Activity

Filter

Cancel
Date Panel Item Activity
25 actions
Mendeliome v1.1746 SHH Ain Roesley Phenotypes for gene: SHH were changed from Holoprosencephaly 3, MIM#142945; Microphthalmia with coloboma 5, MIM#611638; Single median maxillary central incisor, MIM#147250 to Holoprosencephaly 3, MIM#142945; Microphthalmia with coloboma 5, MIM#611638; Single median maxillary central incisor, MIM#147250; Hypertelorism, ACC, intellectual disability
Mendeliome v1.1566 APPL1 Bryony Thompson edited their review of gene: APPL1: Added comment: PMID: 36208030 - a study using the UK Biobank comparing individuals with and without diabetes found LoF variants in APPL1 were ‘Inconsistent’ with being high penetrant for diabetes (failed both statistical criteria - enrichment & comparison to maximum credible allele frequency). Refutes previous study.; Changed rating: RED; Changed publications: 26073777, 36208030
Mendeliome v1.1535 MAX Zornitza Stark Phenotypes for gene: MAX were changed from {Pheochromocytoma, susceptibility to}, MIM# 171300; Syndromic disease (MONDO:0002254), MAX-related to {Pheochromocytoma, susceptibility to}, MIM# 171300; Polydactyly-macrocephaly syndrome, MIM# 620712
Mendeliome v1.1465 MAX Zornitza Stark Phenotypes for gene: MAX were changed from {Pheochromocytoma, susceptibility to}, MIM# 171300 to {Pheochromocytoma, susceptibility to}, MIM# 171300; Syndromic disease (MONDO:0002254), MAX-related
Mendeliome v1.1464 MAX Zornitza Stark Publications for gene: MAX were set to 21685915
Mendeliome v1.1459 MAX Rylee Peters reviewed gene: MAX: Rating: GREEN; Mode of pathogenicity: None; Publications: 38141607; Phenotypes: Syndromic disease (MONDO:0002254), MAX-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.342 ATP7A Zornitza Stark changed review comment from: ATP7A-related copper transport disorders are classically separated in three pathologies according to their severity, all inherited in an X-linked recessive manner: Menkes disease (MD, OMIM #309400) which represent more than 90% of cases; occipital Horn Syndrome (OHS, OMIM #304150) and ATP7A-related distal motor neuropathy also named X-linked distal spinal muscular atrophy-3 (SMAX3, OMIM #300489). Although there is no clear cut correlation between Cu and ceruloplasmin levels in ATP7A related disorders, these three entities probably represent a continuum partly depending on residual functional ATP7A protein.; to: ATP7A-related copper transport disorders are classically separated in three pathologies according to their severity, all inherited in an X-linked recessive manner: Menkes disease (MD, OMIM #309400) which represent more than 90% of cases; occipital Horn Syndrome (OHS, OMIM #304150) and ATP7A-related distal motor neuropathy also named X-linked distal spinal muscular atrophy-3 (SMAX3, OMIM #300489). Although there is no clear cut correlation between Cu and ceruloplasmin levels in ATP7A related disorders, these three entities probably represent a continuum partly depending on residual functional ATP7A protein.

Treatment for Menkes disease: subcutaneous injections of copper histidine or copper chloride

ClinGen has assessed as moderate evidence for actionability.

Neonatal treatment with subcutaneous copper-histidine (initiated before 30 days of life) is recommended for asymptomatic males with a diagnosis of MD, but is not recommended for symptomatic boys or after 30 days of life. Treatment should be continued indefinitely. In an open-label clinical trial, 12 patients with MD treated with copper-histidine within 22 days of life had 92% survival after a mean follow-up of 4.6 years compared to 13% in a historical control group of 15 patients treated after a late diagnosis (mean age at diagnosis: 163 ± 113 days, range: 42 to 390). Two of the 12 patients with earlier treatment had normal neurological development. A second open-label trial of 35 presymptomatic patients receiving copper-histidine at less than a month of age reported significant improvement of four major neurodevelopmental (gross motor, fine motor/adaptive, personal/social, and language) domains and a non-significant lower mortality (28.5% vs 50%) at age of 3 years (or age of death) compared to 22 patients treated later and after onset of symptoms.
Mendeliome v0.13175 SHH Zornitza Stark Phenotypes for gene: SHH were changed from to Holoprosencephaly 3, MIM#142945; Microphthalmia with coloboma 5, MIM#611638; Single median maxillary central incisor, MIM#147250
Mendeliome v0.13096 SHH Samantha Ayres reviewed gene: SHH: Rating: GREEN; Mode of pathogenicity: None; Publications: 21976454, 12503095, 22791840, 19057928, 19533790; Phenotypes: Holoprosencephaly 3, MIM#142945, Microphthalmia with coloboma 5, MIM#611638, Schizencephaly, MIM#269160, Single median maxillary central incisor, MIM#147250; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12031 MAX Zornitza Stark Marked gene: MAX as ready
Mendeliome v0.12031 MAX Zornitza Stark Gene: max has been classified as Green List (High Evidence).
Mendeliome v0.12031 MAX Zornitza Stark Phenotypes for gene: MAX were changed from to {Pheochromocytoma, susceptibility to}, MIM# 171300
Mendeliome v0.12030 MAX Zornitza Stark Publications for gene: MAX were set to
Mendeliome v0.12029 MAX Zornitza Stark Mode of inheritance for gene: MAX was changed from Unknown to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12028 MAX Zornitza Stark reviewed gene: MAX: Rating: GREEN; Mode of pathogenicity: None; Publications: 21685915; Phenotypes: {Pheochromocytoma, susceptibility to}, MIM# 171300; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.11050 RUNX2 Zornitza Stark Phenotypes for gene: RUNX2 were changed from to Cleidocranial dysplasia MIM#119600; Cleidocranial dysplasia, forme fruste, dental anomalies only MIM#119600; Cleidocranial dysplasia, forme fruste, with brachydactyly MIM#119600; Metaphyseal dysplasia with maxillary hypoplasia with or without brachydactyly MIM#156510
Mendeliome v0.11011 RUNX2 Ain Roesley reviewed gene: RUNX2: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301686; Phenotypes: Cleidocranial dysplasia MIM#119600, Cleidocranial dysplasia, forme fruste, dental anomalies only MIM#119600, Cleidocranial dysplasia, forme fruste, with brachydactyly MIM#119600, Metaphyseal dysplasia with maxillary hypoplasia with or without brachydactyly MIM#156510; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.8583 PRDX3 Hazel Phillimore changed review comment from: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex.
Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres.
The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote of a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism.
The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense.
Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity.
PRXD3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated.
Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species.
In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress.
Sources: Literature; to: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex.
Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres.
The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote with a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism.
The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense.
Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity.
PRDX3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated.
Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species.
In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress.
Sources: Literature
Mendeliome v0.8583 PRDX3 Hazel Phillimore gene: PRDX3 was added
gene: PRDX3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRDX3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PRDX3 were set to PMID: 33889951
Phenotypes for gene: PRDX3 were set to cerebellar ataxia (early onset, mild to moderate, progressive)
Penetrance for gene: PRDX3 were set to unknown
Review for gene: PRDX3 was set to GREEN
Added comment: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex.
Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres.
The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote of a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism.
The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense.
Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity.
PRXD3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated.
Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species.
In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress.
Sources: Literature
Mendeliome v0.7937 ZNF3 Zornitza Stark gene: ZNF3 was added
gene: ZNF3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZNF3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNF3 were set to 32732226
Phenotypes for gene: ZNF3 were set to Hydrocephalus; cleft palate; microphthalmia
Review for gene: ZNF3 was set to RED
Added comment: Novel candidate gene identified in a fetus with hydrocephaly and facial cleft detected by fetal ultrasound. Autopsy showed multiple congenital abnormalities including a median cleft palate, partial maxillar agenesis, bilateral severe microphthalmia, arhinencephaly, partial thalamic fusion. A homozygous truncating variant (c.396A>G/ p.*132Trpext*69) in ZNF3 was found by exome sequencing.
Sources: Literature
Mendeliome v0.1471 SOBP Zornitza Stark Phenotypes for gene: SOBP were changed from to Mental retardation, anterior maxillary protrusion, and strabismus, MIM# 613671
Mendeliome v0.1467 SOBP Zornitza Stark reviewed gene: SOBP: Rating: RED; Mode of pathogenicity: None; Publications: 21035105; Phenotypes: Mental retardation, anterior maxillary protrusion, and strabismus, MIM# 613671; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.370 KCNT2 Zornitza Stark gene: KCNT2 was added
gene: KCNT2 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: KCNT2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KCNT2 were set to 29069600; 29740868
Phenotypes for gene: KCNT2 were set to Epileptic encephalopathy, early infantile, 57, MIM#617771; Developmental and epileptic encephalopathy
Review for gene: KCNT2 was set to GREEN
Added comment: Reviewed by E Palmer: Ambrosino et al described 2 unrelated females with de novo variants in KCNT2. The first patient had the variant p.(Arg190His) had with West syndrome followed by Lennox-Gastaut syndrome , the second patient had the variant p.(Arg190Pro) and DEE with migrating focal seizures. Both variants were absent gnomad and had supportive in silico support for pathogenicity. In an electrophisological model both KCNT2 R190P and KCNT2 R190H increased maximal current density and shifted toward more negative membrane potential values the activation curve of KCNT2 channels, consistent with gain of function effects. PMID: 29740868.

Gururaj et al describe one male with de novo variant in KCNT2 p. (Phe240Leu) and early infantile epileptic encephalopathy. he variant was absent gnomad and supportive evidence of pathogenicity This variant was electrophysiologically modelled and revealed that the variant resulted in a 'change in function' demonstrating unusual altered selectivity in KNa channels.PMID: 29069600.
Sources: Literature
Mendeliome v0.273 GABRA5 Zornitza Stark gene: GABRA5 was added
gene: GABRA5 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: GABRA5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GABRA5 were set to 31056671; 29961870
Phenotypes for gene: GABRA5 were set to Epileptic encephalopathy, early infantile, 79; OMIM #618559
Review for gene: GABRA5 was set to GREEN
Added comment: 3 unrelated patients with de novo heterozygous missense mutations in GABRA5 gene. In vitro functional expression studies in HEK293 cells showed that the mutant subunit was expressed at the surface and incorporated into the channel, but the mutant channel was 10 times more sensitive to GABA compared to wildtype. This increased sensitization resulted in increased receptor desensitization to GABA, with a reduced maximal GABA-evoked current and impaired capacity to pass GABAergic chloride current.
Sources: Literature
Mendeliome v0.0 MAX Zornitza Stark gene: MAX was added
gene: MAX was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services
Mode of inheritance for gene: MAX was set to Unknown