta-beta thalassemia 141749; Erythrocytosis 6 617980; Heinz body anemia 140700; Hereditary persistence of fetal hemoglobin 141749; Methemoglobinemia, beta type 617971; Sickle cell anemia 603903; Thalassemia-beta, dominant inclusion-body 603902; Thalassemia, beta 613985
Mendeliome v0.5180 SCN8A Elena Savva reviewed gene: SCN8A: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID 30615093, 31904124; Phenotypes: ?Myoclonus, familial, 2 618364, Cognitive impairment with or without cerebellar ataxia 614306, Epileptic encephalopathy, early infantile, 13 614558, Seizures, benign familial infantile, 5 617080; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.5174 HBB Elena Savva reviewed gene: HBB: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 31788855, 20301599, 29700171; Phenotypes: {Malaria, resistance to} 611162, Delta-beta thalassemia 141749, Erythrocytosis 6 617980, Heinz body anemia 140700, Hereditary persistence of fetal hemoglobin 141749, Methemoglobinemia, beta type 617971, Sickle cell anemia 603903, Thalassemia-beta, dominant inclusion-body 603902, Thalassemia, beta 613985; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.5138 STXBP1 Zornitza Stark Phenotypes for gene: STXBP1 were changed from Epileptic encephalopathy, early infantile, 4 612164; Rett syndrome; Rett-like phenotypes to Developmental and epileptic encephalopathy 4, MIM# 612164; Rett syndrome; Rett-like phenotypes
Mendeliome v0.5137 STXBP1 Zornitza Stark reviewed gene: STXBP1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Developmental and epileptic encephalopathy 4, MIM# 612164; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5096 GFPT1 Zornitza Stark Phenotypes for gene: GFPT1 were changed from to Myasthenia, congenital, 12, with tubular aggregates, 610542; Limb-girdle congenital myasthenic syndrome; Leukoencephalopathy
Mendeliome v0.5093 GFPT1 Zornitza Stark reviewed gene: GFPT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21310273, 30635494; Phenotypes: Myasthenia, congenital, 12, with tubular aggregates, 610542, Limb-girdle congenital myasthenic syndrome, Leukoencephalopathy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5091 SMARCC1 Zornitza Stark changed review comment from: Three de novo variants, two LOF, one missense, reported in this hydrocephalus cohort.
Sources: Literature; to: Three de novo variants, two LOF, one missense, reported in this hydrocephalus cohort. Supportive mouse model.
Sources: Literature
Mendeliome v0.5090 SMARCC1 Zornitza Stark gene: SMARCC1 was added
gene: SMARCC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SMARCC1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SMARCC1 were set to 33077954
Phenotypes for gene: SMARCC1 were set to Congenital hydrocephalus
Review for gene: SMARCC1 was set to GREEN
Added comment: Three de novo variants, two LOF, one missense, reported in this hydrocephalus cohort.
Sources: Literature
Mendeliome v0.5045 HECW2 Zornitza Stark Phenotypes for gene: HECW2 were changed from to Neurodevelopmental disorder with hypotonia, seizures, and absent language, MIM# 617268; intellectual disability; epilepsy; regression; microcephaly
Mendeliome v0.5042 HECW2 Natasha Brown reviewed gene: HECW2: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 29807643, 29395664, 27334371, 27389779; Phenotypes: intellectual disability, epilepsy, regression, microcephaly; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4998 CSNK1G1 Zornitza Stark gene: CSNK1G1 was added
gene: CSNK1G1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CSNK1G1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CSNK1G1 were set to 33009664
Phenotypes for gene: CSNK1G1 were set to Global developmental delay; Intellectual disability; Autism; Seizures
Review for gene: CSNK1G1 was set to GREEN
Added comment: Borderline Green/Amber rating.

Gold et al (2020 - PMID: 33009664) report 5 individuals with CSNK1G1 variants, including updated information on a previously reported subject (Martin et al 2014 - PMID: 24463883).

Features included DD (5/5) with associated expressive language delay, ASD (in at least 3/5), seizures (2/5), dysmorphic facial features (4/5 arched eyebrows, 3/5 prominent central incisors, 2/5 epicanthus) and limb anomalies (2/5 - proximally placed thumb, 5th f. clinodactyly, asymmetric overgrowth - the other individual had tapering fingers). GI problems were observed in 4/5. Two individuals had macrocephaly and one had microcephaly. There was no formal developmental assessment although ID might be implied in at least 3 individuals (p1: 20y - single words/regression in walking following a seizure episode, p2: 8y - first words at 5y, assistance to feed, dress and bathe, ASD, p4: 13y - regression, assistance to feed and dress).

CSNK1G1 encodes the gamma-1 isoform of casein kinase 1, a protein involved in growth and cell morphogenesis. The gene has ubiquitous expression, incl. brain. As commented, in brain it regulates phosphorylation of NMDA receptors, playing a role in synaptic transmission (4 articles cited).

One individual had a 1.2 kb deletion spanning exon 3 of CSNK1G1 [chr15:64550952-64552120 - GRCh37]. Parental samples were unavailable for this individual. Four individuals were found to harbor de novo CSNK1G1 variants [NM_022048.3: c.688C>T - p.(Arg230Trp) dn | c.1255C>T - p.(Gln419*) dn | c.1214+5G>A dn with in silico predictions in favor of splice disruption | c.419C>T - p.(Thr140Met) dn].

Arg230Trp is however present once in gnomAD. The stopgain variant is located in the last exon and predicted to skip NMD.

There were no variant studies performed.

The Drosophila gish gene encodes a CK1γ homolog with preferential expression in the mushroom body. Heterozygous and homozygous mutants exhibit impairment in memory retention, more severe in homozygous flies. gish was also identified as a seizure modifier in a fly epilepsy model (heterozygous para mt flies).
Sources: Literature
Mendeliome v0.4997 LMNB2 Zornitza Stark Phenotypes for gene: LMNB2 were changed from to {Lipodystrophy, partial, acquired, susceptibility to} 608709; Congenital microcephaly, Intellectual disability
Mendeliome v0.4994 LMNB2 Zornitza Stark reviewed gene: LMNB2: Rating: GREEN; Mode of pathogenicity: None; Publications: 16826530, 22768673, 33033404; Phenotypes: {Lipodystrophy, partial, acquired, susceptibility to} 608709, Congenital microcephaly, Intellectual disability; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4993 LMNB1 Zornitza Stark edited their review of gene: LMNB1: Added comment: Additional study PMID 33033404 reporting 7 individuals with recurrent missense variants in this gene and ID/microcephaly phenotype.; Changed publications: 32910914, 16951681, 19151023, 33033404
Mendeliome v0.4947 MYH2 Zornitza Stark Phenotypes for gene: MYH2 were changed from to Proximal myopathy and ophthalmoplegia, MIM# 605637
Mendeliome v0.4944 MYH2 Zornitza Stark reviewed gene: MYH2: Rating: GREEN; Mode of pathogenicity: None; Publications: 20418530, 15548556, 24193343, 11114175, 23489661, 32578970, 29934118, 28729039, 27490141, 27177998; Phenotypes: Proximal myopathy and ophthalmoplegia, MIM# 605637; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.4926 TUBGCP4 Zornitza Stark Phenotypes for gene: TUBGCP4 were changed from to Microcephaly and chorioretinopathy, autosomal recessive, 3, MIM# 616335
Mendeliome v0.4923 TUBGCP4 Zornitza Stark reviewed gene: TUBGCP4: Rating: GREEN; Mode of pathogenicity: None; Publications: 25817018, 32270730; Phenotypes: Microcephaly and chorioretinopathy, autosomal recessive, 3, MIM# 616335; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4894 CEP112 Zornitza Stark Phenotypes for gene: CEP112 were changed from Acephalic spermatozoa; infertility to Spermatogenic failure 44, MIM#619044; Acephalic spermatozoa; infertility
Mendeliome v0.4872 SHMT2 Zornitza Stark gene: SHMT2 was added
gene: SHMT2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SHMT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SHMT2 were set to 33015733
Phenotypes for gene: SHMT2 were set to Congenital microcephaly; Infantile axial hypotonia; Spastic paraparesis; Global developmental delay; Intellectual disability; Abnormality of the corpus callosum; Abnormal cortical gyration; Hypertrophic cardiomyopathy; Abnormality of the face; Proximal placement of thumb; 2-3 toe syndactyly
Review for gene: SHMT2 was set to GREEN
Added comment: García‑Cazorla et al. (2020 - PMID: 33015733) report 5 individuals (from 4 families) with a novel brain and heart developmental syndrome caused by biallelic SHMT2 pathogenic variants.

All affected subjects presented similar phenotype incl. microcephaly at birth (5/5 with OFC < -2 SD though in 2/5 cases N OFC was observed later), DD and ID (1/5 mild-moderate, 1/5 moderate, 3/5 severe), motor dysfunction in the form of spastic (5/5) paraparesis, ataxia/dysmetria (3/4), intention tremor (in 3/?) and/or peripheral neuropathy (2 sibs). They exhibited corpus callosum hypoplasia (5/5) and perisylvian microgyria-like pattern (4/5). Cardiac problems were reported in all, with hypertrophic cardiomyopathy in 4/5 (from 3 families) and atrial-SD in the 5th individual (1/5). Common dysmorphic features incl. long palpebral/fissures, eversion of lateral third of lower eylids, arched eyebrows, long eyelashes, thin upper lip, short Vth finger, fetal pads, mild 2-3 toe syndactyly, proximally placed thumbs.

Biallelic variants were identified following exome sequencing in all (other investigations not mentioned). Identified variants were in all cases missense SNVs or in-frame del, which together with evidence from population databases and mouse model might suggest a hypomorphic effect of variants and intolerance/embryonic lethality for homozygous LoF ones.

SHMT2 encodes the mitohondrial form of serine hydroxymethyltransferase. The enzyme transfers one-carbon units from serine to tetrahydrofolate (THF) and generates glycine and 5,10,methylene-THF.

Mitochondrial defect was suggested by presence of ragged red fibers in myocardial biopsy of one patient. Quadriceps and myocardial biopsies of the same individual were overall suggestive of myopathic changes.

While plasma metabolites were within N range and SHMT2 protein levels not significantly altered in patient fibroblasts, the authors provide evidence for impaired enzymatic function eg. presence of the SHMT2 substrate (THF) in patient but not control (mitochondria-enriched) fibroblasts , decrease in glycine/serine ratios, impared folate metabolism. Patient fibroblasts displayed impaired oxidative capacity (reduced ATP levels in a medium without glucose, diminished oxygen consumption rates). Mitochondrial membrane potential and ROS levels were also suggestive of redox malfunction.

Shmt2 ko in mice was previously shown to be embryonically lethal attributed to severe mitochondrial respiration defects, although there was no observed brain metabolic defect.

The authors performed Shmt2 knockdown in motoneurons in Drosophila, demonstrating neuromuscular junction (# of satellite boutons) and motility defects (climbing distance/velocity).
Sources: Literature
Mendeliome v0.4846 ARX Zornitza Stark Phenotypes for gene: ARX were changed from to Epileptic encephalopathy, early infantile, 1 MIM#308350; Hydranencephaly with abnormal genitalia MIM#300215; Lissencephaly, X-linked 2 MIM#300215; Mental retardation, X-linked 29 and others MIM#300419; Partington syndrome MIM#309510; Proud syndrome MIM#300004
Mendeliome v0.4843 ARX Elena Savva reviewed gene: ARX: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 14722918, 19738637, 32519823, 28150386, 21496008; Phenotypes: Epileptic encephalopathy, early infantile, 1 MIM#308350, Hydranencephaly with abnormal genitalia MIM#300215, Lissencephaly, X-linked 2 MIM#300215, Mental retardation, X-linked 29 and others MIM#300419, Partington syndrome MIM#309510, Proud syndrome MIM#300004; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes
Mendeliome v0.4832 NEK9 Zornitza Stark Phenotypes for gene: NEK9 were changed from Lethal congenital contracture syndrome 10, MIM# 617022; Skeletal dysplasia to Lethal congenital contracture syndrome 10, MIM# 617022; Arthrogryposis, Perthes disease, and upward gaze palsy, MIM# 614262; Skeletal dysplasia
Mendeliome v0.4829 NEK9 Zornitza Stark edited their review of gene: NEK9: Added comment: Another Saudi family described with which 2 sisters and a female cousin who had a similar disorder characterised by arthrogryposis apparent since early childhood, avascular necrosis of the hip (Perthes disease), and upward gaze palsy. Homozygous missense variant segregated with the phenotype. Given the small number of reports, it is unclear whether this represents a distinct association is part of a spectrum with includes the more severe phenotype described in the Irish traveller families.; Changed publications: 26908619, 21271645; Changed phenotypes: Lethal congenital contracture syndrome 10, MIM# 617022, Arthrogryposis, Perthes disease, and upward gaze palsy, MIM# 614262, Skeletal dysplasia
Mendeliome v0.4800 NUAK2 Zornitza Stark edited their review of gene: NUAK2: Changed phenotypes: Anencephaly
Mendeliome v0.4800 NUAK2 Zornitza Stark Phenotypes for gene: NUAK2 were changed from ANENCEPHALY (OMIM#206500) to Anencephaly
Mendeliome v0.4783 NUAK2 Seb Lunke gene: NUAK2 was added
gene: NUAK2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NUAK2 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: NUAK2 were set to 32845958
Phenotypes for gene: NUAK2 were set to ANENCEPHALY (OMIM#206500)
Review for gene: NUAK2 was set to AMBER
Added comment: Novel gene described in single consanguineous family with three FDIU and extensive anencephaly. Hom inframe del affecting functional kinase domain, parents confirmed carriers. Good functional data showing loss of enzyme function and mouse model with 40% anencephaly after knock-out.
Sources: Literature
Mendeliome v0.4751 NUP188 Zornitza Stark Phenotypes for gene: NUP188 were changed from microcephaly; ID; cataract; structural brain abnormalities; hypoventilation to Sandestig-Stefanova syndrome, 618804; microcephaly; ID; cataract; structural brain abnormalities; hypoventilation
Mendeliome v0.4750 NUP188 Zornitza Stark edited their review of gene: NUP188: Changed phenotypes: Sandestig-Stefanova syndrome, 618804, microcephaly, ID, cataract, structural brain abnormalities, hypoventilation
Mendeliome v0.4747 HPDL Zornitza Stark commented on gene: HPDL: 17 individuals from 13 families, with a spectrum of neurologic impairment ranging from a severe congenital form without any neurological development (n = 2/17, 12%) to infantile-onset presentations (n = 10/17, 59%) with moderate to severe neurodevelopmental issues, partly with a pathology reminiscent of mitochondrial disease (Leigh-like syndrome), to juvenile-onset spastic paraplegia (n = 5/17, 29%).

Frequently observed clinical findings included chronic progression of neurological signs (n = 16/17, 94%), motor developmental delay (n = 12/17, 71%), intellectual impairment (n = 11/17, 65%), microcephaly (n = 9/16, 56%), and seizures/epilepsy (n = 9/17, 53%). Other relevant clinical findings were visual disturbances/strabismus (n = 9/17, 53%) and loss of developmental milestones (n = 6/17, 35%).

Acute central respiratory failure leading to life-threatening events requiring partly mechanically assisted ventilation occurred in half of individuals with infantile presentation (n = 5/10, 50%), respectively one third of all individuals (n = 5/17, 29%).

Demyelinating neuropathy was present in three individuals (n = 3/11, 27%), with reduced sensory nerve conduction velocity (NCV) in all and severely reduced motor NCV in one.
Mendeliome v0.4745 SCN1A Zornitza Stark Phenotypes for gene: SCN1A were changed from Epileptic encephalopathy, early infantile, 6 (Dravet syndrome), MIM# 607208 to Epileptic encephalopathy, early infantile, 6 (Dravet syndrome), MIM# 607208; Genetic Epilepsy Febrile Seizures plus (GEFS+) Syndrome; Febrile seizures; Arthrogryposis multiplex congenita
Mendeliome v0.4743 SCN1A Zornitza Stark edited their review of gene: SCN1A: Added comment: Note we have reported the association with AMC previously in PMID 29543227 (Supplementary info) in an infant presenting with AMC and severe EE, and de novo p.(Ile1347Asn) variant which at the time was thought to only partially explain the phenotype, but in light of this new report, likely fully explains the phenotype. Given the presence of severe seizure disorder in the two infants who were phenotyped in the newborn period, this likely represents the severe end of the spectrum of SCN1A-related disorders rather than a distinct association.; Changed phenotypes: Epileptic encephalopathy, early infantile, 6 (Dravet syndrome), MIM# 607208, Genetic Epilepsy Febrile Seizures plus (GEFS+) Syndrome, Febrile seizures, Arthrogryposis multiplex congenita
Mendeliome v0.4685 RPL9 Arina Puzriakova changed review comment from: PMID: 31799629 (2020) - One individual diagnosed with Diamond Blackfan anaemia carrying a de novo variant (c.-2+1G>C) in the 5′UTR of RPL9, predicted to affect the donor splice site of exon 1. Functional studies showed the variant impairs processing of pre-rRNA during ribosome biogenesis, stabilises TP53 and impairs the proliferation and differentiation of erythroid cells. Zebrafish models of RPL9 LoF recapitulate the anaemia phenotype.; to: PMID: 31799629 (2020) - Female infant diagnosed with Diamond-Blackfan anaemia carrying a de novo variant (c.-2+1G>C) in the 5′UTR of RPL9, predicted to affect the donor splice site of exon 1. Phenotypic overlap can be seen with the previously reported case with the same variant, including colitis, thumb anomaly, and microcephaly. Functional studies showed the variant impairs processing of pre-rRNA during ribosome biogenesis, stabilises TP53 and impairs the proliferation and differentiation of erythroid cells. Zebrafish models of RPL9 LoF recapitulate the anaemia phenotype.
Mendeliome v0.4647 CNOT1 Zornitza Stark Phenotypes for gene: CNOT1 were changed from Holoprosencephaly 12, with or without pancreatic agenesis; OMIM# 618500 to Vissers-Bodmer syndrome, MIM#619033; Holoprosencephaly 12, with or without pancreatic agenesis; OMIM# 618500
Mendeliome v0.4644 COQ5 Zornitza Stark Phenotypes for gene: COQ5 were changed from Cerebellar ataxia; encephalopathy; generalized tonic-clonic seizures; intellectual disability to Coenzyme Q10 deficiency, primary 9, MIM#619028; Cerebellar ataxia; encephalopathy; generalized tonic-clonic seizures; intellectual disability
Mendeliome v0.4643 COQ5 Zornitza Stark edited their review of gene: COQ5: Changed phenotypes: Coenzyme Q10 deficiency, primary 9, MIM#619028, Cerebellar ataxia, encephalopathy, generalized tonic-clonic seizures, intellectual disability
Mendeliome v0.4578 TREM2 Zornitza Stark Phenotypes for gene: TREM2 were changed from to Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy 2, MIM# 618193
Mendeliome v0.4575 TREM2 Zornitza Stark reviewed gene: TREM2: Rating: GREEN; Mode of pathogenicity: None; Publications: 12080485, 15883308; Phenotypes: Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy 2, MIM# 618193; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4526 NSUN3 Zornitza Stark edited their review of gene: NSUN3: Added comment: Second family reported with early-onset mitochondrial encephalomyopathy and seizures.; Changed publications: 27356879, 32488845; Changed phenotypes: Combined oxidative phosphorylation deficiency 48, MIM# 619012
Mendeliome v0.4520 SLC12A2 Zornitza Stark edited their review of gene: SLC12A2: Added comment: Monoallelic :
DD/ID was a feature in >= 6 individuals with monoallelic de novo SLC12A2. An individual with an exon 22 truncating variant was reported to have normal milestones and cognitive function. Exon 21 variants have been described in individuals with rather isolated hearing impairment (possibly some associated motor delay, but normal cognition). Hearing impairment was also reported in 2/6 patients with variants in other exons (1 missense / 1 frameshift).

Biallelic :
DD/ID was reported in at least 3 individuals in literature. Hearing impairment has been reported on 2 occasions (although this was not probably evaluated in all subjects).

---

Monoallelic SLC12A2 mutations :

► Individuals with de novo mutations and developmental disorder were first identified by the DDD study (2017 - PMID: 28135719). 5 of them have been reported in detail by McNeill et al (below).

► McNeill et al (2020 - PMID: 32658972) report on 6 individuals with neurodevelopmental disorder due to de novo SLC12A2 mutation. All presented DD or ID ranging from mild to severe. ASD was reported in 3/6. Sensorineural hearing loss was a feature in 2/6 with the remaining having normal formal evaluations. Brain, cardiac and/or additional malformations were reported in a single individual. Following non-diagnostic prior work-up (CMA, FMR1 or other investigations) trio exome sequencing revealed missense (4/6) or truncating variants (2/6).

Three additional individuals (incl. a father and his son) with missense variants in exon 21 (NM_001046.3 / p.Glu979Lys and p.Glu980Lys) presented with bilateral sensorineural hearing loss. Speech and/or motor delay reported in these cases were attributed to the hearing impairment/vestibular arreflexia (cognitive abilities not tested).

SLC12A2 encodes sodium-potassium-chloride transporter 1 (also NKCC1).

The GTEx project has identified 8 isoforms. In brain both exon 21-containing/deleted isoforms are expressed (cited Morita et al 2014 - PMID: 24695712). As the authors discuss, RNA-seq of the developing mouse cochlea suggests that the exon 21 containing isoform is the single transcript expressed. Evidence from RNA-seq data (BrainSpan project) and literature suggests that the significant amounts of exon 21 lacking isoforms in fetal brain compensate for the deleterious effects of exon 21 variants and explain the lack of NDD in relevant patients.

Slc12a2 (NKCC1) null mouse model has demonstrated that the transporter plays a role in accumulation of the potassium rich endolymph in the inner ear, with NKCC1 absence causing sensorineural deafness and imbalance. Slc12a2 display cochlear malformations, loss of hair cells and hearing impairment (cited Delpire et al 1999 - PMID: 10369265). The brain phenotype has not been studied extensively, although loss of Slc12a2 has been shown to inhibit neurogenesis (cited: Magalhães and Rivera et al. - PMID: 27582690).

Slc12a2 null zebrafish display a collapse of the otic vesicle and reduced endolymph (Abbas and Whitfield, 2009 - PMID: 19633174) relevant to the human hearing disorder.

In vitro assessment of NKCC1 ion transporter function in Xenopus laevis, supported the deleterious effect of the identified variants (significant reduction in K+ influx). Using available single cell RNA-seq data the authors further demonstrated that SLC12A2 expressing cells display transcriptomic profiles reflective of active neurogenesis.

► Delpire et al (2016 - PMID: 27900370 - not reviewed in detail) described a 13 y.o. girl harboring a de novo 11-bp deletion in SLC12A2 exon 22. This individual reached developmental milestones on time and had a NORMAL cognitive function. Hearing was seemingly normal. Features included orthostatic intolerance, respiratory weakness, multiple endocrine abnormalities, pancreatic insufficiency and multiorgan failure incl. gut and bladder. Exome in the proband, parents and 3 unaffected sibs suggested SLC12A2 as the only candidate for her phenotype. Functional analyses in Xenopus laevis oocytes suggested that a non functional transporter was expressed and trafficked to the membrane as the wt. Detection of the truncated protein at higher molecular sizes suggested either enhanced dimerization or misfolded aggregate. There was no dominant-negative effect of mutant NKCC1. In patient fibroblasts a reduced total and NKCC1-mediated K+ influx.

► Mutai et al (2020 - PMID: 32294086) report on several individuals from 4 families, harboring variants within exon 21 or - in one case - at it's 3' splice-site (leading to skipping oe this exon at the mRNA level). All subjects were investigated for severe/profound hearing loss (in line with the role of exon 21-included isoforms in cochlea. The variant segregated with hearing impairment in 3 generations of a family while in all other subjects the variant had occured as de novo event. Despite motor delays (e.g. the subject from fam2 could not hold head or sit at the age of 10m / the proband in Fam3 was able to hold his head and walk at 6 and 20 m respectively) behavior and cognition were commented to be within normal range.


-----

Biallelic SLC12A2 mutations:

► Anazi et al (2017 - PMID: 29288388) briefly reported on a 3 y.o. boy (17DG0776) with central hypotonia, neonatal respiratory distress, failure to thrive, global DD and microcephaly and a skeletal survey suggestive of osteopenia. After non-diagnostic prior investigations (CMA revealing a 1p duplication classified as VUS, extensive metabolic workup), WES revealed a homozygous SLC12A2 splicing variant [NM_001046.2:c.2617-2A>G].

► Macnamara et al (2019 - PMID: 30740830) described a 5.5 y.o. male with sensorineural hearing loss, profound delays in all developmental areas among several other features (choanal atresia, failure to thrive, respiratory problems, absent sweat and tear production or salivation, GI abnormalities). Genetic testing for several disorders considered (cystic fibrosis, spinal muscular atrophy, sequencing and del/dup analysis of mtDNA) was normal. CMA revealed paternal uniparental isodisomy for chr. 5 and WGS a homozygous 22kb deletion in SLC12A2. This was followed by confirmation of homozygosity in the proband, heterozygosity of the unaffected father, delineation of breakpoints (chr5:127441491-127471419). mRNA studies in patient fibroblasts confirmed deletion of ex2-7, splicing of ex1 directly to ex8 and introduction of a premature stop codon in ex9. qRT-PCR confirmed that mRNA is likely subjected to NMD (expression ~80% of control). Western blot confirmed absence of the protein in the patient's fibroblasts. Again mouse models are thought to recapitulate the hearing defect but also the deficient saliva production (cited Evans et al 2000 - PMID: 10831596). Again the authors speculate a role of SLC12A2 in brain development based on evidence from murine models (migration, dendritic growth, increse in neuron density through regulation of GABAergic signalling (Young et al 2012 - PMID: 23015452). Hypotheses are also made on a regulatory relationship between NKCC1 and CFTR based on mRNA data from the ko mouse model.

► Stödberg et al (2020 - PMID: 32754646) reported 2 sibs with a complex neurodevelopmental disorder due to compound heterozygosity for a frameshift SLC12A2 variant and a splicing one (NM_001046:c.1431delT and c.2006-1G>A). Both presented hypotonia, neonatal S. aureus parotitis and respiratory problems (incl. apneas). While the older sib died at the age of 22 days, the younger one had persistent respiratory issues incl. a dry respiratory mucosa motivating metabolic, immunology investigations and testing for CF. She displayed microcephaly (OFC -2.5 SD, H was also -3.5SD), severe intellectual disability. MRI was suggestive of white matter and basal ganglia abnormalities. Other features incl. hearing impairment, and lack of tears,saliva and sweat, constipation and intestinal malrotation. There was facial dysmorphism. The variants were the only retained following WGS of the 2 affected sisters, parents and an unaffected brother. The splicing variant was shown to result in skipping of exon 13, while the indel in NMD. Again the authors discuss that the deficient saliva production, impaired hearing and GI problems are recapitulated in the mouse model (several refs provided).; Changed rating: GREEN; Changed publications: 28135719, 32658972, 27900370, 32294086, 29288388, 30740830, 32754646; Changed phenotypes: Kilquist syndrome, deafness, intellectual disability, dysmorphic features, absent salivation, ectodermal dysplasia, constipation, intestinal malrotation, multiple congenital anomalies; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.4503 ZMYM2 Zornitza Stark gene: ZMYM2 was added
gene: ZMYM2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZMYM2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ZMYM2 were set to 32891193
Phenotypes for gene: ZMYM2 were set to Congenital anomalies of kidney and urinary tract; Neurodevelopmental disorder
Review for gene: ZMYM2 was set to GREEN
Added comment: Heterozygous pathogenic (pLoF) ZMYM2 variants have been reported in individuals with syndromic presentation including CAKUT (in several cases) and variable neurological manifestations among extra-renal features.

--

Connaughton et al (2020 - PMID: 32891193) report on 19 individuals (from 15 unrelated families) with heterozygous pathogenic ZMYM2 variants.

Affected individuals from 7 families presented with CAKUT while all of them displayed extra-renal features. Neurological manifestations were reported in 16 individuals from 14 families (data not available for 1 fam), among others hypotonia (3/14 fam), speech delay (4/14 fam), global DD (9/14 fam), ID (4/14 fam), microcephaly (4/14 fam). ASD was reported in 4 fam (4 indiv). Seizures were reported in 2 fam (2 indiv). Variable other features included cardiac defects, facial dysmorphisms, small hands and feet with dys-/hypo-plastic nails and clinodactyly.

14 pLoF variants were identified, in most cases as de novo events (8 fam). In 2 families the variant was inherited from an affected parent. Germline mosaicism occurred in 1 family.

The human disease features were recapitulated in a X. tropicalis morpholino knockdown, with expression of truncating variants failing to rescue renal and craniofacial defects. Heterozygous Zmym2-deficient mice also recapitulated the features of CAKUT.

ZMYM2 (previously ZNF198) encodes a nuclear zinc finger protein localizing to the nucleus (and PML nuclear body).

It has previously been identified as transcriptional corepressor interacting with nuclear receptors and the LSD1-CoREST-HDAC1 complex. It has also been shown to interact with FOXP transcription factors.

The authors provide evidence for loss of interaction of the truncated ZMYM2 with FOXP1 (mutations in the latter having recently been reported in syndromic CAKUT).
Sources: Literature
Mendeliome v0.4493 TAOK1 Zornitza Stark changed review comment from: Monoallelic de novo variants reported in 8 individuals with nonspecific phenotype of intellectual disability and hypotonia. Most were LOF, 2 missense. 3 had macrocephaly.; to: Monoallelic de novo variants reported in 8 individuals with nonspecific phenotype of intellectual disability and hypotonia; 3 had macrocephaly.
Mendeliome v0.4493 CSF1R Zornitza Stark Phenotypes for gene: CSF1R were changed from to Brain abnormalities, neurodegeneration, and dysosteosclerosis, (MIM#618476); Leukoencephalopathy, diffuse hereditary, with spheroids, (MIM#221820)
Mendeliome v0.4486 CSF1R Elena Savva reviewed gene: CSF1R: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 31330095, 24336230; Phenotypes: Brain abnormalities, neurodegeneration, and dysosteosclerosis, (MIM#618476), Leukoencephalopathy, diffuse hereditary, with spheroids, (MIM#221820); Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.4483 LMNB1 Zornitza Stark Phenotypes for gene: LMNB1 were changed from to Global developmental delay, Intellectual disability, Microcephaly, Short stature, Seizures, Abnormality of the corpus callosum, Cortical gyral simplification, Feeding difficulties, Scoliosis; Leukodystrophy, adult-onset, autosomal dominant, MIM#169500
Mendeliome v0.4482 LMNB1 Zornitza Stark reviewed gene: LMNB1: Rating: GREEN; Mode of pathogenicity: Other; Publications: 32910914, 16951681, 19151023; Phenotypes: Global developmental delay, Intellectual disability, Microcephaly, Short stature, Seizures, Abnormality of the corpus callosum, Cortical gyral simplification, Feeding difficulties, Scoliosis, Leukodystrophy, adult-onset, autosomal dominant, MIM#169500; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4466 NAXE Zornitza Stark Phenotypes for gene: NAXE were changed from to Encephalopathy, progressive, early-onset, with brain oedema and/or leukoencephalopathy, MIM# 617186
Mendeliome v0.4463 NAXE Zornitza Stark changed review comment from: Early-onset progressive encephalopathy with brain edema and/or leukoencephalopathy-1 (PEBEL1) is an autosomal recessive severe neurometabolic disorder characterized by rapidly progressive neurologic deterioration that is usually associated with a febrile illness. Affected infants tend to show normal early development followed by acute psychomotor regression with ataxia, hypotonia, respiratory insufficiency, and seizures, resulting in coma and death in the first years of life. Brain imaging shows multiple abnormalities, including brain edema and signal abnormalities in the cortical and subcortical regions. More than 5 unrelated families reported.; to: Early-onset progressive encephalopathy with brain oedema and/or leukoencephalopathy-1 (PEBEL1) is an autosomal recessive severe neurometabolic disorder characterized by rapidly progressive neurologic deterioration that is usually associated with a febrile illness. Affected infants tend to show normal early development followed by acute psychomotor regression with ataxia, hypotonia, respiratory insufficiency, and seizures, resulting in coma and death in the first years of life. Brain imaging shows multiple abnormalities, including brain edema and signal abnormalities in the cortical and subcortical regions. More than 5 unrelated families reported.
Mendeliome v0.4463 NAXE Zornitza Stark reviewed gene: NAXE: Rating: GREEN; Mode of pathogenicity: None; Publications: 27122014, 27616477, 31758406; Phenotypes: Encephalopathy, progressive, early-onset, with brain oedema and/or leukoencephalopathy, MIM# 617186; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4463 NAXD Zornitza Stark Phenotypes for gene: NAXD were changed from to Encephalopathy, progressive, early-onset, with brain edema and/or leukoencephalopathy, 2 MIM#618321
Mendeliome v0.4460 NAXD Zornitza Stark reviewed gene: NAXD: Rating: GREEN; Mode of pathogenicity: None; Publications: 30576410, 31755961, 32462209; Phenotypes: Encephalopathy, progressive, early-onset, with brain edema and/or leukoencephalopathy, 2 MIM#618321; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4389 MAPK8IP3 Zornitza Stark edited their review of gene: MAPK8IP3: Added comment: 18 unrelated individuals reported with de novo variants and a neurodevelopmental disorder characterised by global developmental delay, variably impaired intellectual development, and poor or absent speech. Additional features may include hypotonia, spasticity, or ataxia. About half have abnormal findings on brain imaging, including cerebral or cerebellar atrophy, loss of white matter volume, thin corpus callosum, and perisylvian polymicrogyria. Seizures are not a prominent finding, and nonspecific dysmorphic facial features are described.; Changed publications: 30612693, 30945334
Mendeliome v0.4383 KCNA2 Zornitza Stark Phenotypes for gene: KCNA2 were changed from to Early infantile encephalopathy 32, MIM#616366
Mendeliome v0.4380 KCNA2 Zornitza Stark commented on gene: KCNA2: Review of 23 affected individuals in PMID 29050392: some variants are LoF and others GoF, and some genotype-phenotype correlations made. The main differences were (i) predominant focal (loss-of-function) versus generalized (gain-of-function) seizures and corresponding epileptic discharges with prominent sleep activation in most cases with loss-of-function mutations; (ii) more severe epilepsy, developmental problems and ataxia, and atrophy of the cerebellum or even the whole brain in about half of the patients with gain-of-function mutations; and (iii) most severe early-onset phenotypes, occasionally with neonatal onset epilepsy and developmental impairment, as well as generalised and focal seizures and EEG abnormalities for patients with gain- and loss-of-function mutations.
Mendeliome v0.4355 SOS1 Zornitza Stark edited their review of gene: SOS1: Added comment: Over 50 individuals reported with SOS1 variants and a Noonan syndrome phenotype. Pulmonic stenosis tends to be more frequent compared to those with PTPN11 mutations, and atrial septal defect is relatively rare. Ectodermal features including keratosis pilaris and curly hair are significantly more prevalent compared with the general Noonan population. Height below the third percentile and learning disability are observed in fewer individuals compared with Noonan syndrome in general. In contrast, macrocephaly is overrepresented among those with SOS1 mutations.; Changed rating: GREEN; Changed mode of pathogenicity: Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments; Changed publications: 17143285, 17143282, 28884940, 17586837; Changed phenotypes: Noonan syndrome 4, MIM# 610733; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4323 CACNA1E Zornitza Stark Phenotypes for gene: CACNA1E were changed from to Epileptic encephalopathy, early infantile, 69, MIM#618285
Mendeliome v0.4320 CACNA1E Zornitza Stark changed review comment from: At least 30 unrelated patients reported with heterozygous variants in this gene; primarily a seizure disorder, often with profound intellectual disability.; to: At least 30 unrelated patients reported with heterozygous variants in this gene; primarily a seizure disorder, often with profound intellectual disability. Additional common features included spastic quadriplegia, hyperreflexia, hyperkinetic movements, dystonia, myoclonus, clonus, poor or absent eye contact, nystagmus, cortical visual impairment, and loss of head control. Thirteen patients had congenital contractures and 13 had macrocephaly.
Mendeliome v0.4317 ATAD1 Zornitza Stark changed review comment from: Severe progressive neurological disorder, severe/profound intellectual disability is a feature; to: Hyperekplexia-4 is an autosomal recessive severe neurologic disorder apparent at birth. Three unrelated families reported. Affected infants have extreme hypertonia and appear stiff and rigid. They have little if any development, poor or absent visual contact, and no spontaneous movement, consistent with an encephalopathy. Some patients have early-onset refractory seizures. Severe progressive neurological disorder, severe/profound intellectual disability is a feature.
Mendeliome v0.4315 ADAT1 Zornitza Stark gene: ADAT1 was added
gene: ADAT1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: ADAT1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ADAT1 were set to 28180185; 29390050; 29659736
Phenotypes for gene: ADAT1 were set to Hyperekplexia 4, MIM#618011
Review for gene: ADAT1 was set to GREEN
Added comment: Hyperekplexia-4 is an autosomal recessive severe neurologic disorder apparent at birth. Three unrelated families reported. Affected infants have extreme hypertonia and appear stiff and rigid. They have little if any development, poor or absent visual contact, and no spontaneous movement, consistent with an encephalopathy. Some patients have early-onset refractory seizures.
Sources: Expert list
Mendeliome v0.4220 TRAPPC6B Zornitza Stark Phenotypes for gene: TRAPPC6B were changed from to Neurodevelopmental disorder with microcephaly, epilepsy, and brain atrophy, MIM# 617862
Mendeliome v0.4217 TRAPPC6B Zornitza Stark reviewed gene: TRAPPC6B: Rating: GREEN; Mode of pathogenicity: None; Publications: 28626029, 28397838, 31687267; Phenotypes: Neurodevelopmental disorder with microcephaly, epilepsy, and brain atrophy, MIM# 617862; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4217 TRAPPC12 Zornitza Stark Phenotypes for gene: TRAPPC12 were changed from to Encephalopathy, progressive, early-onset, with brain atrophy and spasticity, MIM# 617669
Mendeliome v0.4214 TRAPPC12 Zornitza Stark reviewed gene: TRAPPC12: Rating: GREEN; Mode of pathogenicity: None; Publications: 32369837, 28777934; Phenotypes: Encephalopathy, progressive, early-onset, with brain atrophy and spasticity, MIM# 617669; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4198 DHX37 Zornitza Stark edited their review of gene: DHX37: Added comment: Bi-allelic disease: 5 unrelated families with bi-allelic variants, all with ID as part of the phenotype, which also includes congenital anomalies particularly affecting the vertebrae and heart, but also some with microcephaly, brain anomalies.; Changed publications: 31337883, 31745530, 26539891, 31256877; Changed phenotypes: 46,XY gonadal dysgenesis, testicular regression syndrome (TRS), Neurodevelopmental disorder with brain anomalies and with or without vertebral or cardiac anomalies, MIM#618731; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4187 SLC1A4 Zornitza Stark reviewed gene: SLC1A4: Rating: GREEN; Mode of pathogenicity: None; Publications: 25930971, 26138499, 26041762, 27193218, 29989513; Phenotypes: Spastic tetraplegia, thin corpus callosum, and progressive microcephaly, MIM# 616657; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4160 PRUNE1 Zornitza Stark Phenotypes for gene: PRUNE1 were changed from to Neurodevelopmental disorder with microcephaly, hypotonia, and variable brain anomalies , MIM#617481
Mendeliome v0.4157 PRUNE1 Zornitza Stark reviewed gene: PRUNE1: Rating: GREEN; Mode of pathogenicity: None; Publications: 26539891, 28334956; Phenotypes: Neurodevelopmental disorder with microcephaly, hypotonia, and variable brain anomalies , MIM#617481; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4151 PLK4 Zornitza Stark Phenotypes for gene: PLK4 were changed from to Microcephaly and chorioretinopathy, autosomal recessive, 2, MIM# 616171
Mendeliome v0.4148 PLK4 Zornitza Stark reviewed gene: PLK4: Rating: GREEN; Mode of pathogenicity: None; Publications: 25344692, 25320347, 27650967; Phenotypes: Microcephaly and chorioretinopathy, autosomal recessive, 2, MIM# 616171; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4134 TRAPPC2L Arina Puzriakova changed review comment from: Gene is associated with Encephalopathy, progressive, early-onset, with episodic rhabdomyolysis in OMIM, but not in G2P.

PMID: 30120216 (2018) - Two unrelated probands with an identical homozygous missense (c.109G>T, p.Asp37Tyr) variant in TRAPPC2L. Both individuals presented neurodevelopmental delay, febrile illness-induced encephalopathy, and episodic rhabdomyolysis, followed by developmental arrest, seizures and tetraplegia. The variant segregated with the phenotype in each family, and haplotype analysis suggested a founder effect.

The mutant protein was expressed in patient fibroblasts, but displayed membrane trafficking delays. Studies in yeast showed that the variant impaired interaction with TRAPPC10, and increased levels of the active RAB11.


PMID: 32843486 (2020) - In an Ashkenazi Jewish family with three affected sibs with GDD/ID, WGS revealed a segregating homozygous missense variant (c.5G>C, p.Ala2Gly) in the TRAPPC2L gene. No seizures, brain MRI abnormalities, or illness provoked regression were documented in this family.

Comparable to the previous study, the variant resulted in delayed ER-to-Golgi trafficking and elevated levels of active RAB11. Studies using yeast and in vitro binding, showed that the variant disrupted interaction with another core TRAPP protein, TRAPPC6a.
Sources: Literature; to: Total of three families, but two share a founder variant, and there are some disparities between the clinical presentations reported in the two publications. Rating Amber as additional cases required to delineate the genotype-phenotype relationship.

PMID: 30120216 (2018) - Two unrelated probands with an identical homozygous missense (c.109G>T, p.Asp37Tyr) variant in TRAPPC2L. Both individuals presented neurodevelopmental delay, febrile illness-induced encephalopathy, and episodic rhabdomyolysis, followed by developmental arrest, seizures and tetraplegia. The variant segregated with the phenotype in each family, and haplotype analysis suggested a founder effect.

The mutant protein was expressed in patient fibroblasts, but displayed membrane trafficking delays. Studies in yeast showed that the variant impaired interaction with TRAPPC10, and increased levels of the active RAB11.


PMID: 32843486 (2020) - In an Ashkenazi Jewish family with three affected sibs with GDD/ID, WGS revealed a segregating homozygous missense variant (c.5G>C, p.Ala2Gly) in the TRAPPC2L gene. No seizures, brain MRI abnormalities, or illness provoked regression were documented in this family.

Comparable to the previous study, the variant resulted in delayed ER-to-Golgi trafficking and elevated levels of active RAB11. Studies using yeast and in vitro binding, showed that the variant disrupted interaction with another core TRAPP protein, TRAPPC6a.

Sources: Literature
Mendeliome v0.4134 TRAPPC2L Arina Puzriakova gene: TRAPPC2L was added
gene: TRAPPC2L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TRAPPC2L was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TRAPPC2L were set to 30120216; 32843486
Phenotypes for gene: TRAPPC2L were set to Encephalopathy, progressive, early-onset, with episodic rhabdomyolysis, 618331
Review for gene: TRAPPC2L was set to AMBER
Added comment: Gene is associated with Encephalopathy, progressive, early-onset, with episodic rhabdomyolysis in OMIM, but not in G2P.

PMID: 30120216 (2018) - Two unrelated probands with an identical homozygous missense (c.109G>T, p.Asp37Tyr) variant in TRAPPC2L. Both individuals presented neurodevelopmental delay, febrile illness-induced encephalopathy, and episodic rhabdomyolysis, followed by developmental arrest, seizures and tetraplegia. The variant segregated with the phenotype in each family, and haplotype analysis suggested a founder effect.

The mutant protein was expressed in patient fibroblasts, but displayed membrane trafficking delays. Studies in yeast showed that the variant impaired interaction with TRAPPC10, and increased levels of the active RAB11.


PMID: 32843486 (2020) - In an Ashkenazi Jewish family with three affected sibs with GDD/ID, WGS revealed a segregating homozygous missense variant (c.5G>C, p.Ala2Gly) in the TRAPPC2L gene. No seizures, brain MRI abnormalities, or illness provoked regression were documented in this family.

Comparable to the previous study, the variant resulted in delayed ER-to-Golgi trafficking and elevated levels of active RAB11. Studies using yeast and in vitro binding, showed that the variant disrupted interaction with another core TRAPP protein, TRAPPC6a.
Sources: Literature
Mendeliome v0.4134 TOGARAM1 Arina Puzriakova gene: TOGARAM1 was added
gene: TOGARAM1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TOGARAM1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TOGARAM1 were set to 32747439
Phenotypes for gene: TOGARAM1 were set to Cleft of the lip and palate; Microphthalmia; Cerebral dysgenesis; Hydrocephalus
Added comment: PMID: 32747439 (2020) - Novel gene-disease association. In two sibling fetuses with a malformation disorder characterised by microcephaly, severe cleft lip and palate, microphthalmia, and brain anomalies, WES revealed compound heterozygous variants ([c.1102C>T, p.Arg368Trp] and [c.3619C>T, p.Arg1207*]) in the TOGARAM1 gene.

Functional analysis of the missense variant in a C. elegans model showed impaired lipophilic dye uptake, with shorter and altered cilia in sensory neurons. In vitro analysis revealed faster microtubule polymerisation compared to wild-type, suggesting aberrant tubulin binding.
Sources: Literature
Mendeliome v0.4125 CRIPT Ain Roesley gene: CRIPT was added
gene: CRIPT was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CRIPT was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CRIPT were set to 24389050; 27250922
Phenotypes for gene: CRIPT were set to Short stature with microcephaly and distinctive facies (MIM#615789)
Penetrance for gene: CRIPT were set to unknown
Review for gene: CRIPT was set to AMBER
Added comment: PMID: 24389050
- 2 unrelated probands homozygous for PTVs. However 1 was deceased and DNA was unavailable therefore parents were sequenced

PMID: 27250922
- 1x proband
- het for a missense which was maternally inherited. Because the father was negative for SNVs, they did CMA and found a small heterozygous deletion 1.6kb in size encompassing exon 1 of CRIPT. This deletion was paternally inherited

*did not find new reports since
Sources: Literature
Mendeliome v0.4125 DIAPH1 Zornitza Stark Phenotypes for gene: DIAPH1 were changed from to Deafness; thrombocytopenia 124900; Seizures; cortical blindness; microcephaly 616632
Mendeliome v0.4121 UFC1 Paul De Fazio gene: UFC1 was added
gene: UFC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UFC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UFC1 were set to 29868776; 30552426
Phenotypes for gene: UFC1 were set to Neurodevelopmental disorder with spasticity and poor growth (MIM#618076)
Review for gene: UFC1 was set to GREEN
gene: UFC1 was marked as current diagnostic
Added comment: PMID 29868776: 8 affected individuals from 4 families reported. 7 were described to be postnatally microcephalic (at or below 3rd percentile). One was -5.1SD and one was -3.6SD. SD values for the others weren't provided.

The following head circumference measurements were provided for 6 of the affecteds:

51cm at 16yo; 50cm at 19yo; 42.5cm at 12mo, 45cm at 28mo, 45.2cm at 7yo; 45cm at 4yo.

3 of the families were consanguineous Saudi families with the same homozygous missense variant.

In vitro functional expression studies showed that both mutations caused impaired thioester binding with UFM1. Patient cells also showed decreased UFC1 intermediate formation with UFM1. The decrease in function was consistent with a hypomorphic allele, and the authors suggested that complete loss of function would be embryonic lethal.

PMID 30552426: 1 more individual with epileptic encephalopathy reported with a different homozygous missense variant in UFC1. The patient had microcephaly <3rd percentile.
Sources: Literature
Mendeliome v0.4121 CENPE Seb Lunke Phenotypes for gene: CENPE were changed from to Microcephaly 13, primary, autosomal recessive (MIM#616051)
Mendeliome v0.4117 CENPE Ain Roesley reviewed gene: CENPE: Rating: RED; Mode of pathogenicity: None; Publications: 24748105, 30086807; Phenotypes: Microcephaly 13, primary, autosomal recessive (MIM#616051); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4114 DIAPH1 Dean Phelan reviewed gene: DIAPH1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 24781755, 26463574, 24781755, 27808407, 28003573, 28815995; Phenotypes: Deafness, thrombocytopenia, Seizures, cortical blindness, microcephaly; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.4093 ADARB1 Zornitza Stark Phenotypes for gene: ADARB1 were changed from Intellectual disability; microcephaly; seizures to Neurodevelopmental disorder with hypotonia, microcephaly, and seizures, 618862; Intellectual disability; microcephaly; seizures
Mendeliome v0.4091 ADARB1 Arina Puzriakova reviewed gene: ADARB1: Rating: GREEN; Mode of pathogenicity: None; Publications: 32220291, 32719099; Phenotypes: Neurodevelopmental disorder with hypotonia, microcephaly, and seizures, 618862; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4088 KIF14 Zornitza Stark Phenotypes for gene: KIF14 were changed from to Microcephaly 20, primary, autosomal recessive, MIM# 617914; Meckel syndrome 12, MIM# 616258
Mendeliome v0.4085 KIF14 Zornitza Stark reviewed gene: KIF14: Rating: GREEN; Mode of pathogenicity: None; Publications: 28892560, 29343805, 24128419; Phenotypes: Microcephaly 20, primary, autosomal recessive, MIM# 617914, Meckel syndrome 12, MIM# 616258; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4063 COL11A1 Zornitza Stark Phenotypes for gene: COL11A1 were changed from to Fibrochondrogenesis 1 (MIM#228520); Marshall syndrome (MIM#154780); Stickler syndrome, type II (MIM#604841)
Mendeliome v0.4059 COL11A1 Elena Savva reviewed gene: COL11A1: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID 25073711, 30245514, 32427345, 27081569, 21035103; Phenotypes: Fibrochondrogenesis 1 (MIM#228520), Marshall syndrome (MIM#154780), Stickler syndrome, type II (MIM#604841), {Lumbar disc herniation, susceptibility to}, (MIM#603932), ?Deafness, autosomal dominant 37, (MIM#618533); Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.4058 YRDC Zornitza Stark gene: YRDC was added
gene: YRDC was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: YRDC was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: YRDC were set to 31481669
Phenotypes for gene: YRDC were set to Galloway-Mowat syndrome
Review for gene: YRDC was set to GREEN
Added comment: Three individuals from two unrelated families with typical features of Galloway-Mowat syndrome including proteinuria, microcephaly, developmental delay and brain malformations. Supportive functional data.
Sources: Literature
Mendeliome v0.4056 GON7 Zornitza Stark gene: GON7 was added
gene: GON7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GON7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GON7 were set to 31481669
Phenotypes for gene: GON7 were set to Galloway-Mowat syndrome
Review for gene: GON7 was set to GREEN
Added comment: 11 individuals from 5 families. Four of the families had the same homozygous variant, shared haplotype suggestive of founder effect. Clinical features included proteinuria, microcephaly, brain malformations and developmental delay. Supportive functional data.
Sources: Literature
Mendeliome v0.4042 NSD2 Zornitza Stark Phenotypes for gene: NSD2 were changed from to Microcephaly; intellectual disability
Mendeliome v0.4039 NSD2 Zornitza Stark changed review comment from: Microcephaly reported in 6 of 7 individuals with LOF variants in this gene.; to: 7 individuals with LOF variants in this gene, gene thought to be responsible for key features of Wolf-Hirschorn syndrome.
Mendeliome v0.4039 NSD2 Zornitza Stark reviewed gene: NSD2: Rating: GREEN; Mode of pathogenicity: None; Publications: 30345613, 31171569; Phenotypes: Microcephaly, intellectual disability; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4039 NCAPH Zornitza Stark Phenotypes for gene: NCAPH were changed from to Microcephaly 23, primary, autosomal recessive 617985
Mendeliome v0.4035 NCAPH Zornitza Stark reviewed gene: NCAPH: Rating: RED; Mode of pathogenicity: None; Publications: 27737959; Phenotypes: Microcephaly 23, primary, autosomal recessive 617985; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4034 ATRIP Ain Roesley gene: ATRIP was added
gene: ATRIP was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATRIP was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ATRIP were set to 23144622
Phenotypes for gene: ATRIP were set to Seckel Syndrome
Penetrance for gene: ATRIP were set to unknown
Review for gene: ATRIP was set to RED
Added comment: PMID: 23144622;
- 1x proband from a consanguineous family
- progressive severe microcephaly (-9 to -10SD)
- cHet for a nonsense and a splice
Sources: Literature
Mendeliome v0.4028 ANKLE2 Zornitza Stark reviewed gene: ANKLE2: Rating: GREEN; Mode of pathogenicity: None; Publications: 25259927, 30214071, 31735666; Phenotypes: Microcephaly 16, primary, autosomal recessive, MIM# 616681; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4002 AARS2 Zornitza Stark Phenotypes for gene: AARS2 were changed from to Combined oxidative phosphorylation deficiency 8 MIM#614096; Leukoencephalopathy, progressive, with ovarian failure MIM#615889; MONDO:0013570
Mendeliome v0.3999 AARS2 Zornitza Stark edited their review of gene: AARS2: Changed phenotypes: Combined oxidative phosphorylation deficiency 8 MIM#614096, Leukoencephalopathy, progressive, with ovarian failure MIM#615889, MONDO:0013570
Mendeliome v0.3999 AARS2 Zornitza Stark reviewed gene: AARS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 30706699, 27839525, 21549344, 25058219, 24808023; Phenotypes: Combined oxidative phosphorylation deficiency 8 MIM#614096, Leukoencephalopathy, progressive, with ovarian failure MIM#615889; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3999 AARS Zornitza Stark Phenotypes for gene: AARS were changed from to Epileptic encephalopathy, early infantile, 29, MIM# 616339; Charcot-Marie-Tooth disease, axonal, type 2N, MIM# 613287
Mendeliome v0.3996 AARS Zornitza Stark reviewed gene: AARS: Rating: GREEN; Mode of pathogenicity: None; Publications: 28493438, 25817015, 20045102, 22009580, 22206013, 30373780, 26032230; Phenotypes: Epileptic encephalopathy, early infantile, 29, MIM# 616339, Charcot-Marie-Tooth disease, axonal, type 2N, MIM# 613287; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.3991 PAFAH1B1 Zornitza Stark Phenotypes for gene: PAFAH1B1 were changed from to Lissencephaly 1, MIM# 607432; Subcortical laminar heterotopia, MIM# 607432; MONDO:0011830
Mendeliome v0.3988 PAFAH1B1 Zornitza Stark reviewed gene: PAFAH1B1: Rating: GREEN; Mode of pathogenicity: None; Publications: 11754098, 18285425; Phenotypes: Lissencephaly 1, MIM# 607432, Subcortical laminar heterotopia, MIM# 607432, MONDO:0011830; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.3988 LAMB1 Zornitza Stark Phenotypes for gene: LAMB1 were changed from to Lissencephaly 5, MIM# 615191; Cystic leukoencephalopathy
Mendeliome v0.3985 LAMB1 Zornitza Stark reviewed gene: LAMB1: Rating: GREEN; Mode of pathogenicity: None; Publications: 23472759, 25925986, 29888467, 25925986, 32548278; Phenotypes: Lissencephaly 5, MIM# 615191, Cystic leukoencephalopathy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3973 DCX Zornitza Stark Phenotypes for gene: DCX were changed from to Lissencephaly, X-linked, MIM# 300067; Subcortical laminal heterotopia, X-linked 300067
Mendeliome v0.3970 DCX Zornitza Stark reviewed gene: DCX: Rating: GREEN; Mode of pathogenicity: None; Publications: 10915612, 9489699, 12552055; Phenotypes: Lissencephaly, X-linked, MIM# 300067, Subcortical laminal heterotopia, X-linked 300067; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.3958 GRIN2B Zornitza Stark Phenotypes for gene: GRIN2B were changed from to Mental retardation, autosomal dominant 6, MIM# 613970; Epileptic encephalopathy, early infantile, 27, MIM# 616139
Mendeliome v0.3955 GRIN2B Zornitza Stark reviewed gene: GRIN2B: Rating: GREEN; Mode of pathogenicity: None; Publications: 28377535; Phenotypes: Mental retardation, autosomal dominant 6, MIM# 613970, Epileptic encephalopathy, early infantile, 27, MIM# 616139; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.3928 CRADD Zornitza Stark Phenotypes for gene: CRADD were changed from to Mental retardation, autosomal recessive 34, with variant lissencephaly, MIM# 614499
Mendeliome v0.3925 CRADD Zornitza Stark reviewed gene: CRADD: Rating: GREEN; Mode of pathogenicity: None; Publications: 27773430; Phenotypes: Mental retardation, autosomal recessive 34, with variant lissencephaly, MIM# 614499; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3920 TMTC3 Zornitza Stark Phenotypes for gene: TMTC3 were changed from to Lissencephaly 8 (MIM#617255)
Mendeliome v0.3917 TMTC3 Zornitza Stark reviewed gene: TMTC3: Rating: GREEN; Mode of pathogenicity: None; Publications: 27773428, 28973161; Phenotypes: Lissencephaly 8 (MIM#617255); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3917 ARFGEF2 Zornitza Stark Phenotypes for gene: ARFGEF2 were changed from to Periventricular heterotopia with microcephaly (MIM#608097)
Mendeliome v0.3914 ARFGEF2 Zornitza Stark reviewed gene: ARFGEF2: Rating: GREEN; Mode of pathogenicity: None; Publications: 25160555, 26126837, 23812912; Phenotypes: Periventricular heterotopia with microcephaly (MIM#608097); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3898 GABRG2 Zornitza Stark Phenotypes for gene: GABRG2 were changed from to Epileptic encephalopathy, early infantile, 74 618396; Epilepsy, generalized, with febrile seizures plus, type 3 607681
Mendeliome v0.3895 GABRG2 Zornitza Stark reviewed gene: GABRG2: Rating: GREEN; Mode of pathogenicity: None; Publications: 11326274, 11326275, 27864268; Phenotypes: Epileptic encephalopathy, early infantile, 74 618396, Epilepsy, generalized, with febrile seizures plus, type 3 607681; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.3895 GABRB3 Zornitza Stark Phenotypes for gene: GABRB3 were changed from to Epileptic encephalopathy, early infantile, 43, MIM# 617113
Mendeliome v0.3892 GABRB3 Zornitza Stark reviewed gene: GABRB3: Rating: GREEN; Mode of pathogenicity: None; Publications: 23934111, 27476654; Phenotypes: Epileptic encephalopathy, early infantile, 43, MIM# 617113; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.3886 ARHGEF9 Zornitza Stark Phenotypes for gene: ARHGEF9 were changed from to Epileptic encephalopathy, early infantile, 8, MIM# 300607
Mendeliome v0.3883 ARHGEF9 Zornitza Stark reviewed gene: ARHGEF9: Rating: GREEN; Mode of pathogenicity: None; Publications: 31942680, 30048823, 29130122, 28620718; Phenotypes: Epileptic encephalopathy, early infantile, 8, MIM# 300607; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.3874 ABAT Zornitza Stark edited their review of gene: ABAT: Added comment: Bi-allelic variants in ABAT are associated with a neurotransmitter disorder. However, there are also reports of families with encephalomyopathic MDS caused by bi-allelic variants in ABAT resulting in elevated GABA in subjects' brains as well as decreased mtDNA levels in subjects' fibroblasts. Nucleoside rescue and co-IP experiments demonstrate that ABAT functions in the mitochondrial nucleoside salvage pathway to facilitate conversion of dNDPs to dNTPs. Unclear whether this a distinct disorder or part of a continuum caused by the enzyme being part of two pathways.; Changed publications: 25738457, 27903293, 28411234, 27596361, 20052547, 10407778, 6148708; Changed phenotypes: GABA-transaminase deficiency, MIM# 613163, mtDNA depletion syndrome (MDS)
Mendeliome v0.3872 LMBRD2 Zornitza Stark gene: LMBRD2 was added
gene: LMBRD2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LMBRD2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: LMBRD2 were set to 32820033; https://doi.org/10.1101/797787
Phenotypes for gene: LMBRD2 were set to Global developmental delay; Intellectual disability; Microcephaly; Seizures; Abnormality of nervous system morphology; Abnormality of the eye
Mode of pathogenicity for gene: LMBRD2 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: LMBRD2 was set to GREEN
Added comment: 13 individuals with dn missense SNVs overall, overlapping features for 10 with available phenotype / a recurring variant has been identified in 2 different studies.

► Malhotra et al (2020 - PMID: 32820033) report on 10 unrelated individuals with de novo missense LMBRD2 variants. Features included DD (9/10), ID (6/8 of relevant age), microcephaly (7/10), seizures (5/10 - >=3 different variants), structural brain abnormalities (e.g. thin CC in 6/9), highly variable ocular abnormalities (5/10) and dysmorphic features in some (7/10 - nonspecific). All had variable prior non-diagnostic genetic tests (CMA, gene panel, mendeliome, karyotype). WES/WGS revealed LMBRD2 missense variants, in all cases de novo. A single individual had additional variants with weaker evidence of pathogenicity. 5 unique missense SNVs and 2 recurrent ones (NM_001007527:c.367T>C - p.Trp123Arg / c.1448G>A - p.Arg483His) were identified. These occurred in different exons. Variants were not present in gnomAD and all had several in silico predictions in favor of a deleterious effect. There was phenotypic variability among individuals with the same variant (e.g. seizures in 1/3 and microchephaly in 2/3 of those harboring R483H). The gene has a pLI of 0 (although o/e ranges from 0.23 to 0.55), %HI of 15.13 and z-score of 2.27. The authors presume that haploinsufficiency may not apply, and consider a gain-of-function/dominant-negative effect more likely. As the authors comment LMBRD2 (LMBR1 domain containing 2) encodes a membrane bound protein with poorly described function. It is widely expressed across tissues with notable expression in human brain (also in Drosophila, or Xenopus laevis). It displays high interspecies conservation. It has been suggested (Paek et al - PMID: 28388415) that LMBRD2 is a potential regulator of β2 adrenoreceptor signalling through involvement in GPCR signalling.

► Kaplanis et al (2020 - https://doi.org/10.1101/797787) in a dataset of 31058 parent-offspring trios (WES) previously identified 3 individuals with developmental disorder, harboring c.1448G>A - p.Arg483His. These individuals (1 from the DDD study, and 2 GeneDx patients) appear in Decipher. [ https://decipher.sanger.ac.uk/ddd/research-variant/40e17c78cc9655a6721006fc1e0c98db/overview ]. The preprint by Kaplanis et al is cited by Malhotra et al, with Arg483His reported in 6 patients overall in both studies.
Sources: Literature
Mendeliome v0.3871 KAT5 Zornitza Stark Phenotypes for gene: KAT5 were changed from to Severe global developmental delay; Intellectual disability; Seizures; Microcephaly; Behavioral abnormality; Sleep disturbance; Morphological abnormality of the central nervous system; Short stature; Oral cleft; Abnormality of the face
Mendeliome v0.3866 KAT5 Konstantinos Varvagiannis reviewed gene: KAT5: Rating: GREEN; Mode of pathogenicity: Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments; Publications: 32822602; Phenotypes: Severe global developmental delay, Intellectual disability, Seizures, Microcephaly, Behavioral abnormality, Sleep disturbance, Morphological abnormality of the central nervous system, Short stature, Oral cleft, Abnormality of the face; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.3834 TAF1C Zornitza Stark gene: TAF1C was added
gene: TAF1C was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: TAF1C was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TAF1C were set to 32779182
Phenotypes for gene: TAF1C were set to Global developmental delay; Intellectual disability; Spasticity; Strabismus; Seizures; Abnormality of nervous system morphology
Review for gene: TAF1C was set to AMBER
Added comment: Knuutinen et al (2020 - PMID: 32779182) report on 2 individuals from 2 consanguineous families, homozygous for TAF1C missense variants. Both presented with an early onset neurological phenotype with severe global DD, ID (2/2 - moderate and profound), spasticity (2/2), ophthalmic findings (strabismus 2/2, nystagmus 1/2). Epilepsy, abnormal brain MRI (cerebral and cerebellar atrophy and white matter hyperintensities) as well and additional findings were reported in one (always the same individual). Following a normal CMA, exome in the first case revealed a homozygous missense SNV (NM_005679.3:c.1165C>T / p.Arg389Cys) supported by in silico predictions. mRNA and protein levels were substantially reduced in fibroblasts from this subject. Only the patient and parents were tested for the variant but not 3 unaffected sibs (fig1). The second individual was homozygous for another missense variant (p.Arg405Cys) also supported by in silico predictions. The girl was the single affected person within the family with an unaffected sib and parents heterozygous for the variant. Several other unaffected relatives in the extended pedigree were either carriers for this variant or homozygous for the wt allele. TAF1C encodes the TATA-box binding protein associated factor (TAF) RNA polymerase I subunit. RNA polymerase I (Pol I) transcribes genes to produce rRNA. For Pol I to initiate transcription, two transcription factors are required : UBF (upstream binding factor encoded by UBTF) and SL1 (selectivity factor 1). The latter is formed by TBP (TATA-binding protein) and 3 Pol I-specific TBP-associated factors (TAFs). A recurrent de novo missense variant in UBTF (encoding the other Pol I transcription factor) causes a disorder with highly similar features. The specific variant acts through a gain-of-function mechanism (and not by LoF which appears to apply for TAF1C based on expression data). The authors hypothesize that altered Pol I activity and resulting ribosomal stress could cause the microcephaly and leukodystrophy (both reported in 1 - the same - individual).
Sources: Expert list
Mendeliome v0.3736 SMO Zornitza Stark Phenotypes for gene: SMO were changed from Microcephaly, congenital heart disease, polydactyly, aganglionosis; Curry-Jones syndrome, somatic mosaic 601707 to Microcephaly, congenital heart disease, polydactyly, aganglionosis, Pallister-Hall-like syndrome, MIM# 241800; Curry-Jones syndrome, somatic mosaic 601707
Mendeliome v0.3735 SMO Zornitza Stark edited their review of gene: SMO: Changed phenotypes: Microcephaly, congenital heart disease, polydactyly, aganglionosis, Pallister-Hall-like syndrome, MIM# 241800, Curry-Jones syndrome, somatic mosaic 601707
Mendeliome v0.3732 FAM50A Zornitza Stark gene: FAM50A was added
gene: FAM50A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FAM50A was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: FAM50A were set to 32703943
Phenotypes for gene: FAM50A were set to Mental retardation syndrome, X-linked, Armfield type (MIM #300261)
Review for gene: FAM50A was set to GREEN
Added comment: Lee et al (2020 - PMID: 32703943) provide evidence that Armfield X-Linked intellectual disability syndrome is caused by monoallelic FAM50A pathogenic variants. The current review is based only on this reference. The authors provide clinical details on 6 affected individuals from 5 families. Features included postnatal growth delay, DD and ID (6/6 - also evident for those without formal IQ assesment), seizures (3/6 from 2 families), prominent forehead with presence of other facial features and variable head circumference (5th to >97th %le), ocular anomalies (5/6 - strabismus/nystagmus/Axenfeld-Rieger), cardiac (3/6 - ASD/Fallot) and genitourinary anomalies (3/6). In the first of these families (Armfield et al 1999 - PMID: 10398235), linkage analysis followed by additional studies (Sanger, NGS of 718 genes on chrX, X-exome NGS - several refs provided) allowed the identification of a FAM50A variant. Variants in other families were identified by singleton (1 fam) or trio-ES (3 fam). In affected individuals from 3 families, the variant had occurred de novo. Carrier females in the other families were unaffected (based on pedigrees and/or the original publication). XCI was rather biased in most obligate carrier females from the 1st family (although this ranged from 95:5 to 60:40). Missense variants were reported in all affected subjects incl. Trp206Gly, Asp255Gly, Asp255Asn (dn), Glu254Gly (dn), Arg273Trp (dn) (NM_004699.3). Previous studies have demonstrated that FAM50A has ubiquitous expression in human fetal and adult tissues (incl. brain in fetal ones). Immunostaining suggests a nuclear localization for the protein (NIH/3T3 cells). Comparison of protein levels in LCLs from affected males and controls did not demonstrate significant differences. Protein localization for 3 variants (transfection of COS-7 cells) was shown to be similar to wt. Complementation studies in zebrafish provided evidence that the identified variants confer partial loss of function (rescue of the morpholino phenotype with co-injection of wt but not mt mRNA). The zebrafish ko model seemed to recapitulate the abnormal development of cephalic structures and was indicative of diminished/defective neurogenesis. Transcriptional dysregulation was demonstrated in zebrafish (altered levels and mis-splicing). Upregulation of spliceosome effectors was demonstrated in ko zebrafish. Similarly, mRNA expression and splicing defects were demonstrated in LCLs from affected individuals. FAM50A pulldown followed by mass spectrometry in transfected HEK293T cells demonstrated enrichment of binding proteins involved in RNA processing and co-immunoprecipitation assays (transfected U-87 cells) suggested that FAM50A interacts with spliceosome U5 and C-complex proteins. Overall aberrant spliceosome C-complex function is suggested as the underlying pathogenetic mechanism. Several other neurodevelopmental syndromes are caused by variants in genes encoding C-complex affiliated proteins (incl. EFTUD2, EIF4A3, THOC2, etc.).
Sources: Literature
Mendeliome v0.3721 MPDZ Zornitza Stark Phenotypes for gene: MPDZ were changed from to Hydrocephalus, congenital, 2, with or without brain or eye anomalies, MIM# 615219
Mendeliome v0.3718 MPDZ Zornitza Stark reviewed gene: MPDZ: Rating: GREEN; Mode of pathogenicity: None; Publications: 28556411, 23240096, 30518636, 29499638; Phenotypes: Hydrocephalus, congenital, 2, with or without brain or eye anomalies, MIM# 615219; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3713 HYLS1 Melanie Marty changed review comment from: A recurring homozygous missense variant p.Asp211Gly has been identified in at least 64 cases of hydrolethalus syndrome, described as a Finnish founder mutation (PMID: 15843405, PMID: 18648327). Functional studies in human and patient cells have shown mislocalisation of the protein to the nucleus (PMID: 15843405, PMID: 19400947). Functional studies in c. elegans showed that this variant impaired ciliogenesis (PMID: 19656802). Functional studies in drosophila showed that deletion of HYLS1 led to cilia dysfunction (PMID: 32509774).

2 homozygous living siblings (stop-loss, extension variant p.Ter300TyrextTer11) both diagnosed with Joubert syndrome. Patients had molar tooth signs and dysplasia of cerebellar vermis (PMID: 26830932).

No other variants have been reported as pathogenic in this gene.; to: A recurring homozygous missense variant p.Asp211Gly has been identified in at least 64 cases of hydrolethalus syndrome, described as a Finnish founder mutation (PMID: 15843405, PMID: 18648327). Functional studies in human cells have shown mislocalisation of the protein to the nucleus (PMID: 19400947). Functional studies in c. elegans showed that this variant impaired ciliogenesis (PMID: 19656802). Functional studies in drosophila showed that deletion of HYLS1 led to cilia dysfunction (PMID: 32509774).

2 homozygous living siblings (stop-loss, extension variant p.Ter300TyrextTer11) both diagnosed with Joubert syndrome. Patients had molar tooth signs and dysplasia of cerebellar vermis (PMID: 26830932).

No other variants have been reported as pathogenic in this gene.
Mendeliome v0.3707 HYLS1 Zornitza Stark Phenotypes for gene: HYLS1 were changed from to Hydrolethalus syndrome (MIM#236680)
Mendeliome v0.3703 HYLS1 Melanie Marty reviewed gene: HYLS1: Rating: AMBER; Mode of pathogenicity: Other; Publications: 15843405, 18648327, 19400947, 19656802, 32509774; Phenotypes: Hydrolethalus syndrome (MIM#236680); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3696 BCOR Zornitza Stark Phenotypes for gene: BCOR were changed from to Microphthalmia, syndromic 2, MIM# 300166; Oculofaciocardiodental syndrome; Lenz microphthalmia
Mendeliome v0.3693 BCOR Zornitza Stark reviewed gene: BCOR: Rating: GREEN; Mode of pathogenicity: None; Publications: 29974297; Phenotypes: Microphthalmia, syndromic 2, MIM# 300166, Oculofaciocardiodental syndrome, Lenz microphthalmia; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.3693 SLC25A10 Zornitza Stark Phenotypes for gene: SLC25A10 were changed from Intractable epileptic encephalopathy to Intractable epileptic encephalopathy; Mitochondrial DNA depletion syndrome 19, MIM# 618972
Mendeliome v0.3692 SLC25A10 Zornitza Stark edited their review of gene: SLC25A10: Changed phenotypes: Intractable epileptic encephalopathy, Mitochondrial DNA depletion syndrome 19, MIM# 618972
Mendeliome v0.3675 PIGQ Zornitza Stark edited their review of gene: PIGQ: Added comment: Homozygous or compound heterozygous mutations in PIGQ cause Epileptic encephalopathy, early infantile, 77 (MIM #618548).

Johnstone et al (2020 - PMID: 32588908) describe the phenotype of 7 children (from 6 families) with biallelic PIGQ pathogenic variants. The authors also review the phenotype of 3 subjects previously reported in the literature (by Martin et al, Alazami et al, Starr et al - respective PMIDs: 24463883, 25558065, 31148362).

Affected individuals displayed severe to profound global DD/ID and seizures with onset in the first year of life. There were variable other features incl. - among others - genitourinary, cardiac, skeletal, ophthalmological anomalies, gastrointestinal issues. Within the cohort there was significant morbidity/mortality.

PIGQ encodes phosphatidylinositol glycan anchor biosynthesis class Q protein, playing a role (early) in the biosynthesis of the GPI-anchor. Several genes in the GPI biosynthesis pathway cause multi-system disease with DD/ID and seizures. Flow cytometry has been used in individuals with PIGQ-related disorder. Serum ALP was elevated in some (4) although - as the authors comment - elevations are more typical in disorders affecting later steps of GPI biosynthesis.

More than 10 variants have been reported to date (missense / pLoF).; Changed phenotypes: Epileptic encephalopathy, early infantile, 77, MIM# 618548
Mendeliome v0.3668 NDUFA8 Zornitza Stark gene: NDUFA8 was added
gene: NDUFA8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NDUFA8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NDUFA8 were set to 32385911
Phenotypes for gene: NDUFA8 were set to NDUFA8-related mitochondrial disease; Developmental delay; microcehaly; seizures
Review for gene: NDUFA8 was set to RED
Added comment: Single individual reported with homozygous variant, fibroblasts showed apparent biochemical defects in mitochondrial complex I.
Sources: Literature
Mendeliome v0.3666 DLG5 Zornitza Stark gene: DLG5 was added
gene: DLG5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DLG5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DLG5 were set to 32631816
Phenotypes for gene: DLG5 were set to Cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations
Review for gene: DLG5 was set to GREEN
Added comment: Four unrelated families reported, supportive Xenopus animal model data.
Sources: Literature
Mendeliome v0.3662 RELN Zornitza Stark changed review comment from: Well established gene-disease association with bi-allelic variants and lissencephaly.; to: Well established gene-disease association with bi-allelic variants and lissencephaly. Mono-allelic variants linked to epilepsy.
Mendeliome v0.3662 RELN Zornitza Stark edited their review of gene: RELN: Changed phenotypes: Lissencephaly 2 (Norman-Roberts type), MIM# 257320, {Epilepsy, familial temporal lobe, 7} 616436
Mendeliome v0.3662 RELN Zornitza Stark Phenotypes for gene: RELN were changed from Lissencephaly 2 (Norman-Roberts type), MIM# 257320; ankylosing spondylitis to Lissencephaly 2 (Norman-Roberts type), MIM# 257320; {Epilepsy, familial temporal lobe, 7}, MIM# 616436; ankylosing spondylitis
Mendeliome v0.3661 RELN Zornitza Stark Phenotypes for gene: RELN were changed from to Lissencephaly 2 (Norman-Roberts type), MIM# 257320; ankylosing spondylitis
Mendeliome v0.3658 RELN Zornitza Stark reviewed gene: RELN: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Lissencephaly 2 (Norman-Roberts type), MIM# 257320; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3656 FBXL7 Zornitza Stark Phenotypes for gene: FBXL7 were changed from Hennekam lymphangiectasia-lymphedema syndrome; lymphedema; protein‐losing enteropathy; dental anomalies; camptodactyly; microtia; small auditory canals; ductive hearing loss; middle ear anomalies, bifid scrotum, and facial dysmorphic features including hypertelorism, telecanthus, epicanthal folds, downslanting palpebral fissures, broad and depressed nasal bridge, and thickened nasal alae. to Hennekam lymphangiectasia-lymphedema syndrome
Mendeliome v0.3648 FBXL7 Hazel Phillimore changed review comment from: Homozygous deletion of exon 3 of FBXL7 (predicted to be in-frame) in a 2-year old with novel form of Hennekam syndrome. Each parent was heterozygous.
Patient had lymphedema, protein‐losing enteropathy, dental anomalies, camptodactyly, microtia, small auditory canals, ductive hearing loss, middle ear anomalies, bifid scrotum, and facial dysmorphic features including hypertelorism, telecanthus, epicanthal folds, downslanting palpebral fissures, broad and depressed nasal bridge, and thickened nasal alae.
Sources: Literature; to: Homozygous deletion of exon 3 of FBXL7 (predicted to be in-frame) in a 2-year old with novel form of Hennekam syndrome. Each parent was heterozygous.
Patient had lymphedema, protein‐losing enteropathy, dental anomalies, camptodactyly, microtia, small auditory canals, ductive hearing loss, middle ear anomalies, bifid scrotum, and facial dysmorphic features including hypertelorism, telecanthus, epicanthal folds, downslanting palpebral fissures, broad and depressed nasal bridge, and thickened nasal alae.
Sources: Literature
Mendeliome v0.3647 FBXL7 Hazel Phillimore gene: FBXL7 was added
gene: FBXL7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FBXL7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FBXL7 were set to PMID: 31633297
Phenotypes for gene: FBXL7 were set to Hennekam lymphangiectasia-lymphedema syndrome; lymphedema; protein‐losing enteropathy; dental anomalies; camptodactyly; microtia; small auditory canals; ductive hearing loss; middle ear anomalies, bifid scrotum, and facial dysmorphic features including hypertelorism, telecanthus, epicanthal folds, downslanting palpebral fissures, broad and depressed nasal bridge, and thickened nasal alae.
Review for gene: FBXL7 was set to AMBER
Added comment: Homozygous deletion of exon 3 of FBXL7 (predicted to be in-frame) in a 2-year old with novel form of Hennekam syndrome. Each parent was heterozygous.
Patient had lymphedema, protein‐losing enteropathy, dental anomalies, camptodactyly, microtia, small auditory canals, ductive hearing loss, middle ear anomalies, bifid scrotum, and facial dysmorphic features including hypertelorism, telecanthus, epicanthal folds, downslanting palpebral fissures, broad and depressed nasal bridge, and thickened nasal alae.
Sources: Literature
Mendeliome v0.3647 HPDL Crystle Lee gene: HPDL was added
gene: HPDL was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: HPDL was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HPDL were set to 32707086
Phenotypes for gene: HPDL were set to Neurological disorder
Review for gene: HPDL was set to GREEN
Added comment: Biallelic variants reported in 13 families with a neurodegenerative disease ranging from neonatal encephalopathy to adolescent-onset spastic paraplegia
Sources: Expert Review
Mendeliome v0.3646 PJA1 Zornitza Stark gene: PJA1 was added
gene: PJA1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PJA1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: PJA1 were set to 32530565
Phenotypes for gene: PJA1 were set to Intellectual disability; trigonocephaly
Review for gene: PJA1 was set to AMBER
Added comment: Recurrent variant, p.Arg376Cys, reported in 7 Japanese individuals, supportive mouse model. Individuals shared a common haplotype, suggestive of founder effect
Sources: Literature
Mendeliome v0.3643 NARS Zornitza Stark gene: NARS was added
gene: NARS was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NARS was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: NARS were set to 32738225
Phenotypes for gene: NARS were set to Abnormal muscle tone; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Ataxia; Abnormality of the face; Demyelinating peripheral neuropathy
Review for gene: NARS was set to GREEN
Added comment: [Please note that HGNC Approved Gene Symbol for this gene is NARS1] Manole et al (2020 - PMID: 32738225) provide evidence that both biallelic and monoallelic (de novo) pathogenic NARS1 variants cause a neurodevelopmental disorder. In total 32 individuals from 21 families are reported, with biallelic variants identified in individuals from 13 families and de novo in 8 families. Similar features were reported for AR/AD occurrences of the disorder and included microcephaly (90% - most often primary), epilepsy (23/32 or 74% - variable semiology incl. partial/myoclonic/generalized tonic-clonic seizures), DD and ID (as a universal feature), abnormal tone in several (hypotonia/spasticity), ataxia, demyelinating peripheral neuropathy (in 3 or more for each inheritance mode - or a total of 25%). Some individuals had dysmorphic features. NARS1 encodes an aminoacyl-tRNA synthetase (ARS) [asparaginyl-tRNA synthetase 1]. Aminoacyl-tRNA synthetases constitute a family of enzymes catalyzing attachment of amino-acids to their cognate tRNAs. As the authors comment, mutations in genes encoding several other ARSs result in neurological disorders ranging from peripheral neuropathy to severe multi-systemic NDD. Dominant, recessive or both modes for inheritance for mutations in the same gene (e.g. AARS1, YARS1, MARS1, etc) have been reported. Some variants were recurrent, e.g. the c.1600C>T / p.Arg534* which occurred in 6 families as a de novo event or c.1633C>T p.Arg545Cys (homozygous in 6 families). 3 different variants were reported to have occured de novo (c.965G>T - p.Arg322Leu, c.1525G>A - p.Gly509Ser, p.Arg534*) with several other variants identified in hmz/compound htz individuals. A single SNV (c.1067A>C - p.Asp356Ala) was suggested to be acting as modifier and pathogenic only when in trans with a severe variant. [NM_004539.4 used as RefSeq for all]. The authors provide several lines of evidence for a partial loss-of-function effect (e.g. reduction in mRNA expression, enzyme levels and activity in fibroblasts or iNPCs) underlying pathogenicity of the variants identified in individuals with biallelic variants. A gain-of-function (dominant-negative) effect is proposed for de novo variants (such effect also demonstrated for the p.Arg534* in a zebrafish model).
Sources: Literature
Mendeliome v0.3631 MAPK1 Zornitza Stark gene: MAPK1 was added
gene: MAPK1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MAPK1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MAPK1 were set to 32721402
Phenotypes for gene: MAPK1 were set to Global developmental delay; Intellectual disability; Behavioral abnormality; Growth delay; Abnormality of the face; Abnormality of the neck; Abnormality of the cardiovascular system; Abnormality of the skin
Review for gene: MAPK1 was set to GREEN
Added comment: Motta et al (2020 - PMID: 32721402) report on 7 unrelated individuals harboring de novo missense MAPK1 pathogenic variants.

The phenotype corresponded to a neurodevelopmental disorder and - as the authors comment - consistently included DD, ID , behavioral problems. Postnatal growth delay was observed in approximately half. Hypertelorism, ptosis, downslant of palpebral fissures, wide nasal bridge as low-set/posteriorly rotated ears were among the facial features observed (each in 3 or more subjects within this cohort). Together with short/webbed neck and abnormalities of skin (lentigines / CAL spots) and growth delay these led to clinical suspicion of Noonan s. or disorder of the same pathway in some. Congenital heart defects (ASD, mitral valve insufficiency, though not cardiomyopathy) occurred in 4/7. Bleeding diathesis and lymphedema were reported only once.

MAPK1 encodes the mitogen-activated protein kinase 1 (also known as ERK2) a serine/threonine kinase of the RAS-RAF-MEK-(MAPK/)ERK pathway.

MAPK1 de novo variants were identified in all individuals following trio exome sequencing (and extensive previous genetic investigations which were non-diagnostic).

The distribution of variants, as well as in silico/vitro/vivo studies suggest a GoF effect (boosted signal through the MAPK cascade. MAPK signaling also upregulated in Noonan syndrome).
Sources: Literature
Mendeliome v0.3630 ASPM Zornitza Stark Phenotypes for gene: ASPM were changed from to Microcephaly 5, primary, autosomal recessive, MIM#608716
Mendeliome v0.3627 ASPM Elena Savva reviewed gene: ASPM: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID:29243349; Phenotypes: Microcephaly 5, primary, autosomal recessive, 608716; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3608 OTX2 Zornitza Stark Phenotypes for gene: OTX2 were changed from to Microphthalmia, syndromic 5, MIM# 610125; Pituitary hormone deficiency, combined, 6, MIM# 613986; Retinal dystrophy, early-onset, with or without pituitary dysfunction, MIM# 610125
Mendeliome v0.3606 OTX2 Zornitza Stark reviewed gene: OTX2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Microphthalmia, syndromic 5, MIM# 610125, Pituitary hormone deficiency, combined, 6, MIM# 613986, Retinal dystrophy, early-onset, with or without pituitary dysfunction, MIM# 610125; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.3593 EEF1A2 Zornitza Stark Phenotypes for gene: EEF1A2 were changed from to Epileptic encephalopathy, early infantile, 33, MIM# 616409; Mental retardation, autosomal dominant 38, MIM# 616393
Mendeliome v0.3579 TASP1 Zornitza Stark Phenotypes for gene: TASP1 were changed from Developmental delay; microcephaly; dysmorphic features; congenital abnormalities to Developmental delay; microcephaly; dysmorphic features; congenital abnormalities; Suleiman-El-Hattab syndrome, MIM#618950
Mendeliome v0.3578 TASP1 Zornitza Stark edited their review of gene: TASP1: Changed phenotypes: Developmental delay, microcephaly, dysmorphic features, congenital abnormalities, Suleiman-El-Hattab syndrome, MIM#618950
Mendeliome v0.3555 TWNK Zornitza Stark Phenotypes for gene: TWNK were changed from to Mitochondrial DNA depletion syndrome 7 (hepatocerebral type) 271245; Perrault syndrome 5 616138; Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 609286
Mendeliome v0.3551 TWNK Elena Savva reviewed gene: TWNK: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 32234020, 18593709; Phenotypes: Mitochondrial DNA depletion syndrome 7 (hepatocerebral type) 271245, Perrault syndrome 5 616138, Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 609286; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.3540 LARS Zornitza Stark Phenotypes for gene: LARS were changed from Infantile liver failure syndrome 1, MIM# 615438 to Infantile liver failure syndrome 1, MIM# 615438; Seizures; Intellectual disability; Encephalopathy
Mendeliome v0.3539 LARS Zornitza Stark Added comment: Comment when marking as ready: Lenz et al (2020 - PMID: 32699352) review the phenotype of 25 affected individuals from 15 families.

Seizures occurred in 19/24 and were commonly associated with infections. Encephalopathic episodes (in 13 patients) accompanied by seizures up to status epilepticus occurred independently of hepatic decompensation.

In addition 22/24 presented with neurodevelopmental delay. The authors comment that cognitive impairment was present in 13/17 individuals (mild-severe) whereas most presented with learning disabilities.

These patients will most likely investigated for their liver disease (although presentation was highly variable and/or very mild in few).

The gene encodes a cytoplasmic amino-acyl tRNA synthetase (ARS) with neurologic manifestations observed in almost all patients (and seizures / DD and ID common to other disorders due to mutations in other genes encoding for ARSs).

Please note that the HGNC approved symbol for this gene is LARS1.
Mendeliome v0.3469 MDH1 Zornitza Stark Phenotypes for gene: MDH1 were changed from epilepsy; microcephaly; intellectual disability to epilepsy; microcephaly; intellectual disability; Epileptic encephalopathy, early infantile, 88, MIM#618959Epileptic encephalopathy, early infantile, 88, MIM#618959
Mendeliome v0.3468 MDH1 Zornitza Stark edited their review of gene: MDH1: Changed phenotypes: epilepsy, microcephaly, intellectual disability, Epileptic encephalopathy, early infantile, 88, MIM#618959
Mendeliome v0.3383 CUX2 Zornitza Stark Phenotypes for gene: CUX2 were changed from to Epileptic encephalopathy, early infantile, 67, MIM#618141
Mendeliome v0.3377 CUX2 Elena Savva reviewed gene: CUX2: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 2963073, 29795476; Phenotypes: Epileptic encephalopathy, early infantile, 67, 618141; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.3376 GIPC1 Zornitza Stark gene: GIPC1 was added
gene: GIPC1 was added to Mendeliome. Sources: Literature
5'UTR, STR tags were added to gene: GIPC1.
Mode of inheritance for gene: GIPC1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GIPC1 were set to 32413282
Phenotypes for gene: GIPC1 were set to Oculopharyngodistal myopathy-2 (OPDM2), MIM#618940
Review for gene: GIPC1 was set to AMBER
Added comment: 19 families reported with heterozygous trinucleotide repeat expansion in the 5-prime untranslated region and onset of distal muscle weakness, mainly of the lower limbs, and/or ophthalmoplegia in the second or third decades of life. Note this is unlikely to be tractable currently by most NGS assays.
Sources: Literature
Mendeliome v0.3368 GRM7 Zornitza Stark Phenotypes for gene: GRM7 were changed from Epilepsy, microcephaly, developmental delay to Epilepsy, microcephaly, developmental delay; neurodevelopmental disorder with seizures, hypotonia, and brain imaging abnormalities (NEDSHBA), MIM#618922
Mendeliome v0.3367 GRM7 Zornitza Stark edited their review of gene: GRM7: Changed phenotypes: Epilepsy, microcephaly, developmental delay, neurodevelopmental disorder with seizures, hypotonia, and brain imaging abnormalities (NEDSHBA), MIM#618922
Mendeliome v0.3359 PIGM Zornitza Stark Phenotypes for gene: PIGM were changed from to Glycosylphosphatidylinositol deficiency, MIM# 610293; portal vein thrombosis; persistent absence seizures; macrocephaly; infantile-onset cerebrovascular thrombotic events
Mendeliome v0.3342 PIGM Paul De Fazio reviewed gene: PIGM: Rating: AMBER; Mode of pathogenicity: None; Publications: 31445883, 16767100; Phenotypes: portal vein thrombosis, persistent absence seizures, macrocephaly, infantile-onset cerebrovascular thrombotic events; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.3331 CNPY3 Zornitza Stark Phenotypes for gene: CNPY3 were changed from to Epileptic encephalopathy, early infantile, 60 (MIM 617929)
Mendeliome v0.3328 CNPY3 Zornitza Stark reviewed gene: CNPY3: Rating: GREEN; Mode of pathogenicity: None; Publications: 29394991, 30237576; Phenotypes: Epileptic encephalopathy, early infantile, 60 (MIM 617929); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3327 KIF21B Zornitza Stark gene: KIF21B was added
gene: KIF21B was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: KIF21B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KIF21B were set to 32415109
Phenotypes for gene: KIF21B were set to Global developmental delay; Intellectual disability; Abnormality of brain morphology; Microcephaly
Mode of pathogenicity for gene: KIF21B was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: KIF21B was set to GREEN
Added comment: Asselin et al (2020 - PMID: 32415109) report on 4 individuals with KIF21B pathogenic variants. DD/ID (borderline intellectual functioning to severe ID) was a feature in all. Variable other findings included brain malformations (CCA) and microcephaly. 3 missense variants and a 4-bp insertion were identified, in 3 cases as de novo events while in a single subject the variant was inherited from the father who was also affected. The authors provide evidence for a role of KIF21B in the regulation of processes involved in cortical development and deleterious effect of the missense variants impeding neuronal migration and kinesin autoinhibition. Phenotypes specific to variants (e.g. CCA or microcephaly) were recapitulated in animal models. Missense variants are thought to exert a gain-of-function effect. As commented on, the 4-bp duplication (/frameshift) variant might not be pathogenic. In blood sample from the respective individual, RT-qPCR analysis suggested that haploinsufficiency (NMD) applies. Although Kif21b haploinsufficiency in mice was shown to lead to impaired neuronal positioning, the gene might partially tolerate LoF variants as also suggested by 28 such variants in gnomAD. Homozygous Kif21b ko mice display severe morphological abnormalities, partial loss of commissural fibers, cognitive deficits and altered synaptic transmission (several refs to previous studies provided by the authors).
Sources: Expert Review
Mendeliome v0.3325 TBC1D2B Zornitza Stark gene: TBC1D2B was added
gene: TBC1D2B was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: TBC1D2B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TBC1D2B were set to 32623794
Phenotypes for gene: TBC1D2B were set to Global developmental delay; Intellectual disability; Seizures; Gingival overgrowth; Behavioral abnormality; Abnormality of the mandible; Abnormality of brain morphology; Abnormality of the eye; Hearing abnormality
Review for gene: TBC1D2B was set to GREEN
Added comment: Harms et al (2020 - PMID: 32623794) report on 3 unrelated individuals with biallelic pLoF TBC1D2B variants. Features included cognitive impairment (mild ID in one case, regression at the age of 12y in another, hypotonia and delayed milestones in a third aged 8m), seizures (3/3 - variable age of onset) and/or gingival overgrowth (2/3 - prior to initiation of AEDs). Other findings included behavioral abnormalities, mandibular anomalies, abnormal brain imaging and ophthalmologic or (rarely) audiometric evaluations. All were born to non-consanguineous couples and additional investigations were performed in some. Variants were identified by WES or trio WGS, with Sanger confirmation/compatible segregation analyses. In line with the pLoF variants, mRNA studies in fibroblasts from 2 unrelated affected individuals demonstrated significantly reduced (~80-90%) TBC1C2D mRNA levels compared to controls, restored following cycloheximide treatment. Protein was absent in patient fibroblasts. TBC-domain containing GTPase activating proteins are known as key regulators of RAB GTPase activity. TBC1D2B was shown to colocalize with RAB5-positive endocytic vesicles. CRISPR/Cas9-mediated ko of TBC1D2B in HeLa cells suggested a role in EGF receptor endocytosis and decreased cell viability of TBC1D2B-deficient HeLa cells upon serum deprivation. Genes encoding other TBC domain-containg GTPase-activating proteins, e.g. TBC1D7 and TBC1D20, TBC1D24 are associated with recessive neurodevelopmental disorders (with ID and/or seizures) and the pathophysiological defect in TBC1D2B-related disorder (deficit in vesicle trafficking and/or cell survival) is proposed to be similar to that of TBC1D24.
Sources: Expert Review
Mendeliome v0.3323 EXOC2 Zornitza Stark gene: EXOC2 was added
gene: EXOC2 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: EXOC2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EXOC2 were set to 32639540
Phenotypes for gene: EXOC2 were set to Global developmental delay; Intellectual disability; Abnormality of the face; Abnormality of brain morphology
Review for gene: EXOC2 was set to AMBER
Added comment: Van Bergen et al (2020 - PMID: 32639540) report on 3 individuals from 2 families, harboring biallelic EXOC2 mutations. Clinical presentation included DD, ID (severe in 2 subjects from fam1, borderline intellectual functioning in fam2), dysmorphic features and brain abnormalities. Cerebellar anomalies were common to all with a molar tooth sign observed in one (1/3). Other findings limited to subjects from one family included acquired microcephaly, congenital contractures, spastic quadriplegia (each observed 2/3). Previous investigations were in all cases non-diagnostic. WES identified biallelic EXOC2 mutations in all affected individuals. EXOC2 encodes an exocyst subunit. The latter is an octameric complex, component of the membrane transport machinery, required for tethering and fusion of vesicles at the plasma membrane. As discussed ,vesicle transport is important for the development of brain and the function of neurons and glia. Exocyst function is also important for delivery of Arl13b to the primary cilium (biallelic ARL13B mutations cause Joubert syndrome 8) and ciliogenesis. Affected subjects from a broader consanguineous family (fam1) were homozygous for a truncating variant. Fibroblast studies revealed mRNA levels compatible with NMD (further restored in presence of CHX) as well as reduced protein levels. The female belonging to the second non-consanguineous family was found to harbor 2 missense variants in trans configuration. An exocytosis defect was demonstrated in fibroblasts from individuals belonging to both families. Ciliogenesis appeared to be normal, however Arl13b localization/recruitment to the cilia was reduced compared with control cells with the defect rescued upon exogenous expression of wt EXOC2. Mutations in other genes encoding components of the exocyst complex have been previously reported in individuals with relevant phenotypes (e.g. EXOC8 in a boy with features of Joubert s. or EXOC4 in nephrotic syndrome). The authors discuss on the essential role of EXOC2 based on model organism studies (e.g. impaired neuronal membrane traffic, failure of neuronal polarization and neuromuscular junction expansion seen in Drosophila Sec5 (EXOC2) null mutants).
Sources: Expert Review
Mendeliome v0.3303 PIP5K1C Zornitza Stark Phenotypes for gene: PIP5K1C were changed from to Lethal congenital contractural syndrome 3, MIM# 611369
Mendeliome v0.3299 PIP5K1C Zornitza Stark reviewed gene: PIP5K1C: Rating: AMBER; Mode of pathogenicity: None; Publications: 17701898; Phenotypes: Lethal congenital contractural syndrome 3, MIM# 611369; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3299 ERBB3 Zornitza Stark Phenotypes for gene: ERBB3 were changed from to Lethal congenital contractural syndrome 2, MIM# 607598
Mendeliome v0.3295 ERBB3 Zornitza Stark reviewed gene: ERBB3: Rating: AMBER; Mode of pathogenicity: None; Publications: 17701904, 31752936; Phenotypes: Lethal congenital contractural syndrome 2, MIM# 607598; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3281 GLS Zornitza Stark Phenotypes for gene: GLS were changed from Epileptic encephalopathy, early infantile, 71, MIM# 618328; Global developmental delay, progressive ataxia, and elevated glutamine, MIM# 618412 to Epileptic encephalopathy, early infantile, 71, MIM# 618328; Global developmental delay, progressive ataxia, and elevated glutamine, MIM# 618412; Cataract
Mendeliome v0.3278 GLS Zornitza Stark edited their review of gene: GLS: Changed phenotypes: Epileptic encephalopathy, early infantile, 71, MIM# 618328, Global developmental delay, progressive ataxia, and elevated glutamine, MIM# 618412, Catarct; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.3266 GGPS1 Zornitza Stark gene: GGPS1 was added
gene: GGPS1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GGPS1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GGPS1 were set to 32403198
Phenotypes for gene: GGPS1 were set to Muscular dystrophy; Deafness; Ovarian insufficiency
Review for gene: GGPS1 was set to GREEN
Added comment: 11 individuals from 6 unrelated families reported. In addition to proximal weakness, all but one patient presented with congenital sensorineural hearing loss, and all postpubertal females had primary ovarian insufficiency. Muscle histology was dystrophic, with ultrastructural evidence of autophagic material and large mitochondria in the most severe cases. Knock-in mouse of one of the mutations (Y259C) resulted in prenatal lethality.
Sources: Literature
Mendeliome v0.3258 HIST1H4C Zornitza Stark Phenotypes for gene: HIST1H4C were changed from to Growth delay, microcephaly and intellectual disability
Mendeliome v0.3255 HIST1H4C Zornitza Stark reviewed gene: HIST1H4C: Rating: GREEN; Mode of pathogenicity: None; Publications: 28920961; Phenotypes: Growth delay, microcephaly and intellectual disability; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.3206 RAD21 Zornitza Stark Phenotypes for gene: RAD21 were changed from to ?Mungan syndrome, 611376; Cornelia de Lange syndrome 4, 614701; Holoprocencephaly
Mendeliome v0.3196 EXOC7 Zornitza Stark gene: EXOC7 was added
gene: EXOC7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EXOC7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EXOC7 were set to 32103185
Phenotypes for gene: EXOC7 were set to brain atrophy; seizures; developmental delay; microcephaly
Review for gene: EXOC7 was set to GREEN
Added comment: 4 families with 8 affected individuals with brain atrophy, seizures, and developmental delay, and in more severe cases microcephaly and infantile death. Four novel homozygous or comp.heterozygous variants found in EXOC7, which segregated with disease in the families. They showed that EXOC7, a member of the mammalian exocyst complex, is highly expressed in developing human cortex. In addition, a zebrafish model of Exoc7 deficiency recapitulates the human disorder with increased apoptosis and decreased progenitor cells during telencephalon development, suggesting that the brain atrophy in human cases reflects neuronal degeneration.
Sources: Literature
Mendeliome v0.3195 HNRNPH1 Zornitza Stark gene: HNRNPH1 was added
gene: HNRNPH1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HNRNPH1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: HNRNPH1 were set to 32335897; 29938792
Phenotypes for gene: HNRNPH1 were set to HNRNPH1‐related syndromic intellectual disability
Review for gene: HNRNPH1 was set to GREEN
Added comment: 1st patient reported in 2018 with intellectual disability and dysmorphic features and HNRNPH1 heterozygous missense variant. 2020 paper reports additional 7 cases with ID, short stature, microcephaly, distinctive dysmorphic facial features, and congenital anomalies (cranial, brain, genitourinary, palate, ophthalmologic). They all had HNRNPH1 heterozygous pathogenic variants (missense, frameshift, in‐frame deletion, entire gene duplication) and were identified using clinical networks and GeneMatcher. No comments in paper if all de novo.
Sources: Literature
Mendeliome v0.3194 PDCD6IP Zornitza Stark gene: PDCD6IP was added
gene: PDCD6IP was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PDCD6IP was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PDCD6IP were set to 32286682
Phenotypes for gene: PDCD6IP were set to Microcephaly; intellectual disability
Review for gene: PDCD6IP was set to AMBER
Added comment: One consanguineous family with 2 affected sibs with primary microcephaly (-4SD), intellectual disability and short stature (-5/6SD), and homozygous frameshift variant in PDCD6IP. The homozygous variant was confirmed in both affected sibs, while the four healthy siblings and parents were heterozygous. The clinical features observed in the patients were similar to the phenotypes observed in mouse and zebrafish models of PDCD6IP mutations in previous studies.
Sources: Literature
Mendeliome v0.3176 GRIA2 Zornitza Stark Phenotypes for gene: GRIA2 were changed from Intellectual disability; autism; Rett-like features; epileptic encephalopathy to Intellectual disability; autism; Rett-like features; epileptic encephalopathy; Neurodevelopmental disorder with language impairment and behavioral abnormalities, MIM# 618917
Mendeliome v0.3175 GRIA2 Zornitza Stark edited their review of gene: GRIA2: Changed phenotypes: Intellectual disability, autism, Rett-like features, epileptic encephalopathy, Neurodevelopmental disorder with language impairment and behavioral abnormalities, MIM# 618917
Mendeliome v0.3175 CDK19 Zornitza Stark Phenotypes for gene: CDK19 were changed from Intellectual disability; epileptic encephalopathy to Intellectual disability; epileptic encephalopathy; Epileptic encephalopathy, early infantile, 87, MIM# 618916
Mendeliome v0.3174 CDK19 Zornitza Stark edited their review of gene: CDK19: Changed phenotypes: Intellectual disability, epileptic encephalopathy, Epileptic encephalopathy, early infantile, 87, MIM# 618916
Mendeliome v0.3174 TSHZ1 Zornitza Stark changed review comment from: Two individuals reported with LoF variants, both with a phenotype of congenital aural atresia and hyposmia (PMID: 22152683). Temporal and spatial expression of Tshz1 mRNA during development of the middle ear is consistent with the phenotype (PMID: 17586487). Tsh2 null mouse model showed a middle ear malformation, and neonatal lethality. A conditional nervous system-specific Tshz1 knock out mouse model demonstrated hyposmia (PMIDs: 24487590; 17586487).; to: Two individuals reported with LoF variants, both with a phenotype of congenital aural atresia and hyposmia (PMID: 22152683). Temporal and spatial expression of Tshz1 mRNA during development of the middle ear is consistent with the phenotype (PMID: 17586487). Tsh2 null mouse model showed a middle ear malformation, and neonatal lethality. A conditional nervous system-specific Tshz1 knock out mouse model demonstrated hyposmia (PMIDs: 24487590; 17586487). Also note original report contains four individuals with deletions of this gene, further supporting gene-disease association.
Mendeliome v0.3150 GOLGA2 Elena Savva gene: GOLGA2 was added
gene: GOLGA2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: GOLGA2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GOLGA2 were set to PMID: 30237576; 26742501
Phenotypes for gene: GOLGA2 were set to Nueromuscular disorder
Review for gene: GOLGA2 was set to GREEN
Added comment: PMID: 30237576 - One 11 year old patient with a homozygous PTC.
Patient had global dev delay, microcephaly, distal muscle weakness with joint contractures and elevated CK levels. Muscle biopsy showed dystrophin changes. MRI at 2 years old showed brain atrophy with thin corpus callosum and hypomyelination. No seizures or regression.

PMID: 26742501 - One infant with a homozygous PTC.
Patient had dev delay, seizures, microcephaly and muscular dystrophy. Zebrafish null model recapitulates the human phenotype with microcephaly and skeletal muscle disorganization.

Summary: 2 patients + animal model
Sources: Expert list
Mendeliome v0.3124 DALRD3 Zornitza Stark Phenotypes for gene: DALRD3 were changed from Epileptic encephalopathy to Epileptic encephalopathy; Epileptic encephalopathy, early infantile, 86 618910
Mendeliome v0.3123 DALRD3 Zornitza Stark edited their review of gene: DALRD3: Changed phenotypes: Epileptic encephalopathy, Epileptic encephalopathy, early infantile, 86 618910
Mendeliome v0.3105 NEK9 Zornitza Stark Phenotypes for gene: NEK9 were changed from to Lethal congenital contracture syndrome 10, MIM# 617022; Skeletal dysplasia
Mendeliome v0.3101 NEK9 Zornitza Stark reviewed gene: NEK9: Rating: RED; Mode of pathogenicity: None; Publications: 26908619; Phenotypes: Lethal congenital contracture syndrome 10, MIM# 617022, Skeletal dysplasia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3078 ASTN2 Zornitza Stark edited their review of gene: ASTN2: Changed phenotypes: Intellectual disability, microcephaly
Mendeliome v0.3072 SCN3A Zornitza Stark Phenotypes for gene: SCN3A were changed from to Epilepsy, familial focal, with variable foci 4, MIM# 617935; Epileptic encephalopathy, early infantile, 62, MIM# 617938; Intellectual disability; Malformations of cortical development
Mendeliome v0.3068 SCN3A Zornitza Stark reviewed gene: SCN3A: Rating: GREEN; Mode of pathogenicity: Other; Publications: 32515017; Phenotypes: Epilepsy, familial focal, with variable foci 4, MIM# 617935, Epileptic encephalopathy, early infantile, 62, MIM# 617938, Intellectual disability, Malformations of cortical development; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.3051 TRIM69 Zornitza Stark gene: TRIM69 was added
gene: TRIM69 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: TRIM69 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: TRIM69 were set to 22105173
Phenotypes for gene: TRIM69 were set to Susceptibility to herpes simplex encephalitis
Review for gene: TRIM69 was set to RED
Added comment: One individual with bi-allelic and one individual with mono-allelic variants in this gene described.
Sources: Expert list
Mendeliome v0.3049 RAD21 Elena Savva reviewed gene: RAD21: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 31334757, 25575569, 32193685; Phenotypes: ?Mungan syndrome, 611376, Cornelia de Lange syndrome 4, 614701, Holoprocencephaly; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.3048 PSMB1 Zornitza Stark gene: PSMB1 was added
gene: PSMB1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PSMB1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PSMB1 were set to 32129449
Phenotypes for gene: PSMB1 were set to Intellectual disability; microcephaly
Review for gene: PSMB1 was set to AMBER
Added comment: Two siblings reported with a homozygous missense variant in this gene; supportive experimental evidence including zebrafish model.
Sources: Literature
Mendeliome v0.3044 C16orf62 Zornitza Stark changed review comment from: HGNC approved name: VPS35L. Two variants have been reported as compound heterozygotes in two sibs with features of 3C/Ritscher-Schinzel syndrome. Functional studies show that loss of VPS35L function results in impared autophagy and VPS35L knockout mouse resulted in early embrionic lethality (PMID 25434475).
Sources: Expert list; to: HGNC approved name: VPS35L. Two variants have been reported as compound heterozygotes in two sibs with features of 3C/Ritscher-Schinzel syndrome. Functional studies show that loss of VPS35L function results in impared autophagy and VPS35L knockout mouse resulted in early embrionic lethality (PMID 25434475;31712251).
Sources: Expert list
Mendeliome v0.3037 C16orf62 Zornitza Stark gene: C16orf62 was added
gene: C16orf62 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: C16orf62 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: C16orf62 were set to 25434475
Phenotypes for gene: C16orf62 were set to 3C/Ritscher-Schinzel-like syndrome
Review for gene: C16orf62 was set to AMBER
Added comment: HGNC approved name: VPS35L. Two variants have been reported as compound heterozygotes in two sibs with features of 3C/Ritscher-Schinzel syndrome. Functional studies show that loss of VPS35L function results in impared autophagy and VPS35L knockout mouse resulted in early embrionic lethality (PMID 25434475).
Sources: Expert list
Mendeliome v0.3036 RHOBTB2 Zornitza Stark Phenotypes for gene: RHOBTB2 were changed from to Epileptic encephalopathy, early infantile, 64, MIM#618004
Mendeliome v0.3032 RHOBTB2 Elena Savva reviewed gene: RHOBTB2: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID:29276004, 29768694; Phenotypes: Epileptic encephalopathy, early infantile, 64, 618004; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.3027 SMO Zornitza Stark Phenotypes for gene: SMO were changed from to Microcephaly, congenital heart disease, polydactyly, aganglionosis; Curry-Jones syndrome, somatic mosaic 601707
Mendeliome v0.3024 SMO Zornitza Stark reviewed gene: SMO: Rating: GREEN; Mode of pathogenicity: None; Publications: 32413283, 27236920; Phenotypes: Microcephaly, congenital heart disease, polydactyly, aganglionosis, Curry-Jones syndrome, somatic mosaic 601707; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.3022 GRM7 Zornitza Stark gene: GRM7 was added
gene: GRM7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GRM7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GRM7 were set to 32286009; 32248644
Phenotypes for gene: GRM7 were set to Epilepsy, microcephaly, developmental delay
Review for gene: GRM7 was set to GREEN
Added comment: Eleven individuals from six families reported, three different homozygous variants (two missense, one LoF). Developmental delay, neonatal‐ or infantile‐onset epilepsy, and microcephaly were universal. Supportive mouse model.
Sources: Literature
Mendeliome v0.3015 ADCY6 Zornitza Stark gene: ADCY6 was added
gene: ADCY6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ADCY6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ADCY6 were set to 24319099; 26257172; 31846058
Phenotypes for gene: ADCY6 were set to Lethal congenital contracture syndrome 8, OMIM # 616287
Review for gene: ADCY6 was set to GREEN
Added comment: Laquerriere et al. (2014): 2 sibs from a consanguineous family with an axoglial form of lethal congenital contracture syndrome, and homozygous missense ADCY6 mutation (R1116C). The parents were heterozygous for the mutation. Knocked down ADCY6 orthologs in zebrafish showed a loss of myelin basic protein expression in the peripheral nervous system but no defects in Schwann cell migration and axonal growth. Gonzaga‐Jauregui et al. (2015): 1 patient with congenital hypotonia, distal joint contractures, hypomyelinating neuropathy, and vocal cord paralysis, and a homozygous missense ADCY6 variant. No functional studies. Deceased sister with a similar phenotype with hypotonia, areflexia, and hypomyelinating neuropathy who died at 18 months of respiratory insufficiency. Agolini et al. (2020): 1 patient with severe form of AMC, with two novel compound heterozygous variants in ADCY6 (parents confirmed carriers), but no functional studies.
Sources: Literature
Mendeliome v0.3012 OTUD7A Zornitza Stark Phenotypes for gene: OTUD7A were changed from Epileptic encephalopathy, no OMIM# yet to Epileptic encephalopathy, intellectual disability, no OMIM# yet
Mendeliome v0.3010 OTUD7A Zornitza Stark gene: OTUD7A was added
gene: OTUD7A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: OTUD7A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: OTUD7A were set to 31997314
Phenotypes for gene: OTUD7A were set to Epileptic encephalopathy, no OMIM# yet
Review for gene: OTUD7A was set to RED
Added comment: One patient with severe global developmental delay, language impairment and epileptic encephalopathy. Homozygous OTUD7A missense variant (c.697C>T, p.Leu233Phe), predicted to alter an ultraconserved amino acid, lying within the OTU catalytic domain. Its subsequent segregation analysis revealed that the parents, presenting with learning disability, and brother were heterozygous carriers. Biochemical assays demonstrated that proteasome complex formation and function were significantly reduced in patient‐derived fibroblasts and in OTUD7A knockout HAP1 cell line. Gene lies in the chromosome 15q13.3 region. Heterozygous microdeletions of chromosome 15q13.3 show incomplete penetrance and are associated with a highly variable phenotype that may include intellectual disability, epilepsy, facial dysmorphism and digit anomalies.
Sources: Literature
Mendeliome v0.2987 TTC5 Zornitza Stark gene: TTC5 was added
gene: TTC5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TTC5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TTC5 were set to 29302074; 32439809
Phenotypes for gene: TTC5 were set to Central hypotonia; Global developmental delay; Intellectual disability; Abnormality of nervous system morphology; Microcephaly; Abnormality of the face; Behavioral abnormality; Abnormality of the genitourinary system
Review for gene: TTC5 was set to GREEN
Added comment: Eleven individuals from seven families reported.
Sources: Literature
Mendeliome v0.2977 HIST1H4J Zornitza Stark gene: HIST1H4J was added
gene: HIST1H4J was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HIST1H4J was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: HIST1H4J were set to 31804630
Phenotypes for gene: HIST1H4J were set to microcephaly; intellectual disability; dysmorphic features
Review for gene: HIST1H4J was set to AMBER
Added comment: Single case report but with functional evidence in zebrafish and phenotypic similarity to other HIST1H4C phenotype
Sources: Literature
Mendeliome v0.2973 TOR1AIP1 Zornitza Stark Phenotypes for gene: TOR1AIP1 were changed from Muscular dystrophy, autosomal recessive, with rigid spine and distal joint contractures MIM#617072; Progeroid appearance; Cataracts; Microcephaly; Deafness to Muscular dystrophy, autosomal recessive, with rigid spine and distal joint contractures MIM#617072; Progeroid appearance; Cataracts; Microcephaly; Deafness; Contractures
Mendeliome v0.2972 TOR1AIP1 Zornitza Stark Phenotypes for gene: TOR1AIP1 were changed from Muscular dystrophy, autosomal recessive, with rigid spine and distal joint contractures MIM#617072 to Muscular dystrophy, autosomal recessive, with rigid spine and distal joint contractures MIM#617072; Progeroid appearance; Cataracts; Microcephaly; Deafness
Mendeliome v0.2959 SCYL2 Zornitza Stark gene: SCYL2 was added
gene: SCYL2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SCYL2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SCYL2 were set to 31960134; 26203146
Phenotypes for gene: SCYL2 were set to Arthrogryposis multiplex congenita (AMC); Zain syndrome
Review for gene: SCYL2 was set to AMBER
Added comment: Two unrelated families reported with AMC, variable other features including microcephaly.
Sources: Literature
Mendeliome v0.2944 POC5 Bryony Thompson gene: POC5 was added
gene: POC5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: POC5 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: POC5 were set to 25642776; 29272404
Phenotypes for gene: POC5 were set to Idiopathic scoliosis; retinitis pigmentosa; short stature; microcephaly; recurrent glomerulonephritis
Review for gene: POC5 was set to GREEN
Added comment: Three heterozygous missense variants identified in three families segregating with idiopathic scoliosis, and supporting zebrafish models for each of the missense variants.
Also, one case reported with retinitis pigmentosa, short stature, microcephaly, and recurrent glomerulonephritis with a homozygous truncating variant and a supporting zebrafish model.
Sources: Literature
Mendeliome v0.2943 CNP Kristin Rigbye gene: CNP was added
gene: CNP was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CNP was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CNP were set to 32128616; 12590258
Phenotypes for gene: CNP were set to Hypomyelinating leukodystrophy
Review for gene: CNP was set to AMBER
Added comment: Single consanguineous family described with homozygous missense in affected child (additional two affected deceased offspring unavailable for testing; healthy carrier parents and sibling).
Loss of protein by Western blot and defect in F-actin structure and organization observed in patient fibroblasts.
Deficiency of CNP in mouse has previously been shown to cause a lethal white matter neurodegenerative phenotype (PMID: 12590258), similar to the phenotype observed in this family.
Sources: Literature
Mendeliome v0.2943 TRIM71 Elena Savva reviewed gene: TRIM71: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 29983323, 32168371, 30975633; Phenotypes: Hydrocephalus, congenital communicating, 1 618667; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.2943 TRIM71 Elena Savva gene: TRIM71 was added
gene: TRIM71 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TRIM71 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: TRIM71 were set to PMID: 29983323; 32168371; 30975633
Phenotypes for gene: TRIM71 were set to Hydrocephalus, congenital communicating, 1 618667
Mode of pathogenicity for gene: TRIM71 was set to Other
Added comment: PMID: 29983323 - 3 unrelated patients with de novo missense and hydrocephalus with ventriculomegaly (p.Arg608His recurrent). One patient then transmitted the variant to an affected child.

PMID: 32168371 - refers to the gene as an established sources of neurodevelopmental disorder

PMID: 30975633 - identifies and proves by functional studies that TRIM71 is essential for neurodevelopment. Proposes a LOF mechanism.
Sources: Literature
Mendeliome v0.2880 DALRD3 Zornitza Stark gene: DALRD3 was added
gene: DALRD3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DALRD3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DALRD3 were set to 32427860
Phenotypes for gene: DALRD3 were set to Epileptic encephalopathy
Review for gene: DALRD3 was set to AMBER
Added comment: Two individuals reported with same homozygous nonsense variant, functional data.
Sources: Literature
Mendeliome v0.2879 GDF3 Zornitza Stark Phenotypes for gene: GDF3 were changed from to Microphthalmia with coloboma 6, MIM# 613703; Microphthalmia, isolated 7, MIM# 613704
Mendeliome v0.2876 GDF3 Zornitza Stark reviewed gene: GDF3: Rating: RED; Mode of pathogenicity: None; Publications: 19864492; Phenotypes: Microphthalmia with coloboma 6 613703, Microphthalmia, isolated 7 613704; Mode of inheritance: None
Mendeliome v0.2864 FAT1 Zornitza Stark Phenotypes for gene: FAT1 were changed from to facial dysmorphism; colobomatous microphthalmia; ptosis; syndactyly with or without nephropathy
Mendeliome v0.2861 FAT1 Ee Ming Wong changed review comment from: - 5 consanguineous families with homozygous frameshift mutations in FAN1
- FAN1 KO mice had microphthalmia, with fully penetrant coloboma which was not observed in heterozygous mice
- in human retinal pigment epithelium (RPE) cells, FAN1 knockdown resulted in compromised early cell-cell junction integrity and filament organisation; to: - 5 consanguineous families with homozygous frameshift mutations in FAN1
- FAN1 KO mice had microphthalmia, with fully penetrant coloboma which was not observed in heterozygous mice
- in human retinal pigment epithelium (RPE) cells, FAN1 knockdown resulted in compromised early cell-cell junction integrity and filament organisation
Mendeliome v0.2860 FAT1 Ee Ming Wong reviewed gene: FAT1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 30862798; Phenotypes: facial dysmorphism, colobomatous microphthalmia, ptosis, syndactyly with or without nephropathy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.2791 CEP112 Bryony Thompson gene: CEP112 was added
gene: CEP112 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CEP112 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CEP112 were set to 31654588
Phenotypes for gene: CEP112 were set to Acephalic spermatozoa; infertility
Review for gene: CEP112 was set to AMBER
Added comment: Two unrelated cases reported with acephalic spermatozoa, one case with a homozygous nonsense variant and the other case with biallelic missense variants. CEP112 expression was significantly reduced in one of the cases, suggesting loss of function as a mechanism of disease.
Sources: Literature
Mendeliome v0.2771 KLB Zornitza Stark gene: KLB was added
gene: KLB was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KLB was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KLB were set to 28754744
Review for gene: KLB was set to GREEN
Added comment: Seven heterozygous loss‐of‐function KLB mutations in 13 individuals reported. In mice, lack of Klb led to delayed puberty, altered estrous cyclicity, and subfertility due to a hypothalamic defect associated with inability of GnRH neurons to release GnRH in response to FGF21.
Functional analysis showed decreased activity in response to FGF21 and FGF8.
KLB is an obligate coreceptor for FGF21 alongside FGFR1.
Sources: Literature
Mendeliome v0.2767 UGDH Zornitza Stark gene: UGDH was added
gene: UGDH was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UGDH was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UGDH were set to 32001716
Phenotypes for gene: UGDH were set to Epileptic encephalopathy, early infantile, 84 - MIM #618792
Review for gene: UGDH was set to GREEN
Added comment: 36 individuals with biallelic UGDH pathogenic variants reported. The phenotype corresponded overall to a developmental epileptic encephalopathy with hypotonia, feeding difficulties, severe global DD, moderate or commonly severe ID in all. Hypotonia and motor disorder (incl. spasticity, dystonia, ataxia, chorea, etc) often occurred prior to the onset of seizures. A single individual did not present seizures and 2 sibs had only seizures in the setting of fever. There were no individuals with biallelic pLoF variants identified. Parental/sib studies were all compatible with AR inheritance mode.

UGDH encodes the enzyme UDP-glucose dehydrogenase which converts UDP-glucose to UDP-glucuronate, the latter being a critical component of the glycosaminoglycans, hyaluronan, chondroitin sulfate, and heparan sulfate. Patient fibroblast and biochemical assays suggested a LoF effect of variants leading to impairment of UGDH stability, oligomerization or enzymatic activity (decreased UGDH-catalyzed reduction of NAD+ to NADH / hyaluronic acid production which requires UDP-glucuronate).

Attempts to model the disorder using an already developped zebrafish model (for a hypomorphic LoF allele) were unsuccessful as fish did not exhibit seizures spontaneously or upon induction with PTZ. Modelling of the disorder in vitro using patient-derived cerebral organoids demonstrated smaller organoids due to reduced number of proliferating neural progenitors
Sources: Literature
Mendeliome v0.2764 YIF1B Zornitza Stark gene: YIF1B was added
gene: YIF1B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: YIF1B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: YIF1B were set to 32006098; 26077767
Phenotypes for gene: YIF1B were set to Central hypotonia; Failure to thrive; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Spasticity; Abnormality of movement
Review for gene: YIF1B was set to GREEN
Added comment: 6 individuals (from 5 families) with biallelic YIF1B truncating variants reported. Presenting features: hypotonia, failure to thrive, microcephaly (5/6), severe global DD and ID as well as features suggestive of a motor disorder (dystonia/spasticity/dyskinesia). Seizures were reported in 2 unrelated individuals (2/6). MRI abnormalities were observed in some with thin CC being a feature in 3. Affected individuals were found to be homozygous for truncating variants (4/5 families being consanguineous). The following 3 variants were identified (NM_001039672.2) : c.186dupT or p.Ala64fs / c.360_361insACAT or p.Gly121fs / c.598G>T or p.Glu200*. Yif1B KO mice demonstrate a disorganized Golgi architecture in pyramidal hippocampal neurons (Alterio et al 2015 - PMID: 26077767). Functional/network analysis of genes co-regulated with YIF1B based on available RNAseq data, suggest enrichement in in genes important for nervous system development and function.
Sources: Literature
Mendeliome v0.2759 TNRC6B Zornitza Stark edited their review of gene: TNRC6B: Added comment: 17 unrelated individuals with heterozygous TNRC6B variants reported. Features included hypotonia (10/17), DD/ID (17/17 - ID was not universal: average IQ of 12 individuals was 73 (range : 50-113) with 4 having below 70), ADHD (11/17), ASD or autistic traits (8/17 and 5/17). Some/few presented with abnormal OFC (micro- / macrocephaly in 3/17 and 2/17), abnormal vision or hearing, variable other congenital anomalies, echocardiographic, GI or renal abnormalities, etc. Epilepsy was reported in 1/17. There was no recognisable gestalt.Detected variants included 14 pLoF, 1 missense SNV and 2 intragenic deletions. Variants had occurred as de novo events in 10/13 subjects for whom testing of both parents was possible. 3/13 subjects had inherited the variant from a parent with milder phenotype. Based on the type of variants identified, the pLI score of 1 in gnomAD and the HI index of 5.61%, the authors suggest haploinsufficiency as the most likely mechanism. Individuals with de novo TNRC6B variants have also been reported in larger cohorts (e.g. DDD study - PMID: 28135719, Iossifov et al - PMID: 25363768, Lelieveld et al - PMID: 27479843, Jónsson et al - PMID: 28959963). A previous study provided details on 2 sibs harboring a translocation which disrupted both TNRC6B and TCF20 (also associated with ID)(Babbs et al - PMID: 25228304).; Changed rating: GREEN; Changed publications: 32152250, 28135719, 25363768, 27479843, 28959963, 25228304; Changed phenotypes: Global developmental delay, Intellectual disability, Autistic behavior; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.2758 CDC42BPB Zornitza Stark gene: CDC42BPB was added
gene: CDC42BPB was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CDC42BPB was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CDC42BPB were set to 32031333
Phenotypes for gene: CDC42BPB were set to Central hypotonia; Global developmental delay; Intellectual disability; Seizures; Autistic behavior; Behavioral abnormality
Review for gene: CDC42BPB was set to GREEN
Added comment: 14 individuals with missense and loss-of-function CDC42BPB variants reported. Features included hypotonia (8/11), DD (12/13 - the 14th was a fetus), ID (7/13), ASD (8/12), clinical seizures (in 3 - a 4th had abnormal EEG without seizures), behavioral abnormalities. Variable non-specific dysmorphic features were reported in some (sparse hair being the most frequent - 4/8). Additional features were observed in few (=<4) incl. cryptorchidism, ophthalmological issues, constipation, kidney abnormalities, micropenis, etc. Most variants occurred as de novo events (11/14) while inheritance was not available for few (3/14).
Sources: Literature
Mendeliome v0.2742 CFAP43 Elena Savva gene: CFAP43 was added
gene: CFAP43 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CFAP43 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Publications for gene: CFAP43 were set to PMID: 31884020; 28552195; 31004071; 29449551
Phenotypes for gene: CFAP43 were set to Hydrocephalus, normal pressure, 1 236690; Spermatogenic failure 19 617592
Added comment: aka WDR96

PMID: 31884020 - animal models (mouse, frog) demonstrate the protein localizes in ciliary axoneme and is involved in MOTILE cilia movement. LOF CFAP43 caused mucus acucmulation in airways, impaired spermatogenesis and hydrocephalus.

PMID: 28552195 - 3x chet (bilallelic PTCs or chet PTC/missense) with abnormal sperm motility. Null mouse models were also infertile.

PMID: 31004071 - one family with a heterozygous nonsense and AD inheritance of late onset hydrocephaly (checked in Mutalyzer, variant is NMD predicted). Abnormal cilia observed from mucosa sample. Null mice also show abnormal sperm and dilation of brain ventricles.

PMID: 29449551 - reports an additional 10 patients with either homozygous PTCs or chet PTC/missense who were infertile with flagella defects

Summary: single report of AD hydrocephaly
Sources: Literature
Mendeliome v0.2734 TAPT1 Zornitza Stark Phenotypes for gene: TAPT1 were changed from to Osteochondrodysplasia, complex lethal, Symoens-Barnes-Gistelinck type (MIM#616897)
Mendeliome v0.2730 TAPT1 Zornitza Stark reviewed gene: TAPT1: Rating: AMBER; Mode of pathogenicity: None; Publications: 26365339; Phenotypes: Osteochondrodysplasia, complex lethal, Symoens-Barnes-Gistelinck type (MIM#616897); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.2715 NID1 Zornitza Stark Phenotypes for gene: NID1 were changed from to Dandy-Walker malformation and occipital cephalocele; Hydrocephalus with or without seizures
Mendeliome v0.2712 NID1 Zornitza Stark reviewed gene: NID1: Rating: GREEN; Mode of pathogenicity: None; Publications: 23674478, 25558065, 12480912, 30773799; Phenotypes: Dandy-Walker malformation and occipital cephalocele, Hydrocephalus with or without seizures; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.2689 GLDC Zornitza Stark Phenotypes for gene: GLDC were changed from to Glycine encephalopathy (MIM#605899)
Mendeliome v0.2686 GLDC Crystle Lee reviewed gene: GLDC: Rating: GREEN; Mode of pathogenicity: None; Publications: 27362913; Phenotypes: Glycine encephalopathy (MIM#605899); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.2665 AAAS Zornitza Stark Phenotypes for gene: AAAS were changed from to Achalasia-addisonianism-alacrimia syndrome, MIM#231550
Mendeliome v0.2659 SNORA31 Zornitza Stark gene: SNORA31 was added
gene: SNORA31 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: SNORA31 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SNORA31 were set to 31806906
Phenotypes for gene: SNORA31 were set to Susceptibility to HSV1 encephalitis
Review for gene: SNORA31 was set to GREEN
Added comment: Five unrelated individuals reported with rare missense variants in this gene, functional data to support susceptibility to herpes simplex encephalitis.
Sources: Expert list
Mendeliome v0.2655 EMX2 Zornitza Stark Phenotypes for gene: EMX2 were changed from to Schizencephaly, MIM# 269160
Mendeliome v0.2651 EMX2 Zornitza Stark reviewed gene: EMX2: Rating: AMBER; Mode of pathogenicity: None; Publications: 8528262, 9359037, 9153481, 9153481, 18409201; Phenotypes: Schizencephaly, MIM# 269160; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.2651 ATAD3A Zornitza Stark Phenotypes for gene: ATAD3A were changed from Harel-Yoon syndrome, MIM# 617183 to Harel-Yoon syndrome, MIM# 617183; Pontocerebellar hypoplasia, hypotonia, and respiratory insufficiency syndrome, neonatal lethal (PHRINL SYNDROME) 618810
Mendeliome v0.2649 ATAD3A Zornitza Stark edited their review of gene: ATAD3A: Added comment: Mode of pathogenicity includes:
i) bi-allelic missense and nonsense variants and bi-allelic deletions that create an ATAD3B/ATAD3A fusion gene under the lowly expressed ATAD3B promoter
ii) monoallelic dominant-negative missense variants (either de novo or inherited) and de novo monoallelic duplications creating a dominant negative ATAD3A/ATAD3C fusion gene; Changed publications: 27640307, 32004445, 28549128; Changed phenotypes: Harel-Yoon syndrome, MIM# 617183, Pontocerebellar hypoplasia, hypotonia, and respiratory insufficiency syndrome, neonatal lethal (PHRINL SYNDROME) 618810
Mendeliome v0.2649 CTSA Zornitza Stark Phenotypes for gene: CTSA were changed from to Galactosialidosis, MIM# 256540; Cathepsin A-related arteriopathy with strokes and leukoencephalopathy
Mendeliome v0.2646 MN1 Zornitza Stark Phenotypes for gene: MN1 were changed from Intellectual disability; dysmophic features; rhombencephalosynapsis to CEBALID syndrome, MIM#618774; Intellectual disability; dysmophic features; rhombencephalosynapsis
Mendeliome v0.2645 MN1 Zornitza Stark edited their review of gene: MN1: Changed phenotypes: CEBALID syndrome, MIM#618774, Intellectual disability, dysmophic features, rhombencephalosynapsis
Mendeliome v0.2641 CDK5 Zornitza Stark Phenotypes for gene: CDK5 were changed from to Lissencephaly 7 with cerebellar hypoplasia, MIM# 616342
Mendeliome v0.2637 CDK5 Zornitza Stark reviewed gene: CDK5: Rating: RED; Mode of pathogenicity: None; Publications: 25560765; Phenotypes: Lissencephaly 7 with cerebellar hypoplasia, MIM# 616342; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.2636 VPS51 Zornitza Stark gene: VPS51 was added
gene: VPS51 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: VPS51 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: VPS51 were set to 30624672; 31207318
Phenotypes for gene: VPS51 were set to Pontocerebellar hypoplasia, type 13, MIM# 618606
Review for gene: VPS51 was set to AMBER
Added comment: Two families reported with bi-allelic variants in this gene and global developmental delay, impaired intellectual development with absent speech, microcephaly, and progressive atrophy of the cerebellar vermis and brainstem. Additional features, including seizures and visual impairment, are variable.
Sources: Expert list
Mendeliome v0.2635 CTSA Zornitza Stark reviewed gene: CTSA: Rating: GREEN; Mode of pathogenicity: None; Publications: 31177426; Phenotypes: Galactosialidosis, MIM# 256540, Cathepsin A-related arteriopathy with strokes and leukoencephalopathy; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.2634 CDK19 Zornitza Stark gene: CDK19 was added
gene: CDK19 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CDK19 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CDK19 were set to 32330417
Phenotypes for gene: CDK19 were set to Intellectual disability; epileptic encephalopathy
Review for gene: CDK19 was set to GREEN
Added comment: Three unrelated individuals with de novo missense variants reported, and intellectual disability/epileptic encephalopathy. Supportive functional data.
Sources: Literature
Mendeliome v0.2607 FOXF2 Hazel Phillimore changed review comment from: Homozygous missense, NM_001452.1: c.325A>T (p.I109F), in a 10 year old girl (consanguineous, parents were first cousins) with profound sensorineural hearing loss (SNHL) associated with incomplete partition type I anomaly of the cochlea. This variant is absent in the gnomAD v2.1.1. In vitro studies indicated instability, shorter half-life of the protein compared to wildtype. Embryonic knockout mouse showed shortened and malformed cochleae, in addition to altered shape of hair cells with innervation and planar cell polarity defects. Homozygous knockout mice do not survive. (Bademci, G. et al. (2019); PMID: 30561639).
This gene has also been reported in association with other anomalies including cleft lip, cleft palate, brain anomalies, intestine anomalies, and eye anomalies. Eye anomalies include anterior segment dysgenesis, as shown in mice with variant, W174R, affecting the Fox domain. Homozygote mice do not survive. (McKeone, R. et al. (2011); PMID: 22022403).
Sources: Literature; to: Homozygous missense, NM_001452.1: c.325A>T (p.I109F), in a 10 year old girl (consanguineous, parents were first cousins) with profound sensorineural hearing loss (SNHL) associated with incomplete partition type I anomaly of the cochlea. This variant is absent in the gnomAD v2.1.1. In vitro studies indicated instability, shorter half-life of the protein compared to wildtype. Embryonic knockout mouse showed shortened and malformed cochleae, in addition to altered shape of hair cells with innervation and planar cell polarity defects. Homozygous knockout mice do not survive. (Bademci, G. et al. (2019); PMID: 30561639).
This gene has also been reported in association with other anomalies including cleft lip, cleft palate, brain anomalies, intestine anomalies, and eye anomalies. Eye anomalies include anterior segment dysgenesis, as shown in mice with variant, W174R, affecting the Fox domain. Homozygote mice do not survive. (McKeone, R. et al. (2011); PMID: 22022403).
Previous names for FOXF2 include FKHL6 and FREAC2.
Sources: Literature
Mendeliome v0.2607 FOXF2 Hazel Phillimore gene: FOXF2 was added
gene: FOXF2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FOXF2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FOXF2 were set to PMID: 30561639; 22022403
Phenotypes for gene: FOXF2 were set to profound sensorineural hearing loss (SNHL); cochlea malformations; incomplete partition type I anomaly of the cochlea
Review for gene: FOXF2 was set to AMBER
Added comment: Homozygous missense, NM_001452.1: c.325A>T (p.I109F), in a 10 year old girl (consanguineous, parents were first cousins) with profound sensorineural hearing loss (SNHL) associated with incomplete partition type I anomaly of the cochlea. This variant is absent in the gnomAD v2.1.1. In vitro studies indicated instability, shorter half-life of the protein compared to wildtype. Embryonic knockout mouse showed shortened and malformed cochleae, in addition to altered shape of hair cells with innervation and planar cell polarity defects. Homozygous knockout mice do not survive. (Bademci, G. et al. (2019); PMID: 30561639).
This gene has also been reported in association with other anomalies including cleft lip, cleft palate, brain anomalies, intestine anomalies, and eye anomalies. Eye anomalies include anterior segment dysgenesis, as shown in mice with variant, W174R, affecting the Fox domain. Homozygote mice do not survive. (McKeone, R. et al. (2011); PMID: 22022403).
Sources: Literature
Mendeliome v0.2577 RHOA Zornitza Stark Phenotypes for gene: RHOA were changed from normal cognition; leukoencephalopathy; micro-ophthalmia; strabismus; linear hypopigmentation; malar hypoplasia; downslanting palpebral fissures; microstomia to normal cognition; leukoencephalopathy; micro-ophthalmia; strabismus; linear hypopigmentation; malar hypoplasia; downslanting palpebral fissures; microstomia; dental anomalies; body asymmetry; limb length discrepancy
Mendeliome v0.2556 THG1L Zornitza Stark changed review comment from: Five individuals from two Ashkenazi Jewish families with same homozygous missense variant, and another family ascertained through a large microcephaly cohort, also with SCA.
Sources: Literature; to: Four Ashkenazi Jewish families with same homozygous missense variant, and another family ascertained through a large microcephaly cohort, also with SCA. A carrier rate of 0.8%, but no THG1L V55A homozygotes, was found in a cohort of 3,232 unrelated Ashkenazi Jewish individuals, and no homozygotes found in Exac or gnomAD.
Sources: Literature
Mendeliome v0.2554 THG1L Zornitza Stark gene: THG1L was added
gene: THG1L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: THG1L was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: THG1L were set to 27307223; 31168944; 30214071
Phenotypes for gene: THG1L were set to Spinocerebellar ataxia, autosomal recessive 28, MIM# 618800
Review for gene: THG1L was set to AMBER
Added comment: Five individuals from two Ashkenazi Jewish families with same homozygous missense variant, and another family ascertained through a large microcephaly cohort, also with SCA.
Sources: Literature
Mendeliome v0.2549 GAD1 Zornitza Stark edited their review of gene: GAD1: Added comment: 2020: 11 individuals from 6 consanguineous families reported with bi-allelic LOF variant and a developmental/epileptic encephalopathy. Seizure onset occurred in the first 2 months of life in all. All 10 individuals, from whom early disease history was available, presented with seizure onset in the first month of life, mainly consisting of epileptic spasms or myoclonic seizures. Early EEG showed suppression-burst or pattern of burst attenuation or hypsarrhythmia if only recorded in the post-neonatal period. Eight individuals had joint contractures and/or pes equinovarus. Seven presented a cleft palate and two also had an omphalocele, reproducing the phenotype of the knockout Gad1−/− mouse model. Four individuals died before 4 years of age.; Changed rating: GREEN; Changed publications: 15571623, 32282878; Changed phenotypes: Cerebral palsy, spastic quadriplegic, 1, MIM#603513, Developmental and epileptic encephalopathy
Mendeliome v0.2546 C7orf43 Zornitza Stark gene: C7orf43 was added
gene: C7orf43 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: C7orf43 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: C7orf43 were set to 30715179
Phenotypes for gene: C7orf43 were set to Microcephaly 25, primary, autosomal recessive, MIM# 618351
Review for gene: C7orf43 was set to AMBER
Added comment: Single family reported: three affected siblings with homozygous truncating variant. Supportive zebrafish model.
Sources: Literature
Mendeliome v0.2530 GABRB2 Zornitza Stark Phenotypes for gene: GABRB2 were changed from Epileptic encephalopathy, infantile or early childhood, 2, MIM# 617829 to Epileptic encephalopathy, infantile or early childhood, 2, MIM# 617829
Mendeliome v0.2529 GABRB2 Zornitza Stark Phenotypes for gene: GABRB2 were changed from to Epileptic encephalopathy, infantile or early childhood, 2, MIM# 617829
Mendeliome v0.2526 NDE1 Zornitza Stark Phenotypes for gene: NDE1 were changed from to Microhydranencephaly 605013; Lissencephaly 4 (with microcephaly) 614019
Mendeliome v0.2489 NDE1 Elena Savva reviewed gene: NDE1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 30637988; Phenotypes: ?Microhydranencephaly 605013, Lissencephaly 4 (with microcephaly) 614019; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.2489 GABRB2 Elena Savva reviewed gene: GABRB2: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 27789573, 29100083; Phenotypes: Epileptic encephalopathy, infantile or early childhood, 2 617829; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.2481 RTTN Zornitza Stark Phenotypes for gene: RTTN were changed from to Microcephaly, short stature, and polymicrogyria with seizures, MIM# 614833; Intellectual disability; cerebral polymicrogyria; primary microcephaly; growth defects; congenital anomalies
Mendeliome v0.2468 GABRA1 Zornitza Stark Phenotypes for gene: GABRA1 were changed from to Epileptic encephalopathy, early infantile, 19 615744; Rett syndrome; Rett-like phenotypes; idiopathic generalized Epilepsy; Dravet syndrome
Mendeliome v0.2463 ATOH7 Zornitza Stark Phenotypes for gene: ATOH7 were changed from to Persistent hyperplastic primary vitreous, autosomal recessive, MIM# 221900; microphthalmia; cataract; glaucoma; congenital retinal nonattachment
Mendeliome v0.2449 SMCHD1 Zornitza Stark Phenotypes for gene: SMCHD1 were changed from to Bosma arhinia microphthalmia syndrome, MIM 603457; Fascioscapulohumeral muscular dystrophy 2, digenic
Mendeliome v0.2446 CDKL5 Zornitza Stark Phenotypes for gene: CDKL5 were changed from to Epileptic encephalopathy, early infantile, 2, MIM 300672
Mendeliome v0.2440 RTTN Ee Ming Wong reviewed gene: RTTN: Rating: GREEN; Mode of pathogenicity: None; Publications: 30879067; Phenotypes: Intellectual disability, cerebral polymicrogyria, primary microcephaly, growth defects, congenital anomalies; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.2440 CDKL5 Teresa Zhao reviewed gene: CDKL5: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Epileptic encephalopathy, early infantile, 2, MIM 300672; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes
Mendeliome v0.2431 PCDH19 Zornitza Stark Phenotypes for gene: PCDH19 were changed from to Epileptic encephalopathy, early infantile, 9 300088; PCDH19-related epilepsy (early seizure onset, generalised or focused seizures); cognitive impairment
Mendeliome v0.2404 SCN1A Zornitza Stark Phenotypes for gene: SCN1A were changed from to Epileptic encephalopathy, early infantile, 6 (Dravet syndrome), MIM# 607208
Mendeliome v0.2401 STXBP1 Zornitza Stark Phenotypes for gene: STXBP1 were changed from to Epileptic encephalopathy, early infantile, 4 612164; Rett syndrome; Rett-like phenotypes
Mendeliome v0.2398 NAA10 Zornitza Stark Phenotypes for gene: NAA10 were changed from to Microphthalmia, syndromic 1 309800
Mendeliome v0.2392 ATOH7 Paul De Fazio reviewed gene: ATOH7: Rating: GREEN; Mode of pathogenicity: None; Publications: 22068589, 22645276, 31696227, 11493566, 11493566; Phenotypes: microphthalmia, cataract, glaucoma, congenital retinal nonattachment; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.2392 SOD2 Zornitza Stark Phenotypes for gene: SOD2 were changed from {Microvascular complications of diabetes 6} 612634 to {Microvascular complications of diabetes 6} 612634; Lethal neonatal dilated cardiomyopathy
Mendeliome v0.2378 SEC31A Hazel Phillimore gene: SEC31A was added
gene: SEC31A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SEC31A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SEC31A were set to PMID: 30464055
Phenotypes for gene: SEC31A were set to congenital neurodevelopmental syndrome; spastic paraplegia; multiple contractures; profound developmental delay; epilepsy; failure to thrive
Review for gene: SEC31A was set to AMBER
Added comment: Frameshift. c.2776_2777, TA duplication, causing predicted p.A927fs*61 truncation and predicted NMD in 2 affected siblings in consanguineous Bedouin family with severe congenital neurological syndrome with spastic paraplegia, multiple contractures, profound developmental delay and convulsions. Failure to thrive. Lethal by age 4 years. Also had hearing defect, bilateral congenital cataract, horizontal nystagmus, with flat retina and optic atrophy. Supporting functional assays from knockout drosophila.
Sources: Literature
Mendeliome v0.2377 SMCHD1 Teresa Zhao reviewed gene: SMCHD1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 31600781; Phenotypes: Bosma arhinia microphthalmia syndrome, MIM 603457, Fascioscapulohumeral muscular dystrophy 2, digenic; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v0.2377 CDKL5 Ain Roesley reviewed gene: CDKL5: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 27080038, 30842224; Phenotypes: Rett syndrome, Rett-like phenotypes, Epileptic encephalopathy; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.2377 GSX2 Elena Savva gene: GSX2 was added
gene: GSX2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GSX2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GSX2 were set to PMID: 31412107
Phenotypes for gene: GSX2 were set to Diencephalic-mesencephalic junction dysplasia syndrome 2 618646
Review for gene: GSX2 was set to GREEN
Added comment: PMID: 31412107 - 2 unrelated patients with homozygous mutations (nonsense, missense). Functional analysis of the missense in transfected HeLa cells demonstrated protein mislocalization and protein expression. Downstream gene expression was also reduced by both mutations.

Summary: GREEN - 2 patients and functional evidence
Sources: Literature
Mendeliome v0.2372 MYCN Zornitza Stark Phenotypes for gene: MYCN were changed from to Feingold syndrome 1; megalencephaly; ventriculomegaly; hypoplastic corpus callosum; intellectual disability; polydactyly; neuroblastoma
Mendeliome v0.2368 GFAP Paul De Fazio reviewed gene: GFAP: Rating: GREEN; Mode of pathogenicity: None; Publications: 11138011, 12034785, 31004048, 15732097; Phenotypes: Leukodystrophy, macrocephaly; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.2361 NAA10 Naomi Baker reviewed gene: NAA10: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 30842225.; Phenotypes: syndromic X-linked microphthalmia; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes
Mendeliome v0.2361 SOD2 Chern Lim reviewed gene: SOD2: Rating: RED; Mode of pathogenicity: None; Publications: 31494578; Phenotypes: Lethal neonatal dilated cardiomyopathy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.2361 MYCN Ain Roesley reviewed gene: MYCN: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 21224895, 8470948, 30573562; Phenotypes: Feingold syndrome 1, megalencephaly, ventriculomegaly, hypoplastic corpus callosum, intellectual disability, polydactyly, neuroblastoma; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.2361 MYCN Ain Roesley edited their review of gene: MYCN: Added comment: PMID: 30573562; case report of an individual with a missense in MYCN with functional studies done in neuronal progenitor/stem cells demonstrating gain-of-function; Changed rating: RED; Changed publications: PMID: 30573562; Changed phenotypes: megalencephaly, ventriculomegaly, hypoplastic corpus callosum, intellectual disability, polydactyly, neuroblastoma
Mendeliome v0.2278 RNU4ATAC Zornitza Stark Phenotypes for gene: RNU4ATAC were changed from to Microcephalic osteodysplastic primordial dwarfism, type I (MIM# 210710); Roifman syndrome (MIM# 616651)
Mendeliome v0.2275 RNU4ATAC Ain Roesley reviewed gene: RNU4ATAC: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 23794361, 26522830, 30455926; Phenotypes: Microcephalic osteodysplastic primordial dwarfism, type I (MIM# 210710), Roifman syndrome (MIM# 616651); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.2256 MED17 Zornitza Stark Phenotypes for gene: MED17 were changed from to Microcephaly, postnatal progressive, with seizures and brain atrophy, MIM#613668
Mendeliome v0.2247 NUP214 Zornitza Stark Phenotypes for gene: NUP214 were changed from epileptic encephalopathy; developmental regression; microcephaly to Encephalopathy, acute, infection-induced, susceptibility to, 9, MIM# 618426; epileptic encephalopathy; developmental regression; microcephaly
Mendeliome v0.2219 SMPD4 Zornitza Stark Phenotypes for gene: SMPD4 were changed from to Severe neurodevelopmental delay, microcephaly, arthrogryposis
Mendeliome v0.2203 NUP188 Zornitza Stark Phenotypes for gene: NUP188 were changed from microcephaly; ID; cataract to microcephaly; ID; cataract; structural brain abnormalities; hypoventilation
Mendeliome v0.2200 NUP188 Zornitza Stark edited their review of gene: NUP188: Added comment: Additional 6 unrelated individuals with bi-allelic LoF variants reported, promoted to Green.; Changed rating: GREEN; Changed publications: 32021605, 28726809, 32275884; Changed phenotypes: microcephaly, ID, cataract, structural brain abnormalities, hypoventilation
Mendeliome v0.2198 TBCD Zornitza Stark Phenotypes for gene: TBCD were changed from to Encephalopathy, progressive, early-onset, with brain atrophy and thin corpus callosum, MIM#617193
Mendeliome v0.2189 VARS Zornitza Stark Phenotypes for gene: VARS were changed from to Neurodevelopmental disorder with microcephaly, seizures, and cortical atrophy; OMIM #617802
Mendeliome v0.2165 TRAF3 Zornitza Stark Phenotypes for gene: TRAF3 were changed from to {?Encephalopathy, acute, infection-induced (herpes-specific), susceptibility to, 5}, MIM# 614849
Mendeliome v0.2161 TRAF3 Zornitza Stark reviewed gene: TRAF3: Rating: RED; Mode of pathogenicity: None; Publications: 20832341; Phenotypes: {?Encephalopathy, acute, infection-induced (herpes-specific), susceptibility to, 5}, MIM# 614849; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.2035 KCNT2 Zornitza Stark Phenotypes for gene: KCNT2 were changed from Epileptic encephalopathy, early infantile, 57, MIM#617771; Developmental and epileptic encephalopathy to Epileptic encephalopathy, early infantile, 57, MIM#617771; Developmental and epileptic encephalopathy; Epilepsy of infancy with migrating focal seizures (EIMFS)
Mendeliome v0.2033 KCNT2 Kristin Rigbye reviewed gene: KCNT2: Rating: GREEN; Mode of pathogenicity: Other; Publications: 29069600, 29740868, 32038177; Phenotypes: Epileptic encephalopathy, early infantile, 57, 617771, Epilepsy of infancy with migrating focal seizures (EIMFS); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.1985 DBR1 Zornitza Stark gene: DBR1 was added
gene: DBR1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: DBR1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DBR1 were set to 29474921
Phenotypes for gene: DBR1 were set to Viral infections of the brainstem
Review for gene: DBR1 was set to GREEN
Added comment: Seven individuals from three unrelated families with viral brainstem encephalitis and bi-allelic hypomorphic variants.
Sources: Expert list
Mendeliome v0.1900 NSMCE2 Tiong Tan gene: NSMCE2 was added
gene: NSMCE2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NSMCE2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NSMCE2 were set to 25105364
Phenotypes for gene: NSMCE2 were set to SECKEL SYNDROME 10
Penetrance for gene: NSMCE2 were set to Complete
Review for gene: NSMCE2 was set to AMBER
Added comment: Biallelic hypomorphic variants in two unrelated women with microcephalic primordial dwarfism, insulin-resistant diabetes, fatty liver, and hypertriglyceridemia developing in childhood; and primary gonadal failure. Good quality functional evidence. No additional confirmatory cases since 2014 publication
Sources: Literature
Mendeliome v0.1892 FRMD4A Zornitza Stark gene: FRMD4A was added
gene: FRMD4A was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: FRMD4A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FRMD4A were set to 25388005; 30214071
Phenotypes for gene: FRMD4A were set to Intellectual disability; microcephaly; Corpus callosum, agenesis of, with facial anomalies and cerebellar ataxia, MIM# 616819
Review for gene: FRMD4A was set to AMBER
Added comment: Single Bedouin Israeli family reported with homozygous variant initially. Good segregation data. No functional data. Another family reported as part of a large consanguineous microcephaly cohort, different variant.
Sources: Expert Review
Mendeliome v0.1886 ADARB1 Zornitza Stark gene: ADARB1 was added
gene: ADARB1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ADARB1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ADARB1 were set to 32220291
Phenotypes for gene: ADARB1 were set to Intellectual disability; microcephaly; seizures
Review for gene: ADARB1 was set to GREEN
Added comment: Four unrelated individuals with bi-allelic variants in this gene.
Sources: Literature
Mendeliome v0.1842 ADGRG6 Zornitza Stark edited their review of gene: ADGRG6: Added comment: Three families reported originally with severe prenatal-onset arthrogryposis (PMID: 26004201), one family with more complex neurological phenotype (PMID:30549416).; Changed rating: GREEN; Changed publications: 30549416, 26004201; Changed phenotypes: Lethal congenital contracture syndrome 9, OMIM #616503; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.1821 SLC25A10 Zornitza Stark gene: SLC25A10 was added
gene: SLC25A10 was added to Mendeliome. Sources: NHS GMS
Mode of inheritance for gene: SLC25A10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC25A10 were set to 29211846
Phenotypes for gene: SLC25A10 were set to Intractable epileptic encephalopathy
Review for gene: SLC25A10 was set to AMBER
Added comment: One case with intractable epileptic encephalopathy with complex I deficiency, with biallelic variants. Yeast SLC25A10 ortholog lack-of-function causes impairment in mitochondrial respiration, reduced mtDNA copy number and oxidative stress vulnerability.
Sources: NHS GMS
Mendeliome v0.1820 QARS Zornitza Stark Phenotypes for gene: QARS were changed from to Microcephaly, progressive, seizures, and cerebral and cerebellar atrophy, MIM# 615760
Mendeliome v0.1816 QARS Zornitza Stark reviewed gene: QARS: Rating: GREEN; Mode of pathogenicity: None; Publications: 28620870, 25471517, 25432320, 25041233, 24656866, 32042906; Phenotypes: Microcephaly, progressive, seizures, and cerebral and cerebellar atrophy, MIM# 615760; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.1809 OXA1L Zornitza Stark gene: OXA1L was added
gene: OXA1L was added to Mendeliome. Sources: NHS GMS
Mode of inheritance for gene: OXA1L was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: OXA1L were set to 30201738; 16435202
Phenotypes for gene: OXA1L were set to Encephalopathy; hypotonia; developmental delay
Review for gene: OXA1L was set to AMBER
Added comment: Single family reported with biochemical and molecular analyses of patient skeletal muscle and fibroblasts. In vitro functional assays in human cell lines, Drosophila model, and yeast-based assays. Loss of function affects oxidative phosphorylation complexes IV and V.
Sources: NHS GMS
Mendeliome v0.1788 ZNF462 Zornitza Stark Added comment: Comment when marking as ready: Multiple congenital anomaly syndrome characterised by variable but usually mild global developmental delay and common craniofacial abnormalities, including ptosis, abnormal head shape, downslanting palpebral fissures, epicanthal folds, arched eyebrows, and short upturned nose. Many patients have hypotonia and feeding difficulties. A few patients show agenesis of the corpus callosum on brain imaging. Most cases occur sporadically, but there are rare familial cases that show highly variable expressivity in the phenotypic manifestations.
Mendeliome v0.1775 TMEM65 Zornitza Stark gene: TMEM65 was added
gene: TMEM65 was added to Mendeliome. Sources: NHS GMS
Mode of inheritance for gene: TMEM65 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMEM65 were set to 28295037
Phenotypes for gene: TMEM65 were set to Mitochondrial encephalomyopathy
Review for gene: TMEM65 was set to AMBER
Added comment: One homozygous case with a mitochondrial encephalomyopathy and functional assays showing the protein is important for mitochondrial respiration and mtDNA copy number maintenance.
Sources: NHS GMS
Mendeliome v0.1725 ISCA1 Zornitza Stark gene: ISCA1 was added
gene: ISCA1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: ISCA1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ISCA1 were set to 28356563; 32092383; 31016283; 30113620; 30105122
Phenotypes for gene: ISCA1 were set to Multiple mitochondrial dysfunctions syndrome 5, MIM# 617613
Review for gene: ISCA1 was set to GREEN
gene: ISCA1 was marked as current diagnostic
Added comment: Multiple unrelated families reported. Severe disorder characterised by progressive neurologic deterioration beginning in early infancy. Affected individuals have essentially no psychomotor development and have early-onset seizures with neurologic decline and spasticity. Brain imaging shows severe leukodystrophy with evidence of dys- or delayed myelination. Rat model results in early lethality. Founder variant c.259G > A, p.(Glu87Lys) reported in Indian families.
Sources: Expert list
Mendeliome v0.1679 RPS23 Zornitza Stark Phenotypes for gene: RPS23 were changed from to Brachycephaly, trichomegaly, and developmental delay, MIM# 617412
Mendeliome v0.1674 RPS23 Zornitza Stark reviewed gene: RPS23: Rating: AMBER; Mode of pathogenicity: None; Publications: 28257692; Phenotypes: Brachycephaly, trichomegaly, and developmental delay, MIM# 617412; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.1663 MFSD2A Zornitza Stark Phenotypes for gene: MFSD2A were changed from to Microcephaly 15, primary, autosomal recessive, MIM# 616486
Mendeliome v0.1660 MFSD2A Zornitza Stark reviewed gene: MFSD2A: Rating: GREEN; Mode of pathogenicity: None; Publications: 26005865, 26005868, 24828044; Phenotypes: Microcephaly 15, primary, autosomal recessive, MIM# 616486; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.1588 VARS Zornitza Stark reviewed gene: VARS: Rating: GREEN; Mode of pathogenicity: None; Publications: 30755616, 30755602, 26539891, 29691655, 30275004; Phenotypes: Neurodevelopmental disorder with microcephaly, seizures, and cortical atrophy, OMIM #617802; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.1562 SPOP Zornitza Stark gene: SPOP was added
gene: SPOP was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SPOP was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SPOP were set to 32109420
Phenotypes for gene: SPOP were set to Intellectual disability; dysmorphism; microcephaly; macrocephaly
Mode of pathogenicity for gene: SPOP was set to Other
Review for gene: SPOP was set to GREEN
Added comment: Seven individuals reported with de novo missense variants in this gene. Gain-of-function variants associated with microcephaly whereas dominant-negative variants associated with macrocephaly.
Sources: Literature
Mendeliome v0.1537 TBC1D7 Zornitza Stark Phenotypes for gene: TBC1D7 were changed from to Macrocephaly/megalencephaly syndrome, autosomal recessive, MIM# 248000
Mendeliome v0.1533 TBC1D7 Zornitza Stark reviewed gene: TBC1D7: Rating: AMBER; Mode of pathogenicity: None; Publications: 24515783, 23687350; Phenotypes: Macrocephaly/megalencephaly syndrome, autosomal recessive, MIM# 248000; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.1496 COL2A1 Zornitza Stark Phenotypes for gene: COL2A1 were changed from to Achondrogenesis, type II or hypochondrogenesis 200610; Avascular necrosis of the femoral head 608805; Czech dysplasia 609162; Epiphyseal dysplasia, multiple, with myopia and deafness 132450; Kniest dysplasia 156550; Legg-Calve-Perthes disease 150600; Osteoarthritis with mild chondrodysplasia 604864; Platyspondylic skeletal dysplasia, Torrance type 151210; SED congenita 183900; SMED Strudwick type 184250; Spondyloepiphyseal dysplasia, Stanescu type 616583; Spondyloperipheral dysplasia 271700; Stickler sydrome, type I, nonsyndromic ocular 609508; Stickler syndrome, type I 108300; Vitreoretinopathy with phalangeal epiphyseal dysplasia
Mendeliome v0.1490 CEP135 Zornitza Stark Phenotypes for gene: CEP135 were changed from to Microcephalic primordial dwarfism; Microcephaly 8, primary, autosomal recessive, 614673
Mendeliome v0.1473 COL2A1 Elena Savva reviewed gene: COL2A1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 15895462, 17721977, 27234559, 20179744; Phenotypes: Achondrogenesis, type II or hypochondrogenesis 200610, Avascular necrosis of the femoral head 608805, Czech dysplasia 609162, Epiphyseal dysplasia, multiple, with myopia and deafness 132450, Kniest dysplasia 156550, Legg-Calve-Perthes disease 150600, Osteoarthritis with mild chondrodysplasia 604864, Platyspondylic skeletal dysplasia, Torrance type 151210, SED congenita 183900, SMED Strudwick type 184250, Spondyloepiphyseal dysplasia, Stanescu type 616583, Spondyloperipheral dysplasia 271700, Stickler sydrome, type I, nonsyndromic ocular 609508, Stickler syndrome, type I 108300, Vitreoretinopathy with phalangeal epiphyseal dysplasia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.1473 CEP135 Elena Savva reviewed gene: CEP135: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 30214071, 22521416; Phenotypes: Microcephalic primordial dwarfism, Microcephaly 8, primary, autosomal recessive, 614673; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.1473 CEP135 Elena Savva changed review comment from: Microcephalic primordial dwarfism - single case

Incomplete NMD shown, LOF mechanism; to: Microcephalic primordial dwarfism - single case

Incomplete NMD shown, LOF mechanism
Mendeliome v0.1473 CEP135 Elena Savva reviewed gene: CEP135: Rating: ; Mode of pathogenicity: None; Publications: PMID: 30214071, 22521416; Phenotypes: Microcephalic primordial dwarfism, Microcephaly 8, primary, autosomal recessive, 614673; Mode of inheritance: None
Mendeliome v0.1473 CEP85L Zornitza Stark gene: CEP85L was added
gene: CEP85L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CEP85L was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CEP85L were set to 32097630
Phenotypes for gene: CEP85L were set to Lissencephaly, posterior predominant
Review for gene: CEP85L was set to GREEN
Added comment: Thirteen individuals reported with mono allelic variants in this gene, inherited in two of the families. Mouse model had neuronal migration defects.
Sources: Literature
Mendeliome v0.1446 WDR81 Zornitza Stark Phenotypes for gene: WDR81 were changed from to Cerebellar ataxia, mental retardation, and dysequilibrium syndrome 2, 610185; Hydrocephalus, congenital, 3, with brain anomalies, 617967
Mendeliome v0.1436 FXR1 Bryony Thompson gene: FXR1 was added
gene: FXR1 was added to Mendeliome. Sources: NHS GMS
Mode of inheritance for gene: FXR1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FXR1 were set to 30770808
Phenotypes for gene: FXR1 were set to Congenital multi-minicore myopathy
Review for gene: FXR1 was set to GREEN
Added comment: Two unrelated families and a mouse model with non-lethal myopathy phenotype.
Sources: NHS GMS
Mendeliome v0.1435 WDR81 Kristin Rigbye reviewed gene: WDR81: Rating: GREEN; Mode of pathogenicity: None; Publications: 21885617, 28556411; Phenotypes: Cerebellar ataxia, mental retardation, and dysequilibrium syndrome 2, 610185, Hydrocephalus, congenital, 3, with brain anomalies, 617967; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.1435 TBCE Zornitza Stark Phenotypes for gene: TBCE were changed from to Encephalopathy, progressive, with amyotrophy and optic atrophy; Hypoparathyroidism-retardation-dysmorphism syndrome; Kenny-Caffey syndrome, type 1
Mendeliome v0.1432 HTRA1 Zornitza Stark Phenotypes for gene: HTRA1 were changed from to {Macular degeneration, age-related, 7}, 6101493; {Macular degeneration, age-related, neovascular type}, 610149; CARASIL syndrome, 600142; Cerebral arteriopathy, autosomal dominant, with subcortical infarcts and leukoencephalopathy, type 2, 616779
Mendeliome v0.1415 TBCE Elena Savva reviewed gene: TBCE: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 27666369; Phenotypes: Encephalopathy, progressive, with amyotrophy and optic atrophy, Hypoparathyroidism-retardation-dysmorphism syndrome, Kenny-Caffey syndrome, type 1; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.1415 HTRA1 Elena Savva reviewed gene: HTRA1: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 29895533, 19387015; Phenotypes: {Macular degeneration, age-related, 7}, 6101493, {Macular degeneration, age-related, neovascular type}, 610149, CARASIL syndrome, 600142, Cerebral arteriopathy, autosomal dominant, with subcortical infarcts and leukoencephalopathy, type 2, 616779; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.1395 PNKP Zornitza Stark Phenotypes for gene: PNKP were changed from to Ataxia-oculomotor apraxia 4, MIM#616267; Microcephaly, seizures, and developmental delay, MIM#613402
Mendeliome v0.1386 PNKP Kristin Rigbye reviewed gene: PNKP: Rating: GREEN; Mode of pathogenicity: None; Publications: 31436889, 31707899; Phenotypes: Ataxia-oculomotor apraxia 4, Microcephaly, seizures, and developmental delay; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.1379 CHD2 Zornitza Stark Phenotypes for gene: CHD2 were changed from to Epileptic encephalopathy, childhood-onset (MIM # 615369)
Mendeliome v0.1373 CHD2 Teresa Zhao reviewed gene: CHD2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Epileptic encephalopathy, childhood-onset (MIM # 615369); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.1359 ATRX Zornitza Stark Phenotypes for gene: ATRX were changed from to Alpha-thalassemia/mental retardation syndrome; Mental retardation-hypotonic facies syndrome, X-linked
Mendeliome v0.1357 ATRX Elena Savva reviewed gene: ATRX: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Alpha-thalassemia myelodysplasia syndrome, somatic, Alpha-thalassemia/mental retardation syndrome, Mental retardation-hypotonic facies syndrome, X-linked; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.1347 PLEKHG2 Zornitza Stark edited their review of gene: PLEKHG2: Added comment: Further family identified, promote to Amber.; Changed rating: AMBER; Changed publications: 26539891, 24001768, 26573021; Changed phenotypes: Leukodystrophy and acquired microcephaly with or without dystonia, MIM# 616763
Mendeliome v0.1325 MAP3K20 Bryony Thompson gene: MAP3K20 was added
gene: MAP3K20 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: MAP3K20 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MAP3K20 were set to 27816943; 26755636
Phenotypes for gene: MAP3K20 were set to Centronuclear myopathy 6 with fiber-type disproportion MIM#617760; Split-foot malformation with mesoaxial polydactyly MIM#616890
Review for gene: MAP3K20 was set to GREEN
Added comment: 3 unrelated consanguineous families homozygous for 3 different variants with centronuclear myopathy, and at least 2 families reported with split-foot malformation. Null mouse model is embryonic lethal due to severe cardiac edema and growth retardation. Gene alias of ZAK used in the published studies.
Sources: Expert list
Mendeliome v0.1304 SCO2 Zornitza Stark Phenotypes for gene: SCO2 were changed from to Cardioencephalomyopathy, fatal infantile, due to cytochrome c oxidase deficiency 1; Myopia 6; Charcot-Marie-Tooth type 4; Cerebellar ataxia and progressive peripheral axonal neuropthy
Mendeliome v0.1289 SCO2 Elena Savva reviewed gene: SCO2: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 31844624, 29351582, 26427993; Phenotypes: Cardioencephalomyopathy, fatal infantile, due to cytochrome c oxidase deficiency 1, Myopia 6, Charcot-Marie-Tooth type 4, Cerebellar ataxia and progressive peripheral axonal neuropthy; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.1258 TRAPPC4 Zornitza Stark gene: TRAPPC4 was added
gene: TRAPPC4 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: TRAPPC4 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TRAPPC4 were set to 31794024
Phenotypes for gene: TRAPPC4 were set to intellectual disability; epilepsy; spasticity; microcephaly
Review for gene: TRAPPC4 was set to GREEN
Added comment: Seven individuals from three unrelated families reported; recurrent splice site variant (hg19:chr11:g.118890966A>G; TRAPPC4: NM_016146.5; c.454+3A>G), not a founder variant.
Sources: Expert Review
Mendeliome v0.1247 HNRNPU Zornitza Stark Phenotypes for gene: HNRNPU were changed from to Epileptic encephalopathy, early infantile, 54, MIM#617391
Mendeliome v0.1244 SERPINI1 Zornitza Stark Phenotypes for gene: SERPINI1 were changed from to Encephalopathy, familial, with neuroserpin inclusion bodies MIM#604218
Mendeliome v0.1242 SERPINI1 Zornitza Stark reviewed gene: SERPINI1: Rating: GREEN; Mode of pathogenicity: None; Publications: 28631894, 25401298, 12103288; Phenotypes: Encephalopathy, familial, with neuroserpin inclusion bodies MIM#604218; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.1239 HNRNPU Crystle Lee reviewed gene: HNRNPU: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 28944577, 28393272; Phenotypes: Epileptic encephalopathy, early infantile, 54 (MIM#617391); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.1239 OPA1 Zornitza Stark Phenotypes for gene: OPA1 were changed from to Mitochondrial DNA depletion syndrome 14 (encephalocardiomyopathic type)MIM# 6168963; Behr syndrome MIM#210000, AR; Optic atrophy 1, MIM#165500; Optic atrophy plus syndrome, MIM# 125250
Mendeliome v0.1237 SASS6 Zornitza Stark Phenotypes for gene: SASS6 were changed from to Microcephaly 14, primary, autosomal recessive, MIM# 616402
Mendeliome v0.1233 SASS6 Zornitza Stark reviewed gene: SASS6: Rating: AMBER; Mode of pathogenicity: None; Publications: 24951542, 30639237; Phenotypes: Microcephaly 14, primary, autosomal recessive, MIM# 616402; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.1220 OPA1 Ee Ming Wong reviewed gene: OPA1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 30165240; Phenotypes: 1. ?Mitochondrial DNA depletion syndrome 14 (encephalocardiomyopathic type) 6168963, 2. {Glaucoma, normal tension, susceptibility to} 6066573, 3. Behr syndrome 210000 AR, 4. Optic atrophy 1 165500 AD, 5. Optic atrophy plus syndrome 125250 AD; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.1196 COA5 Zornitza Stark Phenotypes for gene: COA5 were changed from to Cardioencephalomyopathy, fatal infantile, due to cytochrome c oxidase deficiency 3, MIM# 616500
Mendeliome v0.1192 COA5 Zornitza Stark reviewed gene: COA5: Rating: RED; Mode of pathogenicity: None; Publications: 21457908; Phenotypes: Cardioencephalomyopathy, fatal infantile, due to cytochrome c oxidase deficiency 3, MIM# 616500; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.1083 TUBGCP6 Zornitza Stark Phenotypes for gene: TUBGCP6 were changed from to Microcephaly and chorioretinopathy, autosomal recessive, 1, MIM#251270
Mendeliome v0.1080 TUBGCP6 Zornitza Stark reviewed gene: TUBGCP6: Rating: GREEN; Mode of pathogenicity: None; Publications: 25344692, 22279524; Phenotypes: Microcephaly and chorioretinopathy, autosomal recessive, 1, MIM#251270; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.1052 GNAO1 Zornitza Stark Phenotypes for gene: GNAO1 were changed from to Epileptic encephalopathy, early infantile, 17; Neurodevelopmental disorder with involuntary movements
Mendeliome v0.1048 GNAO1 Zornitza Stark reviewed gene: GNAO1: Rating: GREEN; Mode of pathogenicity: Other; Publications: 28747448, 30682224; Phenotypes: Epileptic encephalopathy, early infantile, 17, Neurodevelopmental disorder with involuntary movements; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.1025 MYRF Zornitza Stark gene: MYRF was added
gene: MYRF was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: MYRF was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MYRF were set to 31048900; 31172260; 31266062; 31700225
Phenotypes for gene: MYRF were set to Nanophthalmos; High hyperopia
Review for gene: MYRF was set to GREEN
gene: MYRF was marked as current diagnostic
Added comment: Multiple affected individuals reported.
Sources: Expert list
Mendeliome v0.1010 XRCC4 Zornitza Stark Phenotypes for gene: XRCC4 were changed from to Short stature, microcephaly, and endocrine dysfunction (MIM#616541)
Mendeliome v0.1007 XRCC4 Crystle Lee reviewed gene: XRCC4: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 25839420, 25728776; Phenotypes: Short stature, microcephaly, and endocrine dysfunction (MIM#616541); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.986 CCDC88C Sebastian Lunke Phenotypes for gene: CCDC88C were changed from Spinocerebellar ataxia 40, MIM#616053 to Spinocerebellar ataxia 40, MIM#616053; Hydrocephalus, nonsyndromic, autosomal recessive 236600 AR
Mendeliome v0.982 CCDC88C Sebastian Lunke reviewed gene: CCDC88C: Rating: GREEN; Mode of pathogenicity: None; Publications: 23042809, 21031079, 25062847, 30398676; Phenotypes: Spinocerebellar ataxia 40, MIM#616053, Hydrocephalus, nonsyndromic, autosomal recessive 236600 AR; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.972 GCSH Zornitza Stark Phenotypes for gene: GCSH were changed from to Glycine encephalopathy, MIM# 605899
Mendeliome v0.968 GCSH Zornitza Stark reviewed gene: GCSH: Rating: RED; Mode of pathogenicity: None; Publications: 1671321; Phenotypes: Glycine encephalopathy, MIM# 605899; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.953 RALA Zornitza Stark gene: RALA was added
gene: RALA was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: RALA was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RALA were set to 30500825
Phenotypes for gene: RALA were set to Intellectual disability; Seizures
Review for gene: RALA was set to GREEN
gene: RALA was marked as current diagnostic
Added comment: 11 individuals from 10 unrelated families reported with this neurodevelopmental syndrome, half had seizures.
Sources: Expert list
Mendeliome v0.949 MACF1 Zornitza Stark gene: MACF1 was added
gene: MACF1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: MACF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MACF1 were set to 30471716
Phenotypes for gene: MACF1 were set to Lissencephaly 9 with complex brainstem malformation, MIM# 618325
Mode of pathogenicity for gene: MACF1 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: MACF1 was set to GREEN
Added comment: Nine individuals (including a pair of twins) reported with de novo variants in this gene.
Sources: Expert list
Mendeliome v0.947 KATNB1 Zornitza Stark Phenotypes for gene: KATNB1 were changed from to Lissencephaly 6, with microcephaly, MIM# 616212
Mendeliome v0.935 GNB5 Zornitza Stark Phenotypes for gene: GNB5 were changed from to Intellectual developmental disorder with cardiac arrhythmia, 617173; Language delay and ADHD/cognitive impairment with or without cardiac arrhythmia, 617182; Early infantile epileptic encephalopathy (EIEE)
Mendeliome v0.896 GAS1 Zornitza Stark Phenotypes for gene: GAS1 were changed from to Holoprosencephaly
Mendeliome v0.893 GAS1 Zornitza Stark reviewed gene: GAS1: Rating: RED; Mode of pathogenicity: None; Publications: 21842183, 20583177; Phenotypes: Holoprosencephaly; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.888 MTHFS Zornitza Stark gene: MTHFS was added
gene: MTHFS was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MTHFS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MTHFS were set to 30031689; 31844630; 22303332
Phenotypes for gene: MTHFS were set to Neurodevelopmental disorder with microcephaly, epilepsy, and hypomyelination, 618367
Review for gene: MTHFS was set to GREEN
Added comment: Three unrelated individuals reported with supporting biochemical evidence.
Sources: Literature
Mendeliome v0.869 FOXJ1 Zornitza Stark Phenotypes for gene: FOXJ1 were changed from to hydrocephalus; chronic destructive airway disease; randomization of left/right body asymmetry
Mendeliome v0.866 FOXJ1 Zornitza Stark reviewed gene: FOXJ1: Rating: GREEN; Mode of pathogenicity: None; Publications: 31630787; Phenotypes: hydrocephalus, chronic destructive airway disease, randomization of left/right body asymmetry; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.865 TUBGCP2 Zornitza Stark gene: TUBGCP2 was added
gene: TUBGCP2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TUBGCP2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TUBGCP2 were set to 31630790
Phenotypes for gene: TUBGCP2 were set to Lissencephaly; pachygyria; subcortical band heterotopia; microcephaly; intellectual disability
Review for gene: TUBGCP2 was set to GREEN
Added comment: Four unrelated families reported.
Sources: Literature
Mendeliome v0.860 TP73 Alison Yeung gene: TP73 was added
gene: TP73 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TP73 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TP73 were set to PMID: 31130284
Phenotypes for gene: TP73 were set to Cortical malformation; Lissencephaly
Review for gene: TP73 was set to AMBER
Added comment: Two unrelated families reported. No functional data
Sources: Literature
Mendeliome v0.837 CNOT1 Alison Yeung gene: CNOT1 was added
gene: CNOT1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CNOT1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: CNOT1 were set to PMID: 31006513
Phenotypes for gene: CNOT1 were set to Holoprosencephaly 12, with or without pancreatic agenesis; OMIM# 618500
Review for gene: CNOT1 was set to GREEN
gene: CNOT1 was marked as current diagnostic
Added comment: Reported in 3 unrelated individuals
Sources: Literature
Mendeliome v0.820 CARS Alison Yeung gene: CARS was added
gene: CARS was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CARS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CARS were set to PMID: 30824121
Phenotypes for gene: CARS were set to Intellectual disability; microcephaly; brittle hair and nails
Added comment: Three reported unrelated families
Sources: Literature
Mendeliome v0.769 MDH1 Zornitza Stark gene: MDH1 was added
gene: MDH1 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: MDH1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MDH1 were set to 31538237
Phenotypes for gene: MDH1 were set to epilepsy; microcephaly; intellectual disability
Review for gene: MDH1 was set to AMBER
Added comment: single consanguinous family with biallelic missense variant in this gene and epilepsy, microcephaly, ID; some functional data.
Sources: Literature
Mendeliome v0.767 ISLR2 Zornitza Stark gene: ISLR2 was added
gene: ISLR2 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: ISLR2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ISLR2 were set to 30483960
Phenotypes for gene: ISLR2 were set to hydrocephalus; arthrogryposis; abdominal distension
Review for gene: ISLR2 was set to AMBER
Added comment: single consanguineous family with hydrocephalus and arthrogryposis and homozygous truncating variant, mouse model has hydrocephalus
Sources: Literature
Mendeliome v0.765 AGMO Sue White gene: AGMO was added
gene: AGMO was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: AGMO was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: AGMO were set to 31555905
Phenotypes for gene: AGMO were set to microcephaly; intellectual disability; epilepsy
Penetrance for gene: AGMO were set to Complete
Review for gene: AGMO was set to GREEN
Added comment: biallelic LOF and missense reported
Sources: Literature
Mendeliome v0.747 IRF3 Zornitza Stark Phenotypes for gene: IRF3 were changed from to {Encephalopathy, acute, infection-induced (herpes-specific), susceptibility to, 7}, MIM# 616532
Mendeliome v0.743 IRF3 Zornitza Stark reviewed gene: IRF3: Rating: AMBER; Mode of pathogenicity: None; Publications: 26513235; Phenotypes: {Encephalopathy, acute, infection-induced (herpes-specific), susceptibility to, 7}, MIM# 616532; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.709 NUP214 Sue White gene: NUP214 was added
gene: NUP214 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: NUP214 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NUP214 were set to 31178128
Phenotypes for gene: NUP214 were set to epileptic encephalopathy; developmental regression; microcephaly
Penetrance for gene: NUP214 were set to Complete
Review for gene: NUP214 was set to GREEN
gene: NUP214 was marked as current diagnostic
Added comment: Sources: Literature
Mendeliome v0.697 RHOA Sue White gene: RHOA was added
gene: RHOA was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: RHOA was set to Other
Publications for gene: RHOA were set to 31570889
Phenotypes for gene: RHOA were set to normal cognition; leukoencephalopathy; micro-ophthalmia; strabismus; linear hypopigmentation; malar hypoplasia; downslanting palpebral fissures; microstomia
Penetrance for gene: RHOA were set to Complete
Review for gene: RHOA was set to GREEN
gene: RHOA was marked as current diagnostic
Added comment: mosaic heterozygous missense variants cause linear hypopigmentation, brain MRI changes with normal cognition, ocular and acral changes
Sources: Literature
Mendeliome v0.691 DNMT3A Zornitza Stark Phenotypes for gene: DNMT3A were changed from Tatton-Brown-Rahman syndrome, OMIM# 615879; primordial dwarfism with intellectual disability and microcephalyTatton-Brown-Rahman syndrome, OMIM# 615879; primordial dwarfism with intellectual disability and microcephaly to Tatton-Brown-Rahman syndrome, OMIM# 615879; primordial dwarfism with intellectual disability and microcephaly
Mendeliome v0.690 DNMT3A Zornitza Stark Phenotypes for gene: DNMT3A were changed from Tatton-Brown-Rahman SYNDROME, OMIM# 615879; primordial dwarfism with intellectual disability and microcephalyTatton-Brown-Rahman syndrome, OMIM# 615879; primordial dwarfism with intellectual disability and microcephaly to Tatton-Brown-Rahman syndrome, OMIM# 615879; primordial dwarfism with intellectual disability and microcephalyTatton-Brown-Rahman syndrome, OMIM# 615879; primordial dwarfism with intellectual disability and microcephaly
Mendeliome v0.689 DNMT3A Zornitza Stark Phenotypes for gene: DNMT3A were changed from to Tatton-Brown-Rahman SYNDROME, OMIM# 615879; primordial dwarfism with intellectual disability and microcephalyTatton-Brown-Rahman syndrome, OMIM# 615879; primordial dwarfism with intellectual disability and microcephaly
Mendeliome v0.685 DNMT3A Zornitza Stark reviewed gene: DNMT3A: Rating: GREEN; Mode of pathogenicity: Other; Publications: 30478443, 24614070; Phenotypes: Tatton-Brown-Rahman SYNDROME, OMIM# 615879, primordial dwarfism with intellectual disability and microcephaly; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.667 PLEKHG2 Zornitza Stark gene: PLEKHG2 was added
gene: PLEKHG2 was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: PLEKHG2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PLEKHG2 were set to 26573021
Phenotypes for gene: PLEKHG2 were set to Leukodystrophy and acquired microcephaly with or without dystonia, MIM# 616763
Review for gene: PLEKHG2 was set to RED
Added comment: Five individuals from two unrelated families reported, same homozygous missense variant.
Sources: Expert list
Mendeliome v0.660 AIMP2 Zornitza Stark gene: AIMP2 was added
gene: AIMP2 was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: AIMP2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: AIMP2 were set to 29215095
Phenotypes for gene: AIMP2 were set to Leukodystrophy, hypomyelinating, 17 618006
Review for gene: AIMP2 was set to RED
Added comment: Two apparently unrelated consanguineous families, however same homozygous variant identified in both. Affected individuals had early-onset multifocal seizures, spasticity, poor overall growth, and microcephaly (up to -10 SD). Brain imaging showed multiple abnormalities, including cerebral and cerebellar atrophy, thin corpus callosum, abnormal signals in the basal ganglia, and features suggesting hypo- or demyelination
Sources: Expert list
Mendeliome v0.629 ODC1 Zornitza Stark gene: ODC1 was added
gene: ODC1 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: ODC1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ODC1 were set to 30475435
Phenotypes for gene: ODC1 were set to Intellectual disability; macrocephaly; dysmorphism
Mode of pathogenicity for gene: ODC1 was set to Other
Review for gene: ODC1 was set to GREEN
Added comment: Four individuals with de novo GoF variants in this gene reported.
Sources: Literature
Mendeliome v0.619 UGP2 Zornitza Stark gene: UGP2 was added
gene: UGP2 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: UGP2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UGP2 were set to 31820119
Phenotypes for gene: UGP2 were set to Epileptic encephalopathy; intellectual disability; microcephaly
Review for gene: UGP2 was set to GREEN
Added comment: 22 individuals from 15 families reported with the same homozygous missense variant in this gene, chr2:64083454A > G, which causes a disruption of the start codon in the shorter isoform, which is expressed in brain.
Sources: Literature
Mendeliome v0.610 PIGP Zornitza Stark gene: PIGP was added
gene: PIGP was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: PIGP was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PIGP were set to 31139695
Phenotypes for gene: PIGP were set to Epileptic encephalopathy, early infantile, 55, MIM# 617599
Review for gene: PIGP was set to AMBER
Added comment: Three individuals from two unrelated families reported.
Sources: Expert list
Mendeliome v0.608 NEUROD2 Zornitza Stark gene: NEUROD2 was added
gene: NEUROD2 was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: NEUROD2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: NEUROD2 were set to 30323019
Phenotypes for gene: NEUROD2 were set to Epileptic encephalopathy, early infantile, 72, MIM# 618374
Review for gene: NEUROD2 was set to GREEN
Added comment: Two unrelated individuals with de novo missense variants in this gene, animal model.
Sources: Expert list
Mendeliome v0.606 GOT2 Zornitza Stark gene: GOT2 was added
gene: GOT2 was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: GOT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GOT2 were set to 31422819
Phenotypes for gene: GOT2 were set to Epileptic encephalopathy, early infantile, 82, MIM# 618721
Review for gene: GOT2 was set to GREEN
Added comment: Four individuals from three unrelated families reported. Treatment with pyridoxine and serine ameliorated the phenotype.
Sources: Expert list
Mendeliome v0.568 PIGQ Zornitza Stark gene: PIGQ was added
gene: PIGQ was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: PIGQ was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PIGQ were set to 25558065; 24463883; 31148362
Phenotypes for gene: PIGQ were set to Epileptic encephalopathy, early infantile, 77, MIM# 618548
Review for gene: PIGQ was set to GREEN
Added comment: Three unrelated families reported.
Sources: Expert list
Mendeliome v0.567 NTRK2 Zornitza Stark Phenotypes for gene: NTRK2 were changed from to Epileptic encephalopathy, early infantile, 58, MIM# 617830; Obesity, hyperphagia, and developmental delay, MIM# 613886
Mendeliome v0.565 NTRK2 Zornitza Stark reviewed gene: NTRK2: Rating: GREEN; Mode of pathogenicity: None; Publications: 29100083, 15494731, 27884935, 29100083; Phenotypes: Epileptic encephalopathy, early infantile, 58, MIM# 617830, Obesity, hyperphagia, and developmental delay, MIM# 613886; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.565 ADAM22 Zornitza Stark gene: ADAM22 was added
gene: ADAM22 was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: ADAM22 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ADAM22 were set to 27066583; 30237576
Phenotypes for gene: ADAM22 were set to Epileptic encephalopathy, early infantile, 61, MIM# 617933
Review for gene: ADAM22 was set to AMBER
Added comment: Two families reported; the second one as part of a large consanguineous cohort.
Sources: Expert list
Mendeliome v0.563 PHACTR1 Zornitza Stark gene: PHACTR1 was added
gene: PHACTR1 was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: PHACTR1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PHACTR1 were set to 30256902
Phenotypes for gene: PHACTR1 were set to Epileptic encephalopathy, early infantile, 70, MIM# 618298
Review for gene: PHACTR1 was set to GREEN
Added comment: Three unrelated individuals reported with de novo variants in this gene.
Sources: Expert list
Mendeliome v0.561 GABRB1 Zornitza Stark gene: GABRB1 was added
gene: GABRB1 was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: GABRB1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GABRB1 were set to 23934111; 27273810; 31618474
Phenotypes for gene: GABRB1 were set to Epileptic encephalopathy, early infantile, 45, MIM# 617153
Review for gene: GABRB1 was set to GREEN
Added comment: Three individuals reported, two as part of large epilepsy cohorts.
Sources: Expert list
Mendeliome v0.560 GABRA2 Zornitza Stark Phenotypes for gene: GABRA2 were changed from to Epileptic encephalopathy, early infantile, 78, MIM# 618557
Mendeliome v0.557 GABRA2 Zornitza Stark reviewed gene: GABRA2: Rating: GREEN; Mode of pathogenicity: None; Publications: 29422393; Phenotypes: Epileptic encephalopathy, early infantile, 78, MIM# 618557; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.557 GUF1 Zornitza Stark gene: GUF1 was added
gene: GUF1 was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: GUF1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GUF1 were set to 26486472
Phenotypes for gene: GUF1 were set to Epileptic encephalopathy, early infantile, 40, MIM# 617065
Review for gene: GUF1 was set to RED
Added comment: Single family reported with homozygous missense in three sibs.
Sources: Expert list
Mendeliome v0.555 CPLX1 Zornitza Stark gene: CPLX1 was added
gene: CPLX1 was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: CPLX1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CPLX1 were set to 26539891; 28422131
Phenotypes for gene: CPLX1 were set to Epileptic encephalopathy, early infantile, 63, MIM# 617976
Review for gene: CPLX1 was set to GREEN
Added comment: Five individuals from three unrelated families reported in larger neurodevelopmental cohorts.
Sources: Expert list
Mendeliome v0.553 RNF13 Zornitza Stark gene: RNF13 was added
gene: RNF13 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: RNF13 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RNF13 were set to 30595371
Phenotypes for gene: RNF13 were set to Epileptic encephalopathy, early infantile, 73, MIM# 618379
Mode of pathogenicity for gene: RNF13 was set to Other
Review for gene: RNF13 was set to GREEN
Added comment: Three unrelated individuals with de novo gain-of-function variants in this gene reported; severe neurodegenerative disorder, seizures are a prominent part of the phenotype.
Sources: Literature
Mendeliome v0.551 GLS Zornitza Stark gene: GLS was added
gene: GLS was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: GLS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GLS were set to 30575854; 30970188
Phenotypes for gene: GLS were set to Epileptic encephalopathy, early infantile, 71, MIM# 618328; Global developmental delay, progressive ataxia, and elevated glutamine, MIM# 618412
Review for gene: GLS was set to GREEN
Added comment: Three individuals from two unrelated families reported with early neonatal refractory seizures, structural brain abnormalities and oedema; significantly increased glutamine levels (PMID: 30575854).

Another three unrelated individuals described with compound het variants, one of which is a triplet expansion in the 5' UTR (PMID: 30970188).
Sources: Expert list
Mendeliome v0.549 CAD Zornitza Stark gene: CAD was added
gene: CAD was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: CAD was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CAD were set to 28007989; 25678555
Phenotypes for gene: CAD were set to Epileptic encephalopathy, early infantile, 50, MIM# 616457
Review for gene: CAD was set to GREEN
Added comment: Five individuals from four unrelated families reported, seizures are a prominent part of the phenotype of this progressive neurometabolic condition.
Sources: Expert list
Mendeliome v0.548 PARS2 Zornitza Stark Phenotypes for gene: PARS2 were changed from to Epileptic encephalopathy, early infantile, 75, MIM# 618437
Mendeliome v0.545 PARS2 Zornitza Stark reviewed gene: PARS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 29410512, 28077841, 25629079, 29915213; Phenotypes: Epileptic encephalopathy, early infantile, 75, MIM# 618437; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.540 PPP1R12A Zornitza Stark Phenotypes for gene: PPP1R12A were changed from to Intellectual disability; holoprosencephaly; disorder of sex development
Mendeliome v0.485 DMXL2 Zornitza Stark gene: DMXL2 was added
gene: DMXL2 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: DMXL2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DMXL2 were set to 31688942; 30237576
Phenotypes for gene: DMXL2 were set to Epileptic encephalopathy, early infantile, 81, MIM# 618663
Review for gene: DMXL2 was set to GREEN
Added comment: Four unrelated families reported.
Sources: Literature
Mendeliome v0.465 NUP188 Zornitza Stark Phenotypes for gene: NUP188 were changed from to microcephaly; ID; cataract
Mendeliome v0.461 NUP188 Zornitza Stark reviewed gene: NUP188: Rating: AMBER; Mode of pathogenicity: None; Publications: https://doi.org/10.1159/000504818, 28726809; Phenotypes: microcephaly, ID, cataract; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.434 COQ5 Zornitza Stark Phenotypes for gene: COQ5 were changed from to Cerebellar ataxia; encephalopathy; generalized tonic-clonic seizures; intellectual disability
Mendeliome v0.430 COQ5 Zornitza Stark reviewed gene: COQ5: Rating: RED; Mode of pathogenicity: None; Publications: 29044765; Phenotypes: Cerebellar ataxia, encephalopathy, generalized tonic-clonic seizures, intellectual disability; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.422 MN1 Zornitza Stark Phenotypes for gene: MN1 were changed from to Intellectual disability; dysmophic features; rhombencephalosynapsis
Mendeliome v0.418 MN1 Zornitza Stark reviewed gene: MN1: Rating: GREEN; Mode of pathogenicity: Other; Publications: 31834374, 31839203; Phenotypes: Intellectual disability, dysmophic features, rhombencephalosynapsis; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.370 KCNT2 Zornitza Stark gene: KCNT2 was added
gene: KCNT2 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: KCNT2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KCNT2 were set to 29069600; 29740868
Phenotypes for gene: KCNT2 were set to Epileptic encephalopathy, early infantile, 57, MIM#617771; Developmental and epileptic encephalopathy
Review for gene: KCNT2 was set to GREEN
Added comment: Reviewed by E Palmer: Ambrosino et al described 2 unrelated females with de novo variants in KCNT2. The first patient had the variant p.(Arg190His) had with West syndrome followed by Lennox-Gastaut syndrome , the second patient had the variant p.(Arg190Pro) and DEE with migrating focal seizures. Both variants were absent gnomad and had supportive in silico support for pathogenicity. In an electrophisological model both KCNT2 R190P and KCNT2 R190H increased maximal current density and shifted toward more negative membrane potential values the activation curve of KCNT2 channels, consistent with gain of function effects. PMID: 29740868.

Gururaj et al describe one male with de novo variant in KCNT2 p. (Phe240Leu) and early infantile epileptic encephalopathy. he variant was absent gnomad and supportive evidence of pathogenicity This variant was electrophysiologically modelled and revealed that the variant resulted in a 'change in function' demonstrating unusual altered selectivity in KNa channels.PMID: 29069600.
Sources: Literature
Mendeliome v0.366 TASP1 Zornitza Stark gene: TASP1 was added
gene: TASP1 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: TASP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TASP1 were set to 31209944; 31350873
Phenotypes for gene: TASP1 were set to Developmental delay; microcephaly; dysmorphic features; congenital abnormalities
Review for gene: TASP1 was set to GREEN
Added comment: Four unrelated families reported; two with founder mutation. Protein interacts with KMT2A and KMT2D. Another infant with a de novo missense variant reported in a single infant with multiple congenital abnormalities, insufficient evidence for mono allelic disease at present.
Sources: Literature
Mendeliome v0.359 PPP1R12A Zornitza Stark reviewed gene: PPP1R12A: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual disability, holoprosencephaly, disorder of sex development; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.343 CSNK1E Zornitza Stark gene: CSNK1E was added
gene: CSNK1E was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: CSNK1E was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CSNK1E were set to 30488659
Phenotypes for gene: CSNK1E were set to Epileptic encephalopathy
Review for gene: CSNK1E was set to RED
Added comment: De novo splicing variant reported but in conjunction with STXBP1 variants; authors postulate it may contribute to susceptibility. Also reports linking variants in this gene to psychiatric disorders.
Sources: Literature
Mendeliome v0.331 VAMP2 Zornitza Stark gene: VAMP2 was added
gene: VAMP2 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: VAMP2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: VAMP2 were set to 30929742
Phenotypes for gene: VAMP2 were set to Intellectual disability; Autism
Review for gene: VAMP2 was set to GREEN
Added comment: 5 unrelated patients with heterozygous de novo mutations in VAMP2, presenting with a neurodevelopmental disorder characterized by axial hypotonia, intellectual disability, and autistic features. Affected individuals carrying de novo non-synonymous variants involving the C-terminal region presented a more severe phenotype with additional neurological features, including central visual impairment, hyperkinetic movement disorder, and epilepsy or electroencephalography abnormalities. Reconstituted fusion involving a lipid-mixing assay indicated impairment in vesicle fusion as one of the possible associated disease mechanisms.
Sources: Literature
Mendeliome v0.330 TENM3 Zornitza Stark Phenotypes for gene: TENM3 were changed from to Microphthalmia, syndromic 15, MIM#615145; coloboma
Mendeliome v0.327 TENM3 Zornitza Stark reviewed gene: TENM3: Rating: GREEN; Mode of pathogenicity: None; Publications: 30513139, 22766609, 27103084, 29753094; Phenotypes: Microphthalmia, syndromic 15, MIM#615145, coloboma; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.322 SVBP Zornitza Stark gene: SVBP was added
gene: SVBP was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: SVBP was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SVBP were set to 31363758; 30607023
Phenotypes for gene: SVBP were set to Neurodevelopmental disorder with ataxia, hypotonia, and microcephaly; OMIM #618569
Review for gene: SVBP was set to GREEN
Added comment: 5 unrelated families with homozygous mutations in SVBP. The mutations segregated with the disorder in all families. In vitro functional cellular expression studies showed that protein levels of the SVBP mutants were barely detectable, suggesting instability, and that the mutant proteins had lost VASH/SVBP catalytic detyrosination activity toward tubulin. Knockdown of about 50% Svbp expression using shRNA in rat hippocampal neurons impaired the formation of excitatory synapses compared to controls.
Sources: Literature
Mendeliome v0.308 PISD Zornitza Stark commented on gene: PISD: 4 individuals in 2 unrelated but consanguineous families from Portugal and Brazil affected by early-onset retinal degeneration, sensorineural hearing loss, microcephaly, intellectual disability, and skeletal dysplasia with scoliosis and short stature (Liberfarb syndrome). Affected individuals shared a homozygous 10-bp deletion immediately upstream of the last exon of the PISD gene. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts. 1 family with 2 sisters with congenital cataracts, short stature, and white matter changes identified compound heterozygous variants in the PISD gene. Decreased conversion of phosphatidylserine to PE in patient fibroblasts is consistent with impaired phosphatidylserine decarboxylase (PISD) enzyme activity.
Mendeliome v0.308 PISD Zornitza Stark reviewed gene: PISD: Rating: GREEN; Mode of pathogenicity: None; Publications: 31263216, 30858161; Phenotypes: Intellectual disability, cataracts, retinal degeneration, microcephaly, deafness, short stature, white matter abnormalities; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.307 PIGB Zornitza Stark gene: PIGB was added
gene: PIGB was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: PIGB was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PIGB were set to 31256876
Phenotypes for gene: PIGB were set to Epileptic encephalopathy, early infantile, 80; OMIM #618580
Review for gene: PIGB was set to GREEN
Added comment: 10 unrelated families with biallelic mutations in PIGB, with global DD and/or ID, and seizures. Two had polymicrogyria, 4 had a peripheral neuropathy, and 2 had a clinical diagnosis of DOORS syndrome. Patient lymphocytes and fibroblasts showed variably decreased levels of cell surface GPI-anchored proteins, including CD16 and CD59. In vitro functional expression studies performed with some of the mutations in PIGB-null CHO cells showed that the mutant proteins were unable to fully restore expression of GPI-anchored surface proteins, consistent with a loss of function, although the mutations had variable effects.
Sources: Literature
Mendeliome v0.299 PAK1 Zornitza Stark gene: PAK1 was added
gene: PAK1 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: PAK1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PAK1 were set to 31504246; 30290153
Phenotypes for gene: PAK1 were set to Intellectual developmental disorder with macrocephaly, seizures, and speech delay; OMIM #618158
Review for gene: PAK1 was set to GREEN
Added comment: 2 unrelated individuals with de novo PAK1 mutations, with developmental delay, secondary macrocephaly, seizures, and ataxic gait. Enhanced phosphorylation of the PAK1 targets JNK and AKT shown in fibroblasts of one subject and of c-JUN in those of both subjects compared with control subjects. In fibroblasts of the 2 affected individuals, they observed a trend toward enhanced PAK1 kinase activity. By using co-immunoprecipitation and size-exclusion chromatography, they observed a significantly reduced dimerization for both PAK1 mutants compared with wild-type PAK1.

4 unrelated individuals with intellectual disability, macrocephaly and seizures, with de novo heterozygous missense variants in PAK1.
Sources: Literature
Mendeliome v0.293 NCAPD2 Zornitza Stark Phenotypes for gene: NCAPD2 were changed from to Microcephaly 21, primary, autosomal recessive; OMIM #617983
Mendeliome v0.290 NCAPD2 Zornitza Stark reviewed gene: NCAPD2: Rating: GREEN; Mode of pathogenicity: None; Publications: 31056748, 27737959, 28097321; Phenotypes: Microcephaly 21, primary, autosomal recessive, OMIM #617983; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.288 MAST1 Zornitza Stark gene: MAST1 was added
gene: MAST1 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: MAST1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MAST1 were set to 31721002; 30449657
Phenotypes for gene: MAST1 were set to Mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations; OMIM #618273
Review for gene: MAST1 was set to GREEN
Added comment: 6 unrelated patients with mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCCCHCM) with de novo heterozygous mutations in MAST1 gene. In vitro functional studies showed that 1 of the variants (lys276del) increased MAST1 binding to microtubules compared to controls. Mutant mice heterozygous for a Mast1 leu278del allele showed a thicker corpus callosum compared to wildtype, and an overall reduction in cortical volume and thickness and decreased cerebellar volume and number of granule and Purkinje cells due to increased apoptosis compared to controls.

1 Emirati patient with ID, microcephaly, and dysmorphic features, with missense variant in MAST1.
Sources: Literature
Mendeliome v0.287 MACROD2 Zornitza Stark gene: MACROD2 was added
gene: MACROD2 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: MACROD2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MACROD2 were set to 31055587
Phenotypes for gene: MACROD2 were set to intellectual disability; dysmorphic features; microcephaly
Review for gene: MACROD2 was set to RED
Added comment: 1 family with a few affected with microcephaly, ID, dysmorphic features, and polydactyly. Deletion of chromosome 20p12.1 involving the MACROD2 gene was found in several members of the family. qRT-PCR showed higher levels of a MACROD2 mRNA isoform in the individuals carrying the deletion.
Sources: Literature
Mendeliome v0.279 GRIA2 Zornitza Stark gene: GRIA2 was added
gene: GRIA2 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: GRIA2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GRIA2 were set to 31300657
Phenotypes for gene: GRIA2 were set to Intellectual disability; autism; Rett-like features; epileptic encephalopathy
Review for gene: GRIA2 was set to GREEN
Added comment: 28 unrelated patients with ID, ASD, Rett-like features, seizures/EE, and de novo heterozygous GRIA2 mutations. In functional expression studies, mutations led to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification.
Sources: Literature
Mendeliome v0.278 ADGRG6 Zornitza Stark Added comment: Comment when marking as ready: 1 family with 2 patients with profound ID, severe speech impairment, microcephaly, seizures, spasticity, and cerebellar hypoplasia, with homozygous missense variation in ADGRG6 (GPR126). No functional studies.
Mendeliome v0.278 ADGRG6 Zornitza Stark Phenotypes for gene: ADGRG6 were changed from to Lethal congenital contracture syndrome 9; OMIM #616503
Mendeliome v0.273 GABRA5 Zornitza Stark gene: GABRA5 was added
gene: GABRA5 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: GABRA5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GABRA5 were set to 31056671; 29961870
Phenotypes for gene: GABRA5 were set to Epileptic encephalopathy, early infantile, 79; OMIM #618559
Review for gene: GABRA5 was set to GREEN
Added comment: 3 unrelated patients with de novo heterozygous missense mutations in GABRA5 gene. In vitro functional expression studies in HEK293 cells showed that the mutant subunit was expressed at the surface and incorporated into the channel, but the mutant channel was 10 times more sensitive to GABA compared to wildtype. This increased sensitization resulted in increased receptor desensitization to GABA, with a reduced maximal GABA-evoked current and impaired capacity to pass GABAergic chloride current.
Sources: Literature
Mendeliome v0.263 DYNC1I2 Zornitza Stark gene: DYNC1I2 was added
gene: DYNC1I2 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: DYNC1I2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DYNC1I2 were set to 31079899
Phenotypes for gene: DYNC1I2 were set to Neurodevelopmental disorder with microcephaly and structural brain anomalies , MIM#618492
Review for gene: DYNC1I2 was set to GREEN
Added comment: Five individuals from three unrelated families reported.
Sources: Literature
Mendeliome v0.262 DTYMK Zornitza Stark gene: DTYMK was added
gene: DTYMK was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: DTYMK was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DTYMK were set to 31271740
Phenotypes for gene: DTYMK were set to Intellectual disability; microcephaly
Review for gene: DTYMK was set to RED
Added comment: Single family, two affected sibs with compound het variants reported.
Sources: Literature
Mendeliome v0.255 CYFIP2 Zornitza Stark Phenotypes for gene: CYFIP2 were changed from to Epileptic encephalopathy, early infantile, 65, MIM#618008
Mendeliome v0.252 CYFIP2 Zornitza Stark reviewed gene: CYFIP2: Rating: GREEN; Mode of pathogenicity: None; Publications: 29534297; Phenotypes: Epileptic encephalopathy, early infantile, 65, MIM#618008; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.251 CSDE1 Zornitza Stark gene: CSDE1 was added
gene: CSDE1 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: CSDE1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CSDE1 were set to 31579823
Phenotypes for gene: CSDE1 were set to Autism; intellectual disability; seizures; macrocephaly
Review for gene: CSDE1 was set to GREEN
Added comment: 18 families reported with high impact (stoppage/frameshift) variants in this gene. Eight de novo, eight inherited, two with undetermined inheritance. Functional data. Parents who had the variants were also affected, though generally more mildly.
Sources: Literature
Mendeliome v0.241 PUS7 Zornitza Stark gene: PUS7 was added
gene: PUS7 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: PUS7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PUS7 were set to 30526862; 30778726; 31583274
Phenotypes for gene: PUS7 were set to Intellectual developmental disorder with abnormal behavior, microcephaly, and short stature; OMIM #618342
Review for gene: PUS7 was set to GREEN
Added comment: 11 patients from 6 families with ID, speech delay, short stature, microcephaly, and aggressive behavior, with homozygous PUS7 mutations, which segregated with disease.
Sources: Literature
Mendeliome v0.224 APC2 Zornitza Stark gene: APC2 was added
gene: APC2 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: APC2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: APC2 were set to 31585108
Phenotypes for gene: APC2 were set to Cortical dysplasia, complex, with other brain malformations 10, MIM#618677
Review for gene: APC2 was set to GREEN
Added comment: 12 individuals from 8 unrelated families; intellectual disability, seizures, cortical dysplasia including posterior to anterior predominant pattern of lissencephaly, heterotopias, paucity of white matter, thin corpus callosum.
Sources: Literature
Mendeliome v0.220 ACTL6B Zornitza Stark gene: ACTL6B was added
gene: ACTL6B was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: ACTL6B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ACTL6B were set to 31134736; 31031012; 30656450; 30237576
Phenotypes for gene: ACTL6B were set to Epileptic encephalopathy, early infantile, 76, MIM# 618468; Intellectual developmental disorder with severe speech and ambulation defects, MIM# 618470
Review for gene: ACTL6B was set to GREEN
Added comment: Over 10 unrelated individuals reported in the literature.
Sources: Literature
Mendeliome v0.219 SELENOI Zornitza Stark Phenotypes for gene: SELENOI were changed from to developmental delay; spasticity; periventricular white mater abnormalities; peripheral neuropathy; seizures; bifid uvula in some affected individuals; microcephaly
Mendeliome v0.216 SELENOI Zornitza Stark reviewed gene: SELENOI: Rating: AMBER; Mode of pathogenicity: None; Publications: 28052917; Phenotypes: developmental delay, spasticity, periventricular white mater abnormalities, peripheral neuropathy, seizures, bifid uvula in some affected individuals, microcephaly; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.213 PHC1 Zornitza Stark Phenotypes for gene: PHC1 were changed from to Microcephaly 11, primary, autosomal recessive, MIM#615414
Mendeliome v0.210 PHC1 Zornitza Stark reviewed gene: PHC1: Rating: AMBER; Mode of pathogenicity: None; Publications: 23418308; Phenotypes: Microcephaly 11, primary, autosomal recessive, MIM#615414; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.205 TMX2 Zornitza Stark Phenotypes for gene: TMX2 were changed from to Microcephaly; ID; brain malformations
Mendeliome v0.202 TMX2 Zornitza Stark reviewed gene: TMX2: Rating: GREEN; Mode of pathogenicity: None; Publications: 31735293, 31586943; Phenotypes: Microcephaly, ID, brain malformations; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.193 NECAP1 Zornitza Stark Phenotypes for gene: NECAP1 were changed from to Epileptic encephalopathy, early infantile, 21, MIM#615833
Mendeliome v0.189 EXT2 Zornitza Stark Phenotypes for gene: EXT2 were changed from to Seizures, scoliosis, and macrocephaly syndrome, MIM#616682
Mendeliome v0.136 EOMES Zornitza Stark Phenotypes for gene: EOMES were changed from to Microcephaly
Mendeliome v0.97 CDK6 Zornitza Stark Phenotypes for gene: CDK6 were changed from to Microcephaly 12, primary, autosomal recessive, MIM#616080
Mendeliome v0.87 WDFY3 Zornitza Stark Phenotypes for gene: WDFY3 were changed from to Microcephaly 18, primary, autosomal dominant, MIM#617520
Mendeliome v0.0 HAL Zornitza Stark gene: HAL was added
gene: HAL was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services
Mode of inheritance for gene: HAL was set to Unknown