Activity

Filter

Cancel
Date Panel Item Activity
3000 actions
Mendeliome v1.1897 ABCA1 Katrina Bell Classified gene: ABCA1 as Amber List (moderate evidence)
Mendeliome v1.1897 ABCA1 Katrina Bell Gene: abca1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1895 ABCA1 Katrina Bell Classified gene: ABCA1 as Amber List (moderate evidence)
Mendeliome v1.1895 ABCA1 Katrina Bell Gene: abca1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1894 ABCA1 Katrina Bell Classified gene: ABCA1 as Amber List (moderate evidence)
Mendeliome v1.1894 ABCA1 Katrina Bell Gene: abca1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1894 ABCA1 Katrina Bell Classified gene: ABCA1 as Amber List (moderate evidence)
Mendeliome v1.1894 ABCA1 Katrina Bell Gene: abca1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1888 SLC7A5 Sangavi Sivagnanasundram gene: SLC7A5 was added
gene: SLC7A5 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: SLC7A5 was set to Unknown
Publications for gene: SLC7A5 were set to 29884839
Phenotypes for gene: SLC7A5 were set to Large neutral amino acid transporter deficiency (MIM#600182)
Review for gene: SLC7A5 was set to RED
Added comment: Classified an inborn error of amino acid metabolism by IEMbase however more evidence is required to support the gene-disease association.
Sources: Other
Mendeliome v1.1888 CRNKL1 Mark Cleghorn gene: CRNKL1 was added
gene: CRNKL1 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: CRNKL1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: CRNKL1 were set to complex neurodevelopmental disorder MONDO:0100038
Review for gene: CRNKL1 was set to GREEN
Added comment: Unpublished, presented at ESHG June 2024 - Louise Bicknell, University of Otago NZ
8 unrelated families via gene matcher with rare, de novo, missense variants in CRNKL1
severe microcephaly (all, -8 to -11 SD)
ID/epilepsy
pontocerebellar hypoplasia (6/8)
simplified gyration (8/8)
7 variants are missense at p.Arg267 residue
1 variant missense at p.Arg301
RNA-seq on patient fibroblasts - no alteration in gene expression
Zebrafish homolog of Arg267 and Arg301 - mimics observed phenotype (reduced brain development), increased in embryo apoptosis
RNA seq on affected zebrafish embryos - transcriptome strongly disrupted
Splicing analysis in progress

CRKNL1 supports U6 structure in spliceosome
Sources: Other
Mendeliome v1.1888 ZNF483 Zornitza Stark Gene: znf483 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1887 ZNF483 Zornitza Stark Classified gene: ZNF483 as Amber List (moderate evidence)
Mendeliome v1.1887 ZNF483 Zornitza Stark Gene: znf483 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1886 ZNF483 Mark Cleghorn gene: ZNF483 was added
gene: ZNF483 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZNF483 was set to Unknown
Publications for gene: ZNF483 were set to 38951643
Phenotypes for gene: ZNF483 were set to primary ovarian failure MONDO:0005387
Review for gene: ZNF483 was set to AMBER
Added comment: PMID: 38951643, ESHG 2024 presentation
Large cohort assessing PRS for age of menarche
Noted rare PTVs in ZNF483 assoc w earlier menarche
No individual case information in this study
Sources: Literature
Mendeliome v1.1884 MYZAP Zornitza Stark changed review comment from: 10 individuals from four unrelated families with bi-allelic variants in this gene with DCM. Supportive zebrafish model. Note the MYZAP and GCOM1 genes are part of the GRINL1A complex transcription unit. Some of the reported variants affect GCOM1 with postulated effect on MYZAP due to read through transcription (two families), and in the rest of the families MYZAP was affected directly.
Sources: Literature; to: 10 individuals from four unrelated families with bi-allelic variants in this gene with DCM. Supportive zebrafish model.

The MYZAP gene is part of the GRINL1A complex transcription unit (CTU), or GCOM1, which also includes the downstream POLR2M gene, or GRINL1A.. Some of the reported variants affect GCOM1 with postulated effect on MYZAP due to read through transcription (two families), and in the rest of the families MYZAP was affected directly.

Transcription from an upstream promoter within the GRINL1A CTU produces 2 types of alternatively spliced transcripts: MYZAP transcripts, also called GRINL1A upstream (GUP) transcripts, which include only exons from the MYZAP gene, and GRINL1A combined (GCOM) transcripts, which include exons from both the MYZAP gene and the downstream POLR2M gene. Transcription of the POLR2M gene initiates at a downstream promoter within the GRINL1A CTU and produces alternatively spliced POLR2M transcripts, also called GRINL1A downstream (GDOWN) transcripts, which include only exons from the POLR2M gene
Sources: Literature
Mendeliome v1.1876 GAS2 Zornitza Stark Gene: gas2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1876 GAS2 Zornitza Stark Classified gene: GAS2 as Amber List (moderate evidence)
Mendeliome v1.1876 GAS2 Zornitza Stark Gene: gas2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1875 GAS2 Zornitza Stark gene: GAS2 was added
gene: GAS2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GAS2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GAS2 were set to 33964205
Phenotypes for gene: GAS2 were set to Deafness, autosomal recessive 125, MIM#620877
Review for gene: GAS2 was set to AMBER
Added comment: Single family reported with four affected brothers and a splicing variant. Supportive mouse model.
Sources: Literature
Mendeliome v1.1873 SREBF2 Zornitza Stark Gene: srebf2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1873 SREBF2 Zornitza Stark Classified gene: SREBF2 as Amber List (moderate evidence)
Mendeliome v1.1873 SREBF2 Zornitza Stark Gene: srebf2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1872 SREBF2 Zornitza Stark gene: SREBF2 was added
gene: SREBF2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SREBF2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SREBF2 were set to 38847193
Phenotypes for gene: SREBF2 were set to Neurocutaneous syndrome, MONDO:0042983, SREBF2-related
Review for gene: SREBF2 was set to AMBER
Added comment: Two individuals with de novo missense variants, presenting with neurological, cutaneous and skeletal features; supportive functional data.
Sources: Literature
Mendeliome v1.1864 POLD3 Zornitza Stark Phenotypes for gene: POLD3 were changed from Severe combined immunodeficiency MONDO:0015974 to Immunodeficiency 122, MIM# 620869
Mendeliome v1.1860 VPS50 Ain Roesley changed review comment from: 1x proband Chet for a nonsense p.(Lys5*) and a complex structural variant of a 4.3Mb inversion, flanked by 170kb and 428kb deletions, respectively. The 428kb deletion spans the entire VPS50 gene.

Sanger confirmed the Lys5* to be 'homozygous' in the proband.

Phenotypes include:
microcephaly, nystagmus, seizures, hypoplastic corpus callous, neonatal low GGT cholesatsis, hepatomegaly, failure to thrive; to: 1x proband Chet for a nonsense p.(Lys5*) and a complex structural variant of a 4.3Mb inversion, flanked by 170kb and 428kb deletions, respectively. The 428kb deletion spans the entire VPS50 gene.

Sanger confirmed the Lys5* to be 'homozygous' in the proband.

Phenotypes include:
severe ID, muscular hypotonia, sensorineural hearing impairment, microcephaly, nystagmus, seizures, hypoplastic corpus callous, neonatal low GGT cholesatsis, hepatomegaly, failure to thrive
Mendeliome v1.1855 VPS50 Ain Roesley changed review comment from: 1x proband Chet for a nonsense p.(Lys5*) and a complex structural variant of a 4.3Mb inversion, flanked by 170kb and 428kb deletions, respectively. The 428kb deletion spans the entire VPS50 gene.

Sanger confirmed the Lys5* to be 'homozygous' in the proband.

Phenotypes include:
nystagmus, seizures, hypoplastic corpus callous, neonatal low GGT cholesatsis, hepatomegaly, failure to thrive; to: 1x proband Chet for a nonsense p.(Lys5*) and a complex structural variant of a 4.3Mb inversion, flanked by 170kb and 428kb deletions, respectively. The 428kb deletion spans the entire VPS50 gene.

Sanger confirmed the Lys5* to be 'homozygous' in the proband.

Phenotypes include:
microcephaly, nystagmus, seizures, hypoplastic corpus callous, neonatal low GGT cholesatsis, hepatomegaly, failure to thrive
Mendeliome v1.1852 RBFOX3 Zornitza Stark Gene: rbfox3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1852 RBFOX3 Zornitza Stark Classified gene: RBFOX3 as Amber List (moderate evidence)
Mendeliome v1.1852 RBFOX3 Zornitza Stark Gene: rbfox3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1851 RBFOX3 Zornitza Stark gene: RBFOX3 was added
gene: RBFOX3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RBFOX3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RBFOX3 were set to 35951651; 36117209; 24039908
Phenotypes for gene: RBFOX3 were set to Neurodevelopmental disorder (MONDO:0700092), RBFOX3-related
Review for gene: RBFOX3 was set to AMBER
Added comment: Reported as a candidate gene for epilepsy, particularly Rolandic epilepsy. Two supportive animal models.
Sources: Literature
Mendeliome v1.1847 THBS2 Zornitza Stark Phenotypes for gene: THBS2 were changed from {Lumbar disc herniation, susceptibility to} 603932; connective tissue disorder MONDO:0003900, THBS2-related to Ehlers-Danlos syndrome, classic type, 3, MIM# 620865
Mendeliome v1.1846 ERBB4 Zornitza Stark edited their review of gene: ERBB4: Changed rating: AMBER
Mendeliome v1.1840 THRB Achchuthan Shanmugasundram reviewed gene: THRB: Rating: AMBER; Mode of pathogenicity: None; Publications: 37547476; Phenotypes: inherited retinal dystrophy, MONDO:0019118; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1840 PRRX1 Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain.
> These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%.
> These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149)
> Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import.

Supporting evidence:
> Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454)

>Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651)

>Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2.

> PMID: 7758948 generated a loss-of-function mutation in the mouse Pmx1 gene. Mice homozygous for the mutant allele died soon after birth and exhibited defects of skeletogenesis, which involved the loss or malformation of craniofacial, limb, and vertebral skeletal structures. ; to: Craniosynostosis (MONDO:0015469), PRRX1-related
> 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain.
> These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%.
> These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149)
> Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import.

Supporting evidence:
> Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454)

>Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651)

Agnathia-otocephaly complex, MIM# 202650
>Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2.

> PMID: 7758948 generated a loss-of-function mutation in the mouse Pmx1 gene. Mice homozygous for the mutant allele died soon after birth and exhibited defects of skeletogenesis, which involved the loss or malformation of craniofacial, limb, and vertebral skeletal structures.
Mendeliome v1.1840 PRRX1 Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain.
> These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%.
> These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149)
> Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import.

Supporting evidence:
> Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454)

>Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651)

>Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2.; to: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain.
> These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%.
> These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149)
> Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import.

Supporting evidence:
> Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454)

>Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651)

>Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2.

> PMID: 7758948 generated a loss-of-function mutation in the mouse Pmx1 gene. Mice homozygous for the mutant allele died soon after birth and exhibited defects of skeletogenesis, which involved the loss or malformation of craniofacial, limb, and vertebral skeletal structures.
Mendeliome v1.1816 ATXN7L3 Chirag Patel gene: ATXN7L3 was added
gene: ATXN7L3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATXN7L3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ATXN7L3 were set to PMID: 38753057
Phenotypes for gene: ATXN7L3 were set to Neurodevelopmental disorder, MONDO_0100500
Review for gene: ATXN7L3 was set to GREEN
gene: ATXN7L3 was marked as current diagnostic
Added comment: This study reports 9 unrelated individuals with de novo heterozygous variants in ATXN7L3 identified through WES testing and GeneMatcher. Core clinical features included: global motor and language developmental delay, hypotonia, and dysmorphic features (hypertelorism, epicanthal folds, blepharoptosis, small nose, small mouth, and low-set posteriorly rotated ears). Variable features included: feeding difficulties, seizures, mild periventricular leukomalacia, and structural cardiac abnormalities.

A recurrent nonsense variant [p.(Arg114Ter)] was found in 5/9 individuals. The other variants were 1 frameshift [p.(Ser112LysfsTer12)] and 3 missense variants [p.(Ile71Thr), p.(Ser92Arg), and p.(Leu106Pro)]. They investigated the effects of the recurrent nonsense variant [p.(Arg114Ter)] in fibroblasts of an affected individual. ATXN7L3 protein levels were reduced, and deubiquitylation was impaired (as indicated by an increase in histone H2Bub1 levels). This is consistent with the previous observation of increased H2Bub1 levels in Atxn7l3-null mouse embryos, which have developmental delay and embryonic lethality.

Pathogenic variants in deubiquitinating enzymes (DUBs) have been implicated in neurodevelopmental disorders (ND) and congenital abnormalities. ATXN7L3 is a component of the DUB module of the SAGA complex, and two other related DUB modules, and serves as an obligate adaptor protein of 3 ubiquitin-specific proteases (USP22, USP27X or USP51).
Sources: Literature
Mendeliome v1.1804 LRRC23 Zornitza Stark Classified gene: LRRC23 as Amber List (moderate evidence)
Mendeliome v1.1804 LRRC23 Zornitza Stark Gene: lrrc23 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1803 LRRC23 Zornitza Stark reviewed gene: LRRC23: Rating: AMBER; Mode of pathogenicity: None; Publications: 38091523; Phenotypes: Spermatogenic failure 92, MIM# 620848; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1803 POLD1 Zornitza Stark Phenotypes for gene: POLD1 were changed from Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome, MIM# 615381; MONDO:0014157; Combined immunodeficiency, MONDO:0015131, POLD1-related to Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome, MIM# 615381; MONDO:0014157; Immunodeficiency 120, MIM# 620836
Mendeliome v1.1802 ICOSLG Zornitza Stark Phenotypes for gene: ICOSLG were changed from Combined immunodeficiency; recurrent bacterial and viral infections; neutropaenia to Immunodeficiency 119, MIM# 620825; Combined immunodeficiency; recurrent bacterial and viral infections; neutropaenia
Mendeliome v1.1801 ICOSLG Zornitza Stark edited their review of gene: ICOSLG: Changed phenotypes: Immunodeficiency 119, MIM# 620825, Combined immunodeficiency, recurrent bacterial and viral infections, neutropaenia
Mendeliome v1.1796 DGCR8 Andrew Fennell reviewed gene: DGCR8: Rating: AMBER; Mode of pathogenicity: Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments; Publications: PMID: 34821987; Phenotypes: Early-onset multinodular goiter and schwannomatosis; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1785 BCORL1 Zornitza Stark Classified gene: BCORL1 as Amber List (moderate evidence)
Mendeliome v1.1785 BCORL1 Zornitza Stark Gene: bcorl1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1784 BCORL1 Zornitza Stark edited their review of gene: BCORL1: Added comment: Classified as LIMITED by ClinGen.; Changed rating: AMBER
Mendeliome v1.1784 LCP1 Zornitza Stark Gene: lcp1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1784 LCP1 Zornitza Stark Classified gene: LCP1 as Amber List (moderate evidence)
Mendeliome v1.1784 LCP1 Zornitza Stark Gene: lcp1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1783 LCP1 Zornitza Stark gene: LCP1 was added
gene: LCP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LCP1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: LCP1 were set to 38710235
Phenotypes for gene: LCP1 were set to Bone marrow failure syndrome, MONDO:0000159, LCP1-related
Review for gene: LCP1 was set to AMBER
Added comment: 3 individuals from single kindred presenting with fevers, recurrent infections ,lymphopenia, neutropenia and thrombocytopenia. Murine model with similar phenotype. heterozygous LCP1c.740 -1G>A splice site variant hypothesized to cause dominant negative mode of inheritance
Sources: Literature
Mendeliome v1.1774 DNA2 Zornitza Stark reviewed gene: DNA2: Rating: AMBER; Mode of pathogenicity: None; Publications: 37133451; Phenotypes: Rothmund-Thomson syndrome, type 4, MIM# 620819; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1772 SPATA13 Zornitza Stark Classified gene: SPATA13 as Amber List (moderate evidence)
Mendeliome v1.1772 SPATA13 Zornitza Stark Gene: spata13 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1770 SPATA13 Sangavi Sivagnanasundram reviewed gene: SPATA13: Rating: AMBER; Mode of pathogenicity: None; Publications: https://search.clinicalgenome.org/CCID:006261; Phenotypes: primary angle-closure glaucoma MONDO:0001868; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1770 SLC52A1 Bryony Thompson Classified gene: SLC52A1 as Amber List (moderate evidence)
Mendeliome v1.1770 SLC52A1 Bryony Thompson Gene: slc52a1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1768 SLC52A1 Bryony Thompson reviewed gene: SLC52A1: Rating: AMBER; Mode of pathogenicity: None; Publications: 37510312, 29122468, 21089064; Phenotypes: Maternal riboflavin deficiency MONDO:0014013, Disorders of riboflavin metabolism; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1762 HOXD12 Zornitza Stark Gene: hoxd12 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1762 HOXD12 Zornitza Stark Classified gene: HOXD12 as Amber List (moderate evidence)
Mendeliome v1.1762 HOXD12 Zornitza Stark Gene: hoxd12 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1761 HOXD12 Zornitza Stark reviewed gene: HOXD12: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Clubfoot (non-syndromic) MONDO:0007342; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1757 CCDC91 Bryony Thompson Gene: ccdc91 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1757 CCDC91 Bryony Thompson Classified gene: CCDC91 as Amber List (moderate evidence)
Mendeliome v1.1757 CCDC91 Bryony Thompson Gene: ccdc91 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1756 CCDC91 Bryony Thompson gene: CCDC91 was added
gene: CCDC91 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CCDC91 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CCDC91 were set to 38627542
Phenotypes for gene: CCDC91 were set to Punctate palmoplantar keratoderma type III MONDO:0007047
Review for gene: CCDC91 was set to AMBER
Added comment: A single 3-generation Chinese acrokeratoelastoidosis family segregates c.1101 + 1 G > A (causes exon 11 skipping). In vitro knockdown experiments in cell lines demonstrated distended Golgi cisternae, cytoplasmic vesicle accumulation, and lysosome presence. Immnunostaining of si-CCDC91-human skin fibroblasts cells demonstrated tropoelastin accumulation in the Golgi and abnormal extracellular aggregates
Sources: Literature
Mendeliome v1.1750 IL27RA Ain Roesley Gene: il27ra has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1750 IL27RA Ain Roesley Classified gene: IL27RA as Amber List (moderate evidence)
Mendeliome v1.1750 IL27RA Ain Roesley Gene: il27ra has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1749 IL27RA Ain Roesley gene: IL27RA was added
gene: IL27RA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: IL27RA was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: IL27RA were set to 38509369
Phenotypes for gene: IL27RA were set to Epstein-Barr virus infection MONDO:0005111 , IL27RA-related
Review for gene: IL27RA was set to AMBER
gene: IL27RA was marked as current diagnostic
Added comment: 3 children from 2 families with severe acute EBV infection.

fam1: homozygous for p.(Gln96*) (NMD-pred)
fam2: chet for p.(Arg446Gly) and c.1142-2A>C

the splice variant in fam2 was found to to result in an in-frame deletion p.(Gln381_Ala395del)
the missense in fam2 is hypothesised to be a hypomorphic allele:
- out of 15 Homs in the Finnish database, 2 had hospital diagnoses of EBV IM
- expression of this variant on its own results in a weak but detectable IL-27RA expression associated with significant increase in STAT1/3 phosphorus in response to IL-27 stimulation

borderline amber/green due to functional studies performed
Sources: Literature
Mendeliome v1.1739 SLC4A7 Zornitza Stark Gene: slc4a7 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1738 SLC4A7 Chirag Patel Classified gene: SLC4A7 as Amber List (moderate evidence)
Mendeliome v1.1738 SLC4A7 Chirag Patel Gene: slc4a7 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1737 SLC4A7 Chirag Patel gene: SLC4A7 was added
gene: SLC4A7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC4A7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC4A7 were set to PMID: 35486108, 32594822
Phenotypes for gene: SLC4A7 were set to Retinitis pigmentosa, MONDO:0019200
Review for gene: SLC4A7 was set to AMBER
Added comment: Total 4 individuals from 3 families (2 known to be from same ethnic origin: Oriental-Jewish) with adult onset retinitis pigmentosa. All individuals had same homozygous frameshift variant in SLC4A7 gene (p.P670Sfs*6). RNA seq analysis revealed retinal expression in human and mouse samples. Immunohistochemistry of human and mouse retina revealed relatively strong expression in various retinal layers. Western blot analysis in fibroblasts from 1 patient showed absence of encoded protein.
Sources: Literature
Mendeliome v1.1734 PQLC2 Chirag Patel gene: PQLC2 was added
gene: PQLC2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PQLC2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PQLC2 were set to PMID: 35486108; and online publication GiM Feb 2024
Phenotypes for gene: PQLC2 were set to Retinitis pigmentosa, MONDO:0019200
Review for gene: PQLC2 was set to GREEN
gene: PQLC2 was marked as current diagnostic
Added comment: HGNC Gene Symbol: SLC66A1
Total 8 individuals from 6 families.

Millo et al. (2022)(PMID: 35486108) -
WES (with targeted analysis of SLC genes) in 913 cases from 785 families with inherited retinal dystrophy. They identified 2 different homozygous variants in SLC66A1 in 3 individuals from 2 families with adult-onset retinal dystrophy. No functional data.


Olinger et al. (2024)(https://www.sciencedirect.com/science/article/pii/S2949774424009804) -
CNV analysis of trio and non-trio WGS data from Genomics England 100K genomes project. They identified homozygous 21kb deletion spanning nearly entire SLC66A1 gene in 2 siblings with adult-onset rod-cone dystrophy (parents HTZ carriers). Review of cohort data then identified homozygous LOF variants (1 nonsense, 2 frameshift) in another 3 individuals with rod-cone dystrophy.
Sources: Literature
Mendeliome v1.1720 PSMB9 Zornitza Stark Phenotypes for gene: PSMB9 were changed from Proteasome-associated autoinflammatory syndrome 3, digenic, MIM# 617591 to Proteasome-associated autoinflammatory syndrome 3, digenic, MIM# 617591; Proteasome-associated autoinflammatory syndrome 6, MIM# 620796
Mendeliome v1.1719 PSMB9 Zornitza Stark edited their review of gene: PSMB9: Changed phenotypes: Proteasome-associated autoinflammatory syndrome 3, digenic, MIM# 617591, Proteasome-associated autoinflammatory syndrome 6, MIM# 620796
Mendeliome v1.1719 PACSIN3 Zornitza Stark Gene: pacsin3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1719 PACSIN3 Zornitza Stark Classified gene: PACSIN3 as Amber List (moderate evidence)
Mendeliome v1.1719 PACSIN3 Zornitza Stark Gene: pacsin3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1718 PACSIN3 Zornitza Stark gene: PACSIN3 was added
gene: PACSIN3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PACSIN3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PACSIN3 were set to 38637313
Phenotypes for gene: PACSIN3 were set to Myopathy, MONDO:0005336, PACSIN3-related
Review for gene: PACSIN3 was set to AMBER
Added comment: Two unrelated families with LoF variants, one homozygous. Muscle phenotype including raised CK. Supportive mouse model.
Sources: Literature
Mendeliome v1.1714 CYLD Zornitza Stark Classified gene: CYLD as Amber List (moderate evidence)
Mendeliome v1.1714 CYLD Zornitza Stark Gene: cyld has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1713 CYLD Zornitza Stark commented on gene: CYLD: DEFINITIVE by ClinGen for the cutaneous disorder, Brooke-Spiegler syndrome, 605041.
LIMITED for FTD/ALS -- rated as Amber due to multiple affected individuals and experimental data.
Mendeliome v1.1711 PMP2 Zornitza Stark Classified gene: PMP2 as Amber List (moderate evidence)
Mendeliome v1.1711 PMP2 Zornitza Stark Gene: pmp2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1710 PMP2 Zornitza Stark reviewed gene: PMP2: Rating: AMBER; Mode of pathogenicity: Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments; Publications: 26257172, 27009151, 30249361, 31412900, 26828946, 32277537; Phenotypes: Charcot-Marie-Tooth disease, demyelinating, type 1G, 618279; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1695 RTN2 Achchuthan Shanmugasundram changed review comment from: PMID:38527963 reported the identification of seven novel or ultra-rare homozygous loss-of-function RTN2 variants in 14 individuals from seven unrelated families with distal hereditary motor neuropathy.

All affected individuals exhibited weakness in the distal upper and lower limbs, lower limb spasticity, hyperreflexia, with an onset in the first decade of life. Nerve conduction studies revealed axonal motor neuropathy with neurogenic changes in the electromyography.

Characterisation of C. elegans RTN2 homolog loss-of-function variants demonstrated morphological and behavioural differences compared to the parental strain and treatment with an endoplasmic/sarcoplasmic reticulum Ca(2+) re-uptake inhibitor (2,5-di-tert-butylhydroquinone) rescued key phenotypic differences.

Biallelic variants in RTN2 gene have not yet been associated with any phenotypes in OMIM or Gene2Phenotype, while monoallelic variants have been associated with spastic paraplegia (MIM #604805) in OMIM.; to: PMID:38527963 reported the identification of seven novel or ultra-rare homozygous loss-of-function RTN2 variants in 14 individuals from seven unrelated families with distal hereditary motor neuropathy.

All affected individuals exhibited weakness in the distal upper and lower limbs, lower limb spasticity, hyperreflexia, with an onset in the first decade of life. Nerve conduction studies revealed axonal motor neuropathy with neurogenic changes in the electromyography.

Characterisation of C. elegans RTN2 homolog loss-of-function variants demonstrated morphological and behavioural differences compared to the parental strain, and treatment with an endoplasmic/sarcoplasmic reticulum Ca(2+) re-uptake inhibitor (2,5-di-tert-butylhydroquinone) rescued key phenotypic differences.

Biallelic variants in RTN2 gene have not yet been associated with any phenotypes in OMIM or Gene2Phenotype, while monoallelic variants have been associated with spastic paraplegia (MIM #604805) in OMIM.
Mendeliome v1.1695 RTN2 Achchuthan Shanmugasundram changed review comment from: PMID:38527963 reported the identification of seven novel or ultra-rare homozygous loss-of-function RTN2 variants in 14 individuals from seven unrelated families with distal hereditary motor neuropathy.

All affected individuals (seven males and seven females, aged 9-50 years) exhibited weakness in the distal upper and lower limbs, lower limb spasticity, hyperreflexia, with an onset in the first decade of life. Nerve conduction studies revealed axonal motor neuropathy with neurogenic changes in the electromyography.

Characterisation of C. elegans RTN2 homolog loss-of-function variants demonstrated morphological and behavioural differences compared to the parental strain and treatment with an endoplasmic/sarcoplasmic reticulum Ca(2+) re-uptake inhibitor (2,5-di-tert-butylhydroquinone) rescued key phenotypic differences.

Biallelic variants in RTN2 gene have not yet been associated with any phenotypes in OMIM or Gene2Phenotype, while monoallelic variants have been associated with spastic paraplegia (MIM #604805) in OMIM.; to: PMID:38527963 reported the identification of seven novel or ultra-rare homozygous loss-of-function RTN2 variants in 14 individuals from seven unrelated families with distal hereditary motor neuropathy.

All affected individuals exhibited weakness in the distal upper and lower limbs, lower limb spasticity, hyperreflexia, with an onset in the first decade of life. Nerve conduction studies revealed axonal motor neuropathy with neurogenic changes in the electromyography.

Characterisation of C. elegans RTN2 homolog loss-of-function variants demonstrated morphological and behavioural differences compared to the parental strain and treatment with an endoplasmic/sarcoplasmic reticulum Ca(2+) re-uptake inhibitor (2,5-di-tert-butylhydroquinone) rescued key phenotypic differences.

Biallelic variants in RTN2 gene have not yet been associated with any phenotypes in OMIM or Gene2Phenotype, while monoallelic variants have been associated with spastic paraplegia (MIM #604805) in OMIM.
Mendeliome v1.1689 PSMA5 Zornitza Stark gene: PSMA5 was added
gene: PSMA5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PSMA5 was set to Other
Publications for gene: PSMA5 were set to 37600812
Phenotypes for gene: PSMA5 were set to Inborn error of immunity, MONDO:0003778, PSMA5-related; PRAAS/CANDLE
Review for gene: PSMA5 was set to RED
Added comment: Single patient with heterozygous PSMB8 variant and de-novo PSMA5 truncating variant (p.Arg168*) with clinical features of CANDLE. Patient also had splice site variant in PSMC5. In silico modelling showing interaction of PSMB8 and PSMA5. PSMA5/a5 is a constitutive component of the 20S core proteasome, ? digenic model of disease.
Sources: Literature
Mendeliome v1.1687 CNOT1 Sangavi Sivagnanasundram reviewed gene: CNOT1: Rating: AMBER; Mode of pathogenicity: None; Publications: https://search.clinicalgenome.org/CCID:004485; Phenotypes: holoprosencephaly 12 with or without pancreatic agenesis MONDO:0032787; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1686 EFEMP1 Zornitza Stark Phenotypes for gene: EFEMP1 were changed from Glaucoma 1, open angle, H, MIM# 611276; Doyne honeycomb degeneration of retina, MIM# 126600; EFEMP1-related connective tissue disorder to Doyne honeycomb degeneration of retina, MIM# 126600; Cutis laxa, autosomal recessive, type ID, MIM# 620780; Glaucoma 1, open angle, H, MIM# 611276
Mendeliome v1.1685 EFEMP1 Zornitza Stark edited their review of gene: EFEMP1: Changed phenotypes: Doyne honeycomb degeneration of retina, MIM# 126600, Cutis laxa, autosomal recessive, type ID, MIM# 620780, Glaucoma 1, open angle, H, MIM# 611276
Mendeliome v1.1685 GALE Zornitza Stark Phenotypes for gene: GALE were changed from Galactose epimerase deficiency MIM#230350; Disorders of galactose metabolism to Galactose epimerase deficiency MIM#230350; Thrombocytopenia 12, syndromic, MIM#620776
Mendeliome v1.1683 GALE Zornitza Stark reviewed gene: GALE: Rating: GREEN; Mode of pathogenicity: None; Publications: 30247636, 34159722, 36395340; Phenotypes: Thrombocytopenia 12, syndromic, MIM#620776; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1677 YKT6 Zornitza Stark Gene: ykt6 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1677 YKT6 Zornitza Stark Classified gene: YKT6 as Amber List (moderate evidence)
Mendeliome v1.1677 YKT6 Zornitza Stark Gene: ykt6 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1676 YKT6 Zornitza Stark gene: YKT6 was added
gene: YKT6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: YKT6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: YKT6 were set to 38522068
Phenotypes for gene: YKT6 were set to Syndromic disease, MONDO:0002254, YKT6-related
Review for gene: YKT6 was set to AMBER
Added comment: Two individuals homozygous for YKT6 [NM_006555.3:c.554A>G p.(Tyr185Cys)] exhibited normal prenatal course followed by failure to thrive, developmental delay and progressive liver disease. Haplotype analysis identified a shared homozygous region flanking the variant, suggesting a common ancestry. The third individual homozygous for YKT6 [NM_006555.3:c.191A>G p.(Tyr64Cys)] exhibited neurodevelopmental disorders and optic atrophy. Supportive functional data in Drosophila.

Amber rating due to homozygous missense variants and founder effect in two of the families.
Sources: Literature
Mendeliome v1.1649 PLXNB2 Chirag Patel gene: PLXNB2 was added
gene: PLXNB2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLXNB2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PLXNB2 were set to PMID: 38458752
Phenotypes for gene: PLXNB2 were set to Amelogenesis imperfecta MONDO:0019507, PLXNB2 -related; Sensorineural hearing loss disorder MONDO:0020678, PLXNB2 -related
Review for gene: PLXNB2 was set to GREEN
gene: PLXNB2 was marked as current diagnostic
Added comment: 8 individuals from 6 families with core features of amelogenesis imperfecta and sensorineural hearing loss. Intellectual disability, ocular disease, ear developmental abnormalities and lymphoedema were also present in multiple cases. WES and WGS identified biallelic pathogenic variants in PLXNB2 (missense, nonsense, splice and a multiexon deletion variants). Variants segregated with disease.

PLXNB2 is a large transmembrane semaphorin receptor protein, and semaphorin-plexin signalling controls cellular interactions that are critical during development as well as in adult life stages. Plxnb2 expression was detected in differentiating ameloblasts in mice. Human phenotype overlaps with that seen in Plxnb2 knockout mice.
Sources: Literature
Mendeliome v1.1648 CEP295 Chirag Patel gene: CEP295 was added
gene: CEP295 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CEP295 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CEP295 were set to PMID: 38154379
Phenotypes for gene: CEP295 were set to Seckel syndrome 11, OMIM # 620767
Review for gene: CEP295 was set to GREEN
gene: CEP295 was marked as current diagnostic
Added comment: 4 children from 2 unrelated families with Seckel-like syndrome - severe primary microcephaly, short stature, developmental delay, intellectual disability, facial deformities, and abnormalities of fingers and toes. WES identified biallelic pathogenic variants in CEP295 gene (p(Q544∗) and p(R1520∗); p(R55Efs∗49) and p(P562L)).

Patient-derived fibroblasts and CEP295-depleted U2OS and RPE1 cells were used to clarify the underlying mechanisms. Depletion of CEP295 resulted in a decrease in the numbers of centrioles and centrosomes and triggered p53-dependent G1 cell cycle arrest. Loss of CEP295 caused extensive primary ciliary defects in both patient-derived fibroblasts and RPE1 cells. The results from complementary experiments revealed that the wild-type CEP295, but not the mutant protein, can correct the developmental defects of the centrosome/centriole and cilia in the patient-derived skin fibroblasts.
Sources: Literature
Mendeliome v1.1645 FANCI Ain Roesley reviewed gene: FANCI: Rating: AMBER; Mode of pathogenicity: None; Publications: 38483614; Phenotypes: primary ovarian failure MONDO:0005387, FANCI-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.1645 CAPNS1 Zornitza Stark Gene: capns1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1645 CAPNS1 Zornitza Stark Classified gene: CAPNS1 as Amber List (moderate evidence)
Mendeliome v1.1645 CAPNS1 Zornitza Stark Gene: capns1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1644 CAPNS1 Zornitza Stark gene: CAPNS1 was added
gene: CAPNS1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: CAPNS1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CAPNS1 were set to 38230350
Phenotypes for gene: CAPNS1 were set to Hereditary pulmonary arterial hypertension MONDO:0017148, CAPNS1-related
Review for gene: CAPNS1 was set to AMBER
Added comment: Three individuals from two families reported with homozygous splice site variants.
Sources: Expert list
Mendeliome v1.1640 ZNF143 Bryony Thompson Classified gene: ZNF143 as Amber List (moderate evidence)
Mendeliome v1.1640 ZNF143 Bryony Thompson Gene: znf143 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1639 ZNF143 Bryony Thompson reviewed gene: ZNF143: Rating: AMBER; Mode of pathogenicity: None; Publications: 27349184, 33845046, 9009278, 22268977, 27349184, 27349184; Phenotypes: methylmalonic aciduria and homocystinuria MONDO:0016826; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1639 TCN1 Bryony Thompson Gene: tcn1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1639 TCN1 Bryony Thompson Classified gene: TCN1 as Amber List (moderate evidence)
Mendeliome v1.1639 TCN1 Bryony Thompson Gene: tcn1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1638 TCN1 Bryony Thompson gene: TCN1 was added
gene: TCN1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TCN1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TCN1 were set to 29764838; 19686235
Phenotypes for gene: TCN1 were set to transcobalamin I deficiency MONDO:0008659
Review for gene: TCN1 was set to AMBER
Added comment: Unclear if TC1 deficiency is associated with a clinical phenotype and only found 2 families with genetic findings. 1 confirmed chet (2 truncating variants) with severe TC 1 deficiency (depression and anxiety only reported symptoms, had sickle cell trait) & another family with 2 siblings that are presumed homozygous for a truncating variant (no plasma or serum TC 1 levels but no DNA available for genetic testing) which was found heterozygous in multiple first-degree relatives. Unclear if there is a clinical phenotype. Heterozygous individuals displayed mildly low or low-normal TC 1 serum levels. Also, 4 homozygotes were identified in a study of a loss-of-function variant associated with lower vitamin B12 concentration in African Americans but there was limited ability to assess the clinical impact of the recessive disease
Sources: Literature
Mendeliome v1.1633 USP14 Zornitza Stark gene: USP14 was added
gene: USP14 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: USP14 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: USP14 were set to 38469793; 35066879
Phenotypes for gene: USP14 were set to Syndromic disease MONDO:0002254, USP14-related
Review for gene: USP14 was set to GREEN
Added comment: PMID 35066879: 3 fetuses from 2 different branches of a consanguineous family, presenting with distal arthrogryposis, underdevelopment of the corpus callosum, and dysmorphic facial features. Exome sequencing identified a biallelic 4-bp deletion (c.233_236delTTCC; p.Leu78Glnfs*11) in USP14, and sequencing of family members showed segregation with the phenotype. Ubiquitin-specific protease 14 (USP14) encodes a major proteasome-associated deubiquitinating enzyme with an established dual role as an inhibitor and an activator of proteolysis, maintaining protein homeostasis. Usp14-deficient mice show a phenotype similar to lethal human multiple congenital contractures phenotypes, with callosal anomalies, muscle wasting, and early lethality, attributed to neuromuscular junction defects due to decreased monomeric ubiquitin pool. RT-qPCR experiment in an unaffected heterozygote revealed that mutant USP14 was expressed, indicating that abnormal transcript escapes nonsense-mediated mRNA decay.

PMID 38469793: biallelic USP14 variants in four individuals from three unrelated families: one fetus, a newborn with a syndromic NDD, and two siblings affected by a progressive neurological disease. Specifically, the two siblings from the latter family carried two compound heterozygous variants c.8T>C p.(Leu3Pro) and c.988C>T p.(Arg330*), while the fetus had a homozygous frameshift c.899_902del p.(Lys300Serfs*24) variant and the newborn patient harbored a homozygous frameshift c.233_236del p.(Leu78Glnfs*11) variant. The fetus and the newborn had extensive brain malformations.
Sources: Literature
Mendeliome v1.1629 PSMB10 Zornitza Stark Phenotypes for gene: PSMB10 were changed from Proteasome-associated autoinflammatory syndrome 5, MIM# 619175 to Proteasome-associated autoinflammatory syndrome 5, MIM# 619175; Severe combined immunodeficiency, MONDO:0015974, PSMB10-related
Mendeliome v1.1628 PSMB10 Zornitza Stark Publications for gene: PSMB10 were set to 31783057; 37600812
Mendeliome v1.1627 PSMB10 Zornitza Stark Mode of inheritance for gene: PSMB10 was changed from BIALLELIC, autosomal or pseudoautosomal to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.1626 PSMB10 Zornitza Stark edited their review of gene: PSMB10: Added comment: PMID 38503300: Six individuals with three de novo missense variants. Individuals presented with T-B-NK± severe combined immunodeficiency (SCID) and clinical features suggestive of Omenn syndrome, including diarrhea, alopecia, and desquamating erythematous rash.; Changed publications: 31783057, 37600812, 38503300; Changed phenotypes: Proteasome-associated autoinflammatory syndrome 5, MIM# 619175, Severe combined immunodeficiency, MONDO:0015974, PSMB10-related; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.1619 GNE Zornitza Stark Phenotypes for gene: GNE were changed from Nonaka myopathy 605820; Sialuria MIM#269921; ADUDP-GlcNAc epimerase/kinase deficiency (Disorders of multiple glycosylation and other glycosylation pathways) to Thrombocytopenia 12 with or without myopathy, MIM#620757; Nonaka myopathy 605820; Sialuria MIM#269921; ADUDP-GlcNAc epimerase/kinase deficiency (Disorders of multiple glycosylation and other glycosylation pathways)
Mendeliome v1.1618 GNE Zornitza Stark edited their review of gene: GNE: Changed phenotypes: Thrombocytopenia 12 with or without myopathy, MIM#620757, Nonaka myopathy 605820, Sialuria MIM#269921, ADUDP-GlcNAc epimerase/kinase deficiency (Disorders of multiple glycosylation and other glycosylation pathways)
Mendeliome v1.1617 FHL2 Zornitza Stark Gene: fhl2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1617 FHL2 Zornitza Stark Classified gene: FHL2 as Amber List (moderate evidence)
Mendeliome v1.1617 FHL2 Zornitza Stark Gene: fhl2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1616 FHL2 Zornitza Stark gene: FHL2 was added
gene: FHL2 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: FHL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FHL2 were set to 36854411; 25358972
Phenotypes for gene: FHL2 were set to Cardiomyopathy, MONDO:0004994, FHL2-related
Review for gene: FHL2 was set to AMBER
Added comment: Emerging evidence that variants in this gene may be associated with cardiomyopathy.

Reports of HCM and DCM.

c.391C>T (p.Arg131Cys) may be recurrent in early-onset DCM.
Sources: Expert Review
Mendeliome v1.1610 EFEMP1 Zornitza Stark Phenotypes for gene: EFEMP1 were changed from Glaucoma 1, open angle, H, MIM# 611276; Doyne honeycomb degeneration of retina, MIM# 126600; EFEMP1-related connective tissue disorder to Glaucoma 1, open angle, H, MIM# 611276; Doyne honeycomb degeneration of retina, MIM# 126600; EFEMP1-related connective tissue disorder
Mendeliome v1.1609 EFEMP1 Zornitza Stark Phenotypes for gene: EFEMP1 were changed from Doyne honeycomb degeneration of retina, MIM# 126600; EFEMP1-related connective tissue disorder to Glaucoma 1, open angle, H, MIM# 611276; Doyne honeycomb degeneration of retina, MIM# 126600; EFEMP1-related connective tissue disorder
Mendeliome v1.1608 EFEMP1 Zornitza Stark edited their review of gene: EFEMP1: Changed phenotypes: Doyne honeycomb degeneration of retina, MIM# 126600, EFEMP1-related connective tissue disorder, Glaucoma 1, open angle, H, MIM# 611276
Mendeliome v1.1596 THBS2 Ain Roesley Phenotypes for gene: THBS2 were changed from {Lumbar disc herniation, susceptibility to} 603932 to {Lumbar disc herniation, susceptibility to} 603932; connective tissue disorder MONDO:0003900, THBS2-related
Mendeliome v1.1594 THBS2 Ain Roesley Classified gene: THBS2 as Amber List (moderate evidence)
Mendeliome v1.1594 THBS2 Ain Roesley Gene: thbs2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1593 THBS2 Chris Ciotta reviewed gene: THBS2: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 38433265; Phenotypes: connective tissue disorder MONDO:0003900, THBS2-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1591 APOLD1 Seb Lunke Gene: apold1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1591 APOLD1 Seb Lunke Classified gene: APOLD1 as Amber List (moderate evidence)
Mendeliome v1.1591 APOLD1 Seb Lunke Gene: apold1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1589 UBAP1L Ee Ming Wong changed review comment from: - Twelve unrelated families with Hungary, the United States, Israel, Tunisia and the Netherlands with members presenting with autosomal recessive rod-cone or cone-rod dystrophy
- Reported variants included splice, nonsense, frameshift and in-frame del variants
- Age of disease onset was very variable, with some patients experiencing first symptoms during their fourth decade of life or later.
Sources: Literature; to: - Twelve unrelated families with Hungary, the United States, Israel, Tunisia and the Netherlands with members presenting with autosomal recessive rod-cone or cone-rod dystrophy
- Reported variants included splice, nonsense, frameshift and in-frame del variants
- Age of disease onset was very variable, with some patients experiencing first symptoms during their fourth decade of life or later.
Sources: Literature
Mendeliome v1.1588 UBAP1L Ee Ming Wong gene: UBAP1L was added
gene: UBAP1L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UBAP1L was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UBAP1L were set to PMID: 38293907; 38420906
Phenotypes for gene: UBAP1L were set to Cone-rod dystrophy (MONDO:0015993), UBAP1L-related
Review for gene: UBAP1L was set to GREEN
gene: UBAP1L was marked as current diagnostic
Added comment: - Twelve unrelated families with Hungary, the United States, Israel, Tunisia and the Netherlands with members presenting with autosomal recessive rod-cone or cone-rod dystrophy
- Reported variants included splice, nonsense, frameshift and in-frame del variants
- Age of disease onset was very variable, with some patients experiencing first symptoms during their fourth decade of life or later.
Sources: Literature
Mendeliome v1.1587 APOLD1 Lucy Spencer changed review comment from: PMID: 35638551
1 family with an atypical inherited bleeding disorder characterised by severe spontaneous bleeding episodes in childhood and microcirculatory problems. 4 affected individuals across 2 generations have R49*in APOLD1, another affected individual from a third generation was not able to be sequenced = 4 meiosis. 4 unaffected individuals did not have the variant.

This gene has no NMD region, R49* would affect 82% of the protein. Paper is not using the MANE select transcript, alt p. in MANE select is R18* which affects 92% of the MANE select protein

Interestingly R49* is created by a delins/2 missense in cis, 1 common R49Q and 1 rare R49W, some UNaffected family members just have the common missense without the other in cis.

Immunofluorescence studies in patient platelets showed a 50% reduction of APOLD1 and disrupted cytoskeletal and junctional organization.
Sources: Literature; to: PMID: 35638551
1 family with an atypical inherited bleeding disorder characterised by severe spontaneous bleeding episodes in childhood and microcirculatory problems. 4 affected individuals across 2 generations have R49*in APOLD1, another affected individual from a third generation was not able to be sequenced = 4 meiosis. 4 unaffected individuals did not have the variant.

This gene has no NMD region, R49* would affect 82% of the protein. Paper is not using the MANE select transcript, alt p. in MANE select is R18* which affects 92% of the MANE select protein

Interestingly R49* is created by a delins/2 missense in cis, 1 common R49Q and 1 rare R49W, some UNaffected family members just have the common missense without the other in cis.

Immunofluorescence studies in patient platelets showed a 50% reduction of APOLD1 and disrupted cytoskeletal and junctional organization.

SiRNA silencing of APOLD1 in HBDEC cells resulted in altered cell shape and size, and were associated with endothelial cell junction dismantling. These cells were also almost devoid of VWF.
Sources: Literature
Mendeliome v1.1585 TUBA4A Seb Lunke Gene: tuba4a has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1585 TUBA4A Seb Lunke Classified gene: TUBA4A as Amber List (moderate evidence)
Mendeliome v1.1585 TUBA4A Seb Lunke Gene: tuba4a has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1584 SNUPN Suliman Khan gene: SNUPN was added
gene: SNUPN was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SNUPN was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SNUPN were set to PMID: 38413582; PMID: 38366623
Phenotypes for gene: SNUPN were set to autosomal recessive limb-girdle muscular dystrophy MONDO:0015152
Review for gene: SNUPN was set to GREEN
Added comment: PMID: 38413582: reported 18 children from 15 unrelated families with muscular phenotypes, including proximal upper limb weakness, distal upper and lower limb weakness, and myopathy (EMG) with elevated serum creatinine kinase level. Exome sequencing revealed nine hypomorphic biallelic variants in the SNUPN gene, predominantly clustered in the last coding exon. Functional studies showed that mutant SPN1 failed to oligomerize leading to cytoplasmic aggregation in patients’ primary fibroblasts.

PMID: 38366623: reported five individuals from two unrelated families with limb-girdle muscular dystrophy.
Sources: Literature
Mendeliome v1.1584 APOLD1 Lucy Spencer gene: APOLD1 was added
gene: APOLD1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: APOLD1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: APOLD1 were set to 35638551
Phenotypes for gene: APOLD1 were set to Bleeding disorder, vascular-type (MIM#620715)
Review for gene: APOLD1 was set to AMBER
Added comment: PMID: 35638551
1 family with an atypical inherited bleeding disorder characterised by severe spontaneous bleeding episodes in childhood and microcirculatory problems. 4 affected individuals across 2 generations have R49*in APOLD1, another affected individual from a third generation was not able to be sequenced = 4 meiosis. 4 unaffected individuals did not have the variant.

This gene has no NMD region, R49* would affect 82% of the protein. Paper is not using the MANE select transcript, alt p. in MANE select is R18* which affects 92% of the MANE select protein

Interestingly R49* is created by a delins/2 missense in cis, 1 common R49Q and 1 rare R49W, some UNaffected family members just have the common missense without the other in cis.

Immunofluorescence studies in patient platelets showed a 50% reduction of APOLD1 and disrupted cytoskeletal and junctional organization.
Sources: Literature
Mendeliome v1.1581 TUBA4A Sarah Pantaleo gene: TUBA4A was added
gene: TUBA4A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TUBA4A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TUBA4A were set to PMID: 38413182
Phenotypes for gene: TUBA4A were set to Congenital myopathy MONDO:0019952
Review for gene: TUBA4A was set to AMBER
Added comment: One novel TUBA4A variant in two unrelated Chinese patients with sporadic congenital myopathy.

Identified candidate genes using laser capture micro dissection, proteomics, WES, clinical data, myopathological changes, electrophysiological exams and thigh muscle MRIs.

The variant is de novo in both patients, c.679C>T, p.(Leu227Phe). The prominent myopathological changes in both patients were muscle fibres with focal myofibrillar disorganisation and rimmed vacuoles. Immunofluorescence showed ubiqution-positive TUBA4A protein aggregates in the muscle fibres with rimmed vacuoles. Overexpression of Leu227Phe resulted in cytoplasmic aggregates which colocalised with ubiquitin in cellular model.

Patient 1 is 14yo and had delayed motor development milestones since infancy. Myopathic face, high-arched palate, waddling gait, winged scapula and muscle weakness in four limbs with lower extremities and proximal muscle more severely affected. Follow up at 14yo showed slight improvement in motor function compared with 3yo.

Patient 2 is 6yo and presented with motor retardation since birth. At 3yo, presented with mild ptosis and ophthalmoparesis, high-arched palate and muscle weakness involving both proximal and distal in all limbs.

No likely pathogenic variants in 116 other protein-encoding genes. Variants confirmed by Sanger sequencing and absent from gnomAD. ACMG predicts likely pathogenic classification.
Sources: Literature
Mendeliome v1.1580 NIT1 Paul De Fazio gene: NIT1 was added
gene: NIT1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NIT1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NIT1 were set to 38430071
Phenotypes for gene: NIT1 were set to Cerebrovascular disorder, NIT1-related (MONDO:0011057)
Penetrance for gene: NIT1 were set to unknown
gene: NIT1 was marked as current diagnostic
Added comment: 5 unrelated families reported with recessively inherited cerebral small vessel disease had compound hetereozygous or homozygous variants in NIT1. 1 family (3 siblings) had p.(Ala68*) in trans with p.(Arg243Trp), the remaining 4 families (1 individual each) were all homozygous for p.(Arg243Trp).

Patients presented in mid-adulthood with progressive movement disorders (e.g. dystonia, chorea, bradykinesia and tremor, gait disturbance, dysarthria) and had abnormal brain MRI findings (honeycomb appearance of the basal ganglia-thalamus complex, due to numerous strongly dilated PVS). 3 patients had non-lobar intracerebral hemorrhage. Slowly progressive cognitive decline was also a key feature.

Metabolic analysis in urine confirmed loss of NIT1 enzymatic function.

Note p.(Arg243Trp) has 1 homozygote in gnomAD v4, but permitted due to later presentation in reported patients.
Sources: Literature
Mendeliome v1.1579 RREB1 Zornitza Stark Classified gene: RREB1 as Amber List (moderate evidence)
Mendeliome v1.1579 RREB1 Zornitza Stark Gene: rreb1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1578 RREB1 Zornitza Stark edited their review of gene: RREB1: Added comment: PMID 38332451: de novo LoF variant in an individual with phenotype consistent with the previous reports.; Changed rating: AMBER; Changed publications: 32938917, 38332451; Changed phenotypes: Rasopathy, MONDO:0021060, RREB1-related
Mendeliome v1.1562 YEATS2 Elena Savva gene: YEATS2 was added
gene: YEATS2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: YEATS2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: YEATS2 were set to PMID: 22713812; 31539032
Phenotypes for gene: YEATS2 were set to ?Epilepsy, myoclonic, familial adult, 4 MIM#615127
Review for gene: YEATS2 was set to RED
Added comment: PMID: 22713812 - 13 members of a single family with Benign Adult Familial Myoclonic Epilepsy (BAFME). The average age of onset was 19.5 (range 10–33) years for tremor and 25 (range 19–33) years for seizures.
PMID: 31539032 - Expansions of TTTTA and insertions of TTTCA repeats in intron 1 of YEATS2 segregated in the same family ^.
Sources: Literature
Mendeliome v1.1552 HMBS Zornitza Stark Phenotypes for gene: HMBS were changed from Porphyria, acute intermittent, MIM#176000; Porphyria, acute intermittent, non-erythroid variant, MIM#176000 to Porphyria, acute intermittent, MIM#176000; Porphyria, acute intermittent, non-erythroid variant, MIM#176000; Encephalopathy, porphyria-related MIM#620704; Leukoencephalopathy, porphyria-related, MIM#620711
Mendeliome v1.1551 HMBS Zornitza Stark edited their review of gene: HMBS: Changed phenotypes: Porphyria, acute intermittent, MIM#176000, Porphyria, acute intermittent, non-erythroid variant, MIM#176000, Encephalopathy, porphyria-related MIM#620704, Leukoencephalopathy, porphyria-related, MIM#620711
Mendeliome v1.1546 CARD8 Zornitza Stark Classified gene: CARD8 as Amber List (moderate evidence)
Mendeliome v1.1546 CARD8 Zornitza Stark Gene: card8 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1545 CARD8 Zornitza Stark edited their review of gene: CARD8: Added comment: Additional individual reported with JRA and IBD.; Changed rating: AMBER; Changed publications: 29408806, 37724393
Mendeliome v1.1542 HSPA1L Zornitza Stark Gene: hspa1l has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1542 HSPA1L Zornitza Stark Classified gene: HSPA1L as Amber List (moderate evidence)
Mendeliome v1.1542 HSPA1L Zornitza Stark Gene: hspa1l has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1541 HSPA1L Zornitza Stark reviewed gene: HSPA1L: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: inflammatory bowel disease, MONDO:0005265; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1541 SCGN Zornitza Stark Gene: scgn has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1541 SCGN Zornitza Stark Classified gene: SCGN as Amber List (moderate evidence)
Mendeliome v1.1541 SCGN Zornitza Stark Gene: scgn has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1538 SIRT1 Achchuthan Shanmugasundram gene: SIRT1 was added
gene: SIRT1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SIRT1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SIRT1 were set to 23473037
Phenotypes for gene: SIRT1 were set to autoimmune disease, MONDO:0007179
Review for gene: SIRT1 was set to RED
Added comment: PMID:23473037 reported the identification of a missense SIRT1 variant (p.Leu107Pro) in five members of a single family and all five of them had autoimmune disorder, four had type I diabetes and one had ulcerative colitis.
Sources: Literature
Mendeliome v1.1538 SCGN Achchuthan Shanmugasundram gene: SCGN was added
gene: SCGN was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SCGN was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SCGN were set to 31663849
Phenotypes for gene: SCGN were set to ulcerative colitis, MONDO:0005101
Review for gene: SCGN was set to AMBER
Added comment: PMID:31663849 reported three siblings with homozygous missense SCGN variant and with early-onset ulcerative colitis. Functional studies demonstrated that SCGN variant identified impacted the localisation of the SNARE complex partner, SNAP25, leading to impaired hormone release. In addition, SCGN knockout mouse model recapitulated impaired hormone release and susceptibility to DSS-induced colitis.
Sources: Literature
Mendeliome v1.1526 DLG5 Zornitza Stark Phenotypes for gene: DLG5 were changed from Ciliopathy, MONDO:0016044, DLG5-related; Cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations to Yuksel-Vogel-Bauer syndrome, MIM#620703
Mendeliome v1.1525 DLG5 Zornitza Stark changed review comment from: Four unrelated families reported, supportive Xenopus animal model data.
Sources: Literature; to: Four unrelated families reported, supportive Xenopus animal model data. Cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations.
Sources: Literature
Mendeliome v1.1517 ACACA Zornitza Stark Classified gene: ACACA as Amber List (moderate evidence)
Mendeliome v1.1517 ACACA Zornitza Stark Gene: acaca has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1516 ACACA Zornitza Stark reviewed gene: ACACA: Rating: AMBER; Mode of pathogenicity: None; Publications: 36709796; Phenotypes: Acetyl-CoA carboxylase deficiency, MIM# 613933; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1513 NUP160 Melanie Marty changed review comment from: PMID: 30910934 1 x patient with familial steroid-resistant nephrotic syndrome (SRNS) and FSGS carried novel compound-heterozygous variants in NUP160 (R1173X and E803K). Silencing of Drosophila NUP160 specifically in nephrocytes (fly renal cells) led to functional abnormalities, reduced cell size and nuclear volume, and disorganized nuclear membrane structure. These defects were completely rescued by the expression of the wild-type human NUP160 gene in nephrocytes.

PMID: 30179222 1 x family (2 sibs) with compound het variants E803K and Arg910X. 1 Sib had SRNS and FSGS, the other had proteinuria.

PMID: 33456446 1 x family (2 sibs) with steroid-resistant nephrotic syndrome and chronic kidney disease. Homozygous for NUP160 c.1179+5G>A, confirmed by RT-PCR to cause abnormal splicing [r.1102_1179del;p.(Phe368_Gln393del)]. These individuals also had additional neurological features of intellectual disability and epilepsy.

PMID: 38224683 Generated a podocyte-specific Nup160 knockout (Nup160podKO) mouse mode using CRISPR/Cas9 and Cre/loxP technologies. They showed that Nup160podKO mice develop typical signs of NS.; to: PMID: 30910934 1 x patient with familial steroid-resistant nephrotic syndrome (SRNS) and FSGS carried novel compound-heterozygous variants in NUP160 (R1173X and E803K). Silencing of Drosophila NUP160 specifically in nephrocytes (fly renal cells) led to functional abnormalities, reduced cell size and nuclear volume, and disorganized nuclear membrane structure. These defects were completely rescued by the expression of the wild-type human NUP160 gene in nephrocytes.

PMID: 30179222 1 x family (2 sibs) with compound het variants E803K and Arg910X. 1 Sib had SRNS and FSGS, the other had proteinuria.

PMID: 33456446 1 x family (2 sibs) with SRNS and chronic kidney disease. Homozygous for NUP160 c.1179+5G>A, confirmed by RT-PCR to cause abnormal splicing [r.1102_1179del;p.(Phe368_Gln393del)]. These individuals also had additional neurological features of intellectual disability and epilepsy.

PMID: 38224683 Generated a podocyte-specific Nup160 knockout (Nup160podKO) mouse model using CRISPR/Cas9 and Cre/loxP technologies. They showed that Nup160podKO mice develop typical signs of NS.
Mendeliome v1.1511 MEI4 Lisa Norbart changed review comment from: PMID: 38252283 - 5x compound heterozygous missense variants and 1x homozygous missense variant seen in five individuals across 4 unrelated families affected with female infertility characterised by preimplantation embryonic arrest. Includes one family with two affected sisters with the same compound heterozygous variants. 2/4 families showed inheritance, parental data not available for other two families. Homozygous variant in the consanguineous family appears with a more severe phenotype.

In vitro evidence shows variants reduced the interactions between MEI4 and DNA, but no effects on protein levels. In vivo knock-out mouse model showed female mice were infertile, characterised by developmental defects during oogenesis.
Sources: Literature; to: PMID: 38252283 - 5x compound heterozygous missense variants and 1x homozygous missense variant seen in five individuals across 4 unrelated families affected with female infertility characterised by preimplantation embryonic arrest. Includes one family with two affected sisters with the same compound heterozygous variants. 2/4 families showed inheritance, parental data not available for other two families. Homozygous variant in the consanguineous family appears with a more severe phenotype.

In vitro evidence shows variants reduced the interactions between MEI4 and DNA, but no effects on protein levels. In vivo knock-out mouse model showed female mice were infertile, characterised by developmental defects during oogenesis.
Sources: Literature
Mendeliome v1.1511 CCDC88C Rylee Peters reviewed gene: CCDC88C: Rating: AMBER; Mode of pathogenicity: None; Publications: 38173219; Phenotypes: monogenic epilepsy MONDO:0015653, CCDC88C-related; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v1.1511 RHOXF1 Zornitza Stark Gene: rhoxf1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1511 RHOXF1 Zornitza Stark Classified gene: RHOXF1 as Amber List (moderate evidence)
Mendeliome v1.1511 RHOXF1 Zornitza Stark Gene: rhoxf1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1510 RHOXF1 Chris Ciotta gene: RHOXF1 was added
gene: RHOXF1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RHOXF1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: RHOXF1 were set to PMID: 38258527
Phenotypes for gene: RHOXF1 were set to Spermatogenic failure, MONDO:0004983, RHOXF1-related
Review for gene: RHOXF1 was set to AMBER
Added comment: In a cohort of 1,201 men from China with oligozoospermia and azoospermia, hemizygous RHOXF1 variants were identified in 4 unrelated individuals.

Three of these variants were missense variants (V130M, A91V & A156V), all were absent from gnomAD (including version 4) and had deleterious in silicos.

The one other variant was a nonsense variant (R160X) which is predicted to escape NMD and truncate the protein. This is seen in gnomAD version 4 in 1 heterozygote female, and absent in other versions.

In vitro functional evidence for these variants was provided, the V130M, A156V and R160X mutants demonstrated impaired protein localisation with an increase in the protein in the cytoplasm and impaired nuclear entry, the A91V mutant protein did not share these localisation defects.

Further, The V130M mutant protein decreased DMRT1 promotor activity, DMRT1 is considered essential for testicular development and spermatogenesis. However, the R160X variant demonstrated increased activation, three times higher than WT. The two other missense variants had no effect.
Sources: Literature
Mendeliome v1.1507 MEI4 Lisa Norbart gene: MEI4 was added
gene: MEI4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MEI4 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Publications for gene: MEI4 were set to 38252283
Phenotypes for gene: MEI4 were set to Infertility disorder, MONDO:0005047, MEI4-related
Review for gene: MEI4 was set to GREEN
Added comment: PMID: 38252283 - 5x compound heterozygous missense variants and 1x homozygous missense variant seen in five individuals across 4 unrelated families affected with female infertility characterised by preimplantation embryonic arrest. Includes one family with two affected sisters with the same compound heterozygous variants. 2/4 families showed inheritance, parental data not available for other two families. Homozygous variant in the consanguineous family appears with a more severe phenotype.

In vitro evidence shows variants reduced the interactions between MEI4 and DNA, but no effects on protein levels. In vivo knock-out mouse model showed female mice were infertile, characterised by developmental defects during oogenesis.
Sources: Literature
Mendeliome v1.1506 WDR44 Andrew Fennell gene: WDR44 was added
gene: WDR44 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: WDR44 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: WDR44 were set to PMID: 38191484
Phenotypes for gene: WDR44 were set to Ciliopathy, MONDO:0005308, WDR44-related
Review for gene: WDR44 was set to GREEN
Added comment: 11 male patients with 6 missense and 1 nonsense variant in WDR44 displaying a wide range of cognitive impairment and variable congenital anomalies associated with primary cilium dysfunction. All patients had learning difficulties with 8 labelled as intellectually disabled (mild-moderate). Other clinical features included anomalies of craniofacial, musculoskeletal, brain, renal and cardiac development.
WDR44 is a negative regulator of ciliogenesis. Increased binding is hypothesised to underlie the pathogenicity of WDR44 variants identified in this cohort. Functional data supported impaired ciliogenesis initiation in patient fibroblasts and a zebrafish model. A zebrafish model recapitulated the human phenotype when morphants expressed WDR44 L668S, D669N, S764F, G782C, H839R, and R733* variants. Of note, D648G or N840S did not recapitulate the phenotype in the zebrafish model.
The studies supported a GoF mechanism, but the authors could not rule out that LoF of WDR44 contributes to the ciliopathy-like phenotype observed, because protein expression data was only available for a limited number of patients.
Sources: Literature
Mendeliome v1.1502 SH2B3 Ain Roesley commented on gene: SH2B3: PMID:37206266
2x families
- hom missense variant Val402Met:
functional performed on patient's fibroblasts demonstrated increased basal pSTAT5, pSTAT3 and increased pJAK2 + pSTAT5 after stimulation with IL-3, GH, GM-CSF and EPO

- hom fs Arg148Profs*40
functional performed in zebrafish demonstrated increased number of macrophages and thrombocytes

PMID:23908464;
1 fam with 2 affecteds with dev delay + autoimmunity + (1x) ALL, hom for Asp231Gly fs*3

PMID:38152053;
JMML cohort - 2x hom missense + 2x het PTCs
Mendeliome v1.1499 ERG Zornitza Stark edited their review of gene: ERG: Changed rating: AMBER; Changed publications: s://ash.confex.com/ash/2023/webprogram/Paper191986.html; Changed phenotypes: Myelodysplasia syndrome, MONDO:0018881, ERG-related; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1477 KPNA7 Elena Savva Phenotypes for gene: KPNA7 were changed from Oocyte/zygote/embryo maturation arrest 17, MIM# 620319; Neurodevelopmental disorder to Oocyte/zygote/embryo maturation arrest 17, MIM# 620319; Neurodevelopmental disorder (MONDO#0700092), KPNA7-related
Mendeliome v1.1463 SPIN4 Zornitza Stark Gene: spin4 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1462 SPIN4 Zornitza Stark Classified gene: SPIN4 as Amber List (moderate evidence)
Mendeliome v1.1462 SPIN4 Zornitza Stark Gene: spin4 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1457 SPIN4 Belinda Chong gene: SPIN4 was added
gene: SPIN4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SPIN4 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: SPIN4 were set to 36927955
Phenotypes for gene: SPIN4 were set to Lui-Jee-Baron syndrome MIM#301114
Review for gene: SPIN4 was set to AMBER
Added comment: PMID 36927955
* Single family, hemizygous frameshift variant (NM_001012968.3, c.312_313AGdel) identified in a male individual with generalized overgrowth of prenatal onset, variant also present in the mother and grandmother (both had adult heights 2 SDS greater than their midparental heights).
* In vitro shows loss of function and mice studies recapitulated the human phenotype with
generalized overgrowth, including increased longitudinal bone growth.
Sources: Literature
Sources: Literature
Mendeliome v1.1457 SOX8 Paul De Fazio gene: SOX8 was added
gene: SOX8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SOX8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SOX8 were set to https://www.neurology.org/doi/full/10.1212/NXG.0000000000200088
Phenotypes for gene: SOX8 were set to Neurodevelopmental disorder (MONDO:0700092), SOX8-related
Review for gene: SOX8 was set to RED
gene: SOX8 was marked as current diagnostic
Added comment: Proband presented to genetics clinic at 27 years of age with BMI -3.4SD, height -2.7SD, head circumference -1.8SD. She had mild intellectual delay and clinical features of a congenital, nonprogressive myopathy with moderate proximal and distal weakness. X-rays showed skeletal dysplasia, including cervical thoracic scoliosis and lumbar scoliosis. She was reported as having had weakness at birth with poor suck, micrognathia, hypotonia, and talipes. She was documented to have significant motor delay as a child. MRI of the brain demonstrated large posterior fossa CSF spaces.

Biallelic SOX8 variants biallelic (NM_014587.3:c.422+5G>C; c.583dup p.(His195ProfsTer11)) were identified by WGS. The +5 variant was shown to affect splicing, while the frameshift variant resulted in production of low-level truncated protein (not NMD predicted). Functional studies on patient fibroblasts showed misregulation of downstream SOX8 targets.
Sources: Literature
Mendeliome v1.1457 BORCS8 Lauren Rogers changed review comment from: 3 unrelated families with five affected children with homozygous or compound heterozygous loss of function missense and PTC variants.

HEK293T cells show the missense variants are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution. The BORCS8 PTC frameshift variant is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution. Zebrafish KO of the orthologous brocs8 causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease.
Sources: Literature; to: 3 unrelated families with five affected children with homozygous or compound heterozygous loss of function missense and PTC variants. 5/5 hypotonia, failure to thrive, global developmental delay, profound intellectual disability, muscle weakness and atrophy, dysmorphic features. 3/5 with microcephaly, 3/5 with seizures, 4/5 with spasticity, 3/5 with scoliosis, 4/4 with optic atrophy.

HEK293T cells show the missense variants are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution. The BORCS8 PTC frameshift variant is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution. Zebrafish KO of the orthologous brocs8 causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease.
Sources: Literature
Mendeliome v1.1457 BORCS8 Lauren Rogers gene: BORCS8 was added
gene: BORCS8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: BORCS8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BORCS8 were set to 38128568
Phenotypes for gene: BORCS8 were set to Neurodevelopmental disorder (MONDO#0700092), BORCS8-related
Review for gene: BORCS8 was set to GREEN
Added comment: 3 unrelated families with five affected children with homozygous or compound heterozygous loss of function missense and PTC variants.

HEK293T cells show the missense variants are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution. The BORCS8 PTC frameshift variant is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution. Zebrafish KO of the orthologous brocs8 causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease.
Sources: Literature
Mendeliome v1.1452 PRICKLE2 Zornitza Stark Classified gene: PRICKLE2 as Amber List (moderate evidence)
Mendeliome v1.1452 PRICKLE2 Zornitza Stark Gene: prickle2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1451 PRICKLE2 Zornitza Stark reviewed gene: PRICKLE2: Rating: AMBER; Mode of pathogenicity: None; Publications: 34092786, 21276947, 26942291, 26942292; Phenotypes: Neurodevelopmental disorder MONDO:0700092, PRICKLE2-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1450 PRICKLE1 Zornitza Stark Classified gene: PRICKLE1 as Amber List (moderate evidence)
Mendeliome v1.1450 PRICKLE1 Zornitza Stark Gene: prickle1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1449 PRICKLE1 Zornitza Stark edited their review of gene: PRICKLE1: Added comment: Note all ClinVar entries for this gene are VOUS/LB/B. The variants reported in bi-allelic cases are almost all missense without further supportive data.; Changed rating: AMBER
Mendeliome v1.1448 RAP1B Zornitza Stark Phenotypes for gene: RAP1B were changed from Syndromic disease, MONDO:0002254, RAP1B-related; intellectual disability; microcephaly; thrombocytopaenia to Thrombocytopenia 1 with multiple congenital anomalies and dysmorphic facies, MIM# 620654
Mendeliome v1.1447 RAP1B Zornitza Stark edited their review of gene: RAP1B: Changed phenotypes: Thrombocytopenia 1 with multiple congenital anomalies and dysmorphic facies, MIM# 620654
Mendeliome v1.1446 POLD1 Zornitza Stark Phenotypes for gene: POLD1 were changed from Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome, MIM# 615381; MONDO:0014157 to Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome, MIM# 615381; MONDO:0014157; Combined immunodeficiency, MONDO:0015131, POLD1-related
Mendeliome v1.1443 POLD1 Zornitza Stark edited their review of gene: POLD1: Added comment: Association with combined immunodeficiency: Three individuals from two generations of a consanguineous family reported, some functional data. Another unrelated individual reported in PMID 31449058, more functional data. Third family identified in Melbourne, two affected sibs, compound het variants and combined immunodeficiency.; Changed phenotypes: Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome, MIM# 615381, MONDO:0014157, Combined immunodeficiency, MONDO:0015131, POLD1-related; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.1433 CAPRIN1 Zornitza Stark edited their review of gene: CAPRIN1: Added comment: Two individuals reported with the same de novo c.1535C > T (p.Pro512Leu) variant and a progressive course.; Changed rating: AMBER; Changed publications: 36136249
Mendeliome v1.1432 MANF Zornitza Stark Gene: manf has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1432 MANF Zornitza Stark Classified gene: MANF as Amber List (moderate evidence)
Mendeliome v1.1432 MANF Zornitza Stark Gene: manf has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1431 MANF Zornitza Stark gene: MANF was added
gene: MANF was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: MANF was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MANF were set to 26077850; 33500254; 34815294
Phenotypes for gene: MANF were set to Diabetes, deafness, developmental delay, and short stature syndrome, MIM# 620651
Review for gene: MANF was set to AMBER
Added comment: Two individuals reported with homozygous variants. Mouse model recapitulates deafness phenotype.
Sources: Expert Review
Mendeliome v1.1417 SLC19A1 Zornitza Stark Phenotypes for gene: SLC19A1 were changed from Megaloblastic anemia, folate-responsive, MIM# 601775 to Megaloblastic anemia, folate-responsive, MIM# 601775; Combined immunodeficiency, SLC19A1-related MONDO:0015131
Mendeliome v1.1416 RAB1A Zornitza Stark Gene: rab1a has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1416 RAB1A Zornitza Stark Classified gene: RAB1A as Amber List (moderate evidence)
Mendeliome v1.1416 RAB1A Zornitza Stark Gene: rab1a has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1415 RAB1A Zornitza Stark gene: RAB1A was added
gene: RAB1A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RAB1A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RAB1A were set to 37924809
Phenotypes for gene: RAB1A were set to neurodevelopmental disorder MONDO:0700092, RAB1A-related
Review for gene: RAB1A was set to AMBER
Added comment: Four families and 5 individuals, 2/5 have speech delay and 4/5 have motor delay. Anxiety in 3/5 and autism in 2/5. Microcephaly in only one individual, spastic paraplegia observed in 2 individuals from one family. In 2 families variants were inherited from an affected parent.
Sources: Literature
Mendeliome v1.1411 SV2A Zornitza Stark Gene: sv2a has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1410 SV2A Zornitza Stark Classified gene: SV2A as Amber List (moderate evidence)
Mendeliome v1.1410 SV2A Zornitza Stark Gene: sv2a has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1409 SV2A Zornitza Stark reviewed gene: SV2A: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, SV2A-related; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v1.1408 CEP192 Chern Lim gene: CEP192 was added
gene: CEP192 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CEP192 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: CEP192 were set to 37981762
Phenotypes for gene: CEP192 were set to microcephaly, short stature, limb-extremity dysplasia, and reduced testicular size
Review for gene: CEP192 was set to RED
gene: CEP192 was marked as current diagnostic
Added comment: PMID: 37981762:
- In one family, chet missense p.His638Tyr and p.Asn1917Ser segregated with microcephaly, short stature, limb-extremity dysplasia, and reduced testicular size in two affected siblings. Both sibs also fulfilled dx for mosaic variegated aneuploidy (MVA) syndrome and have tetraploidy.
- A lower but substantial proportion of MVA/tetraploidy cells was observed in II-1, II-2, and II-4 (who are het for one of the variants).

- In the same family, each variants in heterozygous state segregated with infertility and/or reduced testicular size in the proband’s father and maternal uncle.
- Variant screening of CEP192 coding regions performed for 1264 unrelated males with idiopathic infertility.
- Asn1917Ser was also detected in three additional unrelated infertile males with reduced testicular volumes.
- Two other missense and two synonymous variants were repeatedly detected in infertile males.

- qPCR showed CEP192 expression was decreased in individuals with c.1912C>T His638Tyr, mini-gene assay showed that c.1912C>T His638Tyr led to the skipping of exon 14, predicted to result in NMD.
- Epithelial cells cultured in vitro from patients with biallelic variants showed the number of cells arrested during the prophase increased because of the failure of spindle formation.

- Embyronic mouse lethality in Cep192-/- (hom for His638Tyr), Cep192M/M (hom for Asn1917Ser) and Cep192-/M (chet).
- Embryos of Cep192M/M mice had significant increase of MVA and tetraploidy cells.
- Number of apoptotic cells increased in Cep192M/M embryos compared with that of Cep192+/+, similar result in Cep192-/- embryos.
- Male mice with Cep192 heterozygous variants replicated infertility

Conclusions:
- Association of this gene with autosomal recessive disease has not been established.
- Association of monoallelic variants in this gene with infertility is not well established:
- Two variants with some supportive evidence from mouse model.
Sources: Literature
Mendeliome v1.1408 SV2A Karina Sandoval changed review comment from: Monoallelic variants cause epilepsy. Biallelic variant in this 5yo (Hom p.Arg383Gln) reported to cause severe phenotype of drug-resistant epileptic encephalopathy with microcephaly, DD, movement disorder and growth retardation. Consanguineous.
This paper references 5 other families with both AR & AD
Family #1 – p.Arg383Gln, AR, 2 affected in family, parents healthy carriers
Family #2 – p.Arg570Cys, AD, 2 affected, inherited from affected mother (in gnomAD v2 1 het, absent from gnomAD v3)
Family #3 – p.Gly660Arg, AD, de novo
Family #4 – p.Gly660Arg, AD, segregated in 11 family members
Family #5 (this study) – p.Arg289Ter, AR, parents and 2 sibs asymptomatic carriers
Sources: Literature; to: Monoallelic variants cause epilepsy. Biallelic variant in this 5yo with p.Arg289Ter and another 5yo from another paper with homozygous p.Arg383Gln, reported to cause severe phenotype of drug-resistant epileptic encephalopathy with microcephaly, DD, movement disorder and growth retardation.
This paper references 5 other families with both AR & AD
Family #1 – p.Arg383Gln, AR, 2 affected in family, parents healthy carriers
Family #2 – p.Arg570Cys, AD, 2 affected, inherited from affected mother (in gnomAD v2 1 het, absent from gnomAD v3)
Family #3 – p.Gly660Arg, AD, de novo
Family #4 – p.Gly660Arg, AD, segregated in 11 family members
Family #5 (this study) – p.Arg289Ter, AR, parents and 2 sibs asymptomatic carriers
Sources: Literature
Mendeliome v1.1408 SV2A Karina Sandoval changed review comment from: Monoallelic variants cause epilepsy. Biallelic variant in this 5yo (Hom p.Arg383Gln) reported to cause severe phenotype of drug-resistant epileptic encephalopathy with microcephaly, DD, movement disorder and growth retardation. Consanguineous.
This paper references 5 other families with both AR & AD
Family #1 – p.Arg383Gln, AR, 2 affected in family, parents healthy carriers
Family #2 – p.Arg570Cys, AD, 2 affected, inherited from affected mother
Family #3 – p.Gly660Arg, AD, de novo
Family #4 – p.Gly660Arg, AD, segregated in 11 family members
Family #5 (this study) – p.Arg289Ter, AR, parents and 2 sibs asymptomatic carriers
Sources: Literature; to: Monoallelic variants cause epilepsy. Biallelic variant in this 5yo (Hom p.Arg383Gln) reported to cause severe phenotype of drug-resistant epileptic encephalopathy with microcephaly, DD, movement disorder and growth retardation. Consanguineous.
This paper references 5 other families with both AR & AD
Family #1 – p.Arg383Gln, AR, 2 affected in family, parents healthy carriers
Family #2 – p.Arg570Cys, AD, 2 affected, inherited from affected mother (in gnomAD v2 1 het, absent from gnomAD v3)
Family #3 – p.Gly660Arg, AD, de novo
Family #4 – p.Gly660Arg, AD, segregated in 11 family members
Family #5 (this study) – p.Arg289Ter, AR, parents and 2 sibs asymptomatic carriers
Sources: Literature
Mendeliome v1.1408 SLC19A1 Elena Savva Classified gene: SLC19A1 as Amber List (moderate evidence)
Mendeliome v1.1408 SLC19A1 Elena Savva Gene: slc19a1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1405 SV2A Karina Sandoval gene: SV2A was added
gene: SV2A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SV2A was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Publications for gene: SV2A were set to PMID: 37985816
Phenotypes for gene: SV2A were set to Epilepsy, MONDO:0005027
Review for gene: SV2A was set to GREEN
Added comment: Monoallelic variants cause epilepsy. Biallelic variant in this 5yo (Hom p.Arg383Gln) reported to cause severe phenotype of drug-resistant epileptic encephalopathy with microcephaly, DD, movement disorder and growth retardation. Consanguineous.
This paper references 5 other families with both AR & AD
Family #1 – p.Arg383Gln, AR, 2 affected in family, parents healthy carriers
Family #2 – p.Arg570Cys, AD, 2 affected, inherited from affected mother
Family #3 – p.Gly660Arg, AD, de novo
Family #4 – p.Gly660Arg, AD, segregated in 11 family members
Family #5 (this study) – p.Arg289Ter, AR, parents and 2 sibs asymptomatic carriers
Sources: Literature
Mendeliome v1.1403 SLC19A1 Paul De Fazio edited their review of gene: SLC19A1: Changed rating: AMBER
Mendeliome v1.1403 KCNJ3 Zornitza Stark Gene: kcnj3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1403 KCNJ3 Zornitza Stark Classified gene: KCNJ3 as Amber List (moderate evidence)
Mendeliome v1.1403 KCNJ3 Zornitza Stark Gene: kcnj3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1402 SLC19A1 Paul De Fazio reviewed gene: SLC19A1: Rating: GREEN; Mode of pathogenicity: None; Publications: 36517554, 36745868; Phenotypes: Combined immunodeficiency, SLC19A1-related MONDO:0015131; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.1402 KCNJ3 Daniel Flanagan gene: KCNJ3 was added
gene: KCNJ3 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: KCNJ3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KCNJ3 were set to PMID: 37963718
Phenotypes for gene: KCNJ3 were set to Epilepsy (MONDO#0005027), KCNJ3-related
Review for gene: KCNJ3 was set to AMBER
Added comment: Two de novo missense variants, p.(Leu333Ser) and p.(Arg313Gln), were identified in two unrelated probands with epilepsy. 1/2 had developmental delay. Whole-cell patch-clamp functional studies showed a significantly reduction in current amplitude and density.

Kcnj3-knockout mice display hyperactivity and decreased anxiety, while a knock-in mouse line displays spontaneous seizure-like activity.
Sources: Expert list
Mendeliome v1.1401 PLA2G16 Lauren Rogers changed review comment from: 7 patients from 4 unrelated consanguineous families with homozygous loss of function PTC variants. Features: 4/7 metabolic features, 6/7 neurological/skeletal features, 3/7 Psychomotor retardation/intellectual disability, 5/7 demyelinating peripheral neuropathy.

Null mouse and patient derived white adipose tissue showed enrichment of arachidonic acid-containing membrane phospholipids and a strong decrease in PPARγ. CRISPR–Cas9-mediated PLAAT3 inactivation in human adipose stem cells induced insulin resistance, altered adipocyte diferentiation with decreased lipid droplet formation and reduced the expression of adipogenic and mature adipocyte markers, including PPARγ.
Sources: Literature; to: 7 patients from 4 unrelated consanguineous families with homozygous loss of function PTC variants. Features: 4/7 metabolic features, 6/7 neurological/skeletal features, 3/7 Psychomotor retardation/intellectual disability, 5/7 demyelinating peripheral neuropathy.

Null mouse and patient derived white adipose tissue showed enrichment of arachidonic acid-containing membrane phospholipids and a strong decrease in PPARγ. CRISPR–Cas9-mediated PLAAT3 inactivation in human adipose stem cells induced insulin resistance, altered adipocyte differentiation with decreased lipid droplet formation and reduced the expression of adipogenic and mature adipocyte markers, including PPARγ.
Sources: Literature
Mendeliome v1.1401 PLA2G16 Lauren Rogers gene: PLA2G16 was added
gene: PLA2G16 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLA2G16 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PLA2G16 were set to PMID: 37919452
Phenotypes for gene: PLA2G16 were set to Lipodystrophy (MONDO:0006573)
Review for gene: PLA2G16 was set to GREEN
Added comment: 7 patients from 4 unrelated consanguineous families with homozygous loss of function PTC variants. Features: 4/7 metabolic features, 6/7 neurological/skeletal features, 3/7 Psychomotor retardation/intellectual disability, 5/7 demyelinating peripheral neuropathy.

Null mouse and patient derived white adipose tissue showed enrichment of arachidonic acid-containing membrane phospholipids and a strong decrease in PPARγ. CRISPR–Cas9-mediated PLAAT3 inactivation in human adipose stem cells induced insulin resistance, altered adipocyte diferentiation with decreased lipid droplet formation and reduced the expression of adipogenic and mature adipocyte markers, including PPARγ.
Sources: Literature
Mendeliome v1.1401 MARK4 Rylee Peters gene: MARK4 was added
gene: MARK4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MARK4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MARK4 were set to PMID: 38041405
Phenotypes for gene: MARK4 were set to neurodevelopmental disorder (MONDO:0700092), MARK4-related
Mode of pathogenicity for gene: MARK4 was set to Other
Review for gene: MARK4 was set to AMBER
gene: MARK4 was marked as current diagnostic
Added comment: Missense variant, c.604T>C; p.Phe202Leu, identified in two siblings with childhood-onset neurodevelopmental disorder characterised by global developmental delay, intellectual disability, behavioural abnormalities, and dysmorphic features. The variant is located in the catalytic domain of the kinase, and is inherited from unaffected mosaic mother.

Functional investigation revealed that the variant results in a gain-of-function in the ability of MARK4 to phosphorylate tau and leads to up-regulation of the mTORC1 pathway.
Sources: Literature
Mendeliome v1.1400 ACBD6 Lucy Spencer edited their review of gene: ACBD6: Added comment: PMID: 37951597
Much larger cohort with - 45 individuals from 28 families with a neurodevelopmental syndrome with complex and progressive movement disorder phenotype. 18 PTCs and splice, 1 missense 1 in frame insertion.

Phenotypes: weight was >50th percentile in 20/34 patients, all mod-severe GDD, facial dysmorphism in 38/40, mild cerebellar ataxia 35/41, limb spasticity/hypertonia 31/41, gait abnormalities in 33/35.; Changed publications: 37951597
Mendeliome v1.1394 MRPL39 Zornitza Stark Phenotypes for gene: MRPL39 were changed from Mitochondrial disease MONDO:0044970 to Combined oxidative phosphorylation deficiency-59 (COXPD59), MIM#620646
Mendeliome v1.1393 MRPL39 Zornitza Stark reviewed gene: MRPL39: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Combined oxidative phosphorylation deficiency-59 (COXPD59), MIM#620646; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1385 PHLDB1 Zornitza Stark reviewed gene: PHLDB1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Osteogenesis imperfecta, type XXIII, MIM# 620639; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1381 KDR Zornitza Stark edited their review of gene: KDR: Added comment: PMID 34113005: Exome sequencing in a family with two siblings affected by ToF revealed biallelic missense variants in KDR. Studies in knock-in mice and in HEK 293T cells identified embryonic lethality for one variant when occurring in the homozygous state, and a significantly reduced VEGFR2 phosphorylation for both variants.

Rare variant burden analysis conducted in a set of 1,569 patients of European descent with ToF identified a 46-fold enrichment of protein-truncating variants (PTVs) in TOF cases compared to controls (P = 7 × 10-11). At this stage MOI unclear and insufficient evidence for either MOI.; Changed publications: 31980491, 29650961, 18931684, 34113005; Changed phenotypes: Pulmonary hypertension, Haemangioma, capillary infantile, somatic 602089, Tetralogy of Fallot, MONDO:0008542; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.1379 UNC119 Zornitza Stark Classified gene: UNC119 as Amber List (moderate evidence)
Mendeliome v1.1379 UNC119 Zornitza Stark Gene: unc119 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1378 UNC119 Zornitza Stark edited their review of gene: UNC119: Changed rating: AMBER
Mendeliome v1.1377 ARPC5 Zornitza Stark Phenotypes for gene: ARPC5 were changed from Combined immunodeficiency, ARPC5-related MONDO:0015131 to Immunodeficiency 133 with autoimmunity and autoinflammation, MIM# 620565
Mendeliome v1.1376 ARPC5 Zornitza Stark commented on gene: ARPC5: Features of autoinflammation common: haemolytic anaemia, thrombocytopenia, hepatosplenomegaly, leukocytosis, neutrophilia, and elevated acute phase reactants. More variable systemic features may include coeliac disease or enteropathy, ileus, nephropathy, eczema, and dermatomyositis.
Mendeliome v1.1364 MDM4 Bryony Thompson Gene: mdm4 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1364 MDM4 Bryony Thompson Classified gene: MDM4 as Amber List (moderate evidence)
Mendeliome v1.1364 MDM4 Bryony Thompson Gene: mdm4 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1363 MDM4 Bryony Thompson gene: MDM4 was added
gene: MDM4 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: MDM4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MDM4 were set to 32300648; 33104793
Phenotypes for gene: MDM4 were set to bone marrow failure syndrome MONDO:0000159, MDM4-related
Review for gene: MDM4 was set to AMBER
Added comment: A single family was reported to segregate a missense variant (p.Thr454Met) with features suggestive of dyskeratosis congenita, e.g., bone marrow hypocellularity, short telomeres, tongue squamous cell carcinoma, and acute myeloid leukemia. A mouse model of p.Thr454Met showed increased p53 activity, decreased telomere length, and bone marrow failure.
Sources: Other
Mendeliome v1.1362 THOC6 Ling Sun reviewed gene: THOC6: Rating: AMBER; Mode of pathogenicity: None; Publications: 35426486, 30476144; Phenotypes: VSD/ASD, severe aortic and left ventricular hypoplasia, Mild dilation of the right chambers and a mild myocardial hypertrophy secondary to a chronic hypertension, ventriculomegaly; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1360 PSMB10 Zornitza Stark Publications for gene: PSMB10 were set to 31783057
Mendeliome v1.1359 PSMB10 Zornitza Stark Classified gene: PSMB10 as Green List (high evidence)
Mendeliome v1.1359 PSMB10 Zornitza Stark Gene: psmb10 has been classified as Green List (High Evidence).
Mendeliome v1.1358 PSMB10 Zornitza Stark edited their review of gene: PSMB10: Added comment: PMID 37600812: 3 additional unrelated patients with compound heterozygous variants with structural modelling of proteasome assembly.; Changed rating: GREEN; Changed publications: 31783057, 37600812
Mendeliome v1.1357 FYB1 Zornitza Stark gene: FYB1 was added
gene: FYB1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: FYB1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FYB1 were set to 25516138; 25876182
Phenotypes for gene: FYB1 were set to Thrombocytopenia 3, MIM# 273900
Review for gene: FYB1 was set to GREEN
Added comment: Two families with LoF variants and segregation reported in the literature. Aware of two additional cases through clinical testing (Prevention Genetics).

Good functional evidence, including mouse models.

Moderate by ClinGen, though note score was in 'Strong' range and downgraded due to two families in the literature only.
Sources: Expert Review
Mendeliome v1.1354 SGSM3 Zornitza Stark Gene: sgsm3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1354 SGSM3 Zornitza Stark Classified gene: SGSM3 as Amber List (moderate evidence)
Mendeliome v1.1354 SGSM3 Zornitza Stark Gene: sgsm3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1351 FMNL2 Achchuthan Shanmugasundram gene: FMNL2 was added
gene: FMNL2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FMNL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FMNL2 were set to 34043722
Phenotypes for gene: FMNL2 were set to inflammatory bowel disease, MONDO:0005265
Mode of pathogenicity for gene: FMNL2 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: FMNL2 was set to AMBER
Added comment: A patient was reported with a de novo heterozygous FMNL2 variant (p.Leu136Pro) and with severe very early onset inflammatory bowel disease (IBD). The functional characterisation of this variant showed that FMNL2 L136P protein displayed subcellular mislocalisation and deregulated protein autoinhibition indicating gain-of-function mechanism (PMID:34043722).
Sources: Literature
Mendeliome v1.1350 HIST1H4J Zornitza Stark Gene: hist1h4j has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1350 HIST1H4F Zornitza Stark Gene: hist1h4f has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1350 HIST1H4D Zornitza Stark Gene: hist1h4d has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1346 MYO9B Elena Savva Classified gene: MYO9B as Amber List (moderate evidence)
Mendeliome v1.1346 MYO9B Elena Savva Gene: myo9b has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1345 MYO9B Melanie Marty reviewed gene: MYO9B: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 36260368; Phenotypes: Charcot-Marie-Tooth disease type 2 (MONDO:0018993), MYO9B-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1340 CCDC66 Anna Ritchie gene: CCDC66 was added
gene: CCDC66 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CCDC66 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CCDC66 were set to PMID: 37852749
Review for gene: CCDC66 was set to RED
Added comment: Nonsense variant (c.172C>T, p.Q58X) segregating in family with 5 affected members with high myopia (HM). Additionally, one family member with the variant displayed no symptoms, hinting at possible incomplete penetrance. Six other rare variants were identified in 200 sporadic high myopia patients that could potentially be linked to HM. A deficiency in CCDC66 might disrupt cell proliferation by influencing the mitotic process during retinal growth, leading to HM.
Sources: Literature
Mendeliome v1.1340 MAN2B2 Zornitza Stark Classified gene: MAN2B2 as Amber List (moderate evidence)
Mendeliome v1.1340 MAN2B2 Zornitza Stark Gene: man2b2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1339 AGPAT3 Elena Savva Classified gene: AGPAT3 as Amber List (moderate evidence)
Mendeliome v1.1339 AGPAT3 Elena Savva Gene: agpat3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1338 SGSM3 Dean Phelan gene: SGSM3 was added
gene: SGSM3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SGSM3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SGSM3 were set to PMID: 37833060
Phenotypes for gene: SGSM3 were set to Neurodevelopmental disorder (MONDO:0700092), SGSM3-related
Review for gene: SGSM3 was set to AMBER
Added comment: PMID: 37833060
- 13 patients from 8 families of Ashkenazi Jewish origin all had the same homozygous frameshift variant (c.981dup). Predicted to cause NMD. The variant co-segregated with disease in all available family members. The affected individuals displayed mild global developmental delay and mild to moderate intellectual disability. Additional prevalent phenotypes observed included hypotonia, behavioural challenges and short stature. Considered a founder variant (1 in 52 Ashkenazi Jews carry the variant). Also present in other populations but no homozygotes in gnomAD.
Sources: Literature
Mendeliome v1.1334 DLG2 Elena Savva Gene: dlg2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1334 DLG2 Elena Savva Classified gene: DLG2 as Amber List (moderate evidence)
Mendeliome v1.1334 DLG2 Elena Savva Gene: dlg2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1333 DLG2 Elena Savva gene: DLG2 was added
gene: DLG2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DLG2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: DLG2 were set to PMID: 37860969
Phenotypes for gene: DLG2 were set to Intellectual disability (MONDO#0001071), DLG2-related
Review for gene: DLG2 was set to AMBER
Added comment: PMID: 37860969 - 13 patients from 10 families with neurodevelopmental disorders, dysmorphic features and intragenic deletions including both exonic (minimal affect all transcripts) and UTR regions.
Majority of variants were inherited, some de novo. But many NMD PTCs in gnomAD (some looking messy, in noncanonical transcript etc.)
Sources: Literature
Mendeliome v1.1330 MIEF1 Lucy Spencer gene: MIEF1 was added
gene: MIEF1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MIEF1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: MIEF1 were set to 33632269
Phenotypes for gene: MIEF1 were set to Optic atrophy 14 (MIM#620550)
Review for gene: MIEF1 was set to AMBER
Added comment: PMID: 33632269
Inherited optic neuropathies cohort from france with nothing found in OPA1, OPA3 and WFS1 or mtDNA. 2 individuals (55 and 47yo) found to have missense variant in MIEF1, p.Arg146Trp has 35 hets 0 homs in gnomad, p.Tyr240Asn is absent. Both have non-syndromic late onset inherited optic neuropathies characterized by initial loss of peripheral visual fields.

Functional studies in HeLa cells- both missense localised to the mitochondria and formed oligomers similar to WT. MIEF1 normally regulates mitochondrial fission dynamics and causes an increase in mitochondrial fusion events, however both missense variants caused a significantly decreased mitochondrial fusion events.
Sources: Literature
Mendeliome v1.1330 MAN2B2 Achchuthan Shanmugasundram reviewed gene: MAN2B2: Rating: AMBER; Mode of pathogenicity: None; Publications: 35637269; Phenotypes: ; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1326 HMBS Zornitza Stark Mode of inheritance for gene: HMBS was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v1.1325 HMBS Zornitza Stark edited their review of gene: HMBS: Added comment: Rare families with bi-allelic disease reported.; Changed mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v1.1313 COG3 Zornitza Stark reviewed gene: COG3: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Congenital disorder of glycosylation, type IIbb, MIM# 620546; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1296 IRF4 Zornitza Stark Phenotypes for gene: IRF4 were changed from Whipple's disease; [Skin/hair/eye pigmentation, variation in, 8] 611724; Combined immunodeficiency to Combined immunodeficiency, MONDO:0015131, IRF4-related
Mendeliome v1.1293 IRF4 Zornitza Stark edited their review of gene: IRF4: Added comment: PMID 36662884: Seven individuals with profound CID from six kindreds of diverse ethnic origins (Fig. 1A). All affected individuals suffered with early onset (<1 year of age) recurrent sinopulmonary infections, with the opportunistic pathogen Pneumocystis jirovecii causing pneumonia in most individuals. p.T95R variant found in all patients. Extensive functional data including knockout mouse model. The heterozygous IRF4T95R variant found in multiple unrelated families caused a fully penetrant, severe very early-onset immunodeficiency characterized by greatly enhanced susceptibility to opportunistic pathogens such as P. jirovecii and weakly pathogenic mycobacteria.; Changed rating: GREEN; Changed publications: 29537367, 36662884; Changed phenotypes: Combined immunodeficiency, MONDO:0015131, IRF4-related; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.1286 HYOU1 Zornitza Stark changed review comment from: PMID:35549617 reported another case with homozgyous variant (p.Arg486Cys) and anemia, thrombocytopenia and severe panleukopenia and immunodeficiency.; to: PMID:35549617 reported another case with homozgyous variant (p.Arg486Cys) and anaemia, thrombocytopenia and severe panleukopenia and immunodeficiency.
Mendeliome v1.1286 HYOU1 Zornitza Stark edited their review of gene: HYOU1: Added comment: PMID:35549617 reported another case with homozgyous variant (p.Arg486Cys) and anemia, thrombocytopenia and severe panleukopenia and immunodeficiency.; Changed rating: GREEN; Changed publications: 27913302, 35822684, 35549617
Mendeliome v1.1283 MCM9 Natalie Tan changed review comment from: Emerging association in individuals with biallelic variants of a combined phenotype of primary ovarian insufficiency and a Lynch-like syndrome/early-onset colorectal cancer (PMID: 26806154, 34556653). Monoallelic carriers have also been reported with a Lynch-like syndrome (32841224). Association of primary ovarian insufficiency with other malignancies is less clear (32613604, 34556653). See PMID 37378315 for review of literature to April 2023.; to: Emerging association in individuals with biallelic variants of a combined phenotype of primary ovarian insufficiency and a Lynch-like syndrome/early-onset colorectal cancer (PMID: 26806154, 34556653). Monoallelic carriers have also been reported with a Lynch-like syndrome (32841224). Association of primary ovarian insufficiency with other malignancies is less clear (32613604, 34556653). See PMID 37378315 for review of literature to April 2023.
Mendeliome v1.1280 ERBIN Zornitza Stark Phenotypes for gene: ERBIN were changed from Recurrent respiratory infections; Susceptibility to S.aureus; Eczema; Hyperextensible joints; Scoliosis; Arterial dilatation in some to Combined immunodeficiency, MONDO:0015131, ERBIN-related; Recurrent respiratory infections; Susceptibility to S.aureus; Eczema; Hyperextensible joints; Scoliosis; Arterial dilatation in some
Mendeliome v1.1279 ERBIN Zornitza Stark edited their review of gene: ERBIN: Changed phenotypes: Combined immunodeficiency, MONDO:0015131, ERBIN-related, Recurrent respiratory infections, Susceptibility to S.aureus, Eczema, Hyperextensible joints, Scoliosis, Arterial dilatation in some
Mendeliome v1.1268 SRP68 Zornitza Stark Gene: srp68 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1268 SRP68 Zornitza Stark Classified gene: SRP68 as Amber List (moderate evidence)
Mendeliome v1.1268 SRP68 Zornitza Stark Gene: srp68 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1267 SRP68 Zornitza Stark gene: SRP68 was added
gene: SRP68 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: SRP68 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SRP68 were set to 32273475
Phenotypes for gene: SRP68 were set to Neutropenia, severe congenital, 10, autosomal recessive, MIM# 620534
Review for gene: SRP68 was set to AMBER
Added comment: Single individual reported with bi-allelic LoF variants and presenting with infantile-onset severe neutropenia and recurrent infections. Multiple lines of functional evidence provided.
Sources: Expert list
Mendeliome v1.1263 EFCAB7 Zornitza Stark Gene: efcab7 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1263 EFCAB7 Zornitza Stark Classified gene: EFCAB7 as Amber List (moderate evidence)
Mendeliome v1.1263 EFCAB7 Zornitza Stark Gene: efcab7 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1257 COG3 Elena Savva Classified gene: COG3 as Amber List (moderate evidence)
Mendeliome v1.1257 COG3 Elena Savva Gene: cog3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1256 COG3 Elena Savva Classified gene: COG3 as Amber List (moderate evidence)
Mendeliome v1.1256 COG3 Elena Savva Gene: cog3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1255 EFCAB7 Melanie Marty gene: EFCAB7 was added
gene: EFCAB7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EFCAB7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EFCAB7 were set to PMID: 37684519
Phenotypes for gene: EFCAB7 were set to Polydactyly (MONDO:0021003), EFCAB7-related
Review for gene: EFCAB7 was set to AMBER
Added comment: PMID: 37684519: two homozygous frameshift variants were identified by exome sequencing in four consanguinous Pakistani families, 3 families with p.(Gly277Valfs*5) and 1 family with p.(Asn451Phefs*2). Variants segregated with disease and het carriers were unaffected. Counting as 2 families to be conservative.
Sources: Literature
Mendeliome v1.1254 CFAP20 Sarah Pantaleo gene: CFAP20 was added
gene: CFAP20 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CFAP20 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CFAP20 were set to PMID:36329026
Phenotypes for gene: CFAP20 were set to Retinitis pigmentosa (MONDO:0019200)
Review for gene: CFAP20 was set to GREEN
Added comment: CFAP20 is a ciliopathy candidate. Demonstrate in zebrafish that cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development.

Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy (retinitis pigments). Hence, CFAP20 functions within a structural./functional hub centred on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associaetd domains or macromolecular complexes.

Describe 8 individuals from 4 independent families with damaging biallelic variants (homozygous or compound heterozygous) in CFAP20 that segregate with retinal dystrophy. All variants cluster to one side of the protein, with two of the residues directly contacting alpha-tubullin.

Family 1 - consanguineous set of 3 siblings from Sudan, homozygous for CFAP20 c.305G>A; p.Arg102His (they also had a homozygous variant in DYNC1LI2 however CFAP20 was considered the better candidate.
Family 2 - 3 siblings from Spain, 2 with retinal dystrophy, 1 genetically tested and has c.337C>T; p.(Arg113Trp) and c.397delC; p.(Gln133Serfs*5)
Family 3 - single affected family member compound het for c.164+1G>A and c.457A>G; p.(Arg153Gly).
Family 4 - 3 affected siblings with generalised retinopathy and variable neurological deficits with c.164+1G>A and c.257G>A; p.(Tyr86Cys)

For all families, no individuals had signs of polycystic kidney disease; however, not all individuals had kidney imaging. Visual defecit phenotype presented between adolescence and adulthood (17-56 years old).

Used HEK293T cell expression studies to demonstrate a statistically significant decline of mutated CFAP20 protein levels (with the exception of p.Arg102His). To test the specific variants, they used the C.elegans orthologues.
Sources: Literature
Mendeliome v1.1255 GPRASP1 Elena Savva Classified gene: GPRASP1 as Amber List (moderate evidence)
Mendeliome v1.1255 GPRASP1 Elena Savva Gene: gprasp1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1254 GPRASP1 Elena Savva Classified gene: GPRASP1 as Amber List (moderate evidence)
Mendeliome v1.1254 GPRASP1 Elena Savva Gene: gprasp1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1253 GPRASP1 Elena Savva Classified gene: GPRASP1 as Amber List (moderate evidence)
Mendeliome v1.1253 GPRASP1 Elena Savva Gene: gprasp1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1251 GPRASP1 Paul De Fazio gene: GPRASP1 was added
gene: GPRASP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GPRASP1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: GPRASP1 were set to 37787182
Phenotypes for gene: GPRASP1 were set to Arteriovenous hemangioma/malformation, GPRASP1-related, MONDO:0001256
Penetrance for gene: GPRASP1 were set to unknown
Review for gene: GPRASP1 was set to AMBER
gene: GPRASP1 was marked as current diagnostic
Added comment: Two hemizygous germline missense variants, p.Arg1167Trp and p.Trp553Cys, were identified in three male patients presenting with spinal AVM, Cobb syndrome, or scalp AVM. The variants were inherited from unaffected heterozygous mothers. Note that p.Arg1167Trp has hemizygous (>70) and homozygous individuals reported in gnomAD.

The variants were found to result in LoF in endothelial cells. Endothelial Gprasp1 knockout mice suffered a high probability of cerebral hemorrhage, AVMs, and exhibited vascular anomalies in multiple organs.
Sources: Literature
Mendeliome v1.1251 COG3 Daniel Flanagan gene: COG3 was added
gene: COG3 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: COG3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COG3 were set to PMID: 37711075
Phenotypes for gene: COG3 were set to Neurodevelopmental disorder (MONDO#0700092), COG3-related
Review for gene: COG3 was set to AMBER
Added comment: Two COG3 homozygous missense variants in four individuals from two unrelated consanguineous families. Clinical phenotypes of affected individuals include global developmental delay, severe intellectual disability, microcephaly, epilepsy, facial dysmorphism, and variable neurological findings.
Sources: Expert list
Mendeliome v1.1245 KIF4A Lucy Spencer reviewed gene: KIF4A: Rating: AMBER; Mode of pathogenicity: None; Publications: 31616463; Phenotypes: Taurodontism, microdontia, and dens invaginatus (MIM#313490); Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v1.1244 DLG5 Zornitza Stark Phenotypes for gene: DLG5 were changed from Cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations to Ciliopathy, MONDO:0016044, DLG5-related; Cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations
Mendeliome v1.1205 C1orf194 Zornitza Stark edited their review of gene: C1orf194: Changed rating: AMBER; Changed phenotypes: Charcot-Marie-Tooth disease, intermediate or demyelinating, MONDO:0015626, C1orf194; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1185 AMBRA1 Zornitza Stark Phenotypes for gene: AMBRA1 were changed from Neural tube defects to Neural tube defects, susceptibility to, MONDO:0020705, AMBRA1-related
Mendeliome v1.1173 SEMA3E Lucy Spencer reviewed gene: SEMA3E: Rating: AMBER; Mode of pathogenicity: None; Publications: 15235037, 31691538, 31464029, 35628442, 32441320; Phenotypes: CHARGE syndrome MONDO:0008965, SEMA3E-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1165 FTCD Bryony Thompson edited their review of gene: FTCD: Changed publications: http://iembase.com/disorder/47
Mendeliome v1.1165 FTCD Bryony Thompson changed review comment from: Well-established gene-disease association (see OMIM entry). Glutamate formiminotransferase deficiency is classified as a metabolic disorder by the NIH GARD (https://rarediseases.info.nih.gov/diseases/diseases-by-category/14/metabolic-disorders), and is an inborn error of amino acid metabolism.
Sources: NHS GMS; to: Glutamate formiminotransferase deficiency is classified as a benign form of folate metabolism disorder and an inborn error of amino acid metabolism without clinically significant phenotype (http://iembase.com/disorder/47).
Mendeliome v1.1158 DBR1 Zornitza Stark edited their review of gene: DBR1: Added comment: PMID: 37656279:
- A homozygous missense as a founder recessive DBR1 variant in four consanguineous families.
- Total of 7 affected children. WES done for one proband from each family.
- Consistent features include prematurity, severe intrauterine growth deficiency, congenital ichthyosis-like presentation (collodion membrane, severe skin peeling and xerosis), and death before the first year of life.
- RNA and protein studies using fibroblasts derived from a patient are supportive of pathogenicity: RNA-seq, rt-qPCR and western blotting, showing marked reduction of DBR1 level and intronic RNA lariat accumulation in the patient sample.
- Haplotype analysis revealed that the four families all share a haplotype extending at least 2.27 Mb around the c.200A>G p.(Tyr67Cys) DBR1 founder variant.
- Authors proposed this is a novel DBR1-related developmental disorder that is distinct from DBR1-related encephalitis susceptibility, and highlighted the apparent lack of correlation with the degree of DBR1 deficiency.; Changed publications: 29474921, 37656279; Changed phenotypes: {Encephalitis, acute, infection (viral)-induced, susceptibility to, 11}, MIM# 619441, Viral infections of the brainstem, Ichthyosis (MONDO#0019269), DBR1-related
Mendeliome v1.1156 APOO Zornitza Stark edited their review of gene: APOO: Added comment: PMID: 37649161
1 family, 2 individuals (male & female) with same NMD variant c.532G>T (p.E178*), maternally inherited (mother unaffected).

Both died before 18 months of age with partial agenesis of the corpus callosum, bilateral congenital cataract, hypothyroidism, and severe immune deficiencies.
Other phenotypes included partial syndactyly of the 2nd and 3rd toes, wrinkled palm, and sole skin.

Functional studies included site directed mutagenesis. This mutation resulted in a highly unstable and degradation
prone MIC26 protein, yet the remaining minute amounts of mutant MIC26 correctly localized to mitochondria and
interacted physically with other MICOS subunits. MIC26 KO cells expressing MIC26 harboring the respective APOO/MIC26 mutation showed mitochondria with perturbed cristae architecture and fragmented morphology resembling MIC26 KO cells.; Changed publications: 37649161; Changed phenotypes: Mitochondrial disease, MONDO:0044970, APOO-related, Developmental delay, Lactic acidosis, Muscle weakness, Hypotonia, Repetitive infections, Cognitive impairment, Autistic behaviour
Mendeliome v1.1156 DBR1 Chern Lim reviewed gene: DBR1: Rating: AMBER; Mode of pathogenicity: None; Publications: 37656279; Phenotypes: Ichthyosis (MONDO#0019269), DBR1-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.1155 COL4A3BP Ee Ming Wong changed review comment from: - Thirty-one unrelated individuals with twenty-two distinct missense variants. The majority of variants were de novo.
- Several variants transfected into HeLa cells demonstrated gain of CERT activity
- CERT gain of function in Drosophila melanogaster led to head and brain size defects and impaired locomotor activity, which was corrected by pharmacological inhibition of CERT; to: - current HGNC symbol: CERT1
- Thirty-one unrelated individuals with twenty-two distinct missense variants. The majority of variants were de novo.
- Several variants transfected into HeLa cells demonstrated gain of CERT activity
- CERT gain of function in Drosophila melanogaster led to head and brain size defects and impaired locomotor activity, which was corrected by pharmacological inhibition of CERT
Mendeliome v1.1140 RAP1B Zornitza Stark Phenotypes for gene: RAP1B were changed from RAP1B‐associated syndrome; intellectual disability; microcephaly; thrombocytopaenia to Syndromic disease, MONDO:0002254, RAP1B-related; intellectual disability; microcephaly; thrombocytopaenia
Mendeliome v1.1134 COX5A Zornitza Stark Classified gene: COX5A as Amber List (moderate evidence)
Mendeliome v1.1134 COX5A Zornitza Stark Gene: cox5a has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1133 COX5A Zornitza Stark edited their review of gene: COX5A: Added comment: Second family reported, albeit hmz missense.; Changed rating: AMBER; Changed publications: 35246835, 28247525
Mendeliome v1.1127 TPM4 Zornitza Stark Phenotypes for gene: TPM4 were changed from Macrothrombocytopaenia to Bleeding disorder, platelet-type, 25, MIM# 620486
Mendeliome v1.1126 PTPRJ Zornitza Stark Phenotypes for gene: PTPRJ were changed from Thrombocytopaenia to Thrombocytopenia 10, MIM# 620484
Mendeliome v1.1125 PTPRJ Zornitza Stark edited their review of gene: PTPRJ: Changed phenotypes: Thrombocytopenia 10, MIM# 620484
Mendeliome v1.1125 THPO Zornitza Stark edited their review of gene: THPO: Added comment: 5 families reported with bi-allelic variants and thrombocytopenia with progression to pancytopenia, aplastic anemia, and bone marrow failure.; Changed publications: 9425899, 10583217, 32150607, 28466964, 24085763, 28559357, 29191945, 36226497; Changed phenotypes: Thrombocythemia 1, MIM# 187950, Thrombocytopenia 9, MIM# 620478, Amegakaryocytic thrombocytopenia, congenital, 2, MIM# 620481; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.1121 THPO Zornitza Stark Phenotypes for gene: THPO were changed from Thrombocythemia 1, MIM# 187950 to Thrombocythemia 1, MIM# 187950; Thrombocytopenia 9, MIM# 620478
Mendeliome v1.1119 THPO Zornitza Stark edited their review of gene: THPO: Added comment: Thrombocytopenia: 5 unrelated families reported.; Changed publications: 9425899, 10583217, 32150607, 28466964; Changed phenotypes: Thrombocythemia 1, MIM# 187950, Thrombocytopenia 9, MIM# 620478
Mendeliome v1.1119 ACTB Zornitza Stark Phenotypes for gene: ACTB were changed from Baraitser-Winter syndrome 1 243310; ACTB-related neurodevelopment disorder to Baraitser-Winter syndrome 1 243310; Thrombocytopenia 8, with dysmorphic features and developmental delay, MIM# 620475; ACTB-related neurodevelopment disorder
Mendeliome v1.1118 ACTB Zornitza Stark reviewed gene: ACTB: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Thrombocytopenia 8, with dysmorphic features and developmental delay, MIM# 620475; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1118 APOL1 Zornitza Stark Classified gene: APOL1 as Amber List (moderate evidence)
Mendeliome v1.1118 APOL1 Zornitza Stark Gene: apol1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1117 APOL1 Zornitza Stark edited their review of gene: APOL1: Added comment: Assigned Definitive gene-disease validity by the ClinGen Glomerulopathy GCEP - Classification - 09/28/2021
Increased risk of kidney and glomerular diseases in persons carrying two of the risk alleles in this gene: G1/G1, G2/G2 and compound heterozygous G1/G2.
PMID: 20647424 - first study to identify G1 & G2 alleles associated with risk of renal disease. Comparing participants with zero or 1 risk allele of APOL1 to participants with 2 risk alleles provided an odds ratio for FSGS of 10.5 (CI, 6.0-18.4). This analysis supported a completely recessive pattern of inheritance.
PMID: 25993319 - only G1 and G2 confer renal risk, and other common and rare APOL1 missense variants, including the archaic G3 haplotype, do not contribute to sporadic FSGS and HIVAN
rs73885319 (G1) OR 9.66, p=9.97E-25
rs60910145 (G1) OR 9.75, p=9.04E-24
rs71785313 (G2) OR 5.69, p=3.39E-06
2 APOL1 risk alleles OR 18.31, p=3.31E-58
PMID: 34350953 - recessive gain-of-function toxicity mouse model recapitulates human kidney disease
G1:
p.Ser342Gly, AFR/AA gnomAD v2.1 AF 0.2276 (5,671/24,920 alleles, 687 homozygotes)
p.Ile384Met, AFR/AA gnomAD v2.1 AF 0.2278 (5,487/24,082 alleles, 662 homozygotes)
G2:
p.Asn388_Tyr389del, AFR/AA gnomAD v2.1 AF 0.1402(3,402/24,268 alleles, 224 homozygotes

AMBER status due to these being susceptibility alleles, and evidence being limited to these specific variants.; Changed rating: AMBER
Mendeliome v1.1111 FBXO31 Ain Roesley reviewed gene: FBXO31: Rating: AMBER; Mode of pathogenicity: None; Publications: 35019165, 24623383; Phenotypes: Intellectual developmental disorder, autosomal recessive 45 (MIM#615979); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.1111 TBL1XR1 Achchuthan Shanmugasundram reviewed gene: TBL1XR1: Rating: AMBER; Mode of pathogenicity: None; Publications: 28687524, 37010288; Phenotypes: Pierpont syndrome, OMIM:602342; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1111 NEB Achchuthan Shanmugasundram reviewed gene: NEB: Rating: AMBER; Mode of pathogenicity: None; Publications: 12207937, 21798101, 33376055, 37010288; Phenotypes: Arthrogryposis multiplex congenita 6, OMIM:619334; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1111 ECEL1 Achchuthan Shanmugasundram reviewed gene: ECEL1: Rating: AMBER; Mode of pathogenicity: None; Publications: 30131190, 37010288; Phenotypes: Arthrogryposis, distal, type 5D, OMIM:615065; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1095 DPP9 Zornitza Stark edited their review of gene: DPP9: Added comment: Amber for mono-allelic association:

de novo monoallelic dominant-negative mutation in DPP9 (c.755G>C, R252P) presenting with HLH at ~2m. Functional data supporting dominant negative mechanism.; Changed publications: 36112693, 37544411; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.1090 AQP1 Zornitza Stark Classified gene: AQP1 as Amber List (moderate evidence)
Mendeliome v1.1090 AQP1 Zornitza Stark Gene: aqp1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1089 AQP1 Zornitza Stark reviewed gene: AQP1: Rating: AMBER; Mode of pathogenicity: None; Publications: 37007933, 35627312; Phenotypes: Pulmonary arterial hypertension MONDO:0015924, AQP1-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1087 TET2 Zornitza Stark changed review comment from: Association with PAH:
MODERATE by ClinGen. TET2 was first reported in relation to autosomal dominant pulmonary arterial hypertension (PAH) in 2020 (Potus et al., PMID: 32192357). Out of a cohort of 2572 cases from the PAH biobank, 6 rare predicted deleterious likely germline variants including missense, nonsense, and frameshift variants were identified in 6 unrelated individuals. The relationship between TET2 and PAH is also supported by experimental evidence including tissue expression in controls and patients, biochemical function as a negative regulator of a proinflammatory response, and knock out TET2 mice exhibiting a PH phenotype.; to: Association with PAH:
MODERATE by ClinGen/Amber rating here. TET2 was first reported in relation to autosomal dominant pulmonary arterial hypertension (PAH) in 2020 (Potus et al., PMID: 32192357). Out of a cohort of 2572 cases from the PAH biobank, 6 rare predicted deleterious likely germline variants including missense, nonsense, and frameshift variants were identified in 6 unrelated individuals. The relationship between TET2 and PAH is also supported by experimental evidence including tissue expression in controls and patients, biochemical function as a negative regulator of a proinflammatory response, and knock out TET2 mice exhibiting a PH phenotype.
Mendeliome v1.1077 AQP4 Zornitza Stark Gene: aqp4 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1076 AQP4 Zornitza Stark Classified gene: AQP4 as Amber List (moderate evidence)
Mendeliome v1.1076 AQP4 Zornitza Stark Gene: aqp4 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1071 SMARCA4 Paul De Fazio changed review comment from: Additional phenotype reported:

A single missense variant E1610K (M_001128849.3) was reported in 7 affected members of a family with progressive hearing loss due to otosclerosis and no other clinical features. Variant is absent from gnomAD. Note that unaffected members of the family were not tested.

A mouse CRISPR model with the orthologous variant had a similar phenotype.; to: Additional phenotype reported:

A single missense variant E1610K (M_001128849.3) was reported in 7 affected members of a family with progressive hearing loss due to otosclerosis and no other clinical features. Variant is absent from gnomAD. Note that unaffected members of the family were not tested - some obligate carriers were apparently unaffected, reflecting incomplete penetrance.

A mouse CRISPR model with the orthologous variant had a similar phenotype.
Mendeliome v1.1071 AQP4 Lucy Spencer gene: AQP4 was added
gene: AQP4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: AQP4 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: AQP4 were set to 37143309
Phenotypes for gene: AQP4 were set to ?Megalencephalic leukoencephalopathy with subcortical cysts 4, remitting MIM#620448
Review for gene: AQP4 was set to AMBER
Added comment: PMID: 37143309
Cohort of patients with an MRI based diagnosis of megalencephalic leukoencephalopathy with subcortical cysts (MLC). Missense variant in AQP4 seen homozygous in 2 siblings and het in the parents. Patients had macrocephaly, developmental delay, hypotonia, epilepsy, and cognitive deficit.

Western blots on generated MDCK cell lines showed no detectable expression of AQP4 protein from the cells with the patients variant. Immunofluorescence also showed no membrane expression. Overexpression studies in HEK293T cells showed WT was seen as mainly monomers or dimers where as variant protein formed large aggregates- likely due to the saturation of protein degradation pathways because of the overexpression.
Sources: Literature
Mendeliome v1.1071 MAMDC2 Elena Savva Gene: mamdc2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1071 MAMDC2 Elena Savva Classified gene: MAMDC2 as Amber List (moderate evidence)
Mendeliome v1.1071 MAMDC2 Elena Savva Gene: mamdc2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1068 MAMDC2 Belinda Chong gene: MAMDC2 was added
gene: MAMDC2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MAMDC2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MAMDC2 were set to 37503746
Phenotypes for gene: MAMDC2 were set to Muscular Dystrophy MONDO:0020121, MAMDC2-related
Review for gene: MAMDC2 was set to AMBER
Added comment: 17 individuals with an autosomal dominant muscular dystrophy belonging to two unrelated families in which different heterozygous truncating variants in the last exon of MAMDC2 co-segregate correctly with the disease.
Sources: Literature
Mendeliome v1.1063 PTPA Ee Ming Wong reviewed gene: PTPA: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 37448355; Phenotypes: Intellectual disability, MONDO: 36073231, PTPA-related, Parkisonism; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.1062 SMARCA4 Paul De Fazio reviewed gene: SMARCA4: Rating: AMBER; Mode of pathogenicity: None; Publications: 37399313; Phenotypes: Otosclerosis MONDO:0005349, SMARCA4-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v1.1061 SENP7 Elena Savva Classified gene: SENP7 as Amber List (moderate evidence)
Mendeliome v1.1061 SENP7 Elena Savva Gene: senp7 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1060 SENP7 Elena Savva gene: SENP7 was added
gene: SENP7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SENP7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SENP7 were set to PMID: 37460201
Phenotypes for gene: SENP7 were set to Arthrogryposis multiplex congenita, MONDO:0015168, SENP7-related
Review for gene: SENP7 was set to AMBER
Added comment: PMID: 37460201
- 1 family (4 affecteds, sibling pair and 1st cousin) with fatal arthrogryposis multiplex congenita, early respiratory failure and neutropenia. Fetus could not be tested, so 3 confirmed genetically.
- Homozygous for a PTC, decreased mRNA from one sample supports an NMD outcome.
- Additional studies performed supporting downstream proteins expression being affected
- Neutropenia observed in 2/3 patients
Sources: Literature
Mendeliome v1.1059 STX5 Ain Roesley Gene: stx5 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1058 STX5 Ain Roesley Classified gene: STX5 as Amber List (moderate evidence)
Mendeliome v1.1058 STX5 Ain Roesley Gene: stx5 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1054 STX5 Ain Roesley gene: STX5 was added
gene: STX5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: STX5 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: STX5 were set to congenital disorder of glycosylation MONDO#0015286, STX5-related
Review for gene: STX5 was set to AMBER
gene: STX5 was marked as current diagnostic
Added comment: 1x family with 3x deceased shortly after death + 3x spontaneous abortions + 2x abortions due to abnormal fatal ultrasound (US).
Hom for NM_003164.4:c.163 A > G p.(Met55Val), which results in complete loss of short isoform (which uses Met55 as the start)

phenotype: short long bones on US, dysmorphism, skeletal dysplasia, profound hypotonia, hepatomegaly elevated cholesterol.
Post-natally they died of progressive liver failure with cholestasis and hyperinsulinemic hypoglycemias

Primary human dermal fibroblasts isolated from these patients show defective glycosylation, altered Golgi morphology as measured by electron microscopy, mislocalization of glycosyltransferases, and compromised ER-Golgi trafficking
Sources: Literature
Mendeliome v1.1053 TEP1 Zornitza Stark Gene: tep1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1053 TEP1 Zornitza Stark Classified gene: TEP1 as Amber List (moderate evidence)
Mendeliome v1.1053 TEP1 Zornitza Stark Gene: tep1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1052 TEP1 Zornitza Stark gene: TEP1 was added
gene: TEP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TEP1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TEP1 were set to 34543729
Phenotypes for gene: TEP1 were set to Cerebral palsy, MONDO:0006497, TEP1-related
Review for gene: TEP1 was set to AMBER
Added comment: Wang et al. screened a large cohort of more than 600 CP patients from China and found several variants in TEP1, 11 of which were LoF, while no LoF variant was found in the control cohort. These children all had spastic CP. Among these 11 children, 6 children had birth asphyxia and neonatal encephalopathy. Compared to the total group with birth asphyxia (71/667), 6 patients with TEP1 LOF mutations had a significantly greater risk of birth asphyxia. They confirmed TEP1 as a risk factor for CP by cytological and animal models.

Uncertain if these are risk alleles vs indicative of a monogenic disorder. Note LoF variants in gnomad. As this was a cohort study, inheritance of these variants is unknown.
Sources: Literature
Mendeliome v1.1049 TINF2 Sangavi Sivagnanasundram reviewed gene: TINF2: Rating: AMBER; Mode of pathogenicity: None; Publications: https://doi.org/10.1016/j.xhgg.2023.100225; Phenotypes: Multiple Primary Melanomas (MPM); Mode of inheritance: Unknown
Mendeliome v1.1049 LAMA3 Sangavi Sivagnanasundram reviewed gene: LAMA3: Rating: AMBER; Mode of pathogenicity: None; Publications: https://doi.org/10.1016/j.xhgg.2023.100227; Phenotypes: Ebstein’s anomaly (MIM#224700); Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.1034 TEFM Zornitza Stark Phenotypes for gene: TEFM were changed from Mitochondrial disease (MONDO#0044970), TEFM-related to Combined oxidative phosphorylation deficiency 58, MIM# 620451
Mendeliome v1.1033 MAP3K14 Zornitza Stark Phenotypes for gene: MAP3K14 were changed from NIK deficiency; Poor T cell proliferation to antigen; Low B-cell numbers; Low NK number and function; recurrent bacterial/viral/ cryptosporidium infections; hypogammaglobulinaemia; decreased immunoglobulin levels to Immunodeficiency 112, MIM# 620449; NIK deficiency; Poor T cell proliferation to antigen; Low B-cell numbers; Low NK number and function; recurrent bacterial/viral/ cryptosporidium infections; hypogammaglobulinaemia; decreased immunoglobulin levels
Mendeliome v1.1032 MAP3K14 Zornitza Stark edited their review of gene: MAP3K14: Changed phenotypes: Immunodeficiency 112, MIM# 620449, NIK deficiency, Poor T cell proliferation to antigen, Low B-cell numbers, Low NK number and function, recurrent bacterial/viral/ cryptosporidium infections, hypogammaglobulinaemia, decreased immunoglobulin levels
Mendeliome v1.1030 CYHR1 Zornitza Stark Gene: cyhr1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1018 COL4A6 Zornitza Stark Classified gene: COL4A6 as Amber List (moderate evidence)
Mendeliome v1.1018 COL4A6 Zornitza Stark Gene: col4a6 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1014 PLCG1 Zornitza Stark Gene: plcg1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1014 PLCG1 Zornitza Stark Classified gene: PLCG1 as Amber List (moderate evidence)
Mendeliome v1.1014 PLCG1 Zornitza Stark Gene: plcg1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1013 PLCG1 Zornitza Stark gene: PLCG1 was added
gene: PLCG1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: PLCG1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PLCG1 were set to 37422272
Phenotypes for gene: PLCG1 were set to Autoinflammatory syndrome, MONDO:0019751, PLCG1-related; Immune dysregulation
Mode of pathogenicity for gene: PLCG1 was set to Other
Review for gene: PLCG1 was set to AMBER
Added comment: Single 7yo proband presented with thrombocytopaenia and lymphadenopathy. De Novo , c.3062C>T, p.S1021F with functional testing supportive of GOF mechanism of disease
Sources: Expert Review
Mendeliome v1.1011 DCAF15 Zornitza Stark Gene: dcaf15 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1010 TBX6 Chirag Patel reviewed gene: TBX6: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 36112137, 36161696; Phenotypes: Mayer-Rokitansky-Küster-Hauser syndrome, Combined skeletal-kidney dysplasia syndrome; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.1003 INTS13 Chirag Patel gene: INTS13 was added
gene: INTS13 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: INTS13 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: INTS13 were set to PMID: 36229431
Phenotypes for gene: INTS13 were set to Oral-facial-digital syndrome
Review for gene: INTS13 was set to GREEN
gene: INTS13 was marked as current diagnostic
Added comment: 2 families with 4 affected individuals with Oral-facial-digital (OFD) phenotype. Homozygosity mapping and WES found 2 homozygous variants in INTS13 gene. This is a subunit of the Integrator complex, which associates with RNA Polymerase II and cleaves nascent RNA to modulate gene expression. Variants segregated with disease. Depletion of INTS13 disrupts ciliogenesis in human cultured cells and causes dysregulation of a broad collection of ciliary genes. Knockdown in Xenopus embryos leads to motile cilia anomalies.
Sources: Literature
Mendeliome v1.1002 DCAF15 Chirag Patel Classified gene: DCAF15 as Amber List (moderate evidence)
Mendeliome v1.1002 DCAF15 Chirag Patel Gene: dcaf15 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.1001 DCAF15 Chirag Patel gene: DCAF15 was added
gene: DCAF15 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: DCAF15 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: DCAF15 were set to Cornelia de Lange syndrome
Review for gene: DCAF15 was set to AMBER
Added comment: ESHG 2023:
3 unrelated cases with CdLS (1 x TOP with MCA, 1 x death @20mths, 1 x living child)
Features suggestive of CdLS - DD, microcephaly, CHD, dysmorphism, visual/hearing impairment.

WES identified recurrent de novo variant (p.Ser470Phe) in DCAF15 gene. This mediates ubiquitination and degradation of target proteins, and interacts with cohesin complex members (SMC1/SMC3).

Protein analysis from individuals showed increased accumulation of ubiquitination-modified proteins and SM3 (GOF mechanism). EpiSign analysis showed same DNA methylation pattern as other CdLS cases/genes. Zebrafish model showed reduced body length, reduced head size, reduced oligodendrocytes, heart defect, aberrant motor neurons, and abnormal response to visual/auditory stimuli.
Sources: Other
Mendeliome v1.997 PMVK Zornitza Stark changed review comment from: Association with auto inflammatory syndrome:

Five-year-old girl with recurring hyperinflammatory episodes initially presenting at 9mo with fever, arthritis, aphthous stomatitis and maculopapular rash with homozygous variant in PMVK p.Val131Ala (NM_006556.4: c.392T>C) with clinical overlap with MVK deficiency. Supportive functional data. Second patient, 6yo boy with compound heterozygous c.329G >A (p. Arg110Gln) and c.316G >A (p. Val106Met) mutations in trans configuration with similar phenotype.; to: Association with auto inflammatory syndrome:

Five-year-old girl with recurring hyperinflammatory episodes initially presenting at 9mo with fever, arthritis, aphthous stomatitis and maculopapular rash with homozygous variant in PMVK p.Val131Ala (NM_006556.4: c.392T>C) with clinical overlap with MVK deficiency. Supportive functional data. Second patient, 6yo boy with compound heterozygous c.329G >A (p. Arg110Gln) and c.316G >A (p. Val106Met) mutations in trans configuration with similar phenotype.

Amber for bi-allelic disease association.
Mendeliome v1.997 RIPK3 Zornitza Stark Gene: ripk3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.997 RIPK3 Zornitza Stark Classified gene: RIPK3 as Amber List (moderate evidence)
Mendeliome v1.997 RIPK3 Zornitza Stark Gene: ripk3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.996 RIPK3 Zornitza Stark gene: RIPK3 was added
gene: RIPK3 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: RIPK3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RIPK3 were set to 37083451
Phenotypes for gene: RIPK3 were set to Hereditary susceptibility to infections, MONDO:0015979, RIPK3-related; Recurrent HSV encephalitis
Review for gene: RIPK3 was set to AMBER
Added comment: Single female patient with independent episodes of HSE at 6 and 17 months of age and with autoimmune encephalitis 1 month after the second episode of HSE with two heterozygous mutations of RIPK3 predicted to be loss of function (pLOF): p. Arg422* (c.1264 C > T, MAF 0.001568, CADD 35) and p. Pro493fs9* (c.1475 C > CC, MAF 0.002611, CADD 24.2). Extensive supportive functional data including RIPK3 knockout human pluripotent stem cell–derived cortical neurons.
Sources: Expert Review
Mendeliome v1.992 ANO1 Zornitza Stark edited their review of gene: ANO1: Added comment: PMID 37253099: screening analysis of Moyamoya disease (MMD) cohort revealed 8 individuals with variants in the ANO1 gene. Two families had the same rare variant p.Met658Val. The ANO1 rare variants were assessed using patch-clamp recordings, and the majority of variants, including ANO1 p.Met658Val, displayed increased sensitivity to intracellular Ca2+. Patients harboring these gain-of-function ANO1 variants had classic features of MMD, but also had aneurysm, stenosis, and/or occlusion in the posterior circulation. Amber rating due to somewhat conflicting segregation and functional data presented.; Changed publications: 37253099; Changed phenotypes: Intestinal dysmotility syndrome, MIM# 620045, Moyamoya disease, MONDO:0016820, ANO1 related
Mendeliome v1.992 CYHR1 Chirag Patel Classified gene: CYHR1 as Amber List (moderate evidence)
Mendeliome v1.992 CYHR1 Chirag Patel Gene: cyhr1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.991 CYHR1 Chirag Patel gene: CYHR1 was added
gene: CYHR1 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: CYHR1 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: CYHR1 were set to Neurodevelopmental disorder and microcephaly
Review for gene: CYHR1 was set to AMBER
Added comment: ESHG 2023:
5 individuals from 3 families with biallelic LOF variants in CYHR1 (aka ZTRAF1). Presentation with microcephaly, hypotonia, DD, and ID. Expression studies showed mislocalisation of CYHR1. Mutant fibroblasts showed increased lysosomal markers and upregulated lysosomal proteins, leading to impaired autophagy. Zebrafish KO however did not show a phenotype.
Sources: Other
Mendeliome v1.989 NAA60 Chirag Patel gene: NAA60 was added
gene: NAA60 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: NAA60 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: NAA60 were set to Basal ganglia calcification
Review for gene: NAA60 was set to GREEN
gene: NAA60 was marked as current diagnostic
Added comment: ESHG 2023:
10 individuals from 7 families with biallelic variants in NAA60 (missense and framshift).
All with primary brain calcification - 4/10 childhood onset (DD, ID), 6/10 adult onset (cerebellar and pyramidal dysfunction, dystonia, parkinsonism, cognitive impairment, psychiatric manifestations).

NAA60 catalyses N-terminal acetylation of transmembrane proteins and localises to Golgi apparatus. In vitro assay of variants showed reduced capacity of Nt acetylation. Fibroblast studies showed significantly reduced levels of phosphate importer (SLC20A2). Loss of function variants in SLC20A2 (~50% of PFBC cases) lead to increased extracellular phosphate (which is thought to lead to calcium deposits in brain).
Sources: Other
Mendeliome v1.978 DENND5B Chirag Patel gene: DENND5B was added
gene: DENND5B was added to Mendeliome. Sources: Other
Mode of inheritance for gene: DENND5B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: DENND5B were set to Neurodevelopmental disorder with white matter anomalies
Review for gene: DENND5B was set to GREEN
gene: DENND5B was marked as current diagnostic
Added comment: ESHG 2023:
7 patients/7 families with de novo DENND5B variants (6 missense, 1 splice)
DD/ID (mod/profound)(7/7), white matter anomalies (6/7) hypotonia, epilepsy (3/7)

DENND5B acts as:
-GEF for activation of RAB proteins which are involved in membrane trafficking and neurotransmitter release
-regulator of lipid absorption and homeostasis

Functional studies showed loss of expression of DENND5B in fibroblasts, abnormal vesicle trafficking, and impaired lipid uptake and intracellular distribution
Sources: Other
Mendeliome v1.972 COL4A6 Ain Roesley reviewed gene: COL4A6: Rating: AMBER; Mode of pathogenicity: None; Publications: 33840813; Phenotypes: Deafness, X-linked 6 MIM#300914; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes
Mendeliome v1.972 RDH11 Elena Savva reviewed gene: RDH11: Rating: AMBER; Mode of pathogenicity: None; Publications: 24916380, 15634683, 30731079, 18326732, 34988992; Phenotypes: Retinal dystrophy, juvenile cataracts, and short stature syndrome, MIM# 616108; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.972 C1GALT1C1 Zornitza Stark reviewed gene: C1GALT1C1: Rating: AMBER; Mode of pathogenicity: None; Publications: 37216524; Phenotypes: Haemolytic uraemic syndrome, atypical, 8, with rhizomelic short stature, MIM# 301110; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v1.966 ZNF808 Hazel Phillimore gene: ZNF808 was added
gene: ZNF808 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZNF808 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNF808 were set to PMID: 37308312
Phenotypes for gene: ZNF808 were set to non-syndromic neonatal diabetes; MONDO:0016391
Review for gene: ZNF808 was set to GREEN
Added comment: PMID: 37308312; Alqahtani, MA. et al. (2023) Clin Genet. doi: 10.1111/cge.14389.
Three siblings in one consanguineous Saudi Arabian family with non-syndromic neonatal diabetes, all with a homozygous frameshift variant, NM_001321425.2:c.1448dupA, p.(Tyr483*), in ZNF808. (Same nucleotide and amino acid numbering as for the MANE SELECT transcript, NM_001039886.4).
This variant has been entered as likely pathogenic in ClinVar by this group.
This variant occurs in the last exon of the gene and is therefore not NMD-predicted. Instead it is predicted to cause a truncated protein.
This paper shows a diagram with several other truncating variants in this exon, which were reported in the paper by De Franco, E. et al. (2021).
(These patients also had low vitamin D levels, suggesting an association, and is consistent with other studies looking into loci that are associated with vitamin D).

De Franco, E. et al. (2021) medRxiv 08.23.21262262. (Exeter, UK):
Firstly, this group found a homozygous variant NM_001039886.3:c.637del, p.(Leu213*) that is predicted to cause a truncated protein, and also a homozygous CNV Chr19(GRCh37):g.53057128_53100968del (predicted to cause a deletion of exons 4 and 5) in two unrelated affected individuals. These patients had pancreatic agenesis, defined as insulin-dependent diabetes in the first 6 months of life (neonatal diabetes) and exocrine pancreatic insufficiency. Both were from consanguineous families. Parents were subsequently tested and shown to be heterozygous carriers.
They then investigated 232 additional patients who had been diagnosed with neonatal diabetes before the age of 6 months and found ten more homozygous ZNF808 variants. Six were nonsense: p.(Gln194*), p.(Cys233*), p.(Tyr427*), p.(Lys458*), p.(Tyr528*) and p.(Arg727*), and three were frameshift variants: p.(Ala379Valfs*157), p.(Leu588Profs*118), p.(Asn770Ilefs*98) and one was a whole-gene deletion.
All the frameshift and nonsense variants occurred in the last exon of the gene, which contains all 23 zinc finger domains; and therefore all of these variants are predicted to result in truncated proteins, and removal of some, if not all, those domains.
This group also carried out functional studies using an in vitro model of pancreas development and showed an aberrant activation of many transposable elements (mostly MER11 elements) that would be normally be repressed during early pancreas development.
Sources: Literature
Mendeliome v1.963 NUDCD2 Krithika Murali Gene: nudcd2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.963 NUDCD2 Seb Lunke Gene: nudcd2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.963 NUDCD2 Seb Lunke Classified gene: NUDCD2 as Amber List (moderate evidence)
Mendeliome v1.963 NUDCD2 Seb Lunke Gene: nudcd2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.962 NUDCD2 Ee Ming Wong gene: NUDCD2 was added
gene: NUDCD2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NUDCD2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NUDCD2 were set to 37272762
Phenotypes for gene: NUDCD2 were set to Multiple congenital anomalies (MONDO:0019042), NUDCD2-related
Penetrance for gene: NUDCD2 were set to unknown
Review for gene: NUDCD2 was set to AMBER
gene: NUDCD2 was marked as current diagnostic
Added comment: - Two unrelated probands, each biallelic for two variants in NUDCD2 (total 3x LoF variants, 1x missense variant)
- Immunoblotting of proteins extracted from the primary fibroblasts of one proband with 2x LoF variants demonstrated markedly reduced NUDCD2 levels compared to healthy individuals
Sources: Literature
Mendeliome v1.961 ARPC5 Paul De Fazio gene: ARPC5 was added
gene: ARPC5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ARPC5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ARPC5 were set to 37349293; 37382373
Phenotypes for gene: ARPC5 were set to Combined immunodeficiency, ARPC5-related MONDO:0015131
Review for gene: ARPC5 was set to GREEN
gene: ARPC5 was marked as current diagnostic
Added comment: 4 individuals from 3 families reported with homozygous LoF variants. All had recurrent and severe infections. Other developmental anomalies were present but seemed variable.

PMID:37349293 reports 2 unrelated patients. Both had scoliosis. One had neurodevelopmental delay and brain atrophy. Patient 1 died at 15yo after a sudden episode of hemoptysis and hematochezia. Patient 2 died at 1yo because of progressive neurologic and respiratory disease; an autopsy was not performed.

PMID:37382373 reports 2 patients from the same family. One had multiple congenital anomalies including a congenital heart defect (CHD) (patent foramen ovale), cleft palate, and hypoplastic corpus callosum. The sibling also had CHD (moderate pulmonary stenosis and atrial septal defect).

Functional studies and a mouse model were supportive of the disease association.
Sources: Literature
Mendeliome v1.960 MIR204 Elena Savva Classified gene: MIR204 as Amber List (moderate evidence)
Mendeliome v1.960 MIR204 Elena Savva Gene: mir204 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.959 MIR204 Elena Savva Classified gene: MIR204 as Amber List (moderate evidence)
Mendeliome v1.959 MIR204 Elena Savva Gene: mir204 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.958 DCAF13 Michelle Torres gene: DCAF13 was added
gene: DCAF13 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DCAF13 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DCAF13 were set to 36797467
Phenotypes for gene: DCAF13 were set to Neuromuscular disease (MONDO#0019056), DCAF13-related
Review for gene: DCAF13 was set to RED
Added comment: One consanguineous family, 4x individuals homozygous NM_015420.7(DCAF13)c.907 G > A; p.(Asp303Asn) (3x via WES and 1x via Sanger) with a neuromuscular disorder characterized by a waddling gait, limb deformities, muscular weakness and facial palsy.

In silicos analysis of mutant DCAF13 suggests that the amino acid change is deleterious and affects a ß-hairpin turn, within a WD40 domain of the protein which may decrease protein stability. Functional studies were not performed.

Previously, a heterozygous variant in DCAF13 with or without a heterozygous missense variant in CCN3, was suggested to cause inherited cortical myoclonic tremor with epilepsy. In addition, a heterozygous DCAF13 variant has been associated with autism spectrum disorder.
Sources: Literature
Mendeliome v1.956 RAB34 Sarah Pantaleo gene: RAB34 was added
gene: RAB34 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RAB34 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RAB34 were set to PMID: 37384395
Phenotypes for gene: RAB34 were set to Clefting; corpus callosum; short bones; hypertelorism; polydactyly; cardiac defects; anorectal anomalies
Penetrance for gene: RAB34 were set to Complete
Review for gene: RAB34 was set to GREEN
Added comment: Oral-facial-digital syndromes (OFDS) are a group of clinically and genetically heterogenous disorders characterised by defects in the development of the face and oral cavity along with digit anomalies. Pathogenic variants in >20 genes encoding ciliary proteins have been found to cause OFDS.

Identified by WES biallelic missense variants in a novel disease-causing ciliary gene RAB34 in four individuals from three unrelated families (aided by GeneMatcher).

Affected individuals presented a novel form of OFDS accompanied by cardiac, cerebral, skeletal (eg. Shortening of long bones), and anorectal defects.

RAB34 encodes a member of the Lab GTPase superfamily and was recently identified as a key mediator of ciliary membrane formation. Protein products of pathogenic variants clustered near the RAB34 C-terminus exhibit a strong loss of function.

Onset is prenatal (multiple developmental defects including short femur, polydactyly, heart malformations, kidney malformations, brain malformations), resulting in medical termination for three probands.

In the fourth, the only one alive at birth, proband born at 39+5 weeks, normal growth parameters after pregnancy with polyhydramnios, corpus callosum agenesis and polydactyly. Respiratory distress at birth.

All four probands presented typical features of ciliopathy disorders, overlapping with oral, facial and digital abnormalities.

All with homozygous missense variants. All absent in gnomAD (in homozygous state). Sanger sequencing confirmed mode of inheritance.
Sources: Literature
Mendeliome v1.956 RPH3A Lucy Spencer gene: RPH3A was added
gene: RPH3A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RPH3A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RPH3A were set to 37403762; 29441694
Phenotypes for gene: RPH3A were set to Neurodevelopmental disorder (MONDO#0700092), RPH3A-related
Review for gene: RPH3A was set to GREEN
Added comment: PMID: 37403762- 6 patients with RPH3A variant. All 6 have ID, 4 have epilepsy, 2 with obesity, 1 with dysmorphic features. All 6 have missense variants, 3 shown to be de novo, the other 3 parents were not available for testing. I patient also had language and motor impairment, breathing issues and mixed hypo/hypertonia- he also had variants in CUL4B, PRKAG2, SCN4A, none of these genes cause seizures (which he had).

Patch clamp studies on 2 of the missense showed they increased either the number of NMDA receptors on neuron membrane surface or increased their conductance. Study suggests that the variants interrupt the normal role of RPH3A activity at the synaptic NMDAR complex which is needed for the induction of synaptic plasticity and NMDAR-dependant behaviours

Previously this gene was reported in PMID: 29441694- 1 girl with learning disabilities, tremors, ataxia, hyperglycemia and muscle fatigability. Chet for 2 RPH3A missense. Functional analysis showed strong and marginal impairment of protein binding for each variant. this is the only biallelic report currently.
Sources: Literature
Mendeliome v1.956 MIR204 Chern Lim gene: MIR204 was added
gene: MIR204 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MIR204 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MIR204 were set to 26056285; 37321975
Phenotypes for gene: MIR204 were set to Retinal dystrophy and iris coloboma with or without cataract (MIM#616722)
Mode of pathogenicity for gene: MIR204 was set to Other
Review for gene: MIR204 was set to GREEN
gene: MIR204 was marked as current diagnostic
Added comment: PMID: 26056285
- Bilateral coloboma and rod-cone dystrophy with or without cataract in nine individuals of a five-generation family.
- Heterozygous n.37C>T segregates with the disease in all affected individuals.
- Functional analysis including transcriptome analysis showed this variant resulted in significant alterations of miR-204 targeting capabilities. In vivo injection, in medaka fish (Oryzias latipes), of the mutated miR-204 caused a phenotype consistent with that observed in the family.
- Authors suggested gain of function is the likely disease mechanism.

PMID: 37321975
- Four members of a three-generation family with early-onset chorioretinal dystrophy, heterozygous for n.37C>T.
- Additionally, four family members were shown to be affected by albinism resulting from biallelic pathogenic OCA2 variants.
- Haplotype analysis excluded relatedness with the family reported in PMID: 26056285.
- In silico analysis of the MIR204 n.37C>T variant reveals profound changes to its target mRNAs and suggests a gain-of-function mechanism of miR 204 variant.
Sources: Literature
Mendeliome v1.946 UBE3B Achchuthan Shanmugasundram reviewed gene: UBE3B: Rating: AMBER; Mode of pathogenicity: None; Publications: 23200864, 23687348, 37010288; Phenotypes: Kaufman oculocerebrofacial syndrome, OMIM:244450; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.946 SMARCB1 Achchuthan Shanmugasundram reviewed gene: SMARCB1: Rating: AMBER; Mode of pathogenicity: None; Publications: 25168959, 37010288; Phenotypes: Coffin-Siris syndrome 3, OMIM:614608; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.946 NOTCH2 Achchuthan Shanmugasundram reviewed gene: NOTCH2: Rating: AMBER; Mode of pathogenicity: None; Publications: 9188663, 30329210, 37010288; Phenotypes: Hajdu-Cheney syndrome, OMIM:102500; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.946 AUTS2 Achchuthan Shanmugasundram reviewed gene: AUTS2: Rating: AMBER; Mode of pathogenicity: None; Publications: 31788251, 37010288; Phenotypes: Intellectual developmental disorder, autosomal dominant 26, OMIM:615834; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.946 ARID1A Achchuthan Shanmugasundram reviewed gene: ARID1A: Rating: AMBER; Mode of pathogenicity: None; Publications: 25168959, 37010288; Phenotypes: ; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.943 POGZ Achchuthan Shanmugasundram changed review comment from: Although there are more than three unrelated cases reported with either cleft palate or bifid uvula in total, this phenotype is not consistently present in patients with monoallelic variants in POGZ gene. Hence, this gene should only be added with amber rating in 'Clefting disorders panel'.

PMID:26739615 - Five unrelated individuals were identified with de novo truncating variants in POGZ gene, of which one individual had cleft palate and another one had bifid uvula.

PMID:31782611 - In this cohort of 22 individuals with 21 different loss of function variants in POGZ, two patients were reported with bifid uvula.

DECIPHER database - Of 42 patients with heterozygous sequence variants, one had cleft palate and another one had bifid uvula (PMID:37010288).

The OMIM entry for White-Sutton syndrome (MIM #616364) does not currently include cleft lip/ palate as one of the clinical manifestations of this syndrome.; to: Although there are more than three unrelated cases reported with either cleft palate or bifid uvula in total, this phenotype is not consistently present in patients with monoallelic variants in POGZ gene. Hence, this gene should only be added with amber rating in 'Clefting disorders' panel.

PMID:26739615 - Five unrelated individuals were identified with de novo truncating variants in POGZ gene, of which one individual had cleft palate and another one had bifid uvula.

PMID:31782611 - In this cohort of 22 individuals with 21 different loss of function variants in POGZ, two patients were reported with bifid uvula.

DECIPHER database - Of 42 patients with heterozygous sequence variants, one had cleft palate and another one had bifid uvula (PMID:37010288).

The OMIM entry for White-Sutton syndrome (MIM #616364) does not currently include cleft lip/ palate as one of the clinical manifestations of this syndrome.
Mendeliome v1.943 POGZ Achchuthan Shanmugasundram reviewed gene: POGZ: Rating: AMBER; Mode of pathogenicity: None; Publications: 26739615, 31782611, 37010288; Phenotypes: White-Sutton syndrome, OMIM:616364; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.943 KMT2A Achchuthan Shanmugasundram reviewed gene: KMT2A: Rating: AMBER; Mode of pathogenicity: None; Publications: 25929198, 30305169, 31710778, 37010288; Phenotypes: Wiedemann-Steiner syndrome, OMIM:605130; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.943 FGFR3 Achchuthan Shanmugasundram reviewed gene: FGFR3: Rating: AMBER; Mode of pathogenicity: None; Publications: 22565872, 29150894, 37010288; Phenotypes: Muenke syndrome, OMIM:602849, Hypochondroplasia, OMIM:146000; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.942 SPTSSA Zornitza Stark reviewed gene: SPTSSA: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Spastic paraplegia 90B, autosomal recessive , MIM# 620417, Spastic paraplegia 90A, autosomal dominant, MIM# 620416; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.941 VWA8 Zornitza Stark reviewed gene: VWA8: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Retinitis pigmentosa 97, MIM#620422; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.941 ARID1B Achchuthan Shanmugasundram changed review comment from: There are at least three unrelated cases with monoallelic variants in ARID1B gene reported with either cleft palate, cleft uvula or bifid uvula. Hence, this gene can be added with green rating in the Clefting disorders panel.

PMID:30349098 - On this web-based survey based on previously reported features of patients with variants in ARID1B gene (143 patients in total), which also included submissions to DECIPHER database, two patients were identified with cleft palate, one with cleft uvula, two with bifid uvula and three with sub mucous cleft. Although variants identified in these patients are reported in this publication, there is no association of individual patients to phenotypes available.

One patient with ARID1B variant (c.3183_3184​insT/ p.Tyr1062LeufsTer10) was reported with submucous cleft soft palate and two patients with ARID1B variants (c.4155_4156​insA/ p.Asn1386LysfsTer18 & c.2620+5G​>A) were reported with bifid uvula in DECIPHER database.; to: Although there are more than three unrelated cases with ARID1B monoallelic variants reported with either cleft palate, cleft uvula or bifid uvula, clefting isn not consistently present in patients with ARID1B variants. Hence, this gene can be added with amber rating in the Clefting disorders panel.

PMID:30349098 - On this web-based survey based on previously reported features of patients with variants in ARID1B gene (143 patients in total), which also included submissions to DECIPHER database, two patients were identified with cleft palate, one with cleft uvula, two with bifid uvula and three with sub mucous cleft. Although variants identified in these patients are reported in this publication, there is no association of individual patients to phenotypes available.

Of >100 patients with ARID1B variants in the DECIPHER database, only one patient (c.3183_3184​insT/ p.Tyr1062LeufsTer10) was reported with submucous cleft soft palate and two patients (c.4155_4156​insA/ p.Asn1386LysfsTer18 & c.2620+5G​>A) were reported with bifid uvula.
Mendeliome v1.941 ARID1B Achchuthan Shanmugasundram edited their review of gene: ARID1B: Changed rating: AMBER
Mendeliome v1.941 CHD4 Achchuthan Shanmugasundram changed review comment from: This gene should be added to the Clefting disorders panel with a green rating as there are four unrelated cases presenting with either cleft palate and/or bifid uvula.

PMID:3138819 reported a patient with heterozygous variant (p.Gln715Ter) in CHD4 that had cleft palate and pierre robin. In addition, another patient identified with heterozygous variant p.Arg1127Gln was reported with bifid uvula.

In addition, DDD study reported two patients with likely pathogenic heterozygous variants who had cleft palate in addition to several other clinical presentations including global developmental delay (PMID:37010288); to: Although there are four unrelated cases presenting with either cleft palate and/or bifid uvula, this phenotype is not consistent among patients identified with monoallelic variants in CHD4 gene. Hence, this gene should be added to the Clefting disorders panel with amber rating.

PMID:31388190 reported 32 patients with heterozygous variants in CHD4 gene, of which one patient (p.Gln715Ter) had cleft palate and pierre robin. In addition, another patient identified with heterozygous variant p.Arg1127Gln was reported with bifid uvula.

In addition, 2 out of 10 patients with pathogenic/ likely pathogenic heterozygous variants from the DDD study were reported with cleft palate in addition to several other clinical presentations including global developmental delay (PMID:37010288).
Mendeliome v1.941 CHD4 Achchuthan Shanmugasundram edited their review of gene: CHD4: Changed rating: AMBER
Mendeliome v1.939 KLHL9 Bryony Thompson Gene: klhl9 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.939 KLHL9 Bryony Thompson Classified gene: KLHL9 as Amber List (moderate evidence)
Mendeliome v1.939 KLHL9 Bryony Thompson Gene: klhl9 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.938 KLHL9 Bryony Thompson gene: KLHL9 was added
gene: KLHL9 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KLHL9 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KLHL9 were set to 20554658
Phenotypes for gene: KLHL9 were set to distal myopathy MONDO:0018949
Review for gene: KLHL9 was set to AMBER
Added comment: A single German family reported in 2010, segregating a missense variant c.796T>C p.Leu95Phe. In vitro functional assays demonstrated the variant diminishes the binding of KLHL9 to Cul3.
Sources: Literature
Mendeliome v1.937 MYMX Bryony Thompson Gene: mymx has been classified as Amber List (Moderate Evidence).
Mendeliome v1.937 MYMX Bryony Thompson Classified gene: MYMX as Amber List (moderate evidence)
Mendeliome v1.937 MYMX Bryony Thompson Gene: mymx has been classified as Amber List (Moderate Evidence).
Mendeliome v1.936 MYMX Bryony Thompson gene: MYMX was added
gene: MYMX was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MYMX was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MYMX were set to 35642635
Phenotypes for gene: MYMX were set to Carey-Fineman-Ziter syndrome MONDO:0009700
Review for gene: MYMX was set to AMBER
Added comment: Single family, two siblings with weakness of the facial musculature, hypomimic face, increased overbite, micrognathia, and facial dysmorphism with homozygous p.Arg46*. The phenotype resembles CFZ syndrome. The variant prevents fusion of myoblasts from patient-derived iPSCs. Mouse model recapitulates a lethal CFZS-like phenotype.
Sources: Literature
Mendeliome v1.932 NOP10 Zornitza Stark edited their review of gene: NOP10: Added comment: PMID 32139460: large multiplex family with 4 affected individuals segregating a heterozygous variant.; Changed rating: AMBER; Changed publications: 17507419, 32139460; Changed phenotypes: Dyskeratosis congenita, autosomal recessive 1, MIM#224230, Pulmonary fibrosis and/or bone marrow failure syndrome, telomere-related, 9, MIM# 620400; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.928 NFATC1 Zornitza Stark Gene: nfatc1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.928 NFATC1 Zornitza Stark Classified gene: NFATC1 as Amber List (moderate evidence)
Mendeliome v1.928 NFATC1 Zornitza Stark Gene: nfatc1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.927 NFATC1 Zornitza Stark gene: NFATC1 was added
gene: NFATC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NFATC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NFATC1 were set to 37249233
Phenotypes for gene: NFATC1 were set to Inborn error of immunity, MONDO:0003778, NFATC1-related; Combined Immune deficiency
Review for gene: NFATC1 was set to AMBER
Added comment: 3 individuals from a multigenerational consanguineous pedigree with early-onset sinopulmonary infections and bronchiectasis, recurrent viral (warts) and bacterial (folliculitis and abscesses) skin infections, hypogammaglobulinemia, lower CD4+/CD8+ T-cell ratio and lower recent thymic emigrants compared with the age-matched controls. Lymphocyte proliferation responses to PHA and CD3/CD28 stimulations were defective.

Single pedigree with supportive functional studies.
Sources: Literature
Mendeliome v1.922 MRPL50 Zornitza Stark Gene: mrpl50 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.922 MRPL50 Zornitza Stark Classified gene: MRPL50 as Amber List (moderate evidence)
Mendeliome v1.922 MRPL50 Zornitza Stark Gene: mrpl50 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.921 MRPL50 Zornitza Stark reviewed gene: MRPL50: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Mitochondrial disease, MONDO: 004470, MRPL50-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.921 MOS Zornitza Stark Phenotypes for gene: MOS were changed from Early embryonic arrest and fragmentation; infertility to Infertility disorder, MONDO:0005047, MOS-related; Early embryonic arrest and fragmentation
Mendeliome v1.919 HMGCR Zornitza Stark Phenotypes for gene: HMGCR were changed from [Low density lipoprotein cholesterol level QTL 3] to autosomal recessive limb-girdle muscular dystrophy (MONDO: 0015152), HMGCR-related
Mendeliome v1.915 MOS Melanie Marty gene: MOS was added
gene: MOS was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MOS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MOS were set to PMID: 34779126; PMID: 34997960; PMID: 36403623; PMID: 35670744
Phenotypes for gene: MOS were set to Early embryonic arrest and fragmentation; infertility
Review for gene: MOS was set to GREEN
Added comment: PMID: 34779126: 3 x females with infertility with biallelic MOS variants identified. Using oocyte-specific Erk1/2 knockout mice, they verified that MOS-ERK signal pathway inactivation in oocytes caused early embryonic arrest and fragmentation.

PMID: 34997960: 2 x females with biallelic MOS variants. Functional studies showed a reduction of protein for two of these variants (missense and frameshift). Functional studies also showed these variants reduced the ability of MOS to phosphorylate its downstream target, extracellular signal-regulated kinase 1/2.

PMID: 35670744 1 x additional family (twins) with infertility and abnormal oocyte morphology with large first polar body. Functional studies showed the MOS variants could not activate MEK1/2 and ERK1/2 in oocytes and HEK293 cells. In addition, functional studies also showed when compared with wild-type MOS, the MOS variants decreased the MOS protein level and attenuated the binding capacity with MEK1.

PMID: 36403623 1 x female with primary infertility, patient’s oocytes had a large polar body and poor embryonic development, hom missense variant in MOS identified.
Sources: Literature
Mendeliome v1.913 NSUN6 Elena Savva Classified gene: NSUN6 as Amber List (moderate evidence)
Mendeliome v1.913 NSUN6 Elena Savva Gene: nsun6 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.912 NSUN6 Elena Savva Classified gene: NSUN6 as Amber List (moderate evidence)
Mendeliome v1.912 NSUN6 Elena Savva Gene: nsun6 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.911 TAPT1 Paul De Fazio reviewed gene: TAPT1: Rating: AMBER; Mode of pathogenicity: None; Publications: 36697720, 36652330; Phenotypes: Osteochondrodysplasia, complex lethal, Symoens-Barnes-Gistelinck type (MIM#616897); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.911 PRSS8 Elena Savva Classified gene: PRSS8 as Amber List (moderate evidence)
Mendeliome v1.911 PRSS8 Elena Savva Gene: prss8 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.908 PRSS8 Lucy Spencer gene: PRSS8 was added
gene: PRSS8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRSS8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PRSS8 were set to 36715754
Phenotypes for gene: PRSS8 were set to ichthyosis MONDO:0019269, PRSS8-related
Review for gene: PRSS8 was set to AMBER
Added comment: PMID: 36715754
1 family with 3 affected sons with congenital ichthyosis, consanguineous parents. All 3 affected members are homozygous for a canonical splice in PRSS8, quantitative RT-PCR showed a significant reduction in normal PRSS8 transcript.

A second family with 4 affected members (proband and 3 cousins) with ichthyosis (3 also had autism), also consanguineous. Only the proband was tested who is homozygous for a missense in PTSS8. However this patient also had a TAAR1 missense (no disease association, but the paper suggests this could be responsible for the autism phenotype- KO mice have abnormal learning behaviour).
Sources: Literature
Mendeliome v1.906 NSUN6 Michelle Torres gene: NSUN6 was added
gene: NSUN6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NSUN6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NSUN6 were set to 37226891
Phenotypes for gene: NSUN6 were set to neurodevelopmental disorder MONDO:0700092, NSUN6-related
Review for gene: NSUN6 was set to AMBER
Added comment: Three unrelated consanguineous families with developmental delay, intellectual disability, motor delay, and behavioral anomalies. WES detected homozygous variants:
- p.(Leu9Glufs*3): even though authors say is is predicted to cause NMD, it actually is NMD escape. No further studies were performed. A deceased affected sibling and parents were NOT tested.
- p.(Asp323Asn): Shown to result in a misfolded protein. Methylation assay showed mutant could not catalyze m5C deposition in transcribed tRNACys and tRNAThr substrates in vitro. One of the parents and both unaffected siblings were shown to be carriers.
- p.(Glu441Profs*15): truncation (full protein is 470aa) which would result in loss of residues involved in recognition and methylation. Shown to result in a misfolded protein. Parents were shown carriers.
Sources: Literature
Mendeliome v1.906 HMGCR Naomi Baker reviewed gene: HMGCR: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 37167966, 36745799; Phenotypes: autosomal recessive limb-girdle muscular dystrophy (MONDO: 0015152), HMGCR-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.906 UNC79 Krithika Murali gene: UNC79 was added
gene: UNC79 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UNC79 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: UNC79 were set to PMID:37183800
Phenotypes for gene: UNC79 were set to Neurodevelopmental disorderMONDO:0700092
Review for gene: UNC79 was set to AMBER
Added comment: PMID:37183800 Bayat et al 2023 report 6 unrelated patients with heterozygous NMD-predicted LoF variants in UNC79 - x1 canonical splice site variant, x5 nonsense/frameshift. 5 were confirmed de novo, 1 not identified in mother - father unavailable for testing. All variants absent in gnomAD and v2 pLI score for UNC79 is 1.

Patients with UNC79 variants were identified through GeneMatcher or an international network of Epilepsy and Genetics departments. x1 patient underwent duo exome sequencing, remaining had trio exome sequencing - no other causative variants identified.

Phenotypic features included:
- 4/6 autistic features
- 5/6 patients mild-moderate ID
- 4/6 behavioural issues (aggression, stereotypies)
- 4/6 epilepsy (focal to bilateral tonic-clonic seizures)
- 5/6 hypotonia

unc79 knockdown drosophila flies exhibited significantly higher rate of seizure-like behaviour than controls. unc79 haploinsufficiency shown to lead to significant reduction in protein levels of both unc79 and unc80 in mouse brains. Unc79 haploinsufficiency associated with deficiency in hippocampal-dependent learning and memory in mice.

Authors have reviewed their own evidence in relation to the gene-disease criteria detailed by Strande et al 2017 and note that their clinical and experimental data provides moderate-level evidence supporting the association between UNC79 and a neurodevelopment disorder including ASD.

Amber association favoured due to clinical phenotypic range reported between affected individuals and their lack of specificity.
Sources: Literature
Mendeliome v1.889 OXGR1 Zornitza Stark reviewed gene: OXGR1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Nephrolithiasis, calcium oxalate, 2, with nephrocalcinosis, MIM# 620374; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.879 GATAD2A Bryony Thompson changed review comment from: https://doi.org/10.1016/j.xhgg.2023.100198 - Five unrelated individuals with a neurodevelopmental disorder identified with 3 missense & 2 LoF (4 de novo & 1 unknown inheritance). The shared clinical features with variable expressivity include global developmental delay (4/4), craniofacial dysmorphism (3/5), structural brain defects (2/3), musculoskeletal anomalies (3/5), vision/hearing defects (2/3), gastrointestinal/renal defects (2/3). Loss of function is the expected mechanism of disease. In vitro assays of one of the missense variants (p.Cys420Tyr) demonstrates disruption of GATAD2A integration with CHD3, CHD4, and CHD5
PMID: 17565372 - null mouse model is embryonic lethal.
Sources: Literature; to: PMID: 37181331 - Five unrelated individuals with a neurodevelopmental disorder identified with 3 missense & 2 LoF (4 de novo & 1 unknown inheritance). The shared clinical features with variable expressivity include global developmental delay (4/4), craniofacial dysmorphism (3/5), structural brain defects (2/3), musculoskeletal anomalies (3/5), vision/hearing defects (2/3), gastrointestinal/renal defects (2/3). Loss of function is the expected mechanism of disease. In vitro assays of one of the missense variants (p.Cys420Tyr) demonstrates disruption of GATAD2A integration with CHD3, CHD4, and CHD5
PMID: 17565372 - null mouse model is embryonic lethal.
Sources: Literature
Mendeliome v1.877 ARFGEF3 Ain Roesley reviewed gene: ARFGEF3: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Dystonia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v1.869 AMFR Yetong Chen gene: AMFR was added
gene: AMFR was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: AMFR was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: AMFR were set to 37119330
Phenotypes for gene: AMFR were set to Hereditary spastic paraplegia, MONDO:0019064
Review for gene: AMFR was set to GREEN
Added comment: PMID 37119330 reports 20 individuals harbouring AMFR variants from 8 unrelated, consanguineous families. All patients had early disease onset (<3 years), including motor delay, lower limb hyperreflexia and spastic paraplegia that match the typical phenotypes of hereditary spastic paraplegia.
Sources: Literature
Mendeliome v1.869 POLD3 Bryony Thompson Classified gene: POLD3 as Amber List (moderate evidence)
Mendeliome v1.869 POLD3 Bryony Thompson Gene: pold3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.868 POLD3 Bryony Thompson gene: POLD3 was added
gene: POLD3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: POLD3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: POLD3 were set to 37030525; 36395985; 27524497
Phenotypes for gene: POLD3 were set to Severe combined immunodeficiency MONDO:0015974
Review for gene: POLD3 was set to AMBER
Added comment: Homozygous missense variant (NM_006591.3; p.Ile10Thr) identified in a single Lebanese patient, the product of a consanguineous family, presenting with a syndromic severe combined immunodeficiency with neurodevelopmental delay and hearing loss. POLD3 as well as POLD1 and POLD2 expression was abolished in the patient's cells. Null mouse models are embryonic lethal and demonstrate Pold3 is essential for DNA replication in murine B cells.
Sources: Literature
Mendeliome v1.867 POLD2 Bryony Thompson Phenotypes for gene: POLD2 were changed from Intellectual disability; immunodeficiency to Non-severe combined immunodeficiency due to polymerase delta deficiency MONDO:0800145
Mendeliome v1.865 POLD2 Bryony Thompson Classified gene: POLD2 as Amber List (moderate evidence)
Mendeliome v1.865 POLD2 Bryony Thompson Gene: pold2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.864 POLD2 Bryony Thompson reviewed gene: POLD2: Rating: AMBER; Mode of pathogenicity: None; Publications: 31449058, 36528861; Phenotypes: Non-severe combined immunodeficiency due to polymerase delta deficiency MONDO:0800145; Mode of inheritance: None
Mendeliome v1.864 SLC4A2 Zornitza Stark Gene: slc4a2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.864 SLC4A2 Zornitza Stark Classified gene: SLC4A2 as Amber List (moderate evidence)
Mendeliome v1.864 SLC4A2 Zornitza Stark Gene: slc4a2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.863 SLC4A2 Zornitza Stark gene: SLC4A2 was added
gene: SLC4A2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC4A2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC4A2 were set to 34668226; 20507629
Phenotypes for gene: SLC4A2 were set to Osteopetrosis, autosomal recessive 9, MIM# 620366
Review for gene: SLC4A2 was set to AMBER
Added comment: Single individual reported with homozygous missense variant. However, cattle and mouse models support gene-disease association.
Sources: Literature
Mendeliome v1.859 NOP10 Bryony Thompson Classified gene: NOP10 as Amber List (moderate evidence)
Mendeliome v1.859 NOP10 Bryony Thompson Gene: nop10 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.858 NOP10 Bryony Thompson reviewed gene: NOP10: Rating: AMBER; Mode of pathogenicity: None; Publications: 17507419, 32554502; Phenotypes: Telomere syndrome MONDO:0100137; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.855 MCAT Zornitza Stark reviewed gene: MCAT: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Leber hereditary optic neuropathy, autosomal recessive, MONDO:0030309; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.853 RARA Zornitza Stark commented on gene: RARA: PMID: 37086723 identified a recurrent, heterozygous de novo missense variant in the RARA gene - c.865G>A; (p.Gly289Arg) - in two unrelated individuals. The variant is absent from gnomAD, highly conserved, major grantham score (125) and is located in the hormone receptor domain (DECIPHER).

Both individuals had severe craniosynostosis (sagittal or bicoronal).

Other shared phenotypic features included:
- Limb anomalies (rocker-bottom feet, bowing of the legs, and short upper/lower limbs)
- Additional craniofacial manifestations(microtia, conductive hearing loss, ankyloglossia, esotropia, hypoplastic
nasal bones, and oligodontia)
- Other additional anomalies included renal dysplasia with cysts, tracheomalacia, pulmonary arterial hypertension, developmental delays, hypotonia, cryptorchidism, seizures and adrenal insufficiency.

The authors postulate a gain of function mechanism. No functional studies provided. The gene encodes the retinoic acid receptor. Overlapping phenotypic features in these 2 affected individuals with retinoic acid embryopathy noted by the authors.
Mendeliome v1.851 RARA Zornitza Stark Classified gene: RARA as Amber List (moderate evidence)
Mendeliome v1.851 RARA Zornitza Stark Gene: rara has been classified as Amber List (Moderate Evidence).
Mendeliome v1.850 RARA Zornitza Stark edited their review of gene: RARA: Added comment: PMID: 37086723 identified a recurrent, heterozygous de novo missense variant in the RARA gene - c.865G>A; (p.Gly289Arg) - in two unrelated individuals. The variant is absent from gnomAD, highly conserved, major grantham score (125) and is located in the hormone receptor domain (DECIPHER).

Both individuals had severe craniosynostosis (sagittal or bicoronal).

Other shared phenotypic features included:
- Limb anomalies (rocker-bottom feet, bowing of the legs, and short upper/lower limbs)
- Additional craniofacial manifestations(microtia, conductive hearing loss, ankyloglossia, esotropia, hypoplastic
nasal bones, and oligodontia)
- Other additional anomalies included renal dysplasia with cysts, tracheomalacia, pulmonary arterial hypertension, developmental delays, hypotonia, cryptorchidism, seizures and adrenal insufficiency.

The authors postulate a gain of function mechanism. No functional studies provided. The gene encodes the retinoic acid receptor. Overlapping phenotypic features in these 2 affected individuals with retinoic acid embryopathy noted by the authors.; Changed rating: AMBER; Changed publications: 31343737, 37086723; Changed phenotypes: Craniosynostosis - MONDO:0015469, Syndromic chorioretinal coloboma; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.849 PMEPA1 Zornitza Stark reviewed gene: PMEPA1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Hereditary disorder of connective tissue, MONDO:0023603, PMEPA1-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.848 NAF1 Bryony Thompson gene: NAF1 was added
gene: NAF1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: NAF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: NAF1 were set to 27510903
Phenotypes for gene: NAF1 were set to Pulmonary fibrosis and/or bone marrow failure, telomere-related MONDO:0000148
Review for gene: NAF1 was set to GREEN
Added comment: At least 3 probands/families with telomere-related pulmonary fibrosis and a supporting mouse model
PMID: 27510903 - 5 individuals from 2 unrelated families with pulmonary fibrosis-emphysema and extrapulmonary manifestations including myelodysplastic syndrome and liver disease, with LoF variants. Truncated NAF1 was detected in cells derived from patients, and, in cells in which a frameshift mutation was introduced by genome editing telomerase RNA levels were reduced. Shortened telomere length also segregated with the variants. A Naf1+/- mouse model had reduced telomerase RNA levels

ClinVar - 1 nonsense and 2 splice site variants (ID: 2443185, 1338525, 2443184) called LP by the Genetic Services Laboratory, University of Chicago but no clinical details were provided
- SCV002547372.1 - Garcia Pulmonary Genetics Research Laboratory, Columbia University Irving Medical Center - at least one individual with pulmonary fibrosis and leukocyte telomere length (by qPCR) less than 10th percentile age-adjusted
Sources: Expert list
Mendeliome v1.847 PMEPA1 Hazel Phillimore changed review comment from: PMID: 36928819; Greene, D. et al. (2023) Nat Med. 29(3):679-688.
A paper by Genomics England Research Consortium. Genetic association analysis of 77,539 genomes .

Eight families with truncating variants affecting the same stretch of cytosines in this gene.

In the 100KGP discovery cohort, in three families with Familial thoracic aortic aneurysm disease (FTAAD) of European ancestry, the variant found was an insertion of a cytosine within a seven-cytosine stretch in the last exon, predicted to cause p.(S209Qfs*3). This variant was also identified independently in eight affected members of three pedigrees of Japanese ancestry in a separate Japanese patient group.
Also, this study found a deletion of one of those cytosines causing p.(S209Afs*61), in one individual or family.
Also, there was one family in Belgium in which the affected members carried a 5-bp deletion in the same stretch of polycytosines inducing a frameshift p.(P207Qfs*3).

Phenotypic analysis of the individuals suggest that the phenotype of these FTAAD individuals and families is more like Loeys-Dietz syndrome.
Sources: Literature; to: PMID: 36928819; Greene, D. et al. (2023) Nat Med. 29(3):679-688.
A paper by Genomics England Research Consortium. Genetic association analysis of 77,539 genomes .

Eight families with truncating variants affecting the same stretch of cytosines in this gene.

In the 100KGP discovery cohort, in three families with Familial thoracic aortic aneurysm disease (FTAAD) of European ancestry, the variant found was an insertion of a cytosine within a seven-cytosine stretch in the last exon, predicted to cause p.(S209Qfs*3). This variant was also identified independently in eight affected members of three pedigrees of Japanese ancestry in a separate Japanese patient group.
(Note: the variant is present in gnomAD v2.1.1 in 22 heterozygotes as a filtered out variant.).

Also, this study found a deletion of one of those cytosines causing p.(S209Afs*61), in one individual or family.
Also, there was one family in Belgium in which the affected members carried a 5-bp deletion in the same stretch of polycytosines inducing a frameshift p.(P207Qfs*3).

Phenotypic analysis of the individuals suggest that the phenotype of these FTAAD individuals and families is more like Loeys-Dietz syndrome.
Sources: Literature
Mendeliome v1.847 PMEPA1 Seb Lunke Gene: pmepa1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.847 PMEPA1 Seb Lunke Classified gene: PMEPA1 as Amber List (moderate evidence)
Mendeliome v1.847 PMEPA1 Seb Lunke Gene: pmepa1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.841 PMEPA1 Hazel Phillimore gene: PMEPA1 was added
gene: PMEPA1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PMEPA1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PMEPA1 were set to PMID: 36928819
Phenotypes for gene: PMEPA1 were set to Familial thoracic aortic aneurysm disease (FTAAD); Loeys-Dietz syndrome
Mode of pathogenicity for gene: PMEPA1 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: PMEPA1 was set to AMBER
Added comment: PMID: 36928819; Greene, D. et al. (2023) Nat Med. 29(3):679-688.
A paper by Genomics England Research Consortium. Genetic association analysis of 77,539 genomes .

Eight families with truncating variants affecting the same stretch of cytosines in this gene.

In the 100KGP discovery cohort, in three families with Familial thoracic aortic aneurysm disease (FTAAD) of European ancestry, the variant found was an insertion of a cytosine within a seven-cytosine stretch in the last exon, predicted to cause p.(S209Qfs*3). This variant was also identified independently in eight affected members of three pedigrees of Japanese ancestry in a separate Japanese patient group.
Also, this study found a deletion of one of those cytosines causing p.(S209Afs*61), in one individual or family.
Also, there was one family in Belgium in which the affected members carried a 5-bp deletion in the same stretch of polycytosines inducing a frameshift p.(P207Qfs*3).

Phenotypic analysis of the individuals suggest that the phenotype of these FTAAD individuals and families is more like Loeys-Dietz syndrome.
Sources: Literature
Mendeliome v1.839 MCAT Seb Lunke Classified gene: MCAT as Amber List (moderate evidence)
Mendeliome v1.839 MCAT Seb Lunke Gene: mcat has been classified as Amber List (Moderate Evidence).
Mendeliome v1.834 SLC30A9 Lucy Spencer gene: SLC30A9 was added
gene: SLC30A9 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC30A9 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC30A9 were set to 37041080
Phenotypes for gene: SLC30A9 were set to Birk-Landau-Perez syndrome (MIM#617595)
Review for gene: SLC30A9 was set to GREEN
Added comment: PMID:37041080 - 2 families previously reported and this paper describes 4 more with biallelic SLC30A9 variants. Original 2 families: 6 affected members all hom for Ala350del, and 1 affected member chet for 2 frameshifts. 4 families from this paper: 2 families have the same homozygous missense (Gly418Val), family 3 has 4 affected sibs hom for Ala350del, family 4 1 affected chet for a frameshift and a synonymous. So 2 fams homs for Ala350del and 2 fams hom for Gly418Val.
All have Brik-Landau-Perez syndrome: all with ID, movement disorder and dystonia, and many with oculomotor apraxia, renal abnormalitie, ptosis, some had hearing impairment.
Sources: Literature
Mendeliome v1.830 GATAD2A Bryony Thompson gene: GATAD2A was added
gene: GATAD2A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GATAD2A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GATAD2A were set to https://doi.org/10.1016/j.xhgg.2023.100198; 17565372
Phenotypes for gene: GATAD2A were set to Neurodevelopmental disorder, MONDO:0700092, GATAD2A-related
Review for gene: GATAD2A was set to GREEN
Added comment: https://doi.org/10.1016/j.xhgg.2023.100198 - Five unrelated individuals with a neurodevelopmental disorder identified with 3 missense & 2 LoF (4 de novo & 1 unknown inheritance). The shared clinical features with variable expressivity include global developmental delay (4/4), craniofacial dysmorphism (3/5), structural brain defects (2/3), musculoskeletal anomalies (3/5), vision/hearing defects (2/3), gastrointestinal/renal defects (2/3). Loss of function is the expected mechanism of disease. In vitro assays of one of the missense variants (p.Cys420Tyr) demonstrates disruption of GATAD2A integration with CHD3, CHD4, and CHD5
PMID: 17565372 - null mouse model is embryonic lethal.
Sources: Literature
Mendeliome v1.824 KPNA7 Zornitza Stark Phenotypes for gene: KPNA7 were changed from Epilepsy; intellectual disability to Oocyte/zygote/embryo maturation arrest 17, MIM# 620319; Neurodevelopmental disorder
Mendeliome v1.822 KPNA7 Zornitza Stark Classified gene: KPNA7 as Amber List (moderate evidence)
Mendeliome v1.822 KPNA7 Zornitza Stark Gene: kpna7 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.821 KPNA7 Zornitza Stark reviewed gene: KPNA7: Rating: AMBER; Mode of pathogenicity: None; Publications: 36647821; Phenotypes: Oocyte/zygote/embryo maturation arrest 17, MIM# 620319; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.807 DNAJB4 Bryony Thompson reviewed gene: DNAJB4: Rating: AMBER; Mode of pathogenicity: Other; Publications: 36512060; Phenotypes: distal myopathy MONDO:0018949; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.807 TSPAN7 Ain Roesley reviewed gene: TSPAN7: Rating: AMBER; Mode of pathogenicity: None; Publications: 26350204, 36625203; Phenotypes: Intellectual developmental disorder, X-linked 58, MIM #300210, MONDO:0010266; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes
Mendeliome v1.807 ROBO1 Zornitza Stark Phenotypes for gene: ROBO1 were changed from Congenital heart disease; Pituitary anomalies; Nystagmus 8, congenital, autosomal recessive, MIM# 257400; intellectual disability, MONDO:0001071 to Pituitary hormone deficiency, combined or isolated, 8, MIM# 620303; Nystagmus 8, congenital, autosomal recessive, MIM# 257400; Neurooculorenal syndrome, MIM# 620305
Mendeliome v1.806 ROBO1 Zornitza Stark edited their review of gene: ROBO1: Changed phenotypes: Pituitary hormone deficiency, combined or isolated, 8, MIM# 620303, Nystagmus 8, congenital, autosomal recessive, MIM# 257400, Neurooculorenal syndrome, MIM# 620305
Mendeliome v1.803 ROBO1 Zornitza Stark edited their review of gene: ROBO1: Added comment: Association with ID: GREEN for bi-allelic variants:

PMID:28286008 reported a boy with compound heterozygous variants that was presented with developmental delay in 13 months and had severe intellectual disability and hyperactivity at nine years of age. He was nonverbal and wheelchair dependent because of spastic diplegia and ataxia.

PMID:30692597 reported a five year old boy identified with a homozygous ROBO1 variant who had combined pituitary hormone deficiency, psychomotor developmental delay, severe intellectual disability, sensorineural hearing loss, strabismus and characteristic facial features.

PMID:35227688 reported eight patients including the boy reported in PMID:30692597. Of the other seven patients, three were presented with intellectual disability. Of these three patients, two harboured compound heterozygous and one harboured homozygous variants.

PMID:35348658 reported a patient identified with monoallelic de novo variant (p.D422G) who presented with early-onset epileptic encephalopathy and had severe developmental delay.; Changed phenotypes: Congenital heart disease, Pituitary anomalies, Nystagmus 8, congenital, autosomal recessive, MIM# 257400, intellectual disability, MONDO:0001071
Mendeliome v1.792 VWA8 Zornitza Stark Gene: vwa8 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.792 VWA8 Zornitza Stark Classified gene: VWA8 as Amber List (moderate evidence)
Mendeliome v1.792 VWA8 Zornitza Stark Gene: vwa8 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.791 MKL2 Zornitza Stark Gene: mkl2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.791 MKL2 Zornitza Stark Classified gene: MKL2 as Amber List (moderate evidence)
Mendeliome v1.791 MKL2 Zornitza Stark Gene: mkl2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.781 VWA8 Dean Phelan gene: VWA8 was added
gene: VWA8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: VWA8 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: VWA8 were set to PMID: 37012052
Phenotypes for gene: VWA8 were set to Retinitis pigmentosa (MONDO:0019200), VWA8-related
Review for gene: VWA8 was set to AMBER
Added comment: PMID: 37012052
- Single family with 11 affected patients, 9 - 87y, all presented initial symptoms of night blindness, visual field defects and reduced visual acuity later, macular changes, including macular degeneration and dystrophy. A heterozygous two-loci variant in VWA8 c.3070G>A;c.4558C>T (p.Gly1024Arg; p.Arg1520Ter) was identified and segregated with disease. Expression studies showed reduced protein expression. Zebrafish knockout model displayed an RP phenotype.
Sources: Literature
Mendeliome v1.781 MKL2 Dean Phelan gene: MKL2 was added
gene: MKL2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MKL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MKL2 were set to PMID: 37013900
Phenotypes for gene: MKL2 were set to Neurodevelopmental disorder (MONDO:0700092), MKL2-related
Mode of pathogenicity for gene: MKL2 was set to Other
Review for gene: MKL2 was set to AMBER
Added comment: PMID: 37013900
- de novo missense variants in MKL2 (now known as MRTFB) were identified in two patients with mild dysmorphic features, intellectual disability, global developmental delay, speech apraxia, and impulse control issues. Functional studies in a Drosophila model suggest a gain of function disease mechanism.
Sources: Literature
Mendeliome v1.777 CEP162 Zornitza Stark Gene: cep162 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.777 CEP162 Zornitza Stark Classified gene: CEP162 as Amber List (moderate evidence)
Mendeliome v1.777 CEP162 Zornitza Stark Gene: cep162 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.776 CRIPT Karina Sandoval changed review comment from: PMID: 37013901 identified 6 individuals with Rothmund-Thomson syndrome, two new identified and 4 were already published. 5 were hom, 1 was chet, all with different variants. Additionally all presented with neuro dev delay and seizures.

CRIPT-deficient fibroblasts showed an unremarkable mitotic progression and unremarkable number of mitotic errors,

c.132del p.(Ala45Glyfs*82), hom
c.227G>A, p.(Cys76Tyr), hom
c.133_134insGG,p.(Ala45Glyfs*82),hom
c.141del p.(Phe47Leufs*84), hom
c.8G>A p.(Cys3Tyr), 1,331 bp del exon 1, chet
c.7_8del; p.(Cys3Argfs*4), hom; to: PMID: 37013901 identified 6 individuals with Rothmund-Thomson syndrome characterised by poikiloderma, sparse hair, small stature, skeletal defects, cancer, cataracts, resembling features of premature aging. Two new variants identified and 4 were already published. 5 were hom, 1 was chet, all with different variants.
All CRIPT individuals fulfilled the diagnostic criteria for RTS, and additionally had neurodevelopmental delay and seizures.

CRIPT-deficient fibroblasts showed an unremarkable mitotic progression and unremarkable number of mitotic errors,

c.132del p.(Ala45Glyfs*82), hom
c.227G>A, p.(Cys76Tyr), hom
c.133_134insGG,p.(Ala45Glyfs*82),hom
c.141del p.(Phe47Leufs*84), hom
c.8G>A p.(Cys3Tyr), 1,331 bp del exon 1, chet
c.7_8del; p.(Cys3Argfs*4), hom
Mendeliome v1.776 CEP162 Paul De Fazio gene: CEP162 was added
gene: CEP162 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CEP162 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CEP162 were set to 36862503
Phenotypes for gene: CEP162 were set to Retinitis pigmentosa MONDO:0019200, CEP162-related
Penetrance for gene: CEP162 were set to unknown
Review for gene: CEP162 was set to AMBER
gene: CEP162 was marked as current diagnostic
Added comment: 2 patients from reportedly unrelated consanguineous Moroccan families with the same homozygous frameshift variant reported with late-onset retinal degeneration. Patient 1 was diagnosed with RP at age 60, patient 2 at age 69. Both reported loss of visual acuity in the years prior.

Immunoblotting of cell lysates from patient fibroblasts showed that some mutant transcript escaped NMD. Functional testing showed that the truncated protein could bind microtubules but was unable to associate with centrioles or its interaction partner CEP290. Patient fibroblasts were shown to have delayed ciliation.

Mutant protein was unable to rescue loss of cilia in CEP162 knockdown mice supporting that the mutant protein does not retain any ciliary function, however additional data supported that the truncated protein was able to bind microtubules and function normally during neuroretinal development. The authors suggest this likely underlies the late-onset RP in both patients.

Rated Amber because only a single variant has been reported in patients who may or may not be related (same ethnic background).
Sources: Literature
Mendeliome v1.775 POLR1A Lucy Spencer reviewed gene: POLR1A: Rating: AMBER; Mode of pathogenicity: None; Publications: 28051070, 36917474; Phenotypes: Leukodystrophy MONDO:0019046, POLR1A-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.773 RNH1 Krithika Murali gene: RNH1 was added
gene: RNH1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RNH1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RNH1 were set to PMID: 36935417
Phenotypes for gene: RNH1 were set to RNH1-related disorder
Review for gene: RNH1 was set to AMBER
Added comment: PMID: 36935417 report two siblings from a consanguineous Somali family with homozygous RNH1 splice site variant (c.615-2A>C) with congenital cataracts, global developmental delay, hypotonia, seizures (focal and generalised) and regression in the context of infection. RT-PCR and RNASeq of skeletal muscle supported exon 7 skipping with an in-frame deletion involving 57 amino acids with reduced expression on Western blot analysis.
Sources: Literature
Mendeliome v1.771 MB Elena Savva Classified gene: MB as Green List (high evidence)
Mendeliome v1.771 MB Elena Savva Gene: mb has been classified as Green List (High Evidence).
Mendeliome v1.770 MB Elena Savva Classified gene: MB as Green List (high evidence)
Mendeliome v1.770 MB Elena Savva Gene: mb has been classified as Green List (High Evidence).
Mendeliome v1.769 MB Elena Savva Marked gene: MB as ready
Mendeliome v1.769 MB Elena Savva Gene: mb has been classified as Red List (Low Evidence).
Mendeliome v1.769 MB Elena Savva gene: MB was added
gene: MB was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MB was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: MB were set to 35527200; 30918256
Phenotypes for gene: MB were set to Myopathy, sarcoplasmic body MIM#620286
Mode of pathogenicity for gene: MB was set to Other
Review for gene: MB was set to GREEN
Added comment: PMID: 30918256:
- Recurrent c.292C>T (p.His98Tyr) in fourteen members of six European families with AD progressive myopathy.
- Mutant myoglobin has altered O2 binding, exhibits a faster heme dissociation rate and has a lower reduction potential compared to wild-type myoglobin.
- GOF hypothesised
- 2/3 of myoglobin knockout mice die in utero, 1/3 live to adulthood with little sign of functional effects, likely due to multiple compensatory mechanisms.

PMID: 35527200:
- single adult patient with myoglobinopathy
- same recurring p.His98Tyr variant
Sources: Literature
Mendeliome v1.768 PKDCC Zornitza Stark Phenotypes for gene: PKDCC were changed from Dysmorphism; shortening of extremities to Rhizomelic limb shortening with dysmorphic features, MIM# 618821
Mendeliome v1.765 PKDCC Zornitza Stark reviewed gene: PKDCC: Rating: GREEN; Mode of pathogenicity: None; Publications: 36896672; Phenotypes: Rhizomelic limb shortening with dysmorphic features 618821; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.765 NPPA Chern Lim changed review comment from: PMID: 36303204:
- 1x Brugada patient with heterozygous R107X (NMD-predicted, 5 hets in gnomADv3), regarded as ACMG-LP.

PMID: 19646991:
- NPPA S64R missense in one fam with familial AF, heterozygous in two affected family members but was absent in unaffected family members and their controls. This variant has 195 hets in gnomADv3.

PMID: 23275345:
- Segregation of the homozygous p.R150Q mutation of the NPPA gene with the phenotype in the 6 families with autosomal recessive AD cardiomyopathy (ADCM). This variant has no homozygotes in gnomAD.

ClinGen gene curation: for autosomal recessive DCM - No Known Disease Relationship (09/04/2020).; to: PMID: 36303204:
- 1x Brugada patient with heterozygous R107X (NMD-predicted, 5 hets in gnomADv3), regarded as ACMG-LP.

PMID: 19646991:
- NPPA S64R missense in one fam with familial AF, heterozygous in two affected family members but was absent in unaffected family members and their controls. This variant has >200 hets in gnomADv3.

PMID: 23275345:
- Segregation of the homozygous p.R150Q mutation of the NPPA gene with the phenotype in the 6 families with autosomal recessive AD cardiomyopathy (ADCM). This variant has no homozygotes in gnomAD.

ClinGen gene curation: for autosomal recessive DCM - No Known Disease Relationship (09/04/2020).
Mendeliome v1.760 RNF212B Bryony Thompson Gene: rnf212b has been classified as Amber List (Moderate Evidence).
Mendeliome v1.760 RNF212B Bryony Thompson Classified gene: RNF212B as Amber List (moderate evidence)
Mendeliome v1.760 RNF212B Bryony Thompson Gene: rnf212b has been classified as Amber List (Moderate Evidence).
Mendeliome v1.758 NCAPG2 Zornitza Stark Classified gene: NCAPG2 as Amber List (moderate evidence)
Mendeliome v1.758 NCAPG2 Zornitza Stark Gene: ncapg2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.757 NCAPG2 Zornitza Stark edited their review of gene: NCAPG2: Changed rating: AMBER; Changed phenotypes: Khan-Khan-Katsanis syndrome, MIM# 618460
Mendeliome v1.757 NPPA Chern Lim reviewed gene: NPPA: Rating: AMBER; Mode of pathogenicity: None; Publications: 36303204, 19646991, 23275345; Phenotypes: Atrial fibrillation, familial, 6 (MIM#612201), AD, Atrial standstill 2 (MIM#615745), AR; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.757 RNF212B Sangavi Sivagnanasundram gene: RNF212B was added
gene: RNF212B was added to Mendeliome. Sources: Other
Mode of inheritance for gene: RNF212B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RNF212B were set to https://doi.org/10.1016/j.xhgg.2023.100189
Phenotypes for gene: RNF212B were set to Infertility disorder, MONDO:0005047
Review for gene: RNF212B was set to AMBER
Added comment: Homozygous nonsense mutation (R150X) causative of oligoasthenotheratozoospermia (OAT) identified in three unrelated individuals (two of Jewish decent from the same consanguineous family).

Drosophila ZIP3/RNF212 related gene paralogs (vilya, narya, nenya) showed loss of function in the RNF212B protein and promoted formation of DNA double-stand breaks. The mutant was shown to result in a reduction in fertility in the Drosophila paralogs.

Note: RNF212B is reported to be exclusively expressed in the testes only compared to RNF212 which is reported in both the testes and ovaries.
Sources: Other
Mendeliome v1.757 RYR3 Chern Lim reviewed gene: RYR3: Rating: AMBER; Mode of pathogenicity: None; Publications: 25262651; Phenotypes: developmental and epileptic encephalopathy (MONDO:0100062); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v1.745 STX4 Zornitza Stark Classified gene: STX4 as Amber List (moderate evidence)
Mendeliome v1.745 STX4 Zornitza Stark Gene: stx4 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.743 STX4 Achchuthan Shanmugasundram reviewed gene: STX4: Rating: AMBER; Mode of pathogenicity: None; Publications: 36355422; Phenotypes: Hearing impairment, HP:0000365; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.742 RNPC3 Zornitza Stark Phenotypes for gene: RNPC3 were changed from Growth hormone deficiency; Intellectual disability to Pituitary hormone deficiency, combined or isolated, 7, MIM# 618160
Mendeliome v1.741 RNPC3 Zornitza Stark edited their review of gene: RNPC3: Changed phenotypes: Pituitary hormone deficiency, combined or isolated, 7, MIM# 618160
Mendeliome v1.739 MS4A1 Zornitza Stark Classified gene: MS4A1 as Amber List (moderate evidence)
Mendeliome v1.739 MS4A1 Zornitza Stark Gene: ms4a1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.728 TAB2 Achchuthan Shanmugasundram reviewed gene: TAB2: Rating: AMBER; Mode of pathogenicity: None; Publications: 35971781; Phenotypes: intellectual disability, MONDO:0001071; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v1.723 FTH1 Zornitza Stark Classified gene: FTH1 as Amber List (moderate evidence)
Mendeliome v1.723 FTH1 Zornitza Stark Gene: fth1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.722 TLN1 Zornitza Stark Phenotypes for gene: TLN1 were changed from idiopathic spontaneous coronary artery dissection MONDO:0007385 to idiopathic spontaneous coronary artery dissection MONDO:0007385; thrombocytopenia, MONDO:0002049, TLN1-related
Mendeliome v1.720 DPYSL2 Zornitza Stark Gene: dpysl2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.720 DPYSL2 Zornitza Stark Classified gene: DPYSL2 as Amber List (moderate evidence)
Mendeliome v1.720 DPYSL2 Zornitza Stark Gene: dpysl2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.719 DPYSL2 Zornitza Stark gene: DPYSL2 was added
gene: DPYSL2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DPYSL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DPYSL2 were set to 27249678; 35861646
Phenotypes for gene: DPYSL2 were set to intellectual disability, MONDO:0001071, DPYSL2-related
Review for gene: DPYSL2 was set to AMBER
Added comment: Two unrelated cases with monoallelic variants in DPYSL2/ CRMP2, supported by functional studies. However, the evidence is not sufficient for green rating as there are variants reported in other (but different) genes in the two patients.

PMID:35861646 reported two cases identified with heterozygous variants (patient1: c.1693C>T (p.Arg565Cys); patient 2: c.42C>A (p.Ser14Arg). These patients had overlapping phenotypes including dysmorphic features, severe global developmental delay and hypoplasia of the corpus callosum. In addition, patient 2 was bed-ridden and could not roll out and had a history of myoclonic seizures and status epilepticus.

It should be noted that patient 1 is compound heterozygous for 2 missense variants in the EFCAB5 gene and was hemizygous for a maternally inherited missense variant in the GPKOW gene and patient 2 had 1 de novo missense variant in the COBLL1 gene and was compound heterozygous for 2 missense variants in the POTEF gene. The severity of the phenotypes between the two cases differs significantly and the additional variants may have possibly contributed to this phenotype.

Brain-specific Crmp2 knockout mice display neuronal development deficits and behavioural impairments associated with hypoplasia of the corpus callosum. In addition, functional studies performed in zebrafish and cell lines that the CRMP2 variants lead to the loss-of-function of CRMP2 protein and can cause intellectual disability.
Sources: Literature
Mendeliome v1.717 RBSN Zornitza Stark gene: RBSN was added
gene: RBSN was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RBSN was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RBSN were set to 25233840; 29784638; 35652444
Phenotypes for gene: RBSN were set to intellectual disability, MONDO:0001071, RBSN-related
Review for gene: RBSN was set to GREEN
Added comment: Four unrelated families reported, consistent feature is ID.

PMID:25233840 reported a 6.5 year old female patient with a homozygous missense variant c.1273G > A (p.Gly425Arg) and her clinical presentation included intractable seizures, developmental delay, microcephaly, dysostosis, osteopenia, craniofacial dysmorphism, macrocytosis and megaloblastoid erythropoiesis.

PMID:29784638 reported three siblings with homozygous variant c.289G>C (p.Gly97Arg) in RBSN. The proband presented global developmental delay, had complete 46,XY male-to-female sex reversal and died at age 20 months after multiple infections. The other 2 affected siblings underwent unrelated-donor bone marrow or stem cell transplantation at 8 and 6.5 months of age, respectively. Both have severe intellectual disability and are nonambulatory and nonverbal.

PMID:35652444 reported two unrelated families (three siblings from a family of Iranian descent identified with homozygous variant c.547G>A (p.Gly183Arg) and four members from a family of indigenous Cree descent identified with homozygous variant c.538C>G (p.Arg180Gly)) with overlapping phenotypes including developmental delay, intellectual disability, distal motor axonal neuropathy and facial dysmorphism.
Sources: Literature
Mendeliome v1.716 SRPRA Zornitza Stark Gene: srpra has been classified as Amber List (Moderate Evidence).
Mendeliome v1.716 SRPRA Zornitza Stark Classified gene: SRPRA as Amber List (moderate evidence)
Mendeliome v1.716 SRPRA Zornitza Stark Gene: srpra has been classified as Amber List (Moderate Evidence).
Mendeliome v1.715 SRPRA Zornitza Stark gene: SRPRA was added
gene: SRPRA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SRPRA was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SRPRA were set to 36223592
Phenotypes for gene: SRPRA were set to Schwachman-Diamond syndrome MONDO:0009833, SRPA-related
Review for gene: SRPRA was set to AMBER
Added comment: De novo variant; zebrafish model. Schwachman-Diamond like.
Sources: Literature
Mendeliome v1.714 SRP19 Zornitza Stark Gene: srp19 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.714 SRP19 Zornitza Stark Classified gene: SRP19 as Amber List (moderate evidence)
Mendeliome v1.714 SRP19 Zornitza Stark Gene: srp19 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.713 SRP19 Zornitza Stark gene: SRP19 was added
gene: SRP19 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SRP19 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SRP19 were set to 36223592
Phenotypes for gene: SRP19 were set to Neutropenia, MONDO:0001475, SRP19-related
Review for gene: SRP19 was set to AMBER
Added comment: Five individuals from two branches of a consanguineous family, good segregation data. Zebrafish model.
Sources: Literature
Mendeliome v1.711 EPHA10 Achchuthan Shanmugasundram changed review comment from: Comment on rating: This gene should be rated RED as this gene has been associated with post-lingual autosomal dominant non-syndromic hearing loss from a single family, and supported by functional studies.

PMID:36048850 reported the identification of a heterozygous non-coding variant c.-81_-73delinsAGC cosegregating with hearing loss. Although variants have been identified in KIF17 and USP48 in several members of this family, they did not cosegregate with hearing loss. One affected member of this family had an ideal hearing restoration after cochlear implantation.

Epha10 was expressed in mouse cochlea at both transcription and translation levels. In addition, EPHA10 mRNA was detected upregulated in patients compared with controls by qRT-PCR. Overexpression of Eph (the homolog of human EPHA10) altered the structure and function of chordotonal organ (equivalent to mammalian auditory organs) in fly model. These functional evidence suggests that 'gain of function' may be responsible for the hearing loss phenotype.

This gene has not yet been associated with any phenotypes in OMIM or Gene2Phenotype.
Sources: Literature; to: Comment on rating: This gene should be rated RED as this gene has been associated with post-lingual autosomal dominant non-syndromic hearing loss from a single family, and supported by functional studies.

PMID:36048850 reported the identification of a heterozygous non-coding variant c.-81_-73delinsAGC cosegregating with hearing loss. Although variants have been identified in KIF17 and USP48 in several members of this family, they did not cosegregate with hearing loss. One affected member of this family had an ideal hearing restoration after cochlear implantation.

Epha10 was expressed in mouse cochlea at both transcription and translation levels. In addition, EPHA10 mRNA was detected upregulated in patients compared with controls by qRT-PCR. Overexpression of Eph (the homolog of human EPHA10) altered the structure and function of chordotonal organ (equivalent to mammalian auditory organs) in fly model. Particularly, Eph overexpressed flies had a poorer performance compared to controls in negative geotaxis assay. These functional evidence suggests that 'gain of function' may be responsible for the hearing loss phenotype.

This gene has not yet been associated with any phenotypes in OMIM or Gene2Phenotype.
Sources: Literature
Mendeliome v1.711 OXR1 Achchuthan Shanmugasundram changed review comment from: Comment on gene rating: This gene should be rated AMBER as there is one case and supportive functional data to associate OXR1 with hearing loss.

A four years old girl was identified with a novel homozygous missense variant (c.233A > G, p.Lys78Arg) in OXR1 gene and was reported with sensorineural hearing loss.

Functional studies in zebrafish model showed that the ortholog orx1b gene is expressed in the statoacoustic ganglion (SAG, a sensory ganglion of ear) and posterior lateral line ganglion (pLL). In addition, knockdown of oxr1b resulted in a significant developmental defect of SAG and pLL and this phenotype was rescued by co-injection of wild-type human OXR1 mRNAs, but not mutant OXR1 (c.233A > G) mRNAs.; to: Comment on gene rating: This gene should be rated AMBER as there is one case and supportive functional data to associate OXR1 with hearing loss.

A four years old girl was identified with a novel homozygous missense variant (c.233A > G, p.Lys78Arg) in OXR1 gene and was reported with sensorineural hearing loss.

Functional studies in zebrafish model showed that the ortholog orx1b gene is expressed in the statoacoustic ganglion (SAG, a sensory ganglion of ear) and posterior lateral line ganglion (pLL). In addition, knockdown of oxr1b resulted in a significant developmental defect of SAG and pLL and this phenotype was rescued by co-injection of wild-type human OXR1 mRNAs, but not mutant OXR1 (c.233A > G) mRNAs.

This gene has not yet been associated with hearing loss either in OMIM or in Gene2Phenotype.
Mendeliome v1.711 EPHA10 Achchuthan Shanmugasundram changed review comment from: Comment on rating: This gene should be rated RED as this gene has been associated with post-lingual autosomal dominant non-syndromic hearing loss from a single family, and supported by functional studies.

PMID:36048850 reported the identification of a heterozygous non-coding variant c.-81_-73delinsAGC cosegregating with hearing loss. Although variants have been identified in KIF17 and USP48 in several members of this family, they did not cosegregate with hearing loss. One affected member of this family had an ideal hearing restoration after cochlear implantation.

Epha10 was expressed in mouse cochlea at both transcription and translation levels. In addition, EPHA10 mRNA was detected upregulated in patients compared with controls by qRT-PCR. Overexpression of Eph (the homolog of human EPHA10) altered the structure and function of chordotonal organ (equivalent to mammalian auditory organs) in fly model. These functional evidence suggests that 'gain of function' may be responsible for the hearing loss phenotype.

This gene has not yet been associated with any phenotypes in OMIM or Gene2Phenotype.
Sources: Literature; to: Comment on rating: This gene should be rated RED as this gene has been associated with post-lingual autosomal dominant non-syndromic hearing loss from a single family, and supported by functional studies.

PMID:36048850 reported the identification of a heterozygous non-coding variant c.-81_-73delinsAGC cosegregating with hearing loss. Although variants have been identified in KIF17 and USP48 in several members of this family, they did not cosegregate with hearing loss. One affected member of this family had an ideal hearing restoration after cochlear implantation.

Epha10 was expressed in mouse cochlea at both transcription and translation levels. In addition, EPHA10 mRNA was detected upregulated in patients compared with controls by qRT-PCR. Overexpression of Eph (the homolog of human EPHA10) altered the structure and function of chordotonal organ (equivalent to mammalian auditory organs) in fly model. These functional evidence suggests that 'gain of function' may be responsible for the hearing loss phenotype.

This gene has not yet been associated with any phenotypes in OMIM or Gene2Phenotype.
Sources: Literature
Mendeliome v1.711 OXR1 Achchuthan Shanmugasundram reviewed gene: OXR1: Rating: AMBER; Mode of pathogenicity: None; Publications: 36130215; Phenotypes: sensorineural hearing loss disorder, MONDO:0020678; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.711 EPHA10 Achchuthan Shanmugasundram gene: EPHA10 was added
gene: EPHA10 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EPHA10 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: EPHA10 were set to 36048850
Phenotypes for gene: EPHA10 were set to postlingual non-syndromic genetic hearing loss, MONDO:0016298
Mode of pathogenicity for gene: EPHA10 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: EPHA10 was set to RED
Added comment: Comment on rating: This gene should be rated RED as this gene has been associated with post-lingual autosomal dominant non-syndromic hearing loss from a single family, and supported by functional studies.

PMID:36048850 reported the identification of a heterozygous non-coding variant c.-81_-73delinsAGC cosegregating with hearing loss. Although variants have been identified in KIF17 and USP48 in several members of this family, they did not cosegregate with hearing loss. One affected member of this family had an ideal hearing restoration after cochlear implantation.

Epha10 was expressed in mouse cochlea at both transcription and translation levels. In addition, EPHA10 mRNA was detected upregulated in patients compared with controls by qRT-PCR. Overexpression of Eph (the homolog of human EPHA10) altered the structure and function of chordotonal organ (equivalent to mammalian auditory organs) in fly model. These functional evidence suggests that 'gain of function' may be responsible for the hearing loss phenotype.

This gene has not yet been associated with any phenotypes in OMIM or Gene2Phenotype.
Sources: Literature
Mendeliome v1.711 ATP5B Zornitza Stark Gene: atp5b has been classified as Amber List (Moderate Evidence).
Mendeliome v1.711 ATP5B Zornitza Stark Classified gene: ATP5B as Amber List (moderate evidence)
Mendeliome v1.711 ATP5B Zornitza Stark Gene: atp5b has been classified as Amber List (Moderate Evidence).
Mendeliome v1.710 ATP5B Zornitza Stark gene: ATP5B was added
gene: ATP5B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATP5B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ATP5B were set to 36860166
Phenotypes for gene: ATP5B were set to Inherited dystonia, MONDO:0044807, ATP5B-related
Review for gene: ATP5B was set to AMBER
Added comment: Two families only, clinical presentation with dystonia; incomplete penetrance observed. Some functional data.
Sources: Literature
Mendeliome v1.708 YWHAZ Zornitza Stark gene: YWHAZ was added
gene: YWHAZ was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: YWHAZ was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: YWHAZ were set to 36001342
Phenotypes for gene: YWHAZ were set to Intellectual disability, MONDO:0001071
Review for gene: YWHAZ was set to RED
Added comment: PMID:36001342 reported one large three-generation family with intellectual disability and global developmental delay, where all affected members were identified with a heterozygous missense variant (c.147A>T/ p.Lys49Asn) in YWHAZ gene. Although there were 10 other rare variants located in 10 genes (ARHGAP4, AGPS, APOL3, CES3, DACT2, ECH1, FAM71E2, KREMEN1, YWHAZ, ZFYVE26) that co-segregated with the ID/GDD phenotype were identified in the family, they were either not present in all affected members or present in unaffected members. In addition, computational modeling and knockdown/ knockin studies with Drosophila also confirmed the role of this YWHAZ variant in intellectual disability.
Sources: Literature
Mendeliome v1.703 ZNF143 Zornitza Stark gene: ZNF143 was added
gene: ZNF143 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZNF143 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNF143 were set to 27349184
Phenotypes for gene: ZNF143 were set to Combined methylmalonic acidemia and homocystinuria, cblX like 1, MONDO:0002012, ZNF143-related
Review for gene: ZNF143 was set to RED
Added comment: Single individual reported with compound heterozygous variants.
Sources: Literature
Mendeliome v1.700 TLN1 Achchuthan Shanmugasundram reviewed gene: TLN1: Rating: RED; Mode of pathogenicity: None; Publications: 35861643; Phenotypes: thrombocytopenia, MONDO:0002049, lymphopenia, MONDO:0003783; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v1.700 PCK2 Bryony Thompson Classified gene: PCK2 as Amber List (moderate evidence)
Mendeliome v1.700 PCK2 Bryony Thompson Gene: pck2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.699 PCK2 Bryony Thompson reviewed gene: PCK2: Rating: AMBER; Mode of pathogenicity: None; Publications: 36845668; Phenotypes: Peripheral neuropathy (MONDO#0005244), PCK2-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.699 FTH1 Paul De Fazio reviewed gene: FTH1: Rating: AMBER; Mode of pathogenicity: None; Publications: 36778397; Phenotypes: Neuroferritinopathy (MONDO:0011638); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v1.697 SLC25A36 Krithika Murali gene: SLC25A36 was added
gene: SLC25A36 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC25A36 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC25A36 were set to 34971397; 34576089; 31036718
Phenotypes for gene: SLC25A36 were set to Hyperinsulinemic hypoglycemia, familial, 8 - MIM#620211
Review for gene: SLC25A36 was set to GREEN
Added comment: Solute carrier family 25 members 33 (SLC25A33) and 36 (SLC25A36) are the only known mitochondrial pyrimidine nucleotide carriers in humans

PMID: 34971397 Sharoor et al 2022 report 2 siblings with hyperinsulinism, hypoglycemia and hyperammonemia from early infancy with homozygous SLC25A36 c.284 + 3 A > T variant identified through WES. Functional studies support LoF.

PMID: 34576089 report a 12-year-old patient with hypothyroidism, hyperinsulinism, hyperammonemia, chronical obstipation, short stature, along with language and general developmental delay. WES identified SLC25A36 gene homozygous c.803dupT, p.Ser269llefs*35 variant. Functional analysis of mutant SLC25A36 protein in proteoliposomes showed a virtually abolished transport activity. Immunoblotting results suggest that the mutant SLC25A36 protein in the patient undergoes fast degradation. Supplementation with uridine lead to some improvement in clinical course.

PMID: 31036718 deficiencies in SLC25A36 in mouse embryonic stem cells have been associated with mtDNA depletion as well as mitochondrial dysfunction
Sources: Literature
Mendeliome v1.695 TEFM Ee Ming Wong gene: TEFM was added
gene: TEFM was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TEFM was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TEFM were set to 36823193
Phenotypes for gene: TEFM were set to Mitochondrial disease (MONDO#0044970), TEFM-related
Review for gene: TEFM was set to GREEN
gene: TEFM was marked as current diagnostic
Added comment: - Seven TEFM variants (4 missense, 2 fs, 1 in-frame del) in seven individuals across five unrelated families
- Muscle and primary fibroblast from the affected individuals have reduced levels of promoter distal mitochondrial RNA transcripts
- TEFM knockdown in zebrafish embryos resulted in neuromuscular junction abnormalities and abnormal mitochondrial function
Sources: Literature
Mendeliome v1.689 USMG5 Bryony Thompson Gene: usmg5 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.689 USMG5 Bryony Thompson Classified gene: USMG5 as Amber List (moderate evidence)
Mendeliome v1.689 USMG5 Bryony Thompson Gene: usmg5 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.688 USMG5 Bryony Thompson gene: USMG5 was added
gene: USMG5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: USMG5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: USMG5 were set to 29917077; 30240627
Phenotypes for gene: USMG5 were set to Mitochondrial complex V (ATP synthase) deficiency, nuclear type 6 MIM#618683
Review for gene: USMG5 was set to AMBER
Added comment: A homozygous splice site mutation in 4 patients from 3 unrelated families of Ashkenazi Jewish descent. Experimental analyses demonstrated that the splice variant leads to loss of protein expression and haplotype analysis suggested a founder effect. In situ cryo-ET analysis of the mitochondria of a homozygous affected case showed profound disturbances of mitochondrial crista ultrastructure.
Sources: Literature
Mendeliome v1.686 SLC35B2 Zornitza Stark reviewed gene: SLC35B2: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Leukodystrophy, hypomyelinating, 26, with chondrodysplasia, MIM# 620269; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.684 NLGN4X Elena Savva reviewed gene: NLGN4X: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 36747195; Phenotypes: Intellectual developmental disorder, X-linked MIM#300495; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v1.682 TRPM3 Zornitza Stark edited their review of gene: TRPM3: Added comment: Publications 25090642; 33484482: Single multi-generational family reported with a missense variant in this gene and cataract. Mouse model of same variant supports association. Amber for this association.; Changed publications: 31278393, 25090642, 33484482; Changed phenotypes: Neurodevelopmental disorder with hypotonia, dysmorphic facies, and skeletal anomalies, with or without seizures, MIM# 620224, Cataract 50 with or without glaucoma, MIM#620253
Mendeliome v1.681 PPM1K Zornitza Stark Classified gene: PPM1K as Amber List (moderate evidence)
Mendeliome v1.681 PPM1K Zornitza Stark Gene: ppm1k has been classified as Amber List (Moderate Evidence).
Mendeliome v1.680 PPM1K Zornitza Stark edited their review of gene: PPM1K: Added comment: PMID: 36706222 reported a patient with MSUD with mild findings and elevated BCAA levels carrying a novel homozygous start-loss variant in PPM1K; Changed rating: AMBER; Changed publications: 23086801, 36706222
Mendeliome v1.672 JPH3 Zornitza Stark Classified gene: JPH3 as Amber List (moderate evidence)
Mendeliome v1.672 JPH3 Zornitza Stark Gene: jph3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.671 JPH3 Zornitza Stark reviewed gene: JPH3: Rating: AMBER; Mode of pathogenicity: None; Publications: 36273396; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, JPH3-related; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.669 MRPS7 Zornitza Stark Classified gene: MRPS7 as Amber List (moderate evidence)
Mendeliome v1.669 MRPS7 Zornitza Stark Gene: mrps7 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.668 MRPS7 Zornitza Stark edited their review of gene: MRPS7: Added comment: Now second publication (PMID: 36421788) describes sisters with an overlapping phenotype including sensorineural deafness and premature ovarian insufficiency. They both had compound heterozygous (one missense, one nonsense) MRPS7 variants.; Changed rating: AMBER; Changed publications: 25556185, 36421788
Mendeliome v1.666 LTV1 Zornitza Stark Gene: ltv1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.666 LTV1 Zornitza Stark Classified gene: LTV1 as Amber List (moderate evidence)
Mendeliome v1.666 LTV1 Zornitza Stark Gene: ltv1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.665 LTV1 Achchuthan Shanmugasundram gene: LTV1 was added
gene: LTV1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LTV1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LTV1 were set to 34999892
Phenotypes for gene: LTV1 were set to Inflammatory poikiloderma with hair abnormalities and acral keratoses, OMIM:620199
Review for gene: LTV1 was set to AMBER
Added comment: Comment on classification of gene: This gene should be rated amber as it has been implicated in inflammatory poikiloderma with hair abnormalities and acral keratoses as identified from two unrelated families harbouring the same biallelic variant and supported by functional studies.

PMID:34999892 reported four UK women of South Asian origin (three Pakistani sisters and an unrelated Indian woman) identified with homozygous variant c.503A>G, (p.Asn168Ser) and presented with poikiloderma, hair abnormalities, and acral keratoses, which the authors named as inflammatory poikiloderma with hair abnormalities and acral keratoses (IPHAK).

Both in silico modelling and splicing assays from a patient sample showed that this variant is responsible for splicing defects and defects in LTV1 alter the export of nascent ribosomal subunits to the cytoplasm in yeast.

This gene has already been associated with relevant phenotype (MIM #620199) in OMIM, but not in Gene2Phenotype.
Sources: Literature
Mendeliome v1.665 WNT11 Achchuthan Shanmugasundram gene: WNT11 was added
gene: WNT11 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: WNT11 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: WNT11 were set to 34875064
Phenotypes for gene: WNT11 were set to osteoporosis, MONDO:0005298; osteoarthritis, MONDO:0005178; recurrent fractures
Review for gene: WNT11 was set to GREEN
Added comment: Comment on gene classification: The rating of this gene can be added as green as this gene has been implicated in early-onset osteoporosis from three unrelated cases and was supported by evidence from functional studies. All three patients harboured heterozygous variants in WNT11 gene.

Three unrelated cases are reported in PMID: 34875064. A four year-old boy harbouring de novo heterozygous loss-of-function variant c.677_678dupGG (p.Leu227Glyfs*22) was reported with low BMD, osteopenia and several fractures.

A 51 year-old woman and her 69 year-old mother were identified with a heterozygous missense variant c.217G>A (p.Ala73Thr). The woman was reported with bone fragility, several fractures, osteoarthritis and osteoporosis, while her mother also had several osteoporotic fractures.

A 61 year-old woman that was reported with lumbar spine osteoarthritis had several fractures since 55 years of age was identified with a heterozygous missense variant c.865G>A (p.Val289Met).

This was also supported by results from functional studies, where cell lines with the loss-of-function variant generated by CRISPR-Cas9 showed reduced cell proliferation and osteoblast differentiation in comparison to wild-type. The expression of genes in the Wnt canonical and non-canonical pathways was inhibited in these mutant cells.

This gene has not yet been reported with any phenotypes either in OMIM or in G2P.
Sources: Literature
Mendeliome v1.654 KBTBD13 Bryony Thompson reviewed gene: KBTBD13: Rating: AMBER; Mode of pathogenicity: None; Publications: 36335629; Phenotypes: Cardiomyopathy; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v1.649 ASNA1 Naomi Baker gene: ASNA1 was added
gene: ASNA1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ASNA1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ASNA1 were set to 31461301; 16797549
Phenotypes for gene: ASNA1 were set to Dilated cardiomyopathy, MONDO:0001644, ASNA1-related
Review for gene: ASNA1 was set to RED
Added comment: Two siblings reported with biallelic variants - there were two variants on the paternal allele (c.867C>G p.(Cys289Trp) and c.913C>T p.(Gln305*)) and one variant on the maternal allele (c.488T>C p.(Val163Ala)). Unaffected sibling was heterozygous for maternal allele. Western blotting demonstrated reduced protein expression. Knockout of asna1 in zebrafish mode resulted in cardiac defects and early lethality. The Asna1 knockout mice displayed early embryonic lethality, consistent with a role of Asna1 in early embryonic development.
Sources: Literature
Mendeliome v1.649 SPTSSA Seb Lunke Gene: sptssa has been classified as Amber List (Moderate Evidence).
Mendeliome v1.649 SPTSSA Seb Lunke Classified gene: SPTSSA as Amber List (moderate evidence)
Mendeliome v1.649 SPTSSA Seb Lunke Added comment: Comment on list classification: Three individuals but only two variants with different inheritance. Amber despite functional data.
Mendeliome v1.649 SPTSSA Seb Lunke Gene: sptssa has been classified as Amber List (Moderate Evidence).
Mendeliome v1.648 SPTSSA Seb Lunke gene: SPTSSA was added
gene: SPTSSA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SPTSSA was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: SPTSSA were set to 36718090
Phenotypes for gene: SPTSSA were set to complex hereditary spastic paraplegia, MONDO:0015150
Review for gene: SPTSSA was set to AMBER
Added comment: Three unrelated individuals with common neurological features of developmental delay, progressive motor impairment, progressive lower extremity spasticity, and epileptiform activity or seizures. Other additional features varied.

Two of the individuals had the same de-novo missense, Thr51Ile, while the third was homozygous for a late truncating variant, Gln58AlafsTer10. The patient with the hom variant was described as less severe.

Functional studies in fibroblasts showed dysregulation of the sphingolipid (SL) synthesis pathway, showing that both variants impair ORMDL regulation of the pathway leading to various levels of increased SL. Over expression of human SPTSSA was shown to lead to motor development in flies, rescued by expression of ORMDL for WT SPTSSA but not mutant SPTSSA.

The de-novo missense were shown to impact regulation more than the hom truncation, while the truncated region was shown to previously to be important for ORMDL regulation.

Mice with a hom KO of the functional equivalent sptssb had early onset ataxia and died prematurely, with evidence of axonic degeneration.
Sources: Literature
Mendeliome v1.646 TRU-TCA1-1 Zornitza Stark Gene: tru-tca1-1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.645 TRU-TCA1-1 Zornitza Stark Classified gene: TRU-TCA1-1 as Amber List (moderate evidence)
Mendeliome v1.645 TRU-TCA1-1 Zornitza Stark Gene: tru-tca1-1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.644 TRU-TCA1-1 Zornitza Stark Classified gene: TRU-TCA1-1 as Amber List (moderate evidence)
Mendeliome v1.644 TRU-TCA1-1 Zornitza Stark Gene: tru-tca1-1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.638 SPRY1 Elena Savva Classified gene: SPRY1 as Amber List (moderate evidence)
Mendeliome v1.638 SPRY1 Elena Savva Gene: spry1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.637 SPRY1 Elena Savva Classified gene: SPRY1 as Amber List (moderate evidence)
Mendeliome v1.637 SPRY1 Elena Savva Gene: spry1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.636 CCDC84 Zornitza Stark Gene: ccdc84 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.636 CCDC84 Zornitza Stark Classified gene: CCDC84 as Amber List (moderate evidence)
Mendeliome v1.636 CCDC84 Zornitza Stark Gene: ccdc84 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.635 SPRY1 Elena Savva reviewed gene: SPRY1: Rating: AMBER; Mode of pathogenicity: None; Publications: 36543535; Phenotypes: Craniosynostosis, SPRY1-related, MONDO:0015469; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.635 TPCN2 Paul De Fazio reviewed gene: TPCN2: Rating: AMBER; Mode of pathogenicity: Other; Publications: 36641477; Phenotypes: Hypopigmentation of the skin, TPCN2-related MONDO:0019290; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v1.630 TRU-TCA1-1 Paul De Fazio gene: TRU-TCA1-1 was added
gene: TRU-TCA1-1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TRU-TCA1-1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TRU-TCA1-1 were set to 26854926; 34956927
Phenotypes for gene: TRU-TCA1-1 were set to Hyperthyroidism MONDO:0004425
Review for gene: TRU-TCA1-1 was set to AMBER
gene: TRU-TCA1-1 was marked as current diagnostic
Added comment: PMID 26854926: male 8 year old proband investigated for abdominal pain, fatigue, muscle weakness, and thyroid dysfunction (raised T4, normal T3, raised reverse T3) suggestive of impaired deiodinase activity in combination with low plasma selenium levels. Homozygosity mapping led to identification of a a single nucleotide change, C65G, in TRU-TCA1-1, a tRNA in the selenocysteine incorporation pathway. This mutation resulted in reduction in expression of stress-related selenoproteins. A methylribosylation defect at uridine 34 of mutant tRNA observed in patient cells was restored by cellular complementation with normal tRNA.

PMID 34956927: a 10 year old originally investigated for Hashimoto's disease was found to be homozygous for the same C65G variant identified in the previous paper, inherited from the father in what was concluded to be paternal isodisomy.
Sources: Literature
Mendeliome v1.628 CCDC84 Lucy Spencer gene: CCDC84 was added
gene: CCDC84 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CCDC84 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CCDC84 were set to 34009673
Phenotypes for gene: CCDC84 were set to Mosaic variegated aneuploidy syndrome 4 (MIM#620153)
Review for gene: CCDC84 was set to AMBER
Added comment: PMID: 34009673- patients with constitutional mosaic aneuploidy were found to have biallelic mutations in CENATAC(CCDC84). 2 adult siblings with mosaic aneuploidies, microcephaly, dev delay, and maculopathy. Both chet for a missense and a splice site deletion- but the paper days these both result in the creation of a novel splice site that leads to frameshifts and loss of the c-terminal 64 amino acids.

Gene is shown to be part of a spliceosome. CENATAC depletion or expression of disease mutants resulted in retention of introns in ~100 genes enriched for nucleocytoplasmic transport and cell cycle regulation, and caused chromosome segregation errors.

Functional analysis in CENATAC-depleted HeLa cells demonstrated chromosome congression defects and subsequent mitotic arrest, which could be fully rescued by wildtype but not mutant CENATAC. Expression of the MVA-associated mutants exacerbated the phenotype, suggesting that the mutant proteins dominantly repress the function of any residual wildtype protein.
Sources: Literature
Mendeliome v1.625 NPTX1 Ain Roesley gene: NPTX1 was added
gene: NPTX1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NPTX1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: NPTX1 were set to 34788392; 35288776; 35285082; 35560436
Phenotypes for gene: NPTX1 were set to cerebellar ataxia MONDO#0000437, NPTX1-related
Review for gene: NPTX1 was set to GREEN
gene: NPTX1 was marked as current diagnostic
Added comment: PMID:34788392
5 families with multigenerational segregations - late onset ataxia
4 families with p.(Gly389Arg) + 1x p.(Glu327Gly)
functional studies done

Note: case report of a family member published elsewhere (PMID:35288776)

PMID:35285082
1x de novo in a male with late-onset, slowly progressive cerebellar ataxia, oculomotor apraxia, choreiform dyskinesias, and cerebellar cognitive affective syndrome
p.(Arg143Leu)

PMID:35560436
1x de novo in a female with early-onset ataxia and cerebellar atrophy since infancy
p.(Gln370Arg)
Sources: Literature
Mendeliome v1.610 ZNF668 Zornitza Stark reviewed gene: ZNF668: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with poor growth, large ears, and dysmorphic facies, MIM# 620194; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.604 TRPC5 Zornitza Stark Gene: trpc5 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.603 TRPC5 Zornitza Stark Classified gene: TRPC5 as Amber List (moderate evidence)
Mendeliome v1.603 TRPC5 Zornitza Stark Gene: trpc5 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.602 CRLS1 Zornitza Stark Phenotypes for gene: CRLS1 were changed from Mitochondrial disease MONDO:0044970 CRLS1-related to Combined oxidative phosphorylation deficiency 57, MIM# 620167
Mendeliome v1.601 CRLS1 Zornitza Stark edited their review of gene: CRLS1: Changed phenotypes: Combined oxidative phosphorylation deficiency 57, MIM# 620167
Mendeliome v1.601 TRPC5 Hazel Phillimore gene: TRPC5 was added
gene: TRPC5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TRPC5 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: TRPC5 were set to PMID: 36323681; 24817631; 23033978; 33504798; 28191890
Phenotypes for gene: TRPC5 were set to Intellectual disability; autistic spectrum disorder
Review for gene: TRPC5 was set to AMBER
Added comment: PMID: 36323681; Leitão E. et al. (2022) Nat Commun.13(1):6570:
Missense variant NM_012471.2:c.523C>T, p.(Arg175Cys in three brothers with intellectual disability (ID) and autistic spectrum disorder (ASD), inherited from an asymptomatic mother and absent in the maternal grandparents.
Whole cell patch clamp studies of HEK293 created by site-directed mutagenesis showed increased current of this calcium channel (constitutively opened).
(This variant is absent in gnomAD v2.1.1).

Also, the nonsense variant, c.965G> A, p.(Trp322*) was found in a high functioning ASD male (maternally inherited), NMD-predicted.

Other papers and TRPC5 variants that were cited to associate this gene with X-linked ID and/or ASD include:
PMID: 24817631; Mignon-Ravix, C. et al. (2014) Am. J.Med. Genet. A 164A: 1991–1997: A hemizygous 47-kb deletion in Xq23 including exon 1 of the TRPC5 gene. He had macrocephaly, delayed psychomotor development, speech delay, behavioural problems, and autistic features. Maternally inherited, and a family history compatible with X-linked inheritance (i.e., maternal great uncle was also affected, although not tested).

In addition, PMID: 36323681; Leitão E. et al. (2022) cites papers with the variants p.(Pro667Thr), p.(Arg71Gln) and p.(Trp225*).
NB. p.(Pro667Thr) is absent in gnomAD (v2.1.1), p.(Arg71Gln) is also absent (the alternative variant p.(Arg71Trp) is present once as heterozygous only). p.(Trp225*) is absent, and it should be noted that PTCs / LoF variants are very rare (pLI = 1).

However, looking further into the three references, the evidence is not as clear or as accurate as was stated.

The missense variant c.1999C>A, p.(Pro667Thr), was stated as de novo, but was actually maternally inherited but was still considered a candidate for severe intellectual disability (shown in the Appendix, Patient 93, with severe speech delay, autism spectrum disorder and Gilles de la Tourette). This patient also has a de novo MTF1 variant. Reference: PMID: 23033978; de Ligt, J. et al. (2012) N. Engl. J. Med. 367: 1921–1929).

Missense variant (de novo): c.212G>A, p.(Arg71Gln), was found as part of the Deciphering Developmental Disorders (DDD) study and is shown in individual 164 in Supplementary Table 2 of PMID: 33504798; Martin, HC. et al. (2021) Nat. Commun.12: 627. Also displayed in DECIPHER (DDD research variant) with several phenotype traits, but ID and ASD are not specifically mentioned.

Nonsense variant: c.674G>A. p.(Trp225*) was stated as de novo but was inherited (reference PMID: 28191890; Kosmicki, JA. et al. (2017) Nat. Genet. 49: 504–510. Supplement Table 7). This was a study of severe intellectual delay, developmental delay / autism. (NB. The de novo p.(Arg71Gln) variant from the DDD study is also listed (subject DDD 342 in Supplement 4 / Table 2).
Sources: Literature
Mendeliome v1.601 BSN Krithika Murali changed review comment from: Ye et al 2022, Neurogenetics identified 4 unrelated individuals with epilepsy and compound heterozygous BSN variants via trio WES (combination of null and missense). Homozygous knockout mouse models showed abnormal CNS transmission and seizure activity. None of the identified variants were present in population databases as homozygotes. One individual had ID and microcephaly but all other individuals with biallelic variants had normal development.

In addition, heterozygous variants were identified in unrelated affected individuals - 2 apparently co-segregating missense variants and 2 de novo null variants. These variants were either absent in population databases or rare. The authors note that affected individuals with heterozygous variants had milder disease - either requiring no therapy or monotherapy only. Heterozygous knockout mice had no phenotype and there were not enough affected individuals in the families to truly determine co-segregation. In addition, carrier parents of individuals with biallelic variants did not appear to be affected.

Association between biallelic variants and epilepsy stronger than for monoallelic.
Sources: Literature; to: Ye et al 2022, Neurogenetics - https://jmg.bmj.com/content/early/2022/12/12/jmg-2022-108865
Identified 4 unrelated individuals with epilepsy and compound heterozygous BSN variants via trio WES (combination of null and missense). Homozygous knockout mouse models showed abnormal CNS transmission and seizure activity. None of the identified variants were present in population databases as homozygotes. One individual had ID and microcephaly but all other individuals with biallelic variants had normal development.

In addition, heterozygous variants were identified in unrelated affected individuals - 2 apparently co-segregating missense variants and 2 de novo null variants. These variants were either absent in population databases or rare. The authors note that affected individuals with heterozygous variants had milder disease - either requiring no therapy or monotherapy only. Heterozygous knockout mice had no phenotype and there were not enough affected individuals in the families to truly determine co-segregation. In addition, carrier parents of individuals with biallelic variants did not appear to be affected.

Association between biallelic variants and epilepsy stronger than for monoallelic.
Sources: Literature
Mendeliome v1.597 SLC31A1 Zornitza Stark reviewed gene: SLC31A1: Rating: AMBER; Mode of pathogenicity: None; Publications: 36562171; Phenotypes: Neurodevelopmental disorder, SLC31A1-related (MONDO#0700092); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.593 ARHGEF38 Zornitza Stark Gene: arhgef38 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.592 ARHGEF38 Zornitza Stark Classified gene: ARHGEF38 as Amber List (moderate evidence)
Mendeliome v1.592 ARHGEF38 Zornitza Stark Gene: arhgef38 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.590 SLC31A1 Alison Yeung Classified gene: SLC31A1 as Amber List (moderate evidence)
Mendeliome v1.590 SLC31A1 Alison Yeung Gene: slc31a1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.589 ARHGEF38 Paul De Fazio gene: ARHGEF38 was added
gene: ARHGEF38 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ARHGEF38 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ARHGEF38 were set to 36493769
Phenotypes for gene: ARHGEF38 were set to Cleft lip/palate MONDO:0016044, ARHGEF38-related
Review for gene: ARHGEF38 was set to AMBER
gene: ARHGEF38 was marked as current diagnostic
Added comment: PMID:36493769 identified an intragenic deletion by high-res microarray of the same exon (exon 3) in 4 individuals with non-syndromic cleft lip/palate. Deletion of exon 3 is present in 6 individuals in gnomAD. Inheritance information was not available.

Knockdown and knockout of the gene in Xenopus and Zebrafish resulted in craniofacial malformations in a large proportion (but not 100%) of embryos.
Sources: Literature
Mendeliome v1.589 COBLL1 Zornitza Stark Gene: cobll1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.589 COBLL1 Zornitza Stark Classified gene: COBLL1 as Amber List (moderate evidence)
Mendeliome v1.589 COBLL1 Zornitza Stark Gene: cobll1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.588 COBLL1 Paul De Fazio edited their review of gene: COBLL1: Changed rating: AMBER
Mendeliome v1.588 COBLL1 Paul De Fazio gene: COBLL1 was added
gene: COBLL1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: COBLL1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: COBLL1 were set to 36493769
Phenotypes for gene: COBLL1 were set to Cleft lip/palate MONDO:0016044, COBLL1-related
gene: COBLL1 was marked as current diagnostic
Added comment: PMID:36493769 identified the same multi-exon intragenic deletion by high-res microarray in 3 individuals with non-syndromic cleft lip/palate. The deletion is absent from gnomAD. Inheritance information was only available for 1 individual, in whom it was inherited from an unaffected father. Note that the gene is not quite LOF constrained in gnomAD.

Knockdown and knockout of the gene in Xenopus and Zebrafish resulted in craniofacial malformations in a large proportion (but not 100%) of embryos.
Sources: Literature
Mendeliome v1.588 BSN Krithika Murali gene: BSN was added
gene: BSN was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: BSN was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: BSN were set to Epilepsy MONDO:0005027
Review for gene: BSN was set to GREEN
Added comment: Ye et al 2022, Neurogenetics identified 4 unrelated individuals with epilepsy and compound heterozygous BSN variants via trio WES (combination of null and missense). Homozygous knockout mouse models showed abnormal CNS transmission and seizure activity. None of the identified variants were present in population databases as homozygotes. One individual had ID and microcephaly but all other individuals with biallelic variants had normal development.

In addition, heterozygous variants were identified in unrelated affected individuals - 2 apparently co-segregating missense variants and 2 de novo null variants. These variants were either absent in population databases or rare. The authors note that affected individuals with heterozygous variants had milder disease - either requiring no therapy or monotherapy only. Heterozygous knockout mice had no phenotype and there were not enough affected individuals in the families to truly determine co-segregation. In addition, carrier parents of individuals with biallelic variants did not appear to be affected.

Association between biallelic variants and epilepsy stronger than for monoallelic.
Sources: Literature
Mendeliome v1.588 PHLDB1 Seb Lunke Gene: phldb1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.588 PHLDB1 Seb Lunke Classified gene: PHLDB1 as Amber List (moderate evidence)
Mendeliome v1.588 PHLDB1 Seb Lunke Gene: phldb1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.587 PHLDB1 Seb Lunke gene: PHLDB1 was added
gene: PHLDB1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PHLDB1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PHLDB1 were set to 36543534
Phenotypes for gene: PHLDB1 were set to osteogenesis imperfecta, MONDO:0019019
Review for gene: PHLDB1 was set to AMBER
Added comment: 5 children from two consanguineous families with recurrent fractures and/or osteopaenia, platyspondyly, short and bowed long bones, and widened metaphyses. Metaphyseal and vertebral changes regressed after early childhood, and no fractures occurred under bisphosphonate treatment.

Two independent nonsense variants were identified in the families, NM_001144758.3:c.2392dup (p.Leu798Profs*4) and NM_001144758.3:c.2690_2693del (p.Leu897Glnfs*24). RT-PCR and western blot analysis confirmed loss of transcript and protein product, respectively, but no further functional data provided.
Sources: Literature
Mendeliome v1.586 OXGR1 Zornitza Stark Gene: oxgr1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.586 OXGR1 Zornitza Stark Classified gene: OXGR1 as Amber List (moderate evidence)
Mendeliome v1.586 OXGR1 Zornitza Stark Gene: oxgr1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.583 OXGR1 Sarah Pantaleo gene: OXGR1 was added
gene: OXGR1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: OXGR1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: OXGR1 were set to PMID:35671463
Phenotypes for gene: OXGR1 were set to Nephrolithiasis/nephrocalcinosis MONDO:0008171, OXGR1-related
Penetrance for gene: OXGR1 were set to unknown
Review for gene: OXGR1 was set to AMBER
Added comment: Candidate disease gene for human calcium oxalate nephrolithiasis.

Performed exome sequencing and directed sequencing of the OXGR1 locus in a worldwide nephrolithiasis/nephrocalcinosis (NL/NC) cohort, and putatively deleterious rare OXGR1 variants were functionally characterised.

A heterozygous OXGR1 missense variant (c.371T>G; p.Leu124Arg) co-segregated with calcium oxalate NL and/or NC disease in an autosomal dominant inheritance pattern within a multi-generational family with five affected individuals.

Interrogation of the OXGR1 locus in 1,107 additional NL/NC families identified five additional deleterious dominant variants in five families with calcium oxalate NL/NC. Rare, potentially deleterious OXGR1 variants were enriched in NL/NC subjects relative to ExAC controls. Four missense variants and one frameshift variant.

Four of five NL/NC-associated missense variants revealed impaired AKG-dependent calcium ion uptake, demonstrating loss of function.

Rare, dominant loss-of-function OXGR1 variants are associated with recurrent calcium oxalate NL/NC disease. Six potentially deleterious variants were identified in six of 1,108 NL/NC families (0.54%).

Limitations: only probands were able to be recruited for four of six families. In the future, it will be important to determine whether any of the affected family members share the identified OXGR1 variant. They also observe OXGR1 variants in 0.16% of ExAC subjects (selected on the basis of the absence of paediatric disease).
Sources: Literature
Mendeliome v1.576 TRA2B Elena Savva gene: TRA2B was added
gene: TRA2B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TRA2B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: TRA2B were set to PMID: 36549593
Phenotypes for gene: TRA2B were set to Neurodevelopmental disorder, TRA2B-related (MONDO#0700092)
Review for gene: TRA2B was set to GREEN
Added comment: PMID: 36549593
- 12 individuals with ID and dev delay. Additional features include infantile spams 6/12, hypotonia 12/12, dilated brain ventricles 6/12, microcephaly 5/12
- All variants result in the loss of 1/2 transcripts (start-losses or PTCs upstream of a second translation start position). Shorter transcript expression is increased, longer transcript expression is decreased.
- Apparently het mice K/O are normal, but complete K/O cannot develop embryonically.
- DN mechanism suggested
Sources: Literature
Mendeliome v1.574 TUFT1 Zornitza Stark Gene: tuft1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.574 TUFT1 Zornitza Stark Classified gene: TUFT1 as Amber List (moderate evidence)
Mendeliome v1.574 TUFT1 Zornitza Stark Gene: tuft1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.573 TUFT1 Zornitza Stark gene: TUFT1 was added
gene: TUFT1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TUFT1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TUFT1 were set to https://doi.org/10.1093/bjd/ljac026
Phenotypes for gene: TUFT1 were set to Ectodermal dysplasia, MONDO:0019287, TUFT1-related
Review for gene: TUFT1 was set to AMBER
Added comment: 9 individuals from three families reported with woolly hair and skin fragility. One of the variants, c.60+1G>A was present in two of the families, founder effect demonstrated by haplotype analysis. Another loss of function variant present in the third family. Some functional data but mostly expression studies.
Sources: Literature
Mendeliome v1.564 CDK5 Zornitza Stark Classified gene: CDK5 as Amber List (moderate evidence)
Mendeliome v1.564 CDK5 Zornitza Stark Gene: cdk5 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.563 CDK5 Zornitza Stark edited their review of gene: CDK5: Added comment: Upgraded to Amber following GenCC discrepancy resolution: single family with four affected individuals but extensive supportive experimental evidence including mouse models.; Changed rating: AMBER; Changed publications: 25560765, 32273484, 32097629, 28854363, 7490100
Mendeliome v1.563 SLC26A6 Arina Puzriakova gene: SLC26A6 was added
gene: SLC26A6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC26A6 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: SLC26A6 were set to 35115415; 21170874; 32660969
Phenotypes for gene: SLC26A6 were set to Enteric hyperoxaluria and nephrolithiasis
Added comment: Cornière et al. 2022 (PMID: 35115415) identified a single family with a heterozygous missense VUS (c.1519C>T/p.R507W) in the SLC26A6 gene. However, the variant was found in 5 out of 280 674 alleles reported in gnomAD (Europeans and South Asians). In vitro studies showed that the variant affects both SLC26A6 transport activity and membrane surface expression, in turn reducing Cl− dependant oxalate transport. Cotransfection studies indicated a dominant-negative effect on WT. Slc26a6 null mice similarly displayed hyperoxalemia and hyperoxaluria which were caused by defective intestinal back-secretion of dietary oxalate (PMID: 21170874; 32660969)

SLC26A6 is currently not associated with any human phenotype in OMIM or G2P.
Sources: Literature
Mendeliome v1.541 TNNC2 Zornitza Stark gene: TNNC2 was added
gene: TNNC2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TNNC2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TNNC2 were set to 33755597
Phenotypes for gene: TNNC2 were set to Congenital myopathy, MONDO:0019952, TNNC2-related
Review for gene: TNNC2 was set to GREEN
Added comment: Two families reported: Family 1: 4 individuals, three generations; missense variant p.(Asp34Tyr) Family 2: de novo variant, missense p.(Met79Ile)

Physiological studies in myofibers isolated from patients’ biopsies revealed a markedly reduced force response of the sarcomeres to [Ca2+]. This pathomechanism was further confirmed in experiments in which contractile dysfunction was evoked by replacing TnC in myofibers from healthy control subjects with recombinant, mutant TnC. Conversely, the contractile dysfunction of myofibers from patients was repaired by replacing endogenous, mutant TnC with recombinant, wild-type TnC.

Borderline Green: sufficient segregation in Fam 1 plus de novo status in Fam 2, plus functional data.
Sources: Literature
Mendeliome v1.540 CHUK Zornitza Stark Phenotypes for gene: CHUK were changed from Popliteal pterygium syndrome, Bartsocas-Papas type 2, MIM# 619339; Cocoon syndrome, MIM# 613630; AEC-like syndrome to Combined immunodeficiency, MONDO:0015131, CHUK-related; Popliteal pterygium syndrome, Bartsocas-Papas type 2, MIM# 619339; Cocoon syndrome, MIM# 613630; AEC-like syndrome
Mendeliome v1.538 CHUK Zornitza Stark edited their review of gene: CHUK: Changed phenotypes: Combined immunodeficiency, MONDO:0015131, CHUK-related, Popliteal pterygium syndrome, Bartsocas-Papas type 2, MIM# 619339, Cocoon syndrome, MIM# 613630, AEC-like syndrome
Mendeliome v1.538 CHUK Zornitza Stark edited their review of gene: CHUK: Added comment: PMID 34533979: single individual reported with homozygous missense variant in this gene and recurrent infections, skeletal abnormalities, absent secondary lymphoid structures, reduced B cell numbers, hypogammaglobulinemia, and lymphocytic infiltration of intestine. Supportive functional data.; Changed publications: 25691407, 20961246, 10195895, 10195896, 29523099, 28513979, 34533979
Mendeliome v1.535 LIG1 Zornitza Stark Phenotypes for gene: LIG1 were changed from Combined immunodeficiency; Lymphopaenia; Hypogammaglobulinaemia; Recurrent bacterial and viral infections; Growth retardation; Sun sensitivity, radiation sensitivity; Macrocytosis to Immunodeficiency 96, MIM# 619774; Lymphopaenia; Hypogammaglobulinaemia; Recurrent bacterial and viral infections; Growth retardation; Sun sensitivity, radiation sensitivity; Macrocytosis
Mendeliome v1.534 NLGN4X Zornitza Stark Gene: nlgn4x has been classified as Amber List (Moderate Evidence).
Mendeliome v1.533 NLGN4X Zornitza Stark Classified gene: NLGN4X as Amber List (moderate evidence)
Mendeliome v1.533 NLGN4X Zornitza Stark Gene: nlgn4x has been classified as Amber List (Moderate Evidence).
Mendeliome v1.531 MPC2 Zornitza Stark Gene: mpc2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.531 MPC2 Zornitza Stark Classified gene: MPC2 as Amber List (moderate evidence)
Mendeliome v1.531 MPC2 Zornitza Stark Gene: mpc2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.530 MPC2 Zornitza Stark gene: MPC2 was added
gene: MPC2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MPC2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MPC2 were set to 36417180
Phenotypes for gene: MPC2 were set to mitochondrial pyruvate carrier deficiency, MONDO:0013877, MPC2-related
Review for gene: MPC2 was set to AMBER
Added comment: Four patients from two unrelated consanguineous families reported with homozygous variants (missense and stop-loss). Siblings from family 1 were diagnosed prenatally with diffuse subcutaneous oedema, cardiomegaly, corpus callosum agenesis, ventriculomegaly and hypoplasia of the cerebellum. Siblings from family 2 had slightly different presentations, which included anoxo-ischemic encephalopathy, isolated dyspnea, neonatal respiratory distress, neonatal jaundice, hypotonia, visual impairment, microcephaly; both siblings had severe delayed psychomotor development. Immunoblot analysis of protein expression in lysates from patient-derived fibroblasts demonstrated reduced MPC1 and MPC2 protein levels.
Sources: Literature
Mendeliome v1.523 LEMD2 Seb Lunke reviewed gene: LEMD2: Rating: AMBER; Mode of pathogenicity: None; Publications: 31061923, 26788539, 30905398, 36377660; Phenotypes: Marbach-Rustad progeroid syndrome, OMIM# 619322, arrhythmogenic right ventricular cardiomyopathy, MONDO:0016587, Cataract 46, juvenile-onset, OMIM# 212500; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.523 NUP54 Zornitza Stark Gene: nup54 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.521 UQCRH Zornitza Stark Classified gene: UQCRH as Amber List (moderate evidence)
Mendeliome v1.521 UQCRH Zornitza Stark Gene: uqcrh has been classified as Amber List (Moderate Evidence).
Mendeliome v1.514 NUP54 Zornitza Stark Classified gene: NUP54 as Amber List (moderate evidence)
Mendeliome v1.514 NUP54 Zornitza Stark Gene: nup54 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.513 NUP54 Hazel Phillimore gene: NUP54 was added
gene: NUP54 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NUP54 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NUP54 were set to PMID: 36333996
Phenotypes for gene: NUP54 were set to Early onset dystonia; progressive neurological deterioration; ataxia; dysarthria; dysphagia; hypotonia
Mode of pathogenicity for gene: NUP54 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: NUP54 was set to AMBER
Added comment: From PMID: 36333996.; Harrer, P. et al. (2022) Ann Neurol. doi: 10.1002/ana.26544.

Three patients from unrelated families with dystonia and/or Leigh(-like) syndromes, with biallelic variants in NUP54, in the C-terminal protein region that interacts with NUP62. Onset was between 12 months and 5 years. All had progressive neurological deterioration with dystonia, ataxia, dysarthria, dysphagia, hypotonia.

Patient / Family A (consanguineous) was homozygous for c.1073T>G p.(Ile358Ser).

Patient / Family B was compound heterozygous for c.1073T>G p.(Ile358Ser) and c.1126A>G p.(Lys376Glu).

Patient / Family C was compound heterozygosity for c.1410_1412del p.(Gln471del) and two missense variants c.1414G>A, p.(Glu472Lys); c.1420C>T, p.(Leu474Phe)

The phenotypes were similar to those of NUP62 including early-onset dystonia with dysphagic choreoathetosis, and T2-hyperintense lesions in striatum.

Brain MRIs showed T2/FLAIR hyperintensities in the dorsal putamina.

Western blots showing reduced expression of NUP54 and its interaction partners NUP62/NUP58 in patient fibroblasts.
Sources: Literature
Mendeliome v1.511 DCLRE1B Manny Jacobs reviewed gene: DCLRE1B: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 10699141, 20479256, 35007328; Phenotypes: Dyskeratosis congenita, autosomal recessive 8; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.511 NPC1 Naomi Baker gene: NPC1 was added
gene: NPC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NPC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NPC1 were set to 36417180
Phenotypes for gene: NPC1 were set to mitochondrial pyruvate carrier deficiency, MONDO:0013877, MPC2-related
Review for gene: NPC1 was set to AMBER
Added comment: Four patients from two unrelated consanguineous families reported with homozygous variants (missense and stop-loss). Siblings from family 1 were diagnosed prenatally with diffuse subcutaneous oedema, cardiomegaly, corpus callosum agenesis, ventriculomegaly and hypoplasia of the cerebellum. Siblings from family 2 had slightly different presentations, which included anoxo-ischemic encephalopathy, isolated dyspnea, neonatal respiratory distress, neonatal jaundice, hypotonia, visual impairment, microcephaly; both siblings had severe delayed psychomotor development. Immunoblot analysis of protein expression in lysates from patient-derived fibroblasts demonstrated reduced MPC1 and MPC2 protein levels.
Sources: Literature
Mendeliome v1.507 GABRA3 Sarah Pantaleo gene: GABRA3 was added
gene: GABRA3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GABRA3 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: GABRA3 were set to PMID: 29053855
Phenotypes for gene: GABRA3 were set to Epilepsy, intellectual disability, dysmorphic features,
Penetrance for gene: GABRA3 were set to Incomplete
Review for gene: GABRA3 was set to GREEN
Added comment: Six variants in GABRA3 encoding the alpha3-subunit of the GABA(A) receptor.
Five missense variants and one micro duplication were detected in four families and two sporadic cases presenting with a range of epileptic seizure types, a varying degree of intellectual disability and developmental delay, sometimes with dysmorphic features or nystagmus.
The variants co-segregated mostly but not completely with the phenotype in the families, indicating in some cases incomplete penetrance, involvement of other genes, or presence of phenocopies.
Overall, males were more severely affected and there were three asymptomatic female mutation carriers compared to only one male without a clinical phenotype.
Mechanism suggested - three detected missense variants are localised in the extracellular GABA-binding NH2-terminus, one in the M2-M3 linker and one in the M4 transmembrane segment of the alpha3-subunit. Functional studies in Xenopus leaves oocytes revealed a variable but significant reduction of GABA-evoked anion currents for all mutants compared to wild-type receptors. The degree of current reduction correlated partially with the phenotype.
Results reveal that rare loss-of-function variants in GABRA3 increase the risk for a varying combination of epilepsy, intellectual disability/developmental delay and dysmorphic features, presenting in some pedigrees with an X-linked inheritance pattern.
Sources: Literature
Mendeliome v1.504 UQCRH Chern Lim gene: UQCRH was added
gene: UQCRH was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UQCRH was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UQCRH were set to 34750991
Phenotypes for gene: UQCRH were set to Mitochondrial complex III deficiency, nuclear type 11, MIM#620137
Review for gene: UQCRH was set to AMBER
gene: UQCRH was marked as current diagnostic
Added comment: PMID: 34750991:
- Two affected cousins, presented with recurrent episodes of severe lactic acidosis, hyperammonaemia, hypoglycaemia and encephalopathy.
- Both have a 2.2 kb homozygous deletion of exons 2 and 3 of UQCRH, predicted to culminate in an in-frame deletion exons 2 and 3 of the four-exon UQCRH gene, resulting in a shortened product.
- Mouse model with the equivalent homozygous Uqcrh deletion (Uqcrh-/-) also presented with lactic acidosis and hyperammonaemia, but had a more severe, non-episodic phenotype, resulting in failure to thrive and early death.
- Patient fibroblasts and Uqcrh-/- mouse tissues showed a CIII defect.
- Expression of wild-type UQCRH in patient fibroblasts ameliorates the CIII defect.
Sources: Literature
Mendeliome v1.504 FEM1C Paul De Fazio gene: FEM1C was added
gene: FEM1C was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FEM1C was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: FEM1C were set to 36336956; 28135719; 33398170; 33398168
Phenotypes for gene: FEM1C were set to Neurodevelopmental disorder, FEM1C-related MONDO:0700092
Review for gene: FEM1C was set to GREEN
gene: FEM1C was marked as current diagnostic
Added comment: PMID:36336956 describes a 9-year-old boy with severe DD, lack of speech, pyramidal signs, and limb ataxia who had a de novo missense variant Asp126His in FEM1C ascertained by WES. The equivalent variant introduced into the nematode C.elegans resulted in disabled locomotion caused by synaptic abnormalities and not muscle dysfunction.

An alternate change Asp126Val was reported in the DDD study de novo in a patient with uncharacterised developmental delay (PMID:28135719).

The Asp126 residue (but not either of the variants above specifically) was shown to be functionally important by in vitro studies (PMID:33398170;33398168). The residue is highly conserved and located in a region of missense constraint.

Borderline green, 2 patients and an animal model. Note all evidence points to the Asp126 residue being of specific importance.
Sources: Literature
Mendeliome v1.491 KIF26A Chirag Patel gene: KIF26A was added
gene: KIF26A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KIF26A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: KIF26A were set to PMID: 36228617
Phenotypes for gene: KIF26A were set to Congenital brain malformations, no OMIM #
Review for gene: KIF26A was set to GREEN
Added comment: 5 unrelated patients with biallelic loss-of-function variants in KIF26A (found through WES), exhibiting a spectrum of congenital brain malformations (schizencephaly, corpus callosum anomalies, polymicrgyria, and ventriculomegaly). Combining mice and human iPSC-derived organoid models, they discovered that loss of KIF26A causes excitatory neuron-specific defects in radial migration, localization, dendritic and axonal growth, and apoptosis, offering a convincing explanation of the disease etiology in patients. Single-cell RNA sequencing in KIF26A knockout organoids revealed transcriptional changes in MAPK, MYC, and E2F pathways.
Sources: Literature
Mendeliome v1.490 TAMM41 Zornitza Stark Phenotypes for gene: TAMM41 were changed from inborn mitochondrial metabolism disorder MONDO:0004069; hypotonia; developmental delay; myopathy; ptosis to Combined oxidative phosphorylation deficiency-56 (COXPD56), MIM#620139; hypotonia; developmental delay; myopathy; ptosis
Mendeliome v1.489 TAMM41 Zornitza Stark reviewed gene: TAMM41: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Combined oxidative phosphorylation deficiency-56 (COXPD56), MIM#620139; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.486 SEC16B Zornitza Stark Gene: sec16b has been classified as Amber List (Moderate Evidence).
Mendeliome v1.486 SEC16B Zornitza Stark Classified gene: SEC16B as Amber List (moderate evidence)
Mendeliome v1.486 SEC16B Zornitza Stark Gene: sec16b has been classified as Amber List (Moderate Evidence).
Mendeliome v1.485 SEC16B Zornitza Stark gene: SEC16B was added
gene: SEC16B was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: SEC16B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SEC16B were set to 28375157; 28862642; 30652979
Phenotypes for gene: SEC16B were set to Polycystic liver disease (with or without kidney cysts), MONDO:0000447, SEC16B-related
Review for gene: SEC16B was set to AMBER
Added comment: Two unrelated individuals with limited supporting functional data reported. Assessed as LIMITED by ClinGen.
Sources: Expert Review
Mendeliome v1.482 NDUFB7 Zornitza Stark reviewed gene: NDUFB7: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Mitochondrial complex I deficiency nuclear type 39 (MC1DN39), MIM#620135; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.482 ADAMTS9 Chirag Patel Classified gene: ADAMTS9 as Amber List (moderate evidence)
Mendeliome v1.482 ADAMTS9 Chirag Patel Gene: adamts9 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.481 ADAMTS9 Chirag Patel reviewed gene: ADAMTS9: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: ; Mode of inheritance: None
Mendeliome v1.476 PDIA6 Chirag Patel edited their review of gene: PDIA6: Added comment: 2nd patient with large polycystic kidneys, death and end stage renal failure at 18 months, microcephaly, bilateral inguinal hernias, umbilical hernia, developmental delay, bilateral sensorineural hearing loss, visual impairment, steatorrhea, fibrotic changes in liver, and insulin-dependent diabetes. WGS found homozygous stop-gain variant (Tyr368*) in PDIA6. Segregation not performed.; Changed rating: AMBER; Changed publications: PMID: 35856135; Changed phenotypes: Polycystic kidney disease, infancy-onset diabetes, and microcephaly
Mendeliome v1.468 SMC5 Zornitza Stark gene: SMC5 was added
gene: SMC5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SMC5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SMC5 were set to 36333305
Phenotypes for gene: SMC5 were set to Multiple congenital anomalies/dysmorphic syndrome, MONDO:0019042, SLF2-related; Atelis syndrome; microcephaly; short stature; ID
Review for gene: SMC5 was set to GREEN
Added comment: Four individuals from three families with a chromosome breakage disorder and bi-allelic variants in this gene. However, three of the individuals had the same homozygous missense variant. Evidence for functional impact of the variant was limited. However, zebrafish model recapitulated the phenotype and was not rescued by the introduction of this variant, arguing for functional effect. Borderline Amber/Green
Sources: Literature
Mendeliome v1.445 ATP11A Chern Lim reviewed gene: ATP11A: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 36300302; Phenotypes: Deafness, autosomal dominant 84 (MIM#619810); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v1.440 FICD Alison Yeung gene: FICD was added
gene: FICD was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FICD was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FICD were set to 36136088
Phenotypes for gene: FICD were set to Hereditary motor neurone disease, FICD-related, MONDO:0024257
Review for gene: FICD was set to GREEN
Added comment: Three unrelated families with recurrent homozygous missense variant: p.Arg374His
One further family with Chet variants: p.Arg 374His and p.Gly370GlufsTer53

Fibroblasts from patients with FICD variants have abnormally increased levels of AMPylated and thus inactivated BiP.

Onset of symptoms in childhood with progressive course. Presentation with severe lower limb spasticity and mild upper limb spascticity, nerve conduction test shows motor neuropathy.
Sources: Literature
Mendeliome v1.439 METTL23 Lucy Spencer reviewed gene: METTL23: Rating: AMBER; Mode of pathogenicity: None; Publications: 36099048; Phenotypes: glaucoma MONDO:0005041; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.436 TOMM7 Zornitza Stark edited their review of gene: TOMM7: Added comment: Second family reported in PMID 36282599: single affected individual with homozygous missense variant; clinical presentation with progeroid features but functional data supports underlying mitochondrial aetiology.

Maintain Amber rating as the two patients have quite disparate clinical presentations.; Changed publications: 36282599
Mendeliome v1.428 FGL2 Zornitza Stark Gene: fgl2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.428 FGL2 Zornitza Stark Classified gene: FGL2 as Amber List (moderate evidence)
Mendeliome v1.428 FGL2 Zornitza Stark Gene: fgl2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.427 FGL2 Zornitza Stark gene: FGL2 was added
gene: FGL2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FGL2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FGL2 were set to 36243222
Phenotypes for gene: FGL2 were set to Autoinflammatory syndrome, MONDO:0019751, FGL2-related
Review for gene: FGL2 was set to AMBER
Added comment: Child with early onset systemic inflammation, autoantibodies, and vasculitis. Homozygous truncating variant, functional studies include rescue experiments.
Sources: Literature
Mendeliome v1.417 EMILIN1 Zornitza Stark reviewed gene: EMILIN1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Neuronopathy, distal hereditary motor, type X, MIM# 620080; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v1.412 NFAT5 Zornitza Stark Classified gene: NFAT5 as Amber List (moderate evidence)
Mendeliome v1.412 NFAT5 Zornitza Stark Gene: nfat5 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.411 NFAT5 Zornitza Stark edited their review of gene: NFAT5: Added comment: Two additional individuals with missense variants reported in PMID 36238298: one with EBV infection with hepatitis and enterocolitis, and one with fatal HLH.; Changed rating: AMBER; Changed publications: 25667416, 36238298; Changed phenotypes: Immune deficiency disease, MONDO:0003778, NFAT5-related, Recurrent infections, Autoimmune enterocolopathy, EBV susceptibility, HLH
Mendeliome v1.406 IMPA1 Bryony Thompson Gene: impa1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.406 IMPA1 Bryony Thompson Classified gene: IMPA1 as Amber List (moderate evidence)
Mendeliome v1.406 IMPA1 Bryony Thompson Gene: impa1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.405 IMPA1 Bryony Thompson gene: IMPA1 was added
gene: IMPA1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: IMPA1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: IMPA1 were set to 26416544; 24554717; 32839513; 17460611
Phenotypes for gene: IMPA1 were set to intellectual disability, autosomal recessive 59 MONDO:0015020
Review for gene: IMPA1 was set to AMBER
Added comment: A homozygous frameshift variant identified in a large Brazilian consanguineous family with ID, also supporting functional studies and null mouse models.
Sources: Literature
Mendeliome v1.404 ARNT2 Bryony Thompson Gene: arnt2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.404 ARNT2 Bryony Thompson Classified gene: ARNT2 as Amber List (moderate evidence)
Mendeliome v1.404 ARNT2 Bryony Thompson Gene: arnt2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.403 ARNT2 Bryony Thompson gene: ARNT2 was added
gene: ARNT2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ARNT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ARNT2 were set to 11381139; 24022475
Phenotypes for gene: ARNT2 were set to Webb-Dattani syndrome MONDO:0014404
Review for gene: ARNT2 was set to AMBER
Added comment: A homozygous frameshift (c.1373_1374dupTC) in six affected children from a highly consanguineous family with a syndromic phenotype including microcephaly with fronto-temporal lobe hypoplasia, multiple pituitary hormone deficiency, seizures, severe visual impairment and abnormalities of the kidneys and urinary tract. In a Arnt2(-/-) mouse model embryos die perinatally and exhibit impaired hypothalamic development.
Sources: Literature
Mendeliome v1.396 TOMM7 Zornitza Stark reviewed gene: TOMM7: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Inborn mitochondrial disorder MONDO:0004069, TOMM7-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.396 TOMM7 Bryony Thompson Gene: tomm7 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.396 TOMM7 Bryony Thompson Classified gene: TOMM7 as Amber List (moderate evidence)
Mendeliome v1.396 TOMM7 Bryony Thompson Gene: tomm7 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.395 TOMM7 Bryony Thompson gene: TOMM7 was added
gene: TOMM7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TOMM7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TOMM7 were set to DOI:https://doi.org/10.1016/j.xhgg.2022.100148
Phenotypes for gene: TOMM7 were set to growth retardation, intellectual developmental disorder, hypotonia, and hepatopathy MONDO:0014911
Review for gene: TOMM7 was set to AMBER
Added comment: A single case identified with a homozygous variant in TOMM7 (c.73T>C, p.Trp25Arg) that presented with syndromic short stature, skeletal abnormalities, muscle hypotonia, microvesicular liver steatosis, and developmental delay. A mouse model of the missense variant demonstrated a bioenergetic defect and a phenotype of mitochondrial diseases. It also strongly suggested that the variant is hypomorphic because mice homozygous for this variant showed a milder phenotype than those with a homozygous Tomm7 deletion.
Sources: Literature
Mendeliome v1.393 HECW2 Bryony Thompson reviewed gene: HECW2: Rating: AMBER; Mode of pathogenicity: None; Publications: 35753050, 35487419; Phenotypes: Neurodevelopmental disorder with hypotonia, seizures, and absent language MONDO:0014995; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.391 FAM20B Bryony Thompson Gene: fam20b has been classified as Amber List (Moderate Evidence).
Mendeliome v1.391 FAM20B Bryony Thompson Classified gene: FAM20B as Amber List (moderate evidence)
Mendeliome v1.391 FAM20B Bryony Thompson Gene: fam20b has been classified as Amber List (Moderate Evidence).
Mendeliome v1.390 FAM20B Bryony Thompson gene: FAM20B was added
gene: FAM20B was added to Mendeliome. Sources: Other
Mode of inheritance for gene: FAM20B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FAM20B were set to 30847897; 30105814; 22732358; 27405802
Phenotypes for gene: FAM20B were set to Desbuquois dysplasia MONDO:0015426
Review for gene: FAM20B was set to AMBER
Added comment: Two siblings from a single family with neonatal short limb dysplasia resembling Desbuquois dysplasia. One of the siblings underwent genetic testing and compound heterozygous variants were identified in FAM20B ((NM_014864: c.174_178delTACCT p.T59Afs*19/c.1038delG p.N347Mfs*4). Multiple mouse models reported with skeletal abnormalities.
Sources: Other
Mendeliome v1.373 DACT1 Zornitza Stark Classified gene: DACT1 as Amber List (moderate evidence)
Mendeliome v1.373 DACT1 Zornitza Stark Gene: dact1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.369 DACT1 Paul De Fazio reviewed gene: DACT1: Rating: AMBER; Mode of pathogenicity: None; Publications: 36066768; Phenotypes: Townes-Brocks syndrome 2 MONDO:0054582; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v1.369 CENPP Seb Lunke changed review comment from: Sources: Literature; to: Single family with dominant SNHL segregated through 5 family members. Truncating variant in NM_001012267.3(CENPP):c.849T>A (p.Cys283Ter). Note: misannotated as nonsense variant in paper.
Sources: Literature
Mendeliome v1.366 MED11 Ain Roesley gene: MED11 was added
gene: MED11 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MED11 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MED11 were set to 36001086
Phenotypes for gene: MED11 were set to neurodevelopmental disorder MONDO#0700092, MED11-related
Review for gene: MED11 was set to GREEN
gene: MED11 was marked as current diagnostic
Added comment: 7 affected from 5 families (3x consang) with the same recurrent variant of p.(Arg109*).

Protein truncating, NOT NMD as proven by RT-PCR and western blot. Zebrafish knockout model recapitulates key clinical phenotypes

NO evidence of founder effect from haplotype analysis

7/7 cerebral dysgyria, cortical atrophy
5/7 limb contracture
4/7 epilepsy
3/7 families with IUGR
3/7 GDD
3/7 hearing loss
3/7 undescended testis
2/7 nystagmus
1/7 congenital cataract
Sources: Literature
Mendeliome v1.354 NAPB Paul De Fazio gene: NAPB was added
gene: NAPB was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NAPB was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NAPB were set to 26235277; 28097321; 33189936
Phenotypes for gene: NAPB were set to Developmental and epileptic encephalopathy 107 MIM#620033
Review for gene: NAPB was set to GREEN
gene: NAPB was marked as current diagnostic
Added comment: PMID 26235277: homozygous nonsense variant identified in a 6 year old girl by trio WES with early-onset epileptic encephalopathy characterised by multifocal seizures and profound GDD

PMID 28097321: exome sequencing in 152 consanguineous families with at least one member affected with ID. Homozygous nonsense variant identified in a patient with profound ID, seizures, feeding difficulties in infancy, muscularhypotonia, microcephaly, and impaired vision

PMID 33189936: homozygous canonical splice variant identified by trio exome sequencing in two siblings with seizures, intellectual disability and global developmental delay, microcephaly (<-3SD), and muscular hypotonia.
Sources: Literature
Mendeliome v1.343 DPH2 Zornitza Stark reviewed gene: DPH2: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Developmental delay with short stature, dysmorphic facial features, and sparse hair 2, MIM# 620062; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.343 LMBRD1 Zornitza Stark Tag treatable tag was added to gene: LMBRD1.
Mendeliome v1.337 ANO1 Zornitza Stark reviewed gene: ANO1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Intestinal dysmotility syndrome, MIM# 620045; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.334 NDNF Elena Savva Classified gene: NDNF as Amber List (moderate evidence)
Mendeliome v1.334 NDNF Elena Savva Gene: ndnf has been classified as Amber List (Moderate Evidence).
Mendeliome v1.333 NDNF Elena Savva reviewed gene: NDNF: Rating: AMBER; Mode of pathogenicity: None; Publications: 31883645; Phenotypes: Hypogonadotropic hypogonadism 25 with anosmia MIM#618841; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v1.333 PTPA Zornitza Stark Gene: ptpa has been classified as Amber List (Moderate Evidence).
Mendeliome v1.333 PTPA Zornitza Stark Classified gene: PTPA as Amber List (moderate evidence)
Mendeliome v1.333 PTPA Zornitza Stark Gene: ptpa has been classified as Amber List (Moderate Evidence).
Mendeliome v1.332 PTPA Zornitza Stark gene: PTPA was added
gene: PTPA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PTPA was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PTPA were set to 36073231
Phenotypes for gene: PTPA were set to Intellectual disability, MONDO: 36073231, PTPA-related
Review for gene: PTPA was set to AMBER
Added comment: Biallelic PTPA pathogenic variants lead to a form of ID with later-onset parkinsonism based on 4 individuals from 2 families in the literature. Affected individuals were homozygous for missense variants demonstrated to result to reduced mRNA and protein levels as well as PP2A complex activation. Drosophila studies support an age-dependent locomotor dysfunction. Variants in other PP2A-complex-related genes also lead to NDDs. Summary provided below.

There is currently no associated phenotype in OMIM, G2P, PanelApp UK or SysID.

Consider inclusion in relevant panels (ID, Parkinsonism/movement disorders, etc) with amber rating pending further reports.

------

Fevga, Tesson et al (2022 - PMID: 36073231) describe the features of 4 individuals, from 2 unrelated families, with biallelic pathogenic PTPA variants.

These presented with normal or delayed early milestones, learning disability and ID (mild to moderate) followed by progressive signs of parkinsonism (at the age of 11 yrs in 2 sibs, 15 yrs in another individual). Motor symptoms were responsive to levodopa and later to deep brain stimulation.

Linkage analysis in one consanguineous family followed by exome revealed homozygosity for a missense PTPA variant (NM_178001:c.893T>G/p.Met298Arg). Exome sequencing in affected subjects from the 2nd family revealed homozygosity for a further missense variant (c.512C>A/p.Ala171Asp). There were no other candidate variants for the phenotype following parental / segregation studies.

Role of the gene:
As the authors discuss, PTPA (or PPP2R4) is ubiquitously expressed in all tissues incl. brain and encodes a phosphotyrosyl phosphatase activator of the dimeric form of protein phosphatase-2A (PP2A). PP2A in turn, is the major Ser/Thr phosphatase in brain targeting a large number of proteins involved in diverse functions. Activation of PP2A is dependent on its methylation, which is negatively regulated by the PP2A-specific methylesterase (PME-1). By binding to PME-1, PTPA counteracts the negative influence of the former on PP2A. Pathogenic variants in genes encoding subunits/regulators of the PP2A complex (e.g. PPP2R1A or PPP2CA) are associated with neurodevelopmental disorders.

Variant studies:
Upon overexpression of wt and both variants in a HEK-293 cell line the authors demonstrated that both variants resulted in significantly reduced mRNA and protein levels (which for Ala171Asp were attributed to increased proteasomal degradation). Both variants were shown to result in impaired PP2A complex activation compared to wt.

Drosophila / animal models:
Pan-neuronal RNAi-mediated knockdown of ptpa in Drosophila resulted in an age-dependent locomotor dysfunction, reversible with L-DOPA treatment.
Previous studies in mice suggest cognitive/electrophysiological impairments upon downregulation of PP2A activity in transgenic mice.
Sources: Literature
Mendeliome v1.324 NODAL Zornitza Stark Classified gene: NODAL as Amber List (moderate evidence)
Mendeliome v1.324 NODAL Zornitza Stark Gene: nodal has been classified as Amber List (Moderate Evidence).
Mendeliome v1.323 NODAL Zornitza Stark edited their review of gene: NODAL: Added comment: NODAL is a good biological candidate for heterotaxy disorders, and this is supported by animal models. The gene is depleted for LoF variants in gnomad.

The missense variants reported in PMIDs 9354794 and 19064609 are present at a high population frequency in gnomad, including some in homozygous case: their association with disease is DISPUTED.

A total of at least 7 families reported with severe CHD and high impact variants (stop gain, frameshift and canonical splice site). However, almost invariably these were inherited from unaffected or questionably affected parents (e.g. self reports of heart murmur in childhood), raising questions about whether these variants contribute to disease under a monogenic or polygenic model and/or about penetrance.

Discussed at GenCC on 13/9/2022 and agreed on MODERATE assessment.; Changed rating: AMBER; Changed publications: 9354794, 19064609, 29368431, 19933292, 11311163, 30293987
Mendeliome v1.323 JAG1 Bryony Thompson reviewed gene: JAG1: Rating: AMBER; Mode of pathogenicity: None; Publications: 35819173, 30071989, 14993126, 18570795; Phenotypes: thoracic aortic aneurysm MONDO:0005396; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.321 OOEP Bryony Thompson Classified gene: OOEP as Amber List (moderate evidence)
Mendeliome v1.321 OOEP Bryony Thompson Gene: ooep has been classified as Amber List (Moderate Evidence).
Mendeliome v1.320 OOEP Bryony Thompson reviewed gene: OOEP: Rating: AMBER; Mode of pathogenicity: None; Publications: 35946397, 18804437; Phenotypes: female infertility due to oocyte meiotic arrest MONDO:0044626; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.318 UBAP2L Zornitza Stark changed review comment from: Based on Jia et al (2022 - PMID: 35977029) speech, motor delay as well as ID are observed in individuals harboring de novo pLoF variants in UBAP2L. The gene encodes a regulator of the stress granule (SG) assembly. Extensive evidence is provided on the effect of variants as well as the role of UBAP2L and other genes for components and/or regulation of SG in pathogenesis of NDDs. Among others a Ubap2l htz deletion mouse model (behavioral and cognitive impairment, abnormal cortical development due to impaired SG assembly, etc). Data from 26 previous studies, aggregating 40,853 probands with NDDs (mostly DD/ID, also ASD) suggest enrichment for DNMs in UBAP2L or other genes previously known and further shown to be important for SG formation (incl. G3BP1/G3BP2, CAPRIN1).
Sources: Literature; to: Based on Jia et al (2022 - PMID: 35977029) speech, motor delay as well as ID are observed in 11 individuals harboring de novo pLoF variants in UBAP2L. The gene encodes a regulator of the stress granule (SG) assembly. Extensive evidence is provided on the effect of variants as well as the role of UBAP2L and other genes for components and/or regulation of SG in pathogenesis of NDDs. Among others a Ubap2l htz deletion mouse model (behavioral and cognitive impairment, abnormal cortical development due to impaired SG assembly, etc). Data from 26 previous studies, aggregating 40,853 probands with NDDs (mostly DD/ID, also ASD) suggest enrichment for DNMs in UBAP2L or other genes previously known and further shown to be important for SG formation (incl. G3BP1/G3BP2, CAPRIN1).
Sources: Literature
Mendeliome v1.317 UBAP2L Zornitza Stark gene: UBAP2L was added
gene: UBAP2L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UBAP2L was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: UBAP2L were set to 35977029
Phenotypes for gene: UBAP2L were set to Neurodevelopmental disorder, MONDO:0700092, UBAP2L-related
Review for gene: UBAP2L was set to GREEN
Added comment: Based on Jia et al (2022 - PMID: 35977029) speech, motor delay as well as ID are observed in individuals harboring de novo pLoF variants in UBAP2L. The gene encodes a regulator of the stress granule (SG) assembly. Extensive evidence is provided on the effect of variants as well as the role of UBAP2L and other genes for components and/or regulation of SG in pathogenesis of NDDs. Among others a Ubap2l htz deletion mouse model (behavioral and cognitive impairment, abnormal cortical development due to impaired SG assembly, etc). Data from 26 previous studies, aggregating 40,853 probands with NDDs (mostly DD/ID, also ASD) suggest enrichment for DNMs in UBAP2L or other genes previously known and further shown to be important for SG formation (incl. G3BP1/G3BP2, CAPRIN1).
Sources: Literature
Mendeliome v1.304 NBAS Zornitza Stark edited their review of gene: NBAS: Added comment: PMID 35902954 - Biallelic NBAS variants identifed in three HLH patients who harbored no pathogenic variants in any of the known HLH genes. Functionally, impaired NK-cell cytotoxicity and degranulation were revealed in both NBAS biallelic variant patients and in an NBAS-defcient NK-cell line. Knockdown of NBAS in an NK-cell line (IMC-1) using short hairpin RNA (shRNA) resulted in loss of lytic granule polarization and a decreased number of cytotoxic vesicles near the Golgi apparatus.; Changed publications: 31761904, 35902954; Changed phenotypes: Short stature, optic nerve atrophy, and Pelger-Huet anomaly, MIM# 614800, Infantile liver failure syndrome 2, MIM# 616483, Haemophagocytic lymphohistiocytosis (HLH), MONDO:0015541
Mendeliome v1.304 TYMS Zornitza Stark Gene: tyms has been classified as Amber List (Moderate Evidence).
Mendeliome v1.304 TYMS Zornitza Stark Classified gene: TYMS as Amber List (moderate evidence)
Mendeliome v1.304 TYMS Zornitza Stark Gene: tyms has been classified as Amber List (Moderate Evidence).
Mendeliome v1.303 TYMS Zornitza Stark reviewed gene: TYMS: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Dyskeratosis congenita MONDO:0015780; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.296 SAT1 Zornitza Stark Classified gene: SAT1 as Amber List (moderate evidence)
Mendeliome v1.296 SAT1 Zornitza Stark Gene: sat1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.293 GATA1 Zornitza Stark Phenotypes for gene: GATA1 were changed from Thrombocytopaenia, X-linked, with or without dyserythropoietic anaemia, MIM# 300367; Haemolytic anaemia due to elevated adenosine deaminase, MIM# 301083; Anemia, X-linked, with/without neutropenia and/or platelet abnormalities, MIM# 300835 to Thrombocytopaenia, X-linked, with or without dyserythropoietic anaemia, MIM# 300367; Haemolytic anaemia due to elevated adenosine deaminase, MIM# 301083; Anemia, X-linked, with/without neutropenia and/or platelet abnormalities, MIM# 300835; Diamond-Blackfan anemia (MONDO:0015253)
Mendeliome v1.291 GATA1 Zornitza Stark edited their review of gene: GATA1: Added comment: PMID 36029112: De novo GATA1 initiation codon variant (c.3G>A) identified in a Diamond-Blackfan Anaemia patient. Functional evidence showed that the variant does not affect the GATA1 mRNA but brings about a shorter GATA1 isoform (GATA1s) and reduced full-length functional GATA1 protein (GATA1fl), thereby contributing to an erythropoietic defect. Four other GATA1 variants (c.2T>C, c.220G>C, c.220delG, c.220+2T>C) found in eight families have been described as DBA phenotype.; Changed publications: 36029112; Changed phenotypes: Thrombocytopaenia, X-linked, with or without dyserythropoietic anaemia, MIM# 300367, Haemolytic anaemia due to elevated adenosine deaminase, MIM# 301083, Anemia, X-linked, with/without neutropenia and/or platelet abnormalities, MIM# 300835, Diamond-Blackfan anemia (MONDO:0015253)
Mendeliome v1.285 HNRNPH1 Hazel Phillimore reviewed gene: HNRNPH1: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 35989590; Phenotypes: early onset high myopia, blindness; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.283 MET Zornitza Stark changed review comment from: PMID 30777867:
Four-generation Chinese arthrogryposis pedigree with only upper limb involvement. MET c.3701A>G p.Y1234C segregated as heterozygous in 11 affected family members and was absent from 12 unaffected family members. Variant is absent from gnomad. Functional studies showed this variant caused failure of phosphorylation and loss of tyrosine kinase activity of MET receptor. A mouse model was also created with this variant, mutated mice were found to be smaller than WT mice and had reduced myofibres. These mouse models also had defective migration of muscle progenitor cells and impaired proliferation of secondary myoblasts. Phenotypes in this family included camptodactyly, absent flexion crease, and limited forearm supination.; to: PMID 30777867:
Four-generation Chinese arthrogryposis pedigree with only upper limb involvement. MET c.3701A>G p.Y1234C segregated as heterozygous in 11 affected family members and was absent from 12 unaffected family members. Variant is absent from gnomad. Functional studies showed this variant caused failure of phosphorylation and loss of tyrosine kinase activity of MET receptor. A mouse model was also created with this variant, mutated mice were found to be smaller than WT mice and had reduced myofibres. These mouse models also had defective migration of muscle progenitor cells and impaired proliferation of secondary myoblasts. Phenotypes in this family included camptodactyly, absent flexion crease, and limited forearm supination.

AMBER for this association
Mendeliome v1.283 MET Zornitza Stark edited their review of gene: MET: Added comment: PMID 30777867:
Four-generation Chinese arthrogryposis pedigree with only upper limb involvement. MET c.3701A>G p.Y1234C segregated as heterozygous in 11 affected family members and was absent from 12 unaffected family members. Variant is absent from gnomad. Functional studies showed this variant caused failure of phosphorylation and loss of tyrosine kinase activity of MET receptor. A mouse model was also created with this variant, mutated mice were found to be smaller than WT mice and had reduced myofibres. These mouse models also had defective migration of muscle progenitor cells and impaired proliferation of secondary myoblasts. Phenotypes in this family included camptodactyly, absent flexion crease, and limited forearm supination.; Changed publications: 30777867
Mendeliome v1.280 BUD13 Alison Yeung Gene: bud13 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.280 BUD13 Alison Yeung Classified gene: BUD13 as Amber List (moderate evidence)
Mendeliome v1.280 BUD13 Alison Yeung Gene: bud13 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.279 BUD13 Alison Yeung gene: BUD13 was added
gene: BUD13 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: BUD13 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BUD13 were set to 35670808
Phenotypes for gene: BUD13 were set to Lipodystrophy, MONDO:0006573
Review for gene: BUD13 was set to AMBER
Added comment: 5 individuals with a lipodystrophy phenotype with a typical facial appearance, corneal clouding, achalasia, progressive hearing loss, and variable severity. Although 3 individuals showed stunted growth, intellectual disability, and died within the first decade of life, 2 are adults with normal intellectual development. All individuals harbored an identical homozygous nonsense variant affecting the retention and splicing complex component BUD13. Individuals from only two Algerian families.
Sources: Literature
Mendeliome v1.276 SAT1 Ee Ming Wong reviewed gene: SAT1: Rating: AMBER; Mode of pathogenicity: None; Publications: 35977808; Phenotypes: Systemic lupus erythematosus, MONDO:0007915, SAT1-related; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes
Mendeliome v1.271 LEF1 Zornitza Stark edited their review of gene: LEF1: Added comment: Monoallelic variants in LEF1 reported in 11 affected individuals from 4 unrelated families, and a biallelic variant reported in an affected individual from a consanguineous family. The phenotypic spectrum included various limb malformations, such as radial ray defects, polydactyly or split hand/foot, and ectodermal dysplasia. Haploinsufficiency or loss of DNA binding postulated to be responsible for a mild to moderate phenotype, whereas loss of β-catenin binding caused by biallelic variants postulated to be associated with a severe phenotype.; Changed rating: GREEN; Changed publications: 32022899, 35583550; Changed phenotypes: Syndromic disease, MONDO:0002254, LEF1-related; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.257 KIF5B Chirag Patel gene: KIF5B was added
gene: KIF5B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KIF5B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KIF5B were set to PMID: 35342932
Phenotypes for gene: KIF5B were set to Kyphomelic dysplasia, no OMIM #
Review for gene: KIF5B was set to GREEN
Added comment: 4 individuals with Kyphomelic dysplasia (severe bowing of the limbs, sharp angulation of the femora and humeri, short stature, narrow thorax, distinctive facial features, and neonatal respiratory distress. WES found de novo heterozygous missense variants in KIF5B encoding kinesin-1 heavy chain. All variants involved conserved amino acids in or close to the ATPase activity-related motifs in the catalytic motor domain of the KIF5B protein. No functional studies of variants. Previously 2 animal model experiments showed that loss of function of KIF5B can cause kyphomelic dysplasia. First, chondrocyte-specific knockout of Kif5b in mice was shown to produce a disorganized growth plate, leading to bone deformity. Second, double mutants disrupting the two zebrafish kif5b caused abnormal skeletal morphogenesis and the curvature of Meckel's and ceratohyal cartilages.
Sources: Literature
Mendeliome v1.254 ACADS Zornitza Stark Classified gene: ACADS as Amber List (moderate evidence)
Mendeliome v1.254 ACADS Zornitza Stark Gene: acads has been classified as Amber List (Moderate Evidence).
Mendeliome v1.253 ACADS Zornitza Stark edited their review of gene: ACADS: Changed rating: AMBER
Mendeliome v1.246 TRAC Seb Lunke Classified gene: TRAC as Amber List (moderate evidence)
Mendeliome v1.246 TRAC Seb Lunke Gene: trac has been classified as Amber List (Moderate Evidence).
Mendeliome v1.242 PAX5 Zornitza Stark reviewed gene: PAX5: Rating: AMBER; Mode of pathogenicity: None; Publications: 35947077; Phenotypes: Neurodevelopmental disorder MONDO:0700092, PAX5-related, Hypogammaglobulinaemia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.228 NOX1 Zornitza Stark gene: NOX1 was added
gene: NOX1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NOX1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: NOX1 were set to 29091079; 32064493
Phenotypes for gene: NOX1 were set to Inflammatory bowel disease, MONDO:0005265, NOX1-related
Review for gene: NOX1 was set to AMBER
Added comment: 8 IBD patients with early onset of IBD with progressive and severe colonic disease, refractory to conventional therapy and functional studies suggesting variant-dependent loss of NOX1-mediated superoxide generation. However, high frequency of nonsynonymous mutations in NOX1 suggests that NOX1 is not a highly penetrant Mendelian disorder and that other genetic modifiers or environmental factors may contribute to disease pathogenesis.

The variant reported in PMID 32064493 is present in 6 hets in gnomad.
Sources: Literature
Mendeliome v1.213 KIF15 Krithika Murali reviewed gene: KIF15: Rating: AMBER; Mode of pathogenicity: None; Publications: 28150392; Phenotypes: ?Braddock-Carey syndrome 2 - MIM#619981; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.212 PSMC1 Hazel Phillimore gene: PSMC1 was added
gene: PSMC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PSMC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PSMC1 were set to PMID: 35861243
Phenotypes for gene: PSMC1 were set to spastic paraplegia; severe developmental delay; severe intellectual disability; hearing loss; micropenis; undescended testes
Mode of pathogenicity for gene: PSMC1 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: PSMC1 was set to AMBER
Added comment: Homozygosity mapping on one large consanguineous Bedouin kindred showed three affected children (out of the ten) to be homozygous for NM_002802.3:c.983T>C; p.(Ile328Thr).

Drosophila rescue experiments were carried out. Transgenic studies using drosophila with the silenced ortholog Rpt2 gene were rescued by the human wild-type PSMC1.

Three of the ten offspring of healthy consanguineous parents of Bedouin Israeli ancestry were affected with a similar phenotype of failure to thrive, developmental delay and severe intellectual disability, spastic tetraplegia with central hypotonia, chorea, as well as hearing loss. None of the three achieved verbal communication or ambulation (sitting / standing) at any age. They had mild dysmorphism of borderline dolichocephaly and microcephaly, prominent bushy eyebrows, flat midface, long nasal bridge and micrognathia. All three had micropenis with undescended testes. One of the affected (as a toddler) underwent thorough endocrinological analysis: testosterone and gonadotropin levels were low.
Sources: Literature
Mendeliome v1.212 KIF15 Krithika Murali gene: KIF15 was added
gene: KIF15 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KIF15 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: KIF15 were set to 28150392
Phenotypes for gene: KIF15 were set to ?Braddock-Carey syndrome 2 - MIM#619981
Review for gene: KIF15 was set to GREEN
Added comment: PMID 28150392 Sleiman et al 2017 report one individual with homozygous R501* variant (NMD-predicted) from a consanguineous family. The child had thrombocytopenia, PRS, microcephaly -3SD by age 6, dysmorphic facies, bilateral external auditory canal atresia and deafness, microphthalmia, clinodactyly, short stature. Variant absent from gnomAD. Parents confirmed to be carriers and unaffected siblings were carriers/homozygous wild-type.

No other SNVs reported in ClinVar. Variant is absent from gnomAD. Authors note phenotypic similarities with Braddock-Carey syndrome (21q22 contiguous deletion also involving RUNX1).
Sources: Literature
Mendeliome v1.212 BMP3 Seb Lunke Gene: bmp3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.212 BMP3 Seb Lunke Classified gene: BMP3 as Amber List (moderate evidence)
Mendeliome v1.212 BMP3 Seb Lunke Gene: bmp3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.211 BMP3 Seb Lunke gene: BMP3 was added
gene: BMP3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: BMP3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: BMP3 were set to 35089417
Phenotypes for gene: BMP3 were set to coloboma, MONDO:0001476; microphthalmia, MONDO:0021129
Review for gene: BMP3 was set to AMBER
Added comment: Single missense variant identified segregating with disease following WES screen in a family with coloboma and/or microphthalmia in BMP3. Two additional unrelated patients identified with different missense in BMP3. Pathogenicity however largely on in-silicos, with one of the 3 missense having 29 hets in gnomAD. Additional functional work in bmp3 -/- zebra fish and some supporting evidence but not conclusive
Sources: Literature
Mendeliome v1.208 SLITRK2 Paul De Fazio gene: SLITRK2 was added
gene: SLITRK2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLITRK2 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: SLITRK2 were set to 35840571
Phenotypes for gene: SLITRK2 were set to Neurodevelopmental disorder, SLITRK2-related MONDO:0700092
Review for gene: SLITRK2 was set to GREEN
gene: SLITRK2 was marked as current diagnostic
Added comment: 6 missense variants and 1 nonsense variant (NOT NMD-predicted, single-exon gene) reported in 7 males and 1 female with neurodevelopmental disorders. Phenotypes included dev delay, mild to severe ID, delayed or absent speech, seizures and brain MRI anomalies (in some patients).

The nonsense variant was identified in two affected brothers but not in the mother, suggesting it was de novo in the maternal germline. The variant in the one affected female was de novo. All other variants in hemizygous males were inherited from an unaffected mother. In one case, the variant was also identified in the unaffected grandmother.

Functional studies showed some but not all variants displayed impaired membrane transport and impaired excitatory synapse-promoting effects. Conditional knockout mice exhibited impaired long-term memory and abnormal gait.
Sources: Literature
Mendeliome v1.207 RFC1 Ain Roesley Classified gene: RFC1 as Amber List (moderate evidence)
Mendeliome v1.207 RFC1 Ain Roesley Gene: rfc1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.205 RFC1 Ain Roesley reviewed gene: RFC1: Rating: AMBER; Mode of pathogenicity: None; Publications: 35883251; Phenotypes: Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome MIM#614575; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.203 EHHADH Zornitza Stark Classified gene: EHHADH as Amber List (moderate evidence)
Mendeliome v1.203 EHHADH Zornitza Stark Gene: ehhadh has been classified as Amber List (Moderate Evidence).
Mendeliome v1.202 EHHADH Zornitza Stark edited their review of gene: EHHADH: Added comment: https://clinmedjournals.org/articles/jcnrc/journal-of-clinical-nephrology-and-renal-care-jcnrc-3-027.pdf

Second case report, same variant, de novo. Also, experimental evidence. Assessed as MODERATE by ClinGen.; Changed rating: AMBER
Mendeliome v1.199 DUOX2 Zornitza Stark Classified gene: DUOX2 as Amber List (moderate evidence)
Mendeliome v1.199 DUOX2 Zornitza Stark Gene: duox2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.198 DUOX2 Zornitza Stark reviewed gene: DUOX2: Rating: AMBER; Mode of pathogenicity: None; Publications: 35429653, 27373512, 26301257, 28683258; Phenotypes: Inflammatory bowel disease, MONDO:0005265, DUOX2-related; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.196 CWH43 Anna Le Fevre gene: CWH43 was added
gene: CWH43 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CWH43 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CWH43 were set to PMID: 33459505; 34380733
Phenotypes for gene: CWH43 were set to normal pressure hydrocephalus
Penetrance for gene: CWH43 were set to Incomplete
Review for gene: CWH43 was set to AMBER
Added comment: Sources: Literature
Mendeliome v1.191 ROBO4 Zornitza Stark Classified gene: ROBO4 as Amber List (moderate evidence)
Mendeliome v1.191 ROBO4 Zornitza Stark Gene: robo4 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.186 MCM10 Zornitza Stark Classified gene: MCM10 as Amber List (moderate evidence)
Mendeliome v1.186 MCM10 Zornitza Stark Gene: mcm10 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.185 MCM10 Zornitza Stark edited their review of gene: MCM10: Added comment: PMID 33712616: further functional validation.; Changed rating: AMBER; Changed publications: 32865517, 33712616, 33712616
Mendeliome v1.185 IKZF1 Zornitza Stark Phenotypes for gene: IKZF1 were changed from Immunodeficiency, common variable, 13 MIM# 616873; recurrent bacterial respiratory infections; Thrombocytopaenia; immunodeficiency; Hypogammaglobulinaemia; decrease B-cells; decrease B-cell differentiation; decrease memory B/T cells; Low Ig; pneumocystis early CID onset to Immunodeficiency, common variable, 13 MIM# 616873; recurrent bacterial respiratory infections; Thrombocytopaenia; immunodeficiency; Hypogammaglobulinaemia; decrease B-cells; decrease B-cell differentiation; decrease memory B/T cells; Low Ig; pneumocystis early CID onset; Immune dysregulation
Mendeliome v1.183 IKZF1 Zornitza Stark edited their review of gene: IKZF1: Added comment: PMID 35333544: Eight individuals harboring heterozygous IKZF1R183H or IKZF1R183C variants associated with GOF effects reported. The clinical phenotypes and pathophysiology associated with IKZF1R183H/C differ from those of previously reported patients with IKZF1HI, IKZF1DN, and IKZF1DD and should therefore be considered as a novel IKAROS-associated disease entity. This condition is characterized by immune dysregulation manifestations including inflammation, autoimmunity, atopy, and polyclonal PC proliferation.; Changed publications: 21548011, 26981933, 29889099, 31057532, 7923373, 11805317, 35333544; Changed phenotypes: Immunodeficiency, common variable, 13 MIM# 616873, recurrent bacterial respiratory infections, Thrombocytopaenia, immunodeficiency, Hypogammaglobulinaemia, decrease B-cells, decrease B-cell differentiation, decrease memory B/T cells, Low Ig, pneumocystis early CID onset, Immune dysregulation
Mendeliome v1.179 ROBO4 Elena Savva reviewed gene: ROBO4: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID:30455415, 32748548; Phenotypes: Aortic valve disease 8 MIM#618496; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v1.166 IL23R Zornitza Stark Classified gene: IL23R as Amber List (moderate evidence)
Mendeliome v1.166 IL23R Zornitza Stark Gene: il23r has been classified as Amber List (Moderate Evidence).
Mendeliome v1.165 IL23R Zornitza Stark edited their review of gene: IL23R: Added comment: PMID 35829840: 48yo male with disseminated NTM homozygous (p.R381X) with supportive functional data.; Changed rating: AMBER; Changed publications: 30578351, 35829840
Mendeliome v1.165 HYOU1 Zornitza Stark Classified gene: HYOU1 as Amber List (moderate evidence)
Mendeliome v1.165 HYOU1 Zornitza Stark Gene: hyou1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.164 HYOU1 Zornitza Stark edited their review of gene: HYOU1: Added comment: Second individual reported in PMID: 35822684 with severe neutropenia.; Changed rating: AMBER; Changed publications: 27913302, 35822684; Changed phenotypes: Immunodeficiency 59 and hypoglycemia, MIM# 233600
Mendeliome v1.152 CDH2 Zornitza Stark edited their review of gene: CDH2: Added comment: PMID 34702855: three sibs with homozygous missense and strikingly severe ADHD. Mouse model of same variant recapitulated the phenotype. AMBER for bi-allelic association (segregation and functional data).; Changed publications: 31585109, 34702855; Changed phenotypes: Intellectual disability, corpus callosum abnormalities, congenital abnormalities, Agenesis of corpus callosum, cardiac, ocular, and genital syndrome, MIM# 618929:Attention deficit-hyperactivity disorder 8 , MIM# 619957; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.148 CLDN5 Zornitza Stark Gene: cldn5 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.148 CLDN5 Zornitza Stark Classified gene: CLDN5 as Amber List (moderate evidence)
Mendeliome v1.148 CLDN5 Zornitza Stark Gene: cldn5 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.147 CLDN5 Zornitza Stark gene: CLDN5 was added
gene: CLDN5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CLDN5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CLDN5 were set to 35714222
Phenotypes for gene: CLDN5 were set to alternating hemiplegia, MONDO:0016210, CLDN5-related
Mode of pathogenicity for gene: CLDN5 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: CLDN5 was set to AMBER
Added comment: PMID: 35714222; Hashimoto, Y. et al. (2022): Two unrelated cases (early-onset) with alternating hemiplegia with microcephaly were shown to have the same de novo variant, NM_001363066.2:c.178G>A, p.(Gly60Arg).

One with Jewish / Tunisian ancestry: Onset was at 8 months, three episodes of febrile tonic-clonic 1 seizures of the four limbs, with eye rolling, loss of consciousness, transient left and right post-2 ictal hemiparesis and vomiting. The other with Asian / European ancestry: Onset was at 30 months with three iterative episodes of febrile and non-febrile hemiplegia and loss of 18 consciousness. The recurrent episodes alternatively involved the left-and 19 right-hand side, then generalised and were followed by post ictal hemiparesis.

CT scans of both showed brain calcifications and aberrant blood flow patterns. Transfected cell lines with this variant, c178G>A, showed higher chloride ion permeability and lower sodium ion permeability when compared to wildtype.
Sources: Literature
Mendeliome v1.146 PSMB9 Zornitza Stark Publications for gene: PSMB9 were set to 26524591
Mendeliome v1.145 PSMB9 Zornitza Stark Mode of inheritance for gene: PSMB9 was changed from Other to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.144 PSMB9 Zornitza Stark Classified gene: PSMB9 as Green List (high evidence)
Mendeliome v1.144 PSMB9 Zornitza Stark Gene: psmb9 has been classified as Green List (High Evidence).
Mendeliome v1.143 PSMB9 Zornitza Stark edited their review of gene: PSMB9: Added comment: Two additional individuals with neonatal onset autoinflammatory syndrome and a mouse model. De novo recurrent missense G156D.; Changed rating: GREEN; Changed publications: 26524591, 34819510; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.143 HCK Zornitza Stark Gene: hck has been classified as Amber List (Moderate Evidence).
Mendeliome v1.143 HCK Zornitza Stark Classified gene: HCK as Amber List (moderate evidence)
Mendeliome v1.143 HCK Zornitza Stark Gene: hck has been classified as Amber List (Moderate Evidence).
Mendeliome v1.142 HCK Zornitza Stark gene: HCK was added
gene: HCK was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HCK was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: HCK were set to 34536415
Phenotypes for gene: HCK were set to Autoinflammatory syndrome, MONDO:0019751, HCK-related
Mode of pathogenicity for gene: HCK was set to Other
Review for gene: HCK was set to AMBER
Added comment: Single patient with supportive functional data.
Sources: Literature
Mendeliome v1.141 TBX21 Zornitza Stark Classified gene: TBX21 as Amber List (moderate evidence)
Mendeliome v1.141 TBX21 Zornitza Stark Gene: tbx21 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.140 TBX21 Zornitza Stark edited their review of gene: TBX21: Changed rating: AMBER
Mendeliome v1.137 NFATC2 Paul De Fazio gene: NFATC2 was added
gene: NFATC2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NFATC2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NFATC2 were set to 35789258
Phenotypes for gene: NFATC2 were set to Skeletal system disorder MONDO:0005172
Review for gene: NFATC2 was set to RED
gene: NFATC2 was marked as current diagnostic
Added comment: Patient born to consanguineous parents homozygous for a frameshift variant. No other (unaffected) members of the family were homozygous. Family history of recurrent childhood deaths.

After a healthy birth the patient developed painless decreased range of motion at 1.5yrs leading to difficulty with ambulation at 3yrs. Formal orthopedic assessment at age 15 years
demonstrated a neurodevelopmentally normal young man with marked bilateral fixed flexion contractures of knees, hips, and ankles. The main musculoskeletal findings were painless contractures of the large and small joints of the upper and lower limbs, osteochondromas, and osteopenia. Patient was diagnosed with B-cell lymphoma at age 18.

Patient CD8+ T-cells show impaired polyfunctionality, and the patient had an accumulation of non-functional memory CD4+ T-cells. TFH cell function was also impaired.
Sources: Literature
Mendeliome v1.137 PIK3C2B Zornitza Stark Gene: pik3c2b has been classified as Amber List (Moderate Evidence).
Mendeliome v1.137 PIK3C2B Zornitza Stark Classified gene: PIK3C2B as Amber List (moderate evidence)
Mendeliome v1.137 PIK3C2B Zornitza Stark Gene: pik3c2b has been classified as Amber List (Moderate Evidence).
Mendeliome v1.134 PIK3C2B Krithika Murali gene: PIK3C2B was added
gene: PIK3C2B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PIK3C2B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PIK3C2B were set to PMID:35786744
Phenotypes for gene: PIK3C2B were set to familial partial epilepsy - MONDO#0017704
Review for gene: PIK3C2B was set to AMBER
Added comment: No OMIM gene disease association.

Gozzelino et al.(2022) Brain - report enrichment of ultra-rare PIK3C2B variants in focal epilepsy cohorts, including one variant shown to be de novo (G1294Q). Segregation data not provided for all cases. The p.G1345S variant was inherited from an affected father. The p.K584* variant was inherited from an unaffected father suggesting incomplete penetrance. Functional studies supported a LoF mechanism and mouse model studies suggestive of mTORC1 pathway hyperactivation.
Sources: Literature
Mendeliome v1.134 CCDC155 Melanie Marty gene: CCDC155 was added
gene: CCDC155 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CCDC155 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CCDC155 were set to 35674372; 35708642; 29790874; 35587281
Phenotypes for gene: CCDC155 were set to Non-obstructive azoospermia; Premature ovarian insufficiency
Review for gene: CCDC155 was set to GREEN
Added comment: Current HGNC name is KASH5

Summary: 4 families reported with non-obstructive azoospermia or premature ovarian insufficiency. Functional studies have been performed and mouse models recapitulate the phenotype.

PMID: 35674372 CNV and frameshift variants in KASH5 were identified in a non-obstructive azoospermia affected patient and in his infertile sister by whole-exome sequencing and CNV array. Kash5 knockout mouse displayed similar phenotypes, including a meiotic arrest at a zygotene-like stage and impaired pairing and synapsis.

PMID: 35708642 Hom splice identified in KASH5 in 2 sisters with premature ovarian insufficiency. In vitro studies found the variant disturbed the nuclear membrane localization of KASH5 and its binding with SUN1. Moreover, the Kash5 C-terminal deleted mice revealed defective meiotic homolog pairing and accelerated depletion of oocytes.

PMID: 29790874 2 brothers with non-obstructive azoospermia with hom missense in CCDC155

35587281 2 siblings with hom missense in CCDC155 non-obstructive azoospermia and premature ovarian insufficiency.
Sources: Literature
Mendeliome v1.134 SLC30A7 Alison Yeung Gene: slc30a7 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.134 SLC30A7 Alison Yeung Classified gene: SLC30A7 as Amber List (moderate evidence)
Mendeliome v1.134 SLC30A7 Alison Yeung Gene: slc30a7 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.130 SLC30A7 Naomi Baker gene: SLC30A7 was added
gene: SLC30A7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC30A7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SLC30A7 were set to PMID: 35751429
Phenotypes for gene: SLC30A7 were set to Joubert syndrome (MONDO:0018772), SLC30A7-related
Review for gene: SLC30A7 was set to AMBER
Added comment: PMID: 35751429: Two individuals reported with de novo variants, one missense and one delins resulting in missense. The first individual is a female with history of unilateral postaxial polydactyly, classic molar tooth sign on MRI, macrocephaly, ataxia, ocular motor apraxia, neurodevelopmental delay, and precocious puberty. The second individual had bilateral postaxial polydactyly, molar tooth sign, macrocephaly, developmental delay, and an extra oral frenulum. No functional studies reported.
Sources: Literature
Mendeliome v1.130 ASPH Paul De Fazio reviewed gene: ASPH: Rating: AMBER; Mode of pathogenicity: None; Publications: 35697689; Phenotypes: Exertional heat illness, malignant hyperthermia susceptibility; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v1.130 CHMP3 Zornitza Stark Gene: chmp3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.130 CHMP3 Zornitza Stark Classified gene: CHMP3 as Amber List (moderate evidence)
Mendeliome v1.130 CHMP3 Zornitza Stark Gene: chmp3 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.128 PABPC1 Elena Savva gene: PABPC1 was added
gene: PABPC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PABPC1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PABPC1 were set to PMID: 35511136
Phenotypes for gene: PABPC1 were set to Neurodevelopmental disorder, PABPC1-related (MONDO#0700092)
Review for gene: PABPC1 was set to GREEN
Added comment: PMID: 35511136 - 4 probands with an overlapping phenotype of DD, expressive speech delay, and autistic features and heterozygous de novo variants that cluster in the PABP domain of PABPC1.
Electroporation of mouse embryo brains showed that Pabpc1 knockdown decreases the proliferation of neural progenitor cells. Wild-type Pabpc1 could rescue this disturbance, whereas 3 of the 4 variants did not.
Sources: Literature
Mendeliome v1.126 CHMP3 Chern Lim gene: CHMP3 was added
gene: CHMP3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CHMP3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CHMP3 were set to PMID: 35710109
Phenotypes for gene: CHMP3 were set to Hereditary spastic paraplegia (MONDO:0019064), CHMP3-related
Review for gene: CHMP3 was set to AMBER
gene: CHMP3 was marked as current diagnostic
Added comment: PMID: 35710109
- Single large family with consanguinity, homozygous missense variant in 5 affected individuals with intellectual and progressive motor disabilities, seizures and spastic quadriplegia.
- Functional studies showed reduced CHMP3 protein in patient's fibroblasts, lenti-rescue study showed improved cellular phenotypes associated with impaired autophagy.
Sources: Literature
Mendeliome v1.122 MAL Zornitza Stark Gene: mal has been classified as Amber List (Moderate Evidence).
Mendeliome v1.122 MAL Zornitza Stark Classified gene: MAL as Amber List (moderate evidence)
Mendeliome v1.122 MAL Zornitza Stark Gene: mal has been classified as Amber List (Moderate Evidence).
Mendeliome v1.121 MAL Zornitza Stark gene: MAL was added
gene: MAL was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MAL was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MAL were set to 35217805
Phenotypes for gene: MAL were set to Leukodystrophy MONDO:0019046, MAL-related
Review for gene: MAL was set to AMBER
Added comment: Single family with two affected siblings reported, with homozygous missense variant, some functional data.
Sources: Literature
Mendeliome v1.117 PNPT1 Zornitza Stark Phenotypes for gene: PNPT1 were changed from Combined oxidative phosphorylation deficiency 13 (MIM#614932); Deafness, autosomal recessive 70 (MIM#614934) to Combined oxidative phosphorylation deficiency 13 (MIM#614932); Deafness, autosomal recessive 70 (MIM#614934); Spinocerebellar ataxia 25, MIM# 608703
Mendeliome v1.114 PNPT1 Zornitza Stark edited their review of gene: PNPT1: Added comment: Three families reported with heterozygous variants and SCA25. Incomplete penetrance in one of the families. In the third family, the variant was inherited from an asymptomatic 80+ year old. Note bi-allelic variants in this gene cause a mitochondrial disorder. Exact mechanism through which mono-allelic variants cause SCA25 not elucidated: authors speculate abnormal accumulation of mitochondrial RNA with subsequent leakage into the cytosol that may trigger a type 1 interferon response leading to neuroinflammation with neuronal dysfunction or neuronal loss.; Changed rating: AMBER; Changed publications: 35411967; Changed phenotypes: Spinocerebellar ataxia 25, MIM# 608703; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.113 RHOG Zornitza Stark Gene: rhog has been classified as Amber List (Moderate Evidence).
Mendeliome v1.113 RHOG Zornitza Stark Classified gene: RHOG as Amber List (moderate evidence)
Mendeliome v1.113 RHOG Zornitza Stark Gene: rhog has been classified as Amber List (Moderate Evidence).
Mendeliome v1.112 RHOG Zornitza Stark gene: RHOG was added
gene: RHOG was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RHOG was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RHOG were set to 33513601
Phenotypes for gene: RHOG were set to Genetic HLH, MONDO:0015541, RHOG-related
Review for gene: RHOG was set to AMBER
Added comment: Single individual reported, extensive functional data supports gene-disease association.
Sources: Literature
Mendeliome v1.110 POU2AF1 Zornitza Stark gene: POU2AF1 was added
gene: POU2AF1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: POU2AF1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: POU2AF1 were set to 33571536
Phenotypes for gene: POU2AF1 were set to Agammaglobulinaemia, MONDO:0015977, POU2AF1-related
Review for gene: POU2AF1 was set to RED
Added comment: Single individual from consanguineous parents lacking immunoglobulins despite normal total B-cell numbers.
Sources: Expert Review
Mendeliome v1.109 CD28 Zornitza Stark Gene: cd28 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.109 CD28 Zornitza Stark Classified gene: CD28 as Amber List (moderate evidence)
Mendeliome v1.109 CD28 Zornitza Stark Gene: cd28 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.108 CD28 Zornitza Stark edited their review of gene: CD28: Changed rating: AMBER
Mendeliome v1.106 COPG1 Zornitza Stark Gene: copg1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.106 COPG1 Zornitza Stark Classified gene: COPG1 as Amber List (moderate evidence)
Mendeliome v1.106 COPG1 Zornitza Stark Gene: copg1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.105 COPG1 Zornitza Stark edited their review of gene: COPG1: Changed rating: AMBER
Mendeliome v1.105 COPG1 Zornitza Stark gene: COPG1 was added
gene: COPG1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: COPG1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COPG1 were set to 33529166
Phenotypes for gene: COPG1 were set to Combined immunodeficiency MONDO:0015131, COPG1-related
Review for gene: COPG1 was set to RED
Added comment: Five Omani siblings, born to consanguineous parents, homozygous missense.

Homozygous Copg1K652E mice had increased ER stress in activated T and B cells, poor antibody responses, and normal numbers of T cells that proliferated normally, but underwent increased apoptosis upon activation. Exposure of the mutants to pet store mice caused weight loss, lymphopenia, and defective T cell proliferation that recapitulated the findings in the patients. The ER stress-relieving agent tauroursodeoxycholic acid corrected the immune defects of the mutants and reversed the phenotype they acquired following exposure to pet store mice.
Sources: Expert Review
Mendeliome v1.104 TSPAN7 Zornitza Stark edited their review of gene: TSPAN7: Added comment: Two families reported with LoF variants and ID: Abidi FE et al. 2002 Jun (PMID:12070254); Zemni R et al. 2000 Feb (PMID:10655063)

Assessed as MODERATE by ClinGen.; Changed rating: AMBER; Changed publications: 12070254, 10655063
Mendeliome v1.96 DRD2 Zornitza Stark Phenotypes for gene: DRD2 were changed from to Combined dystonia, MONDO:0020065, DRD2-related; dystonia; chorea; anxiety; ataxia; orofacial dyskinesia; tremor; memory problems
Mendeliome v1.93 DRD2 Zornitza Stark reviewed gene: DRD2: Rating: RED; Mode of pathogenicity: Other; Publications: 33200438; Phenotypes: Combined dystonia, MONDO:0020065, DRD2-related, dystonia, chorea, anxiety, ataxia, orofacial dyskinesia, tremor, memory problems; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.85 TNNT1 Bryony Thompson reviewed gene: TNNT1: Rating: AMBER; Mode of pathogenicity: Other; Publications: 29178646, 35510366; Phenotypes: nemaline myopathy MONDO:0018958; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.82 GRIA1 Zornitza Stark edited their review of gene: GRIA1: Added comment: Single individual reported with bi-allelic LoF variant. RED/AMBER for bi-allelic variants.; Changed publications: 28628100, 23033978, 26350204, 24896178, 35675825; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.77 IL6ST Zornitza Stark edited their review of gene: IL6ST: Changed phenotypes: Hyper-IgE recurrent infection syndrome 4A, autosomal dominant , MIM#619752, Hyper-IgE recurrent infection syndrome 4B, autosomal recessive, MIM# 618523, Stuve-Wiedemann syndrome 2, MIM# 619751: skeletal dysplasia, neonatal lung dysfunction, thrombocytopenia, dermatitis, defective acute-phase response, Hyper-IgE syndrome, autosomal dominant, Immunodeficiency 94 with autoinflammation and dysmorphic facies, MIM# 619750
Mendeliome v1.76 KCNA5 Zornitza Stark Classified gene: KCNA5 as Amber List (moderate evidence)
Mendeliome v1.76 KCNA5 Zornitza Stark Gene: kcna5 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.75 KCNA5 Zornitza Stark edited their review of gene: KCNA5: Added comment: Multiple families reported. At least one with LoF variant, rest missense. The missense variants are present in the population, ranging from 2 to 40 individuals in gnomad, which raises doubt about their pathogenicity.; Changed rating: AMBER
Mendeliome v1.75 GATA1 Zornitza Stark Phenotypes for gene: GATA1 were changed from Thrombocytopaenia, X-linked, with or without dyserythropoietic anaemia, MIM# 300367 to Thrombocytopaenia, X-linked, with or without dyserythropoietic anaemia, MIM# 300367; Haemolytic anaemia due to elevated adenosine deaminase, MIM# 301083; Anemia, X-linked, with/without neutropenia and/or platelet abnormalities, MIM# 300835
Mendeliome v1.74 GATA1 Zornitza Stark edited their review of gene: GATA1: Added comment: Variants in GATA1 are associated with a number of haematological disorders, which probably represent a spectrum rather than distinct entities.; Changed phenotypes: Thrombocytopaenia, X-linked, with or without dyserythropoietic anaemia, MIM# 300367, Haemolytic anaemia due to elevated adenosine deaminase, MIM# 301083, Anemia, X-linked, with/without neutropenia and/or platelet abnormalities, MIM# 300835
Mendeliome v1.73 KCNA5 Chern Lim reviewed gene: KCNA5: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: ; Mode of inheritance: None; Current diagnostic: yes
Mendeliome v1.61 SASH3 Zornitza Stark Phenotypes for gene: SASH3 were changed from Combined immunodeficiency; immune dysregulation to Immunodeficiency 102, MIM# 301082
Mendeliome v1.60 BUB1 Elena Savva Classified gene: BUB1 as Amber List (moderate evidence)
Mendeliome v1.60 BUB1 Elena Savva Gene: bub1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.59 BUB1 Zornitza Stark reviewed gene: BUB1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder, BUB1-related MONDO:0700092; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.59 BUB1 Zornitza Stark Classified gene: BUB1 as Amber List (moderate evidence)
Mendeliome v1.59 BUB1 Zornitza Stark Gene: bub1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.53 BUB1 Elena Savva Classified gene: BUB1 as Amber List (moderate evidence)
Mendeliome v1.53 BUB1 Elena Savva Gene: bub1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.52 RRM1 Seb Lunke Gene: rrm1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.52 RRM1 Seb Lunke Classified gene: RRM1 as Amber List (moderate evidence)
Mendeliome v1.52 RRM1 Seb Lunke Gene: rrm1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.48 ATOH1 Zornitza Stark Gene: atoh1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.46 ATOH1 Zornitza Stark Classified gene: ATOH1 as Amber List (moderate evidence)
Mendeliome v1.46 ATOH1 Zornitza Stark Gene: atoh1 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.46 PTPN13 Ain Roesley Gene: ptpn13 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.46 PTPN13 Ain Roesley Classified gene: PTPN13 as Amber List (moderate evidence)
Mendeliome v1.46 PTPN13 Ain Roesley Gene: ptpn13 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.45 PTPN13 Ain Roesley gene: PTPN13 was added
gene: PTPN13 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PTPN13 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PTPN13 were set to 35643866
Phenotypes for gene: PTPN13 were set to bone marrow failure syndrome MONDO#0000159, PTPN13-related
Review for gene: PTPN13 was set to AMBER
gene: PTPN13 was marked as current diagnostic
Added comment: 2 families

Family A: 3 affecteds only 2 sequenced. Hom for a missense
3/3 Anaemia, 1x thrombocytopaenia, 1x severe neutropaenia, bone marrow with pure red cell aplasia
noted that the sibling who wasn't sequenced had normal bone marrow morphology

Family B: Chet for a missense and inframe del of 1 amino acid
Persistent hypogammaglobulinemia after transplant (at least 14 months after) with normal blood counts and Pre-B ALL with MLL rearrangement

In vitro studies of individual variants were LoF, including defective erythroid and megakaryocytic differentiation, consistent with anaemia and thrombocytopaenia reported in family A
Sources: Literature
Mendeliome v1.44 ATOH1 Chloe Stutterd gene: ATOH1 was added
gene: ATOH1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATOH1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ATOH1 were set to 35518571
Phenotypes for gene: ATOH1 were set to Pontocerebellar hypoplasia; developmental delay; hearing loss
Penetrance for gene: ATOH1 were set to unknown
Review for gene: ATOH1 was set to AMBER
Added comment: Single report of novel homozygous missense variant in functional domain segregating with disease in two affected siblings with pontocerebellar hypoplasia, developmental delay and hearing loss. Similar phenotype previously reported in animal model with biallelic missense variant affecting same functional domain. Homology modelling predicts this missense variant affects binding capability of the bHLH domain to the DNA. Gene encodes a core transcription factor in developing cerebellum, brainstem, dorsal spinal cord and ear.
Sources: Literature
Mendeliome v1.44 BUB1 Paul De Fazio gene: BUB1 was added
gene: BUB1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: BUB1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BUB1 were set to 35044816; 19772675; 19117986; 23209306
Phenotypes for gene: BUB1 were set to Intellectual disability and microcephaly
Review for gene: BUB1 was set to GREEN
gene: BUB1 was marked as current diagnostic
Added comment: 2 unrelated patients with ID, microcephaly, short stature, dysmorphic features reported with biallelic variants:

P1 (3yo male): homozygous start-loss variant (2 hets and 0 hom in gnomAD). Functional testing showed a small amount of full-length protein was translated, and BUB1 recruitment to kinetochores was nearly undetectable.
P2 (16yo female): compound heterozygous for a canonical splice variant (1 het and no hom in gnomAD) and an NMD-predicted frameshift variant (absent from gnomAD). The splice variant was shown to result in an in-frame deletion of 54 amino acids in the kinase domain. P2 cells have reduced protein levels but essentially no kinase activity.

BUB1 patient cells have impaired mitotic fidelity.

Homozygous Bub1 disruption in mice is embryonic lethal (PMID:19772675). A hypomorphic mouse is viable with increased tumourigenesis with ageing and aneuploidy (PMID:19117986). A kinase-dead mouse does not show increased tumourigenesis but does have a high frequency of aneuploid cells (PMID:23209306)
Sources: Literature
Mendeliome v1.35 GIMAP6 Elena Savva gene: GIMAP6 was added
gene: GIMAP6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GIMAP6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GIMAP6 were set to PMID: 35551368; 33328581
Phenotypes for gene: GIMAP6 were set to Autophagy, immune competence and inflammation
Review for gene: GIMAP6 was set to AMBER
Added comment: PMID: 35551368, PMID: 33328581
- K/O mice show autophagy, redox regulation, and polyunsaturated fatty acid (PUFA)–containing lipids and die prematurely from microangiopathic glomerulosclerosis with immunodeficiency.
- 2 unrelated families (3 patients) w/ a homozygous missense (p.Gly153Val) and nonsense (p.Trp86*). All unaffected siblings were heterozygous.
Patient 1 (missense) presented with Coombs-positive hemolytic anemia, hepatosplenomegaly, Cranial MRI showed bilateral effusions, sulcal hyperintensity, and lateral parietal subcortical acute focal ischemic lesions.
Patient 2 (nonsense) presented with recurrent purulent otitis media and a chronic wet cough, persistent jaundice, recurrent chest and ear infections, lingular consolidation, mild bronchiectasis, bibasilar bronchial wall thickening, right peribronchial consolidation, right lower lobe bronchiectasis, bilateral axillary lymphadenopathy, and splenomegaly.
Patient 3 (nonsense) presented with suffered headaches, abdomen pain, mouth ulcers, and recurrent infections

- Functional studies show patient 1 (missense) with reduced protein expression on western blot, and patient 2/3 (nonsense) with no protein expression. T cells of Pt 1 were similar to mouse K/O model (elevated basal LC3-II, reduced autophagic flux).

gnomAD: 0 homozygous PTCs, but a very common canonical splice which is present in the non-canonical transcript
Sources: Literature
Mendeliome v1.34 TRIM47 Zornitza Stark gene: TRIM47 was added
gene: TRIM47 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TRIM47 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TRIM47 were set to 35511193
Phenotypes for gene: TRIM47 were set to Genetic cerebral small vessel disease MONDO:0018787
Review for gene: TRIM47 was set to RED
Added comment: GWAS data: Combined evidence from summary-based Mendelian randomization studies and profiling of human loss-of-function allele carriers showed an inverse relation between TRIM47 expression in the brain and blood vessels and extensive small vessel disease severity. Observed significant enrichment of Trim47 in isolated brain vessel preparations compared to total brain fraction in mice, in line with the literature showing Trim47 enrichment in brain endothelial cells at single cell level. Functional evaluation of TRIM47 by small interfering RNAs-mediated knockdown in human brain endothelial cells showed increased endothelial permeability, an important hallmark of cerebral small vessel disease pathology.
Sources: Literature
Mendeliome v1.21 GJA5 Zornitza Stark Classified gene: GJA5 as Amber List (moderate evidence)
Mendeliome v1.21 GJA5 Zornitza Stark Gene: gja5 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.20 GJA5 Zornitza Stark reviewed gene: GJA5: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Atrial fibrillation, familial, 11, OMIM# 614049; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.18 PLCH1 Zornitza Stark reviewed gene: PLCH1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Holoprosencephaly 14, MIM# 619895; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.15 MYO9A Zornitza Stark Classified gene: MYO9A as Amber List (moderate evidence)
Mendeliome v1.15 MYO9A Zornitza Stark Gene: myo9a has been classified as Amber List (Moderate Evidence).
Mendeliome v1.14 MYO9A Zornitza Stark edited their review of gene: MYO9A: Added comment: This gene-disease association has been reviewed as part of GenCC discordance resolution: note at least two of the variants reported have homozygotes with gnomad, which would be out of keeping for a severe paediatric disorder.; Changed rating: AMBER
Mendeliome v1.9 RBFOX2 Zornitza Stark Gene: rbfox2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.8 RBFOX2 Zornitza Stark Classified gene: RBFOX2 as Amber List (moderate evidence)
Mendeliome v1.8 RBFOX2 Zornitza Stark Gene: rbfox2 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.7 PROSER1 Zornitza Stark gene: PROSER1 was added
gene: PROSER1 was added to Mendeliome. Sources: Expert Review
founder tags were added to gene: PROSER1.
Mode of inheritance for gene: PROSER1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PROSER1 were set to 35229282
Phenotypes for gene: PROSER1 were set to Syndromic disease MONDO:0002254, PROSER1-related
Review for gene: PROSER1 was set to RED
Added comment: 4 children from 3 related families with developmental delay, hypotonia, seizures, failure-to-thrive, strabismus, drooling, recurrent otitis media, hearing impairment, genitourinary malformations, and common facial features (arched eyebrows, prominent eyes, broad nasal bridge, low-hanging columella, open mouth, thick lower lip, protruding tongue, large low-set ears, and parietal bossing). WES revealed a homozygous frame-shift variant (p.Thr612Glnfs*22) in PROSER1. This encodes the proline and serine rich protein 1, part of the histone methyltransferases KMT2C/KMT2D complexes. PROSER1 stabilizes TET2, a member of the TET family of DNA demethylases which is involved in recruiting the enhancer-associated KMT2C/KMT2D complexes and mediating DNA demethylation, activating gene expression. Therefore, PROSER1 may play vital and potentially general roles in gene regulation. No functional assays and 3 related families, likely founder effect.
Sources: Expert Review
Mendeliome v1.6 SPATA22 Zornitza Stark Gene: spata22 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.6 SPATA22 Zornitza Stark Classified gene: SPATA22 as Amber List (moderate evidence)
Mendeliome v1.6 SPATA22 Zornitza Stark Gene: spata22 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.5 SPATA22 Zornitza Stark gene: SPATA22 was added
gene: SPATA22 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: SPATA22 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SPATA22 were set to 35285020
Phenotypes for gene: SPATA22 were set to Premature ovarian insufficiency and nonobstructive azoospermia; Genetic infertility MONDO:0017143
Review for gene: SPATA22 was set to AMBER
Added comment: 1 consanguineous family with two premature ovarian insufficiency (POI) and two nonobstructive azoospermia (NOA) patients. WES identified a homozygous variant in SPATA22 (c.400C>T:p.R134X). Histological analysis and spermatocyte spreading assay demonstrated that the spermatogenesis was arrested at a zygotene-like stage in the proband with NOA. 2nd patient found with idiopathic POI and compound heterozygous variants in SPATA22 (c.900+1G>A and c.31C>T:p.R11X).
Sources: Expert Review
Mendeliome v1.4 RDH11 Zornitza Stark Classified gene: RDH11 as Amber List (moderate evidence)
Mendeliome v1.4 RDH11 Zornitza Stark Gene: rdh11 has been classified as Amber List (Moderate Evidence).
Mendeliome v1.3 RDH11 Zornitza Stark edited their review of gene: RDH11: Added comment: 2nd case reported: 1 Chinese patient with retinitis pigmentosa, juvenile cataracts, intellectual disability, and myopathy. Trio-based WES and whole genomic CNV detection found compound heterozygous variants in RDH11 (p.Leu313Pro and c.75-3C>A) with biparental inheritance. Variant c.75-3C>A was confirmed to be a splice-site mutation by cDNA sequencing. It caused exon 2 skipping, resulting in a frameshift mutation and premature translation termination (p.Lys26Serfs*38). They found mislocalization of RDH11 protein in muscle cells of the patient by using immunofluorescence staining. Retinol dehydrogenase 11 (RDH11) is an 11-cis-retinol dehydrogenase that has a well-characterized, albeit auxiliary role in the retinoid cycle. Diseases caused by mutations in the RDH11 gene are very rare, and only one affected family with eye and intelligence involvement has been reported.; Changed rating: AMBER; Changed publications: 24916380, 15634683, 30731079, 18326732, 34988992
Mendeliome v0.14784 DNAJC3 Zornitza Stark Phenotypes for gene: DNAJC3 were changed from to Ataxia, combined cerebellar and peripheral, with hearing loss and diabetes mellitus - MIM#616192
Mendeliome v0.14758 DSC3 Zornitza Stark Gene: dsc3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14754 DSC3 Zornitza Stark Classified gene: DSC3 as Amber List (moderate evidence)
Mendeliome v0.14754 DSC3 Zornitza Stark Gene: dsc3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14749 DSCAM Zornitza Stark Classified gene: DSCAM as Amber List (moderate evidence)
Mendeliome v0.14749 DSCAM Zornitza Stark Gene: dscam has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14680 GFM2 Zornitza Stark Phenotypes for gene: GFM2 were changed from to Combined oxidative phosphorylation deficiency 39, OMIM #618397
Mendeliome v0.14672 SLC26A1 Elena Savva Gene: slc26a1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14670 PRKAG3 Elena Savva Gene: prkag3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14667 U2AF2 Elena Savva Gene: u2af2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14667 TDP1 Elena Savva Gene: tdp1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14666 TIA1 Elena Savva Gene: tia1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14666 PLD3 Elena Savva Gene: pld3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14666 RBM7 Elena Savva Gene: rbm7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14666 MFAP5 Elena Savva Gene: mfap5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14666 MMGT1 Elena Savva Gene: mmgt1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14666 FRA12A Elena Savva Str: fra12a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14666 GIGYF2 Elena Savva Gene: gigyf2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14665 MEPE Elena Savva Gene: mepe has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14665 LRIF1 Elena Savva Gene: lrif1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14663 DMGDH Elena Savva Gene: dmgdh has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14662 DCAF8 Elena Savva Gene: dcaf8 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14662 CCT5 Elena Savva Gene: cct5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14662 ATG5 Elena Savva Gene: atg5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14650 ADD1 Chirag Patel gene: ADD1 was added
gene: ADD1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ADD1 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Publications for gene: ADD1 were set to PMID: 34906466
Phenotypes for gene: ADD1 were set to Intellectual disability, corpus callosum dysgenesis, and ventriculomegaly; no OMIM #
Review for gene: ADD1 was set to GREEN
Added comment: 4 unrelated individuals affected by ID and/or complete or partial agenesis of corpus callosum, and enlarged lateral ventricles. WES found loss-of-function variants - 1 recessive missense variant and 3 de novo variants. The recessive variant is associated with ACC and enlarged lateral ventricles, and the de novo variants were associated with complete or partial agenesis of corpus callosum, mild ID and attention deficit. Human variants impair ADD1 protein expression and/or dimerization with ADD2. Add1 knockout mice recapitulate corpus callosum dysgenesis and ventriculomegaly phenotypes. Three adducin genes (ADD1, ADD2, and ADD3) encode cytoskeleton proteins that are critical for osmotic rigidity and cell shape. ADD1, ADD2, and ADD3 form heterodimers (ADD1/ADD2, ADD1/ADD3), which further form heterotetramers. Adducins interconnect spectrin and actin filaments to form polygonal scaffolds beneath the cell membranes and form ring-like structures in neuronal axons. Adducins regulate mouse neural development, but their function in the human brain is unknown
Sources: Literature
Mendeliome v0.14647 GJA5 Chirag Patel commented on gene: GJA5: Gollob et al. (2006) presented evidence that tissue-specific mutations in the GJA5 gene may predispose the atria to fibrillation. They identified a heterozygous missense mutation in blood and cardiac tissue in patient with AF. They also found 3 heterozygous missense mutations in cardiac tissue only in 3 other patients, indicating a somatic source of the genetic defects

Yang et al. (2010) identified a heterozygous nonsense mutationin a 64-year-old female patient who was diagnosed with paroxysmal AF at 32 years of age. The mutation was detected in 6 additional affected family members, but was not found in 6 unaffected family members or in 200 ethnically matched controls.

Yang et al. (2010) identified 3 heterozygous missense mutations in 3 probands with AF. The mutations segregated with disease in all 3 families and were not found in 200 ethnically matched controls.

Sun et al. (2013) identified a heterozygous missense mutation in a 42-year-old woman who had been diagnosed with AF at age 40 years. The mutation was also detected in her father, who had been diagnosed with lone AF at 41 years of age, but it was not found in unaffected family members, in 200 controls, or in the dbSNP database. Functional analysis demonstrated that the I75F mutant is unable to form functional gap junction channels and also impairs coupling when expressed with wildtype CX40 or CX43.
Mendeliome v0.14613 GMPPB Zornitza Stark Phenotypes for gene: GMPPB were changed from to Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 14 615350; Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 14 615351; Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 14 615352
Mendeliome v0.14611 GMPPB Zornitza Stark reviewed gene: GMPPB: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 14 615350, Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 14 615351, Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 14 615352; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14592 GPNMB Krithika Murali reviewed gene: GPNMB: Rating: GREEN; Mode of pathogenicity: None; Publications: 31226264, 29336782, 31260093, 34551863, 33687658; Phenotypes: Amyloidosis, primary localized cutaneous, 3 - MIM#617920; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14591 GFM2 Chirag Patel reviewed gene: GFM2: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 22700954, 26016410, 29075935; Phenotypes: Combined oxidative phosphorylation deficiency 39, OMIM #618397; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14590 GIGYF2 Chirag Patel Classified gene: GIGYF2 as Amber List (moderate evidence)
Mendeliome v0.14590 GIGYF2 Chirag Patel Gene: gigyf2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14589 GIGYF2 Chirag Patel reviewed gene: GIGYF2: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 18358451; Phenotypes: {Parkinson disease 11} , OMIM # 607688; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.14588 ITPKB Zornitza Stark Phenotypes for gene: ITPKB were changed from Severe combined immunodeficiency, absent T cells, present B cells and NK cells to Severe combined immunodeficiency MONDO:0015974, absent T cells, present B cells and NK cells
Mendeliome v0.14582 PDCD6IP Zornitza Stark Gene: pdcd6ip has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14581 PDCD6IP Zornitza Stark Classified gene: PDCD6IP as Amber List (moderate evidence)
Mendeliome v0.14581 PDCD6IP Zornitza Stark Gene: pdcd6ip has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14575 GPNMB Zornitza Stark Marked gene: GPNMB as ready
Mendeliome v0.14575 GPNMB Zornitza Stark Gene: gpnmb has been classified as Green List (High Evidence).
Mendeliome v0.14575 GPNMB Zornitza Stark Phenotypes for gene: GPNMB were changed from to Amyloidosis, primary localized cutaneous, 3, MIM# 617920
Mendeliome v0.14574 GPNMB Zornitza Stark Publications for gene: GPNMB were set to
Mendeliome v0.14573 GPNMB Zornitza Stark Mode of inheritance for gene: GPNMB was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14572 GPNMB Zornitza Stark reviewed gene: GPNMB: Rating: GREEN; Mode of pathogenicity: None; Publications: 29336782; Phenotypes: Amyloidosis, primary localized cutaneous, 3, MIM# 617920; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14572 GREM1 Zornitza Stark Gene: grem1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14569 GREM1 Zornitza Stark Classified gene: GREM1 as Amber List (moderate evidence)
Mendeliome v0.14569 GREM1 Zornitza Stark Gene: grem1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14556 MPO Zornitza Stark Gene: mpo has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14554 MPO Zornitza Stark Classified gene: MPO as Amber List (moderate evidence)
Mendeliome v0.14554 MPO Zornitza Stark Gene: mpo has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14553 MPO Zornitza Stark reviewed gene: MPO: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Myeloperoxidase deficiency, MIM# 254600; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14546 MOCS3 Zornitza Stark Gene: mocs3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14543 MOCS3 Zornitza Stark Classified gene: MOCS3 as Amber List (moderate evidence)
Mendeliome v0.14543 MOCS3 Zornitza Stark Gene: mocs3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14542 MOCS3 Zornitza Stark reviewed gene: MOCS3: Rating: AMBER; Mode of pathogenicity: None; Publications: 33897766, 28544736; Phenotypes: Molybdenum cofactor deficiency MONDO:0020480; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14453 ASPN Elena Savva Phenotypes for gene: ASPN were changed from {Lumbar disc degeneration} MIM#603932; {Osteoarthritis susceptibility 3} MIM#607850 to {Lumbar disc degeneration} MIM#603932; {Osteoarthritis susceptibility 3} MIM#607850
Mendeliome v0.14453 ASPN Elena Savva Phenotypes for gene: ASPN were changed from to {Lumbar disc degeneration} MIM#603932; {Osteoarthritis susceptibility 3} MIM#607850
Mendeliome v0.14426 MBL2 Zornitza Stark Marked gene: MBL2 as ready
Mendeliome v0.14426 MBL2 Zornitza Stark Gene: mbl2 has been classified as Red List (Low Evidence).
Mendeliome v0.14426 MBL2 Zornitza Stark Mode of inheritance for gene: MBL2 was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.14425 MBL2 Zornitza Stark Mode of inheritance for gene: MBL2 was changed from Unknown to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.14424 MBL2 Zornitza Stark Phenotypes for gene: MBL2 were changed from to {Chronic infections, due to MBL deficiency} 614372
Mendeliome v0.14423 MBL2 Zornitza Stark Classified gene: MBL2 as Red List (low evidence)
Mendeliome v0.14423 MBL2 Zornitza Stark Gene: mbl2 has been classified as Red List (Low Evidence).
Mendeliome v0.14422 MBL2 Zornitza Stark reviewed gene: MBL2: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: {Chronic infections, due to MBL deficiency} 614372; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.14410 GREM1 Krithika Murali reviewed gene: GREM1: Rating: AMBER; Mode of pathogenicity: None; Publications: 22561515, 26493165, 21128281, 29804199; Phenotypes: hereditary mixed polyposis syndrome; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.14383 RMND1 Zornitza Stark Phenotypes for gene: RMND1 were changed from to Combined oxidative phosphorylation deficiency 11 MIM#614922
Mendeliome v0.14345 RBFOX2 Chern Lim gene: RBFOX2 was added
gene: RBFOX2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RBFOX2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RBFOX2 were set to PMID: 26785492; 27670201; 27485310; 25205790; 35137168
Phenotypes for gene: RBFOX2 were set to Hypoplastic left heart syndrome (HLHS)
Review for gene: RBFOX2 was set to AMBER
gene: RBFOX2 was marked as current diagnostic
Added comment: - PMID: 26785492: Analysed CHD (1213 congenital heart disease trios) and control (autism spectrum disorder) trios for de novo mutations. Found RBFOX2 gene had significantly more damaging de novo variants than expected: 3 de novo LoF variants (eg. nonsense, frameshift, or canonical splice disruptions). All 3 probands have hypoplastic left heart syndrome (HLHS).
No further patient-specific clinical or variant info were available.

- PMID: 27670201: RNA expression study showed the silenced allele harbours a nonsense RBFOX2 variant (Arg287*), CHD patient heart tissue sample, same patient published in PMID: 26785492.
- PMID: 27485310: Functional studies using heart tissue sample from HLHS patient with NM_001031695.2:c.859C>T p.(Arg287*) showed subcellular mislocalisation, impacting its nuclear function in RNA splicing.

- PMID: 25205790: De novo 111.3kb del chr22:36038076-36149338 (hg19) which includes APOL5,APOL6,RBFOX2, in a patient with HLHS.

- PMID: 35137168: Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS.
Sources: Literature
Mendeliome v0.14341 RMND1 Belinda Chong reviewed gene: RMND1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Combined oxidative phosphorylation deficiency 11 MIM#614922; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.14325 MRPS2 Zornitza Stark Phenotypes for gene: MRPS2 were changed from to Combined oxidative phosphorylation deficiency 36, MIM# 617950
Mendeliome v0.14322 MRPS2 Zornitza Stark reviewed gene: MRPS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 29576219, 34991560; Phenotypes: Combined oxidative phosphorylation deficiency 36, MIM# 617950; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14316 MTAP Zornitza Stark Gene: mtap has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14313 MTAP Zornitza Stark Classified gene: MTAP as Amber List (moderate evidence)
Mendeliome v0.14313 MTAP Zornitza Stark Gene: mtap has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14312 MTAP Zornitza Stark reviewed gene: MTAP: Rating: AMBER; Mode of pathogenicity: None; Publications: 22464254; Phenotypes: Diaphyseal medullary stenosis with malignant fibrous histiocytoma, MIM# 112250; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.14312 MTFMT Zornitza Stark Phenotypes for gene: MTFMT were changed from to Combined oxidative phosphorylation deficiency 15, MIM# 614947; Mitochondrial complex I deficiency, nuclear type 27, MIM# 618248
Mendeliome v0.14309 MTFMT Zornitza Stark reviewed gene: MTFMT: Rating: GREEN; Mode of pathogenicity: None; Publications: 21907147, 23499752, 24461907, 22499348; Phenotypes: Combined oxidative phosphorylation deficiency 15, MIM# 614947, Mitochondrial complex I deficiency, nuclear type 27, MIM# 618248; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14309 MTHFD1 Zornitza Stark Publications for gene: MTHFD1 were set to Combined immunodeficiency and megaloblastic anemia with or without hyperhomocysteinaemia MIM # 617780
Mendeliome v0.14308 MTHFD1 Zornitza Stark Phenotypes for gene: MTHFD1 were changed from to Combined immunodeficiency and megaloblastic anemia with or without hyperhomocysteinaemia MIM # 617780
Mendeliome v0.14299 MTO1 Zornitza Stark Phenotypes for gene: MTO1 were changed from to Combined oxidative phosphorylation deficiency 10, OMIM #614702
Mendeliome v0.14296 MTO1 Zornitza Stark reviewed gene: MTO1: Rating: GREEN; Mode of pathogenicity: None; Publications: 26061759, 29331171, 23929671; Phenotypes: Combined oxidative phosphorylation deficiency 10, OMIM #614702; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14291 DNAJC3 Krithika Murali reviewed gene: DNAJC3: Rating: GREEN; Mode of pathogenicity: None; Publications: 33486469, 34630333, 34654017, 32738013; Phenotypes: ?Ataxia, combined cerebellar and peripheral, with hearing loss and diabetes mellitus - MIM#616192; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14291 DSCAM Krithika Murali reviewed gene: DSCAM: Rating: AMBER; Mode of pathogenicity: None; Publications: 34253863, 32807774, 28600779; Phenotypes: Autism, ID; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.14257 WDR36 Zornitza Stark Classified gene: WDR36 as Amber List (moderate evidence)
Mendeliome v0.14257 WDR36 Zornitza Stark Gene: wdr36 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14256 WDR36 Zornitza Stark edited their review of gene: WDR36: Changed rating: AMBER
Mendeliome v0.14244 FXYD2 Bryony Thompson Gene: fxyd2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14240 FXYD2 Bryony Thompson Classified gene: FXYD2 as Amber List (moderate evidence)
Mendeliome v0.14240 FXYD2 Bryony Thompson Gene: fxyd2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14239 FXYD2 Bryony Thompson reviewed gene: FXYD2: Rating: AMBER; Mode of pathogenicity: Other; Publications: 17980699, 12763862, 18448590, 11062458, 25765846, 27014088; Phenotypes: Renal hypomagnesemia 2 MONDO:0007937; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.14220 FUT1 Bryony Thompson Phenotypes for gene: FUT1 were changed from to [Bombay phenotype] MIM#616754
Mendeliome v0.14219 FUT1 Bryony Thompson Added comment: Comment on list classification: Biallelic loss of function variants produce the Bombay blood group, which is a recessive H-deficient red blood cell phenotype. Bombay and para-Bombay individuals display no apparent deleterious phenotype except in circumstances requiring blood transfusion. No evidence for Mendelian disease associated with this gene.
Mendeliome v0.14217 FUT1 Bryony Thompson Added comment: Comment on list classification: Biallelic loss of function variants cause Bombay phenotype, which is a recessive H-deficient red blood cell phenotype. Bombay and para-Bombay individuals display no apparent deleterious phenotype except in circumstances requiring blood transfusion. No evidence for Mendelian disease associated with this gene.
Mendeliome v0.14191 SEMA7A Zornitza Stark edited their review of gene: SEMA7A: Changed rating: AMBER; Changed phenotypes: Cholestasis, progressive familial intrahepatic, 11 , MIM# 619874; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14186 FBP2 Zornitza Stark Gene: fbp2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14186 FBP2 Zornitza Stark Classified gene: FBP2 as Amber List (moderate evidence)
Mendeliome v0.14186 FBP2 Zornitza Stark Gene: fbp2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14185 FBP2 Zornitza Stark gene: FBP2 was added
gene: FBP2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: FBP2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FBP2 were set to 33977262
Phenotypes for gene: FBP2 were set to Leukodystrophy, childhood-onset, remitting, MIM# 619864
Review for gene: FBP2 was set to AMBER
Added comment: 8 individuals from 3 generations in a single family reported with a variant in this gene. The children presented with episode of regression and leukodystrophy in early childhood, from which they made a slow recovery. The adults had a broad range of neurobehavioural phenotypes but also had leukodystrophy on imaging. Some functional data presented (in vitro).
Sources: Expert list
Mendeliome v0.14181 MOV10L1 Zornitza Stark Gene: mov10l1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14181 MOV10L1 Zornitza Stark Classified gene: MOV10L1 as Amber List (moderate evidence)
Mendeliome v0.14181 MOV10L1 Zornitza Stark Gene: mov10l1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14180 MOV10L1 Zornitza Stark gene: MOV10L1 was added
gene: MOV10L1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: MOV10L1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MOV10L1 were set to 35476666; 20534472
Phenotypes for gene: MOV10L1 were set to Spermatogenic failure 73, MIM#619878
Review for gene: MOV10L1 was set to AMBER
Added comment: Two unrelated individuals and a mouse model.
Sources: Expert list
Mendeliome v0.14142 RBM28 Zornitza Stark Gene: rbm28 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14139 RBM28 Zornitza Stark Classified gene: RBM28 as Amber List (moderate evidence)
Mendeliome v0.14139 RBM28 Zornitza Stark Gene: rbm28 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14135 RBM28 Crystle Lee reviewed gene: RBM28: Rating: AMBER; Mode of pathogenicity: None; Publications: 18439547, 33941690, 27077951; Phenotypes: Alopecia, neurologic defects, and endocrinopathy syndrome (MIM#612079); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14119 SLC1A1 Zornitza Stark Gene: slc1a1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14116 SLC1A1 Zornitza Stark Classified gene: SLC1A1 as Amber List (moderate evidence)
Mendeliome v0.14116 SLC1A1 Zornitza Stark Gene: slc1a1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14115 SLC1A1 Zornitza Stark reviewed gene: SLC1A1: Rating: AMBER; Mode of pathogenicity: None; Publications: 21123949; Phenotypes: Dicarboxylic aminoaciduria, MIM# 222730; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14096 SGCG Zornitza Stark Phenotypes for gene: SGCG were changed from to Muscular dystrophy, limb-girdle, autosomal recessive 5 MIM#253700; autosomal recessive limb-girdle muscular dystrophy MONDO:0015152
Mendeliome v0.14048 ART4 Elena Savva Gene: art4 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14048 ART4 Elena Savva Classified gene: ART4 as Amber List (moderate evidence)
Mendeliome v0.14048 ART4 Elena Savva Gene: art4 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14047 ART4 Elena Savva reviewed gene: ART4: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 33675039, 33206405; Phenotypes: {Macular degeneration, age-related, 8} MIM#613778; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14020 GUCA1B Zornitza Stark Gene: guca1b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14017 GUCA1B Zornitza Stark Classified gene: GUCA1B as Amber List (moderate evidence)
Mendeliome v0.14017 GUCA1B Zornitza Stark Gene: guca1b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.14016 GUCA1B Zornitza Stark reviewed gene: GUCA1B: Rating: AMBER; Mode of pathogenicity: None; Publications: 15452722, 26161267; Phenotypes: Retinitis pigmentosa 48, MIM# 613827; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14000 ANXA5 Elena Savva Gene: anxa5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13998 ANXA5 Elena Savva Classified gene: ANXA5 as Amber List (moderate evidence)
Mendeliome v0.13998 ANXA5 Elena Savva Gene: anxa5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13991 HAAO Zornitza Stark reviewed gene: HAAO: Rating: GREEN; Mode of pathogenicity: None; Publications: 33942433; Phenotypes: Vertebral, cardiac, renal, and limb defects syndrome 1 MIM#617660; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13964 DNAJB6 Ain Roesley Phenotypes for gene: DNAJB6 were changed from to Muscular dystrophy, limb-girdle, autosomal dominant 1 MIM#603511
Mendeliome v0.13962 DNAJB6 Ain Roesley reviewed gene: DNAJB6: Rating: GREEN; Mode of pathogenicity: None; Publications: 26847086, 26338452, 24170373; Phenotypes: Muscular dystrophy, limb-girdle, autosomal dominant 1 MIM#603511; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.13954 AQP3 Elena Savva Gene: aqp3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13948 LPL Alison Yeung Phenotypes for gene: LPL were changed from to Combined hyperlipidemia, familial, MIM# 144250; Lipoprotein lipase deficiency, MIM# 238600
Mendeliome v0.13946 LPL Alison Yeung reviewed gene: LPL: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Combined hyperlipidemia, familial, MIM# 144250, Lipoprotein lipase deficiency, MIM# 238600; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.13946 DHTKD1 Ain Roesley Added comment: Comment when marking as ready: green for AR, amber for AD
Mendeliome v0.13937 LMF1 Alison Yeung Phenotypes for gene: LMF1 were changed from to Lipase deficiency, combined, MIM# 246650
Mendeliome v0.13935 LMF1 Alison Yeung reviewed gene: LMF1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Lipase deficiency, combined, MIM# 246650; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13935 LMBRD1 Alison Yeung Marked gene: LMBRD1 as ready
Mendeliome v0.13935 LMBRD1 Alison Yeung Gene: lmbrd1 has been classified as Green List (High Evidence).
Mendeliome v0.13935 LMBRD1 Alison Yeung Phenotypes for gene: LMBRD1 were changed from to Methylmalonic aciduria and homocystinuria, cblF type MIM# 277380
Mendeliome v0.13934 LMBRD1 Alison Yeung Publications for gene: LMBRD1 were set to
Mendeliome v0.13933 LMBRD1 Alison Yeung Mode of inheritance for gene: LMBRD1 was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13932 LMBR1 Alison Yeung Marked gene: LMBR1 as ready
Mendeliome v0.13932 LMBR1 Alison Yeung Gene: lmbr1 has been classified as Green List (High Evidence).
Mendeliome v0.13932 LMBR1 Alison Yeung Phenotypes for gene: LMBR1 were changed from to Laurin-Sandrow syndrome, MIM# 135750; Polydactyly, preaxial type II 174500; Triphalangeal thumb, type I, MIM# 174500; Syndactyly, type IV, MIM# 186200; Acheiropody, MIM# 200500; Triphalangeal thumb-polysyndactyly syndrome, MIM# 174500; Hypoplastic or aplastic tibia with polydactyly, MIM# 188740
Mendeliome v0.13931 LMBR1 Alison Yeung Mode of inheritance for gene: LMBR1 was changed from Unknown to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.13930 LMBR1 Alison Yeung reviewed gene: LMBR1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Laurin-Sandrow syndrome, MIM# 135750, Polydactyly, preaxial type II 174500, Triphalangeal thumb, type I, MIM# 174500, Syndactyly, type IV, MIM# 186200, Acheiropody, MIM# 200500, Triphalangeal thumb-polysyndactyly syndrome, MIM# 174500, Hypoplastic or aplastic tibia with polydactyly, MIM# 188740; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.13897 AQP3 Elena Savva Classified gene: AQP3 as Amber List (moderate evidence)
Mendeliome v0.13897 AQP3 Elena Savva Gene: aqp3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13896 AQP3 Elena Savva reviewed gene: AQP3: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 10737773, 12239222; Phenotypes: [Blood group GIL] MIM#607457; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13888 DCLRE1C Zornitza Stark Phenotypes for gene: DCLRE1C were changed from to Severe combined immunodeficiency, Athabascan type MIM# 602450; Omenn syndrome, MIM# 603554
Mendeliome v0.13885 DCLRE1C Zornitza Stark reviewed gene: DCLRE1C: Rating: GREEN; Mode of pathogenicity: None; Publications: 19953608, 15699179, 12055248, 34220820; Phenotypes: Severe combined immunodeficiency, Athabascan type MIM# 602450, Omenn syndrome, MIM# 603554; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13881 APPL1 Elena Savva Classified gene: APPL1 as Amber List (moderate evidence)
Mendeliome v0.13881 APPL1 Elena Savva Gene: appl1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13880 APPL1 Elena Savva Classified gene: APPL1 as Amber List (moderate evidence)
Mendeliome v0.13880 APPL1 Elena Savva Gene: appl1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13865 ANXA5 Elena Savva reviewed gene: ANXA5: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 17339269, 12665588, 34878150; Phenotypes: {Pregnancy loss, recurrent, susceptibility to, 3} MIM#614391; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.13864 ACTL6B Zornitza Stark edited their review of gene: ACTL6B: Changed phenotypes: Epileptic encephalopathy, early infantile, 76, MIM# 618468, Intellectual developmental disorder with severe speech and ambulation defects, MIM# 618470; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.13863 CCDC50 Zornitza Stark Classified gene: CCDC50 as Amber List (moderate evidence)
Mendeliome v0.13863 CCDC50 Zornitza Stark Gene: ccdc50 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13862 CCDC50 Zornitza Stark reviewed gene: CCDC50: Rating: AMBER; Mode of pathogenicity: None; Publications: 17503326, 27911912, 24875298; Phenotypes: Deafness, autosomal dominant 44 MIM#607453; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13832 CYCS Ain Roesley Phenotypes for gene: CYCS were changed from to Thrombocytopenia 4, MIM# 612004
Mendeliome v0.13830 CYCS Ain Roesley reviewed gene: CYCS: Rating: GREEN; Mode of pathogenicity: None; Publications: 24326104, 18345000, 30051457; Phenotypes: Thrombocytopenia 4, MIM# 612004; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.13829 NRG1 Zornitza Stark Classified gene: NRG1 as Amber List (moderate evidence)
Mendeliome v0.13829 NRG1 Zornitza Stark Gene: nrg1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13819 CREB1 Zornitza Stark reviewed gene: CREB1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Agenesis of corpus callosum, MONDO:0009022; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13805 DYRK1B Zornitza Stark Gene: dyrk1b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13802 DYRK1B Zornitza Stark Classified gene: DYRK1B as Amber List (moderate evidence)
Mendeliome v0.13802 DYRK1B Zornitza Stark Gene: dyrk1b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13799 NRG1 Alison Yeung Added comment: Comment on list classification: Red for peripheral neuropathy (single family reported)
Amber for Hirschsprung disease
Mendeliome v0.13792 CD164 Alison Yeung gene: CD164 was added
gene: CD164 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CD164 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CD164 were set to 26197441; 35254497; 26197441
Phenotypes for gene: CD164 were set to Deafness, autosomal dominant 66, MIM# 616969
Review for gene: CD164 was set to GREEN
Added comment: p.(Arg192Ter), a truncating variant that results in loss of 6 amino acids, was detected in two families (one Polish and one Korean) with hearing loss. Four affected (heterozygous) and two unaffected (neg) were tested, however 14 members had been diagnosed with HL in a large multi generational family (gene panel 237 genes). The second family (WES) had two affected heterozygous and no unaffected were tested. This same variant had previously been reported in a Danish family (12 affected heterozygous and 13 unaffected negative, but one younger member unaffected are heterozygous) with hearing loss (PMID: 26197441), for which functional studies in HEK cells demonstrated that the truncated protein was almost completely retained on the plasma cell membrane in contrast to the wild-type protein, which targeted primarily to the endo-lysosomal compartments. The YHTL motif, deleted by the c.574C>T nonsense mutation, is a canonical sorting motif
known to be recognized by specific adaptor proteins in the cytosol, leading to subcellular trafficking of the transmembrane protein to endosomes and lysosomes.
Sources: Literature
Mendeliome v0.13787 ANK3 Ain Roesley reviewed gene: ANK3: Rating: AMBER; Mode of pathogenicity: None; Publications: 35034853; Phenotypes: coloboma MONDO#0001476, ANK3-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.13786 DROSHA Zornitza Stark Gene: drosha has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13786 DROSHA Zornitza Stark Classified gene: DROSHA as Amber List (moderate evidence)
Mendeliome v0.13786 DROSHA Zornitza Stark Gene: drosha has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13784 DROSHA Lucy Spencer gene: DROSHA was added
gene: DROSHA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DROSHA was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: DROSHA were set to 35405010
Phenotypes for gene: DROSHA were set to Neurodevelopmental disorder (MONDO#0700092), DROSHA-related
Review for gene: DROSHA was set to AMBER
Added comment: 2 individuals with profound intellectual disability, epilepsy, white matter atrophy, microcephaly, and dysmorphic features, who carry damaging de novo heterozygous variants in DROSHA. Both variants are missense, absent from gnomad. Both individuals noted to have Rett-like features.

Functional studies in patient fibroblasts showed one of the missense altered the expression of mature miRNA. Fruit fly models with homozygous LOF variants die during larval stages. introduction of the missense seen in the patients was able to partially rescue this phenotype suggesting LOF is not the mechanism.
Sources: Literature
Mendeliome v0.13729 CRBN Ain Roesley Gene: crbn has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13728 CRBN Ain Roesley Classified gene: CRBN as Amber List (moderate evidence)
Mendeliome v0.13728 CRBN Ain Roesley Gene: crbn has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13727 CRBN Ain Roesley reviewed gene: CRBN: Rating: AMBER; Mode of pathogenicity: None; Publications: 15557513, 28143899; Phenotypes: Intellectual developmental disorder, autosomal recessive 2 MIM#607417; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.13717 HSD11B1 Zornitza Stark Gene: hsd11b1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13714 HSD11B1 Zornitza Stark Classified gene: HSD11B1 as Amber List (moderate evidence)
Mendeliome v0.13714 HSD11B1 Zornitza Stark Gene: hsd11b1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13713 HSD11B1 Zornitza Stark reviewed gene: HSD11B1: Rating: AMBER; Mode of pathogenicity: None; Publications: 21325058; Phenotypes: Cortisone reductase deficiency 2, MIM# 614662; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13713 HRG Zornitza Stark Phenotypes for gene: HRG were changed from to Thrombophilia 11 due to HRG deficiency, MIM# 613116
Mendeliome v0.13710 HRG Zornitza Stark reviewed gene: HRG: Rating: GREEN; Mode of pathogenicity: None; Publications: 8236132, 11057869, 11057869, 29108964; Phenotypes: Thrombophilia 11 due to HRG deficiency, MIM# 613116; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13683 CORIN Ain Roesley reviewed gene: CORIN: Rating: AMBER; Mode of pathogenicity: None; Publications: 22437503; Phenotypes: Preeclampsia/eclampsia 5 MIM#614595; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.13683 DUSP6 Krithika Murali changed review comment from: PMID: 23643382 Miraoui et al 2013 - - candidate gene study for genes in the FGFR1 pathway that may be associated with CHH, either as causative genes or disease modifiers. A cohort of 386 CHH individuals and 155 unaffected controls of European descent. A number of affected individuals included in this cohort already had known causative variants in CHH-associated genes. The coding exons and proximal introns (≥15 bp from splice sites) of FGF17, FGF18, IL17RD, DUSP6, SPRY2, SPRY4, and FLRT3 were amplified by PCR and determined by direct sequencing.

Summary of DUSP6 variants identified in this study
c.229 T>A p.(Phe77Ile) - absent gnomAD v2 and v3
c.545C>T p.(Ser182Phe) - 203 hets gnomad v2, 137 hets and 1 hom - v3 - identified in conjunction with FGFR1 variant in this individual
c.566A>G p.Asn189Ser - v2 57 hets, v3 29 hets (another individual identified with this variant and an SPRY4 variant)
c.1037C>T p.Thr346Met - 81 hets v2, 27 hets and 1 hom v3 (identified in conjunction with SPRY4 variant

No segregation information provided.

PMID: 23643382 - Dusp6 null mouse model reportedly has craniofacial defects and hearing defects, but no mention of hypogonadotropic hypogonadism. In 5 unrelated individuals with congenital hypogonadotropic hypogonadism 4 heterozygous missense were identified. In 3 of the probands, the DUSP6 mutation was accompanied by a heterozygous missense mutation in another HH-associated gene. 3 of the 4 variants have subpopulation allele frequencies in gnomAD v2.1 that are higher than expected for a dominant condition: p.Thr346Met (AJ AF 0.002797), p.Ser182Phe (NFE AF 0.001396), p.Asn189Ser (NFE AF 0.0003641). No functional assays were conducted.

PMID: 32389901 - 6 unrelated male Chinese Kallman syndrome cases with 4 DUSP6 missense variants. 2 of 4 variants have East Asian allele frequencies in gnomAD v2.1 that are higher than expected for a dominant condition: p.Pro188Leu (EAS AF 0.001203), p.Arg83Gln (EAS AF 0.001129). No functional assays conducted.; to: PMID: 23643382 Miraoui et al 2013 - - candidate gene study for genes in the FGFR1 pathway that may be associated with CHH, either as causative genes or disease modifiers. A cohort of 386 CHH individuals and 155 unaffected controls of European descent. A number of affected individuals included in this cohort already had known causative variants in CHH-associated genes. The coding exons and proximal introns (≥15 bp from splice sites) of FGF17, FGF18, IL17RD, DUSP6, SPRY2, SPRY4, and FLRT3 were amplified by PCR and determined by direct sequencing.

Summary of DUSP6 variants identified in this study
c.229 T>A p.(Phe77Ile) - absent gnomAD v2 and v3
c.545C>T p.(Ser182Phe) - 203 hets gnomad v2, 137 hets and 1 hom - v3 - identified in conjunction with FGFR1 variant in this individual
c.566A>G p.Asn189Ser - v2 57 hets, v3 29 hets (another individual identified with this variant and an SPRY4 variant)
c.1037C>T p.Thr346Met - 81 hets v2, 27 hets and 1 hom v3 (identified in conjunction with SPRY4 variant

No segregation information provided. Dusp6 null mouse model reportedly has craniofacial defects and hearing defects, but no mention of hypogonadotropic hypogonadism.

PMID: 32389901 - 6 unrelated male Chinese Kallman syndrome cases with 4 DUSP6 missense variants. 2 of 4 variants have East Asian allele frequencies in gnomAD v2.1 that are higher than expected for a dominant condition: p.Pro188Leu (EAS AF 0.001203), p.Arg83Gln (EAS AF 0.001129). No functional assays conducted.
Mendeliome v0.13683 DUSP6 Krithika Murali changed review comment from: 1 study cited by OMIM (Miraoui et al 2013) - heterozygous variants in 5 unrelated individuals with congenital hypogonadotrophic hypogonadism (CHH). 4/5 variants highly prevalent in healthy population and/or in conjunction with variants in other genes either known to be associated with CHH or possibly associated. No additional studies published since this paper.

PMID: 23643382 Miraoui et al 2013 - - candidate gene study for genes in the FGFR1 pathway that may be associated with CHH, either as causative genes or disease modifiers. A cohort of 386 CHH individuals and 155 unaffected controls of European descent. A number of affected individuals included in this cohort already had known causative variants in CHH-associated genes. The coding exons and proximal introns (≥15 bp from splice sites) of FGF17, FGF18, IL17RD, DUSP6, SPRY2, SPRY4, and FLRT3 were amplified by PCR and determined by direct sequencing.

Summary of DUSP6 variants identified in this study
c.229 T>A p.(Phe77Ile) - absent gnomAD v2 and v3
c.545C>T p.(Ser182Phe) - 203 hets gnomad v2, 137 hets and 1 hom - v3 - identified in conjunction with FGFR1 variant in this individual
c.566A>G p.Asn189Ser - v2 57 hets, v3 29 hets (another individual identified with this variant and an SPRY4 variant)
c.1037C>T p.Thr346Met - 81 hets v2, 27 hets and 1 hom v3 (identified in conjunction with SPRY4 variant

No segregation information provided.; to: PMID: 23643382 Miraoui et al 2013 - - candidate gene study for genes in the FGFR1 pathway that may be associated with CHH, either as causative genes or disease modifiers. A cohort of 386 CHH individuals and 155 unaffected controls of European descent. A number of affected individuals included in this cohort already had known causative variants in CHH-associated genes. The coding exons and proximal introns (≥15 bp from splice sites) of FGF17, FGF18, IL17RD, DUSP6, SPRY2, SPRY4, and FLRT3 were amplified by PCR and determined by direct sequencing.

Summary of DUSP6 variants identified in this study
c.229 T>A p.(Phe77Ile) - absent gnomAD v2 and v3
c.545C>T p.(Ser182Phe) - 203 hets gnomad v2, 137 hets and 1 hom - v3 - identified in conjunction with FGFR1 variant in this individual
c.566A>G p.Asn189Ser - v2 57 hets, v3 29 hets (another individual identified with this variant and an SPRY4 variant)
c.1037C>T p.Thr346Met - 81 hets v2, 27 hets and 1 hom v3 (identified in conjunction with SPRY4 variant

No segregation information provided.

PMID: 23643382 - Dusp6 null mouse model reportedly has craniofacial defects and hearing defects, but no mention of hypogonadotropic hypogonadism. In 5 unrelated individuals with congenital hypogonadotropic hypogonadism 4 heterozygous missense were identified. In 3 of the probands, the DUSP6 mutation was accompanied by a heterozygous missense mutation in another HH-associated gene. 3 of the 4 variants have subpopulation allele frequencies in gnomAD v2.1 that are higher than expected for a dominant condition: p.Thr346Met (AJ AF 0.002797), p.Ser182Phe (NFE AF 0.001396), p.Asn189Ser (NFE AF 0.0003641). No functional assays were conducted.

PMID: 32389901 - 6 unrelated male Chinese Kallman syndrome cases with 4 DUSP6 missense variants. 2 of 4 variants have East Asian allele frequencies in gnomAD v2.1 that are higher than expected for a dominant condition: p.Pro188Leu (EAS AF 0.001203), p.Arg83Gln (EAS AF 0.001129). No functional assays conducted.
Mendeliome v0.13674 DYRK1B Krithika Murali reviewed gene: DYRK1B: Rating: AMBER; Mode of pathogenicity: None; Publications: 34193236, 34786696, 24827035, 28743892; Phenotypes: Abdominal obesity-metabolic syndrome 3 - MIM#615812; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13673 COL6A2 Ain Roesley changed review comment from: GeneReviews PMID:20301676

AD variants typically occur near the N terminal of the triple helical (TH) domain, which contains a critical region of 10 to 15 Gly-X-Y triplets; in-frame exon-skipping variants and glycine substitutions in this region tend to result in more severe phenotypes

AR variants are usually nonsense or fs, or biallelic variants located near the C-terminal end of the TH domain, where they will be excluded from assembly

COL621 accounts for 44-46% of Collagen VI-Related Dystrophies cases; to: GeneReviews PMID:20301676

AD variants typically occur near the N terminal of the triple helical (TH) domain, which contains a critical region of 10 to 15 Gly-X-Y triplets; in-frame exon-skipping variants and glycine substitutions in this region tend to result in more severe phenotypes

AR variants are usually nonsense or fs, or biallelic variants located near the C-terminal end of the TH domain, where they will be excluded from assembly

COL6A2 accounts for 44-46% of Collagen VI-Related Dystrophies cases
Mendeliome v0.13671 COL6A1 Ain Roesley changed review comment from: Well established association

Genereviews PMID:20301676

AD variants typically occur near the N terminal of the triple helical (TH) domain, which contains a critical region of 10 to 15 Gly-X-Y triplets; in-frame exon-skipping variants and glycine substitutions in this region tend to result in more severe phenotypes

AR variants are usually nonsense or fs, or biallelic variants located near the C-terminal end of the TH domain, where they will be excluded from assembly; to: Well established association

Genereviews PMID:20301676

AD variants typically occur near the N terminal of the triple helical (TH) domain, which contains a critical region of 10 to 15 Gly-X-Y triplets; in-frame exon-skipping variants and glycine substitutions in this region tend to result in more severe phenotypes

AR variants are usually nonsense or fs, or biallelic variants located near the C-terminal end of the TH domain, where they will be excluded from assembly

COL6A1 accounts for 35-38% of Collagen VI-Related Dystrophies cases
Mendeliome v0.13669 COL6A1 Ain Roesley changed review comment from: Well established association

Both loss-of-function and dominant negative mechanism has been reported for this gene. Mutations result in a spectrum of disease, ranging from the milder Bethlem myopathy (monoallelic) to the more severe Ullrich congenital muscular dystrophy (biallelic) (PMID: 29277723; 24443028).
Sources: Literature; to: Well established association

Genereviews PMID:20301676

AD variants typically occur near the N terminal of the triple helical (TH) domain, which contains a critical region of 10 to 15 Gly-X-Y triplets; in-frame exon-skipping variants and glycine substitutions in this region tend to result in more severe phenotypes

AR variants are usually nonsense or fs, or biallelic variants located near the C-terminal end of the TH domain, where they will be excluded from assembly
Mendeliome v0.13662 HMOX1 Zornitza Stark Gene: hmox1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13659 HMOX1 Zornitza Stark Classified gene: HMOX1 as Amber List (moderate evidence)
Mendeliome v0.13659 HMOX1 Zornitza Stark Gene: hmox1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13656 COL1A2 Ain Roesley edited their review of gene: COL1A2: Changed phenotypes: Combined osteogenesis imperfecta and Ehlers-Danlos syndrome 2, MIM# 619120, Ehlers-Danlos syndrome, arthrochalasia type, 2, MIM# 617821, Ehlers-Danlos syndrome, cardiac valvular type, MIM# 225320, Osteogenesis imperfecta, type II, MIM# 166210, Osteogenesis imperfecta, type III, MIM# 259420, Osteogenesis imperfecta, type IV, MIM# 166220
Mendeliome v0.13656 COL1A2 Ain Roesley Phenotypes for gene: COL1A2 were changed from to Combined osteogenesis imperfecta and Ehlers-Danlos syndrome 2, MIM# 619120; Ehlers-Danlos syndrome, arthrochalasia type, 2, MIM# 617821; Ehlers-Danlos syndrome, cardiac valvular type, MIM# 225320; Osteogenesis imperfecta, type II, MIM# 166210; Osteogenesis imperfecta, type III, MIM# 259420; Osteogenesis imperfecta, type IV, MIM# 166220
Mendeliome v0.13653 COL1A1 Ain Roesley Phenotypes for gene: COL1A1 were changed from to Caffey disease MIM#114000; Combined osteogenesis imperfecta and Ehlers-Danlos syndrome 1 MIM#619115; Ehlers-Danlos syndrome, arthrochalasia type, 1 MIM#130060; Osteogenesis imperfecta, type I MIM#166200; Osteogenesis imperfecta, type II MIM#166210; Osteogenesis imperfecta, type III MIM#259420; Osteogenesis imperfecta, type IV MIM#166220
Mendeliome v0.13652 COL1A1 Ain Roesley reviewed gene: COL1A1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301422, 20301667, 30071989, 28981071, 12362985, 28956891; Phenotypes: Caffey disease MIM#114000, Combined osteogenesis imperfecta and Ehlers-Danlos syndrome 1 MIM#619115, Ehlers-Danlos syndrome, arthrochalasia type, 1 MIM#130060, Osteogenesis imperfecta, type I MIM#166200, Osteogenesis imperfecta, type II MIM#166210, Osteogenesis imperfecta, type III MIM#259420, Osteogenesis imperfecta, type IV MIM#166220; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.13642 HMBS Zornitza Stark Marked gene: HMBS as ready
Mendeliome v0.13642 HMBS Zornitza Stark Gene: hmbs has been classified as Green List (High Evidence).
Mendeliome v0.13642 HMBS Zornitza Stark Phenotypes for gene: HMBS were changed from to Porphyria, acute intermittent, MIM#176000; Porphyria, acute intermittent, non-erythroid variant, MIM#176000
Mendeliome v0.13641 HMBS Zornitza Stark Mode of inheritance for gene: HMBS was changed from Unknown to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13640 HMBS Zornitza Stark reviewed gene: HMBS: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Porphyria, acute intermittent, MIM#176000, Porphyria, acute intermittent, non-erythroid variant, MIM#176000; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13637 HK1 Zornitza Stark changed review comment from: HMSNR is an autosomal recessive progressive complex peripheral neuropathy characterized by onset in the first decade of distal lower limb weakness and muscle atrophy resulting in walking difficulties. Distal impairment of the upper limbs usually occurs later, as does proximal lower limb weakness. There is distal sensory impairment, with pes cavus and areflexia. Laboratory studies suggest that it is a myelinopathy resulting in reduced nerve conduction velocities in the demyelinating range as well as a length-dependent axonopathy.

Founder variant in the Roma, -3818-195G-C, AltT2 EXON in 5'UTR identified in multiple families.

Note gene is associated with other phenotypes.; to: Bi-allelic variants and neuropathy: HMSNR is an autosomal recessive progressive complex peripheral neuropathy characterized by onset in the first decade of distal lower limb weakness and muscle atrophy resulting in walking difficulties. Distal impairment of the upper limbs usually occurs later, as does proximal lower limb weakness. There is distal sensory impairment, with pes cavus and areflexia. Laboratory studies suggest that it is a myelinopathy resulting in reduced nerve conduction velocities in the demyelinating range as well as a length-dependent axonopathy.

Founder variant in the Roma, -3818-195G-C, AltT2 EXON in 5'UTR identified in multiple families.

Note gene is associated with other phenotypes.
Mendeliome v0.13630 SLC25A1 Zornitza Stark Phenotypes for gene: SLC25A1 were changed from to Combined D-2- and L-2-hydroxyglutaric aciduria MIM#: 615182, MONDO:0014072; Myasthenic syndrome, congenital, 23, presynaptic, MIM#618197, MONDO:0032596
Mendeliome v0.13627 RRAS Zornitza Stark Gene: rras has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13624 RRAS Zornitza Stark Classified gene: RRAS as Amber List (moderate evidence)
Mendeliome v0.13624 RRAS Zornitza Stark Gene: rras has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13623 RRAS Zornitza Stark reviewed gene: RRAS: Rating: AMBER; Mode of pathogenicity: None; Publications: 24705357; Phenotypes: Noonan syndrome, MONDO:0018997; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13613 SLC25A1 Manny Jacobs reviewed gene: SLC25A1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 26870663, 31527857, 31808147, 23561848, 23393310; Phenotypes: Combined D-2- and L-2-hydroxyglutaric aciduria MIM#: 615182, MONDO:0014072, Myasthenic syndrome, congenital, 23, presynaptic, MIM#618197, MONDO:0032596; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13613 RRAS Belinda Chong edited their review of gene: RRAS: Changed rating: AMBER
Mendeliome v0.13602 HESX1 Zornitza Stark Phenotypes for gene: HESX1 were changed from to Growth hormone deficiency with pituitary anomalies, MIM#182230; Pituitary hormone deficiency, combined, 5, MIM#182230; Septooptic dysplasia, MIM#182230
Mendeliome v0.13600 HESX1 Zornitza Stark reviewed gene: HESX1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Growth hormone deficiency with pituitary anomalies, MIM#182230, Pituitary hormone deficiency, combined, 5, MIM#182230, Septooptic dysplasia, MIM#182230; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.13549 HAAO Zornitza Stark Phenotypes for gene: HAAO were changed from to Vertebral, cardiac, renal, and limb defects syndrome 1 MIM#617660; NAD deficiency
Mendeliome v0.13529 BPGM Zornitza Stark Gene: bpgm has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13526 BPGM Zornitza Stark Classified gene: BPGM as Amber List (moderate evidence)
Mendeliome v0.13526 BPGM Zornitza Stark Gene: bpgm has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13525 BPGM Zornitza Stark reviewed gene: BPGM: Rating: AMBER; Mode of pathogenicity: None; Publications: 1421379, 27651169, 25015942; Phenotypes: Erythrocytosis, familial, 8, MIM# 222800; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.13522 BLVRA Zornitza Stark Gene: blvra has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13519 BLVRA Zornitza Stark Classified gene: BLVRA as Amber List (moderate evidence)
Mendeliome v0.13519 BLVRA Zornitza Stark Gene: blvra has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13518 BLVRA Zornitza Stark reviewed gene: BLVRA: Rating: AMBER; Mode of pathogenicity: None; Publications: 19580635, 21278388; Phenotypes: Hyperbiliverdinaemia , MIM#614156; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.13518 BLK Zornitza Stark Gene: blk has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13515 BLK Zornitza Stark Classified gene: BLK as Amber List (moderate evidence)
Mendeliome v0.13515 BLK Zornitza Stark Gene: blk has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13514 BLK Zornitza Stark reviewed gene: BLK: Rating: AMBER; Mode of pathogenicity: None; Publications: 25926555; Phenotypes: Common variable immunodeficiency, MONDO:0015517; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13432 APCDD1 Elena Savva reviewed gene: APCDD1: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 22512811; Phenotypes: Hypotrichosis 1 MIM#605389; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.13429 DIO1 Zornitza Stark Gene: dio1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13427 DIO1 Zornitza Stark Classified gene: DIO1 as Amber List (moderate evidence)
Mendeliome v0.13427 DIO1 Zornitza Stark Gene: dio1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13426 DIO1 Zornitza Stark reviewed gene: DIO1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Thyroid hormone metabolism, abnormal, 2, MIM# 619855; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13426 TUBA8 Zornitza Stark Phenotypes for gene: TUBA8 were changed from Cortical dysplasia, complex, with other brain malformations 8, MIM# 613180 to Macrothrombocytopaenia, isolated, 2, autosomal dominant, MIM# 619840
Mendeliome v0.13423 TUBA8 Zornitza Stark Classified gene: TUBA8 as Amber List (moderate evidence)
Mendeliome v0.13423 TUBA8 Zornitza Stark Gene: tuba8 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13422 TUBA8 Zornitza Stark edited their review of gene: TUBA8: Added comment: Mono-allelic variants and macrothrombocytopaenia: 6 unrelated individuals with missense variants found in a large cohort of blood donors, some functional data. Individuals were generally asymptomatic.; Changed rating: AMBER; Changed publications: 34704371; Changed phenotypes: Macrothrombocytopaenia, isolated, 2, autosomal dominant, MIM# 619840; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.13390 PHYH Zornitza Stark edited their review of gene: PHYH: Added comment: Refsum disease is an autosomal recessive inborn error of lipid metabolism classically characterized by a tetrad of clinical abnormalities: retinitis pigmentosa, peripheral neuropathy, cerebellar ataxia, and elevated protein levels in the cerebrospinal fluid (CSF) without an increase in the number of cells.

Well established gene-disease association.; Changed publications: 9326939, 9326940
Mendeliome v0.13331 BVES Zornitza Stark Phenotypes for gene: BVES were changed from to Muscular dystrophy, limb-girdle, autosomal recessive 25, MIM# 616812
Mendeliome v0.13327 BVES Zornitza Stark changed review comment from: PMID: 26642364 - 1 family (3 affecteds) with cardiac arrhythmia and limb-girdle muscular dystrophy. Supported by functional studies. The proband showed lower limb girdle weakness at ~40 years old with muscle biopsy proving dystrophic changes. His 2 affected grandchildren had onset in teenage years.

PMID: 32528171 - 1 patient with limb girdle weakness.

PMID: 31119192 - 3 families (4 affecteds) with limb-girdle muscular weakness and cardiac abnormalities/arrhythmia. All had onset in adulthood, with exercise intolerance or proximal weakness.; to: PMID: 26642364 - 1 family (3 affecteds) with cardiac arrhythmia and limb-girdle muscular dystrophy. Supported by functional studies: zebrafish model. The proband showed lower limb girdle weakness at ~40 years old with muscle biopsy proving dystrophic changes. His 2 affected grandchildren had onset in teenage years.

PMID: 32528171 - 1 patient with limb girdle weakness.

PMID: 31119192 - 3 families (4 affecteds) with limb-girdle muscular weakness and cardiac abnormalities/arrhythmia. All had onset in adulthood, with exercise intolerance or proximal weakness.
Mendeliome v0.13327 BVES Zornitza Stark reviewed gene: BVES: Rating: GREEN; Mode of pathogenicity: None; Publications: 26642364, 32528171, 31119192; Phenotypes: Muscular dystrophy, limb-girdle, autosomal recessive 25, MIM# 616812; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13297 PDGFRA Krithika Murali changed review comment from: ?Suitability for Incidentalome versus Mendeliome based on adult age of diagnosis in reported cases.

---


Six unrelated families reported with heterozygous germline variants associated with familial GIST and/or inflammatory fibroid polyps - IFP (benign lesions caused by excessive tissue proliferation and inflammatory cell infiltration into the lumen of the GI tract). Note that reported individuals diagnosed as adults. One individual reported with diagnosis of gastric mass/polyps age 22 (in 1977) raising the possibility of pre-symptomatic disease onset in adolescence. Green PanelApp England in the following panels: tumour predisposition - childhood onset; inherited predisposition to GIST; sarcoma cancer susceptibility.

---

PMID 34107389 Hodan et al 2021 - report a 35 yo F with jejunal IFP and a heterozygous germline missense PDGFRA variant (c.1664A>G p.Y555C) . The variant segregated with 3 relatives with confirmed IFPs. Two obligate carriers were reported to have had a similar phenotype while at least one obligate male carrier had no reported history of IFPs. This variant was also reported in an unrelated family with multiple IFPs in 2006.

PMID 29486293 Manley et al 2018 - proband is a 50 yo M with multiple ileal intusussceptions and IFPs and GIST. Heterozygous D846V germline variant identified. Variant identified in daughter and 2 siblings. Coarser face, coarser skin, broader hands and feet, unexplained premature loss of teeth requiring dentures in their 40s described in relatives with the variant, no polyps or tumour identified in screened family members. Pdgfra +/K mutant mice recapitulated the human phenotype. Mice with the constitutively activated mutant PDGFRA shown to have diffuse expansion of the gastrointestinal submucosa, which exhibits an increased number of spindled fibroblast-like cells and marked collagen deposition. Mutant mice also develop intestinal polyps morphologically similar to IFPs. The Pdgfra +/K mice also exhibit thickened skin due to excess collagen deposition within the dermis and subcutaneous tissues.

PMID 25975287 Ricci et al 2015 - report a family with het germline P653L PDGFRA missense variant. The proband was a 67 yo M with multiple intra-abdominal GIST and gastric/colonic inflammatory fibroid polyps. Multiple adult relatives (youngest age 31) were diagnosed with IFPs/fibrous tumours with the variant segregating with disease.

PMID: 18670346 Carney et al 2008 and PMID: 17566086 Pasini et al 2007 - heterozygous germline PDGFRA mutation (V561D) in an individual with GIST and multiple polyps, diagnosed initially aged 22 with multiple GIST/polyps. No other relatives available for genotyping and no other significant family history reported.

PMID: 17087943 de Raedt et al 2006 - heterozygous PDGFRA(Y555C) variant reported in a family with multiple relatives affected by IFP, including one death from secondary bowel obstruction age 35.

PMID: 14699510 Chompret et al 2004 - Heterozygous c.2675G>T D846Y germline variant detected in a French family with 5 relatives developing adult-onset GIST, variant segregated with disease.

--

Gain of function somatic variants associated with sporadic GIST. Somatic chromosomal rearrangements resulting in PDGFRA and FIP1L1 gene fusion associated with idiopathic hypereosinophilic syndrome.; to: Six unrelated families reported with heterozygous germline variants associated with familial GIST and/or inflammatory fibroid polyps - IFP (benign lesions caused by excessive tissue proliferation and inflammatory cell infiltration into the lumen of the GI tract). Note that reported individuals diagnosed as adults. One individual reported with diagnosis of gastric mass/polyps age 22 (in 1977) raising the possibility of pre-symptomatic disease onset in adolescence. Green PanelApp England in the following panels: tumour predisposition - childhood onset; inherited predisposition to GIST; sarcoma cancer susceptibility.

---

PMID 34107389 Hodan et al 2021 - report a 35 yo F with jejunal IFP and a heterozygous germline missense PDGFRA variant (c.1664A>G p.Y555C) . The variant segregated with 3 relatives with confirmed IFPs. Two obligate carriers were reported to have had a similar phenotype while at least one obligate male carrier had no reported history of IFPs. This variant was also reported in an unrelated family with multiple IFPs in 2006.

PMID 29486293 Manley et al 2018 - proband is a 50 yo M with multiple ileal intusussceptions and IFPs and GIST. Heterozygous D846V germline variant identified. Variant identified in daughter and 2 siblings. Coarser face, coarser skin, broader hands and feet, unexplained premature loss of teeth requiring dentures in their 40s described in relatives with the variant, no polyps or tumour identified in screened family members. Pdgfra +/K mutant mice recapitulated the human phenotype. Mice with the constitutively activated mutant PDGFRA shown to have diffuse expansion of the gastrointestinal submucosa, which exhibits an increased number of spindled fibroblast-like cells and marked collagen deposition. Mutant mice also develop intestinal polyps morphologically similar to IFPs. The Pdgfra +/K mice also exhibit thickened skin due to excess collagen deposition within the dermis and subcutaneous tissues.

PMID 25975287 Ricci et al 2015 - report a family with het germline P653L PDGFRA missense variant. The proband was a 67 yo M with multiple intra-abdominal GIST and gastric/colonic inflammatory fibroid polyps. Multiple adult relatives (youngest age 31) were diagnosed with IFPs/fibrous tumours with the variant segregating with disease.

PMID: 18670346 Carney et al 2008 and PMID: 17566086 Pasini et al 2007 - heterozygous germline PDGFRA mutation (V561D) in an individual with GIST and multiple polyps, diagnosed initially aged 22 with multiple GIST/polyps. No other relatives available for genotyping and no other significant family history reported.

PMID: 17087943 de Raedt et al 2006 - heterozygous PDGFRA(Y555C) variant reported in a family with multiple relatives affected by IFP, including one death from secondary bowel obstruction age 35.

PMID: 14699510 Chompret et al 2004 - Heterozygous c.2675G>T D846Y germline variant detected in a French family with 5 relatives developing adult-onset GIST, variant segregated with disease.

--

Gain of function somatic variants associated with sporadic GIST. Somatic chromosomal rearrangements resulting in PDGFRA and FIP1L1 gene fusion associated with idiopathic hypereosinophilic syndrome.
Mendeliome v0.13263 RSPH4A Belinda Chong changed review comment from: Radial spokes are regularly spaced along cilia, sperm, and flagella axonemes and have a multisubunit 'stalk' and 'head' that form a signal transduction scaffold between the central microtubule pair and dynein arms. RSPH4A is predicted to be a component of the radial spoke head based on homology with proteins in the biflagellate alga Chlamydomonas reinhardtii and other ciliates (Castleman et al., 2009; PMID19200523)

9 families with primary ciliary dyskinesia without situs inversus (Kott et al. 2013 (PMID:23993197), Castleman et al., 2009 (PMID19200523) and Daniels et al. 2013; (PMID:23798057)):
- In affected members of 4 Pakistani families with CILD11, Castleman et al. (2009) identified a homozygous mutation in the RSPH4A gene.
- In affected members of a family of northern European descent with CILD11, Castleman et al. (2009) identified compound heterozygosity for 2 mutations in the RSPH4A gene
- Kott et al. (2013) identified pathogenic mutations in the RSPH4A gene in 7 (14%) of 48 families with a specific CILD.

Common founder mutation:
- Daniels et al. (2013) identified a common founder mutation in the RSPH4A gene in 9 patients with CILD11, all of whom had Puerto Rican ancestry.

Multiple individuals in ClinVar with primary ciliary dyskinesia; to: Radial spokes are regularly spaced along cilia, sperm, and flagella axonemes and have a multisubunit 'stalk' and 'head' that form a signal transduction scaffold between the central microtubule pair and dynein arms. RSPH4A is predicted to be a component of the radial spoke head based on homology with proteins in the biflagellate alga Chlamydomonas reinhardtii and other ciliates (Castleman et al., 2009; PMID19200523)

9 families with primary ciliary dyskinesia without situs inversus (Kott et al. 2013 (PMID:23993197), Castleman et al., 2009 (PMID19200523) and Daniels et al. 2013; (PMID:23798057)):
- In affected members of 4 Pakistani families with CILD11, Castleman et al. (2009) identified a homozygous mutation in the RSPH4A gene.
- In affected members of a family of northern European descent with CILD11, Castleman et al. (2009) identified compound heterozygosity for 2 mutations in the RSPH4A gene
- Kott et al. (2013) identified pathogenic mutations in the RSPH4A gene in 7 (14%) of 48 families with a specific CILD.

Common founder mutation:
- Daniels et al. (2013) identified a common founder mutation in the RSPH4A gene in 9 patients with CILD11, all of whom had Puerto Rican ancestry.

Multiple individuals in ClinVar with primary ciliary dyskinesia

PMID: 25789548; Frommer 2015: 8 PCD families reported, only 4 different variants identified. Functional studies performed.

PMID: 22448264; Ziętkiewicz 2012: 4 additional families/variants reported.
Mendeliome v0.13233 POMGNT1 Zornitza Stark Phenotypes for gene: POMGNT1 were changed from to Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies, type A, 8 MIM#614830; Muscular dystrophy-dystroglycanopathy (limb-girdle) type C, 8 MIM#618135; Retinitis pigmentosa 76 617123
Mendeliome v0.13230 POMGNT1 Zornitza Stark reviewed gene: POMGNT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 27391550, 26908613, 30961548, 30937090; Phenotypes: Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies, type A, 8 MIM#614830, Muscular dystrophy-dystroglycanopathy (limb-girdle) type C, 8 MIM#618135, Retinitis pigmentosa 76 617123; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13230 POMGNT2 Zornitza Stark Phenotypes for gene: POMGNT2 were changed from to Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies, type A, 8, MIM# 614830; Muscular dystrophy-dystroglycanopathy (limb-girdle) type C, 8, MIM# 618135
Mendeliome v0.13227 POMGNT2 Zornitza Stark reviewed gene: POMGNT2: Rating: GREEN; Mode of pathogenicity: None; Publications: 34301702, 27066570, 26060116, 22958903; Phenotypes: Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies, type A, 8, MIM# 614830, Muscular dystrophy-dystroglycanopathy (limb-girdle) type C, 8, MIM# 618135; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13227 POMK Zornitza Stark Phenotypes for gene: POMK were changed from to Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 12, MIM# 615249; Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 12, MIM# 616094
Mendeliome v0.13224 POMK Zornitza Stark reviewed gene: POMK: Rating: GREEN; Mode of pathogenicity: None; Publications: 32907597, 31833209, 29910097, 28109637, 24925318, 24556084; Phenotypes: Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 12, MIM# 615249, Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 12, MIM# 616094; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13205 FASTKD2 Zornitza Stark Phenotypes for gene: FASTKD2 were changed from FASTKD2-related infantile mitochondrial encephalomyopathy MONDO:0015632 to Combined oxidative phosphorylation deficiency 44, MIM# 618855; FASTKD2-related infantile mitochondrial encephalomyopathy MONDO:0015632
Mendeliome v0.13197 PDE6G Zornitza Stark Gene: pde6g has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13194 PDE6G Zornitza Stark Classified gene: PDE6G as Amber List (moderate evidence)
Mendeliome v0.13194 PDE6G Zornitza Stark Gene: pde6g has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13167 ATP11A Zornitza Stark edited their review of gene: ATP11A: Changed rating: AMBER
Mendeliome v0.13106 FARS2 Bryony Thompson Phenotypes for gene: FARS2 were changed from to combined oxidative phosphorylation defect type 14 MONDO:0013986; hereditary spastic paraplegia 77 MONDO:0014882
Mendeliome v0.13103 FARS2 Bryony Thompson reviewed gene: FARS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 30250868, 30177229, 29126765, 28043061; Phenotypes: combined oxidative phosphorylation defect type 14 MONDO:0013986, hereditary spastic paraplegia 77 MONDO:0014882; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.13101 PDE6G Krithika Murali reviewed gene: PDE6G: Rating: AMBER; Mode of pathogenicity: None; Publications: 20655036; Phenotypes: Retinitis pigmentosa 57 - MIM#613582; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13075 POMT1 Zornitza Stark Phenotypes for gene: POMT1 were changed from to Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 1 236670; Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 1 613155; Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 1 609308
Mendeliome v0.13073 POMT1 Zornitza Stark reviewed gene: POMT1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 1 236670, Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 1 613155, Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 1 609308; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13073 POMT2 Zornitza Stark Phenotypes for gene: POMT2 were changed from to Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 2 613150; Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 2 613156; Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 2 613158
Mendeliome v0.13071 POMT2 Zornitza Stark edited their review of gene: POMT2: Changed phenotypes: Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 2 613150, Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 2 613156, Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 2 613158
Mendeliome v0.13071 POMT2 Zornitza Stark reviewed gene: POMT2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 2 613150 Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 2 613156 Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 2 613158; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13061 PPP1R15B Zornitza Stark Gene: ppp1r15b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13061 SGCG Samantha Ayres reviewed gene: SGCG: Rating: GREEN; Mode of pathogenicity: None; Publications: 18285821, 8923014, 7481775, 8968757, 27708273; Phenotypes: Muscular dystrophy, limb-girdle, autosomal recessive 5 MIM#253700, autosomal recessive limb-girdle muscular dystrophy MONDO:0015152; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13055 PPP1R15B Zornitza Stark Classified gene: PPP1R15B as Amber List (moderate evidence)
Mendeliome v0.13055 PPP1R15B Zornitza Stark Gene: ppp1r15b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13054 PPP1R15B Zornitza Stark reviewed gene: PPP1R15B: Rating: AMBER; Mode of pathogenicity: None; Publications: 26159176, 26307080, 27640355; Phenotypes: Microcephaly, short stature, and impaired glucose metabolism 2, MIM# 616817; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13047 PRDM16 Zornitza Stark Gene: prdm16 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13044 PRDM16 Zornitza Stark Classified gene: PRDM16 as Amber List (moderate evidence)
Mendeliome v0.13044 PRDM16 Zornitza Stark Gene: prdm16 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.13043 PRDM16 Zornitza Stark reviewed gene: PRDM16: Rating: AMBER; Mode of pathogenicity: None; Publications: 23768516, 29367541, 34915728, 31965688, 29367541; Phenotypes: Cardiomyopathy, dilated, 1LL MIM#615373, Left ventricular noncompaction 8 MIM#615373; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12986 PROS1 Zornitza Stark Phenotypes for gene: PROS1 were changed from to Thrombophilia 5 due to protein S deficiency, autosomal dominant, MIM# 612336; Thrombophilia 5 due to protein S deficiency, autosomal recessive, MIM# 614514
Mendeliome v0.12983 PROS1 Zornitza Stark reviewed gene: PROS1: Rating: GREEN; Mode of pathogenicity: None; Publications: 7545463, 19466456, 10063989, 20484936, 19729839; Phenotypes: Thrombophilia 5 due to protein S deficiency, autosomal dominant, MIM# 612336, Thrombophilia 5 due to protein S deficiency, autosomal recessive, MIM# 614514; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.12977 PRPF6 Zornitza Stark Gene: prpf6 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12974 PRPF6 Zornitza Stark Classified gene: PRPF6 as Amber List (moderate evidence)
Mendeliome v0.12974 PRPF6 Zornitza Stark Gene: prpf6 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12973 PRPF6 Zornitza Stark reviewed gene: PRPF6: Rating: AMBER; Mode of pathogenicity: None; Publications: 21549338, 32335390; Phenotypes: Retinitis pigmentosa 60, MIM# 613983; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12973 PRPH Zornitza Stark Gene: prph has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12970 PRPH Zornitza Stark Classified gene: PRPH as Amber List (moderate evidence)
Mendeliome v0.12970 PRPH Zornitza Stark Gene: prph has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12969 PRPH Zornitza Stark reviewed gene: PRPH: Rating: AMBER; Mode of pathogenicity: None; Publications: 20363051, 15322088, 15446584; Phenotypes: {Amyotrophic lateral sclerosis, susceptibility to}, 105400; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.12966 PRSS12 Zornitza Stark Gene: prss12 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12963 PRSS12 Zornitza Stark Classified gene: PRSS12 as Amber List (moderate evidence)
Mendeliome v0.12963 PRSS12 Zornitza Stark Gene: prss12 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12962 PRSS12 Zornitza Stark reviewed gene: PRSS12: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual disability, PRSS12 related MIM#249500; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12910 F12 Bryony Thompson commented on gene: F12: Also associated with FXII deficiency - PMID: 29383625, 20022356, 18024408, 20386432, 26709783, 21264442, 28007010, 15205584, 30700128 - Biallalelic loss-of-function variants are a well-established cause of FXII deficiency. FXII deficiency is not associated with bleeding risk unlike other coagulation factors, it is either asymptomatic or characterized by a prolonged activated partial thromboplastin time. DEFINITIVE gene-disease validity classification by the ClinGen Hemostasis Thrombosis VCEP, Classification - 01/22/2020
Mendeliome v0.12910 SGCD Zornitza Stark Phenotypes for gene: SGCD were changed from to Muscular dystrophy, limb-girdle, autosomal recessive 6, MIM# 601287; autosomal recessive limb-girdle muscular dystrophy MONDO:0015152
Mendeliome v0.12907 SGCD Zornitza Stark reviewed gene: SGCD: Rating: GREEN; Mode of pathogenicity: None; Publications: 8841194, 19259135, 20623375, 10838250, 10735275, 9832045, 30733730; Phenotypes: Muscular dystrophy, limb-girdle, autosomal recessive 6, MIM# 601287, autosomal recessive limb-girdle muscular dystrophy MONDO:0015152; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12907 SGCB Zornitza Stark Phenotypes for gene: SGCB were changed from to Muscular dystrophy, limb-girdle, autosomal recessive 4 MIM#604286; autosomal recessive limb-girdle muscular dystrophy, MONDO:0015152
Mendeliome v0.12904 SGCA Zornitza Stark Phenotypes for gene: SGCA were changed from to Muscular dystrophy, limb-girdle, autosomal recessive 3 MIM#608099; autosomal recessive limb-girdle muscular dystrophy, MONDO:0015152
Mendeliome v0.12901 SFXN4 Zornitza Stark Phenotypes for gene: SFXN4 were changed from to Combined oxidative phosphorylation deficiency 18, MIM#615578
Mendeliome v0.12859 SGCD Samantha Ayres reviewed gene: SGCD: Rating: GREEN; Mode of pathogenicity: None; Publications: 8841194, 30733730, 10838250; Phenotypes: autosomal recessive limb-girdle muscular dystrophy MONDO:0015152, Muscular dystrophy, limb-girdle, autosomal recessive 6, MIM#601287; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12859 SGCB Samantha Ayres reviewed gene: SGCB: Rating: GREEN; Mode of pathogenicity: None; Publications: 18285821; Phenotypes: Muscular dystrophy, limb-girdle, autosomal recessive 4 MIM#604286, autosomal recessive limb-girdle muscular dystrophy, MONDO:0015152; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12859 SGCA Samantha Ayres reviewed gene: SGCA: Rating: GREEN; Mode of pathogenicity: None; Publications: 30007747, 9192266, 34404573; Phenotypes: Muscular dystrophy, limb-girdle, autosomal recessive 3 MIM#608099, autosomal recessive limb-girdle muscular dystrophy, MONDO:0015152; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12859 SFXN4 Samantha Ayres reviewed gene: SFXN4: Rating: GREEN; Mode of pathogenicity: None; Publications: 31059822, 24119684; Phenotypes: Combined oxidative phosphorylation deficiency 18, MIM#615578; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12859 SERPIND1 Zornitza Stark Phenotypes for gene: SERPIND1 were changed from to heparin cofactor 2 deficiency, MONDO:0012876; Thrombophilia 10 due to heparin cofactor II deficiency, MIM#612356
Mendeliome v0.12851 CD55 Ain Roesley Phenotypes for gene: CD55 were changed from to Complement hyperactivation, angiopathic thrombosis, and protein-losing enteropathy, MIM# 226300
Mendeliome v0.12849 CD55 Ain Roesley reviewed gene: CD55: Rating: GREEN; Mode of pathogenicity: None; Publications: 28657829, 28657861; Phenotypes: Complement hyperactivation, angiopathic thrombosis, and protein-losing enteropathy, MIM# 226300; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.12812 TRAPPC11 Zornitza Stark Phenotypes for gene: TRAPPC11 were changed from to Muscular dystrophy, limb-girdle, autosomal recessive 18, MIM# 615356
Mendeliome v0.12809 TRAPPC11 Zornitza Stark reviewed gene: TRAPPC11: Rating: GREEN; Mode of pathogenicity: None; Publications: 23830518, 26322222, 29855340, 30105108; Phenotypes: Muscular dystrophy, limb-girdle, autosomal recessive 18, MIM# 615356; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12798 TRMT5 Zornitza Stark Phenotypes for gene: TRMT5 were changed from to Combined oxidative phosphorylation deficiency 26, MIM# 616539
Mendeliome v0.12795 TRMT5 Zornitza Stark reviewed gene: TRMT5: Rating: GREEN; Mode of pathogenicity: None; Publications: 26189817, 35342985, 35109800, 29021354; Phenotypes: Combined oxidative phosphorylation deficiency 26, MIM# 616539; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12787 SERPIND1 Samantha Ayres reviewed gene: SERPIND1: Rating: GREEN; Mode of pathogenicity: None; Publications: 2863444, 8902986, 2647747, 15337701, 31064749, 11204559, 8562924, 29296762; Phenotypes: heparin cofactor 2 deficiency, MONDO:0012876, Thrombophilia 10 due to heparin cofactor II deficiency, MIM#612356; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12787 TRMT10C Zornitza Stark Phenotypes for gene: TRMT10C were changed from to Combined oxidative phosphorylation deficiency 30, MIM# 616974
Mendeliome v0.12784 TRMT10C Zornitza Stark reviewed gene: TRMT10C: Rating: GREEN; Mode of pathogenicity: None; Publications: 27132592, 33886802; Phenotypes: Combined oxidative phosphorylation deficiency 30, MIM# 616974; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12774 TRIM32 Zornitza Stark Phenotypes for gene: TRIM32 were changed from to Bardet-Biedl syndrome 11, MIM# 615988; Muscular dystrophy, limb-girdle, autosomal recessive 8 MIM#254110
Mendeliome v0.12771 TRIM32 Zornitza Stark edited their review of gene: TRIM32: Added comment: >3 unrelated cases with myopathy, adult onset reported; Changed rating: GREEN; Changed publications: 16606853, 31309175, 11822024; Changed phenotypes: Bardet-Biedl syndrome 11, MIM# 615988, Muscular dystrophy, limb-girdle, autosomal recessive 8 MIM#254110
Mendeliome v0.12771 TRPM4 Zornitza Stark Gene: trpm4 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12768 TRPM4 Zornitza Stark Classified gene: TRPM4 as Amber List (moderate evidence)
Mendeliome v0.12768 TRPM4 Zornitza Stark Gene: trpm4 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12767 TRPM4 Zornitza Stark reviewed gene: TRPM4: Rating: AMBER; Mode of pathogenicity: None; Publications: 19726882, 20562447, 21887725, 20562447, 35205305, 34897640, 30528822; Phenotypes: Progressive familial heart block, type IB, MIM# 604559, Erythrokeratodermia variabilis et progressiva 6 618531; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12759 TSFM Zornitza Stark Phenotypes for gene: TSFM were changed from to Combined oxidative phosphorylation deficiency 3, MIM# 610505
Mendeliome v0.12753 TP63 Zornitza Stark Phenotypes for gene: TP63 were changed from to ADULT syndrome, OMIM #103285; Ectrodactyly, ectodermal dysplasia, and cleft lip/palate syndrome 3, OMIM #604292; Hay-Wells syndrome, OMIM #106260; Limb-mammary syndrome, OMIM #603543; Orofacial cleft 8, OMIM #618149; Rapp-Hodgkin syndrome, OMIM #129400; Split-hand/foot malformation 4, OMIM #605289
Mendeliome v0.12750 TP63 Zornitza Stark reviewed gene: TP63: Rating: GREEN; Mode of pathogenicity: None; Publications: 20556892; Phenotypes: ADULT syndrome, OMIM #103285, Ectrodactyly, ectodermal dysplasia, and cleft lip/palate syndrome 3, OMIM #604292, Hay-Wells syndrome, OMIM #106260, Limb-mammary syndrome, OMIM #603543, Orofacial cleft 8, OMIM #618149, Rapp-Hodgkin syndrome, OMIM #129400, Split-hand/foot malformation 4, OMIM #605289; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12744 TNPO3 Zornitza Stark Phenotypes for gene: TNPO3 were changed from to Muscular dystrophy, limb-girdle, autosomal dominant 2, MIM# 608423
Mendeliome v0.12741 TNPO3 Zornitza Stark reviewed gene: TNPO3: Rating: GREEN; Mode of pathogenicity: None; Publications: 23667635, 23543484, 31071488, 31192305; Phenotypes: Muscular dystrophy, limb-girdle, autosomal dominant 2, MIM# 608423; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12726 ATP11A Paul De Fazio reviewed gene: ATP11A: Rating: AMBER; Mode of pathogenicity: None; Publications: 35278131; Phenotypes: Deafness, autosomal dominant 84 MIM#619810; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v0.12726 TNNI1 Zornitza Stark Gene: tnni1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12726 TNNI1 Zornitza Stark Classified gene: TNNI1 as Amber List (moderate evidence)
Mendeliome v0.12726 TNNI1 Zornitza Stark Gene: tnni1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12724 SLC35B2 Alison Yeung Gene: slc35b2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12724 SLC35B2 Alison Yeung Classified gene: SLC35B2 as Amber List (moderate evidence)
Mendeliome v0.12724 SLC35B2 Alison Yeung Gene: slc35b2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12722 ATP2B1 Zornitza Stark Phenotypes for gene: ATP2B1 were changed from Neurodevelopmental delay; autism; seizures; distal limb abnormalities to Neurodevelopmental disorder, MONDO:0700092, ATP2B1-related
Mendeliome v0.12720 TTC21B Dean Phelan reviewed gene: TTC21B: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 35289079; Phenotypes: early onset hypertension, proteinuria, progressive kidney disease; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12720 FUZ Anna Ritchie changed review comment from: Novel missense p.(Arg284Pro) mutation in FUZ identified in twins presenting with craniosynostosis. Loss of Fuz resulted in increased mineralisation in both in vitro embryonic primary osteoblast cultures and in fibroblasts undergoing an osteogenic challenge. No previous reports have implicated changes in human FUZ in craniosynostosis. However, variations in FUZ have been found in patients with neural tube defects.; to: Novel missense p.(Arg284Pro) mutation in FUZ identified in twins presenting with craniosynostosis. Loss of Fuz resulted in increased mineralisation in both in vitro embryonic primary osteoblast cultures and in fibroblasts undergoing an osteogenic challenge. No previous reports have implicated changes in human FUZ in craniosynostosis. However, variations in FUZ have been found in patients with neural tube defects.
Mendeliome v0.12714 TNNI1 Krithika Murali gene: TNNI1 was added
gene: TNNI1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TNNI1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TNNI1 were set to 34934811
Phenotypes for gene: TNNI1 were set to arthrogryposis; joint contractures
Review for gene: TNNI1 was set to AMBER
Added comment: No OMIM gene disease association reported

PMID 34934811 Nishimori et al report 2 individuals from a Japanese family with joint contractures, elevated CK and a novel heterozygous TNNI1 variant.

The proband was born with clasped thumbs (gestational age not stated) requiring surgical correction at 5 months of age. At age 14 was diagnosed with contractures of the neck, trunk, hip and knee with elevated serum CK (1689 IU/L). No muscle weakness noted. Muscle biopsy showed moth-eaten appearance of type I fibres and electron microscopy showed type 1 fibre Z disk streaming.

Trio exome sequencing identified a paternally heterozygous nonsense TNNI1 variant (c.523A>T p.K175*). The proband's father and paternal grandfather (not genotyped) also have a history of joint contractures with elevated CK.

The affected amino acid residue is in the tropomyosin binding site near the C-terminus and is highly conserved. The variant is absent from gnomAD. rt-PCR products of mRNA from the patient's muscle biopsy showed presence of both mutated and normal transcripts.
Sources: Literature
Mendeliome v0.12714 SLC35B2 Melanie Marty gene: SLC35B2 was added
gene: SLC35B2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC35B2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC35B2 were set to PMID: 35325049
Phenotypes for gene: SLC35B2 were set to chondrodysplasia with hypomyelinating leukodystrophy, intellectual disability
Review for gene: SLC35B2 was set to AMBER
Added comment: 2 x individuals with homozygous variants (c.1218_1220del and c.1224_1225del) in SLC35B2. Phenotypes included pre- and postnatal growth retardation, scoliosis, severe motor and intellectual disabilities and hypomyelinating leukodystrophy.

Functional analysis on patient cells showed that the variants result in a decreased expression of mRNA and affect protein subcellular localization leading to functional impairment of the protein.
Sources: Literature
Mendeliome v0.12711 ATP2B1 Daniel Flanagan gene: ATP2B1 was added
gene: ATP2B1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: ATP2B1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ATP2B1 were set to PMID: 35358416
Phenotypes for gene: ATP2B1 were set to Neurodevelopmental delay; autism; seizures; distal limb abnormalities
Review for gene: ATP2B1 was set to GREEN
Added comment: 12 unrelated individuals with variants in ATP2B1 and an overlapping phenotype of mild to moderate global development delay. Additional common symptoms include autism (5), dissimilar forms of seizures (6), and distal limb abnormalities (4). 9 variants proven to be de novo, other 3 variants had unknown inheritance. 9 missense and 3 nonsense reported. Supporting functional analysis for missense.
Sources: Expert list
Mendeliome v0.12684 GGN Zornitza Stark Gene: ggn has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12684 GGN Zornitza Stark Classified gene: GGN as Amber List (moderate evidence)
Mendeliome v0.12684 GGN Zornitza Stark Gene: ggn has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12683 GGN Zornitza Stark gene: GGN was added
gene: GGN was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GGN was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GGN were set to 31985809; 33108537
Phenotypes for gene: GGN were set to Spermatogenic failure 69, MIM# 619826
Review for gene: GGN was set to AMBER
Added comment: Three individuals from two unrelated families reported.
Sources: Literature
Mendeliome v0.12682 SLC25A26 Zornitza Stark Phenotypes for gene: SLC25A26 were changed from to Combined oxidative phosphorylation deficiency 28, MIM# 616794
Mendeliome v0.12679 SLC25A26 Zornitza Stark reviewed gene: SLC25A26: Rating: GREEN; Mode of pathogenicity: None; Publications: 26522469; Phenotypes: Combined oxidative phosphorylation deficiency 28, MIM# 616794; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12650 SOX5 Zornitza Stark Phenotypes for gene: SOX5 were changed from to Lamb-Shaffer syndrome, MIM# 616803
Mendeliome v0.12647 SOX5 Zornitza Stark reviewed gene: SOX5: Rating: GREEN; Mode of pathogenicity: None; Publications: 22290657, 23220431; Phenotypes: Lamb-Shaffer syndrome, MIM# 616803; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12571 SERPINC1 Zornitza Stark Phenotypes for gene: SERPINC1 were changed from to hereditary antithrombin deficiency MONDO:0013144; Thrombophilia 7 due to antithrombin III deficiency, MIM#613118
Mendeliome v0.12542 CATSPER2 Ain Roesley Gene: catsper2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12542 CATSPER2 Ain Roesley Classified gene: CATSPER2 as Amber List (moderate evidence)
Mendeliome v0.12542 CATSPER2 Ain Roesley Gene: catsper2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12539 CATSPER2 Ain Roesley reviewed gene: CATSPER2: Rating: AMBER; Mode of pathogenicity: None; Publications: 17098888, 30629171, 12825070; Phenotypes: spermatogenic failure, non-syndromic hearing loss; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.12533 AMPD3 Elena Savva reviewed gene: AMPD3: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 8004104, 11139257, 24940686; Phenotypes: [AMP deaminase deficiency, erythrocytic] MIM#612874; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12523 TSPAN7 Zornitza Stark Gene: tspan7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12520 TSPAN7 Zornitza Stark Classified gene: TSPAN7 as Amber List (moderate evidence)
Mendeliome v0.12520 TSPAN7 Zornitza Stark Gene: tspan7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12519 TSPAN7 Zornitza Stark reviewed gene: TSPAN7: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual developmental disorder, X-linked 58, MIM #300210, MONDO:0010266; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.12503 SERPINC1 Samantha Ayres reviewed gene: SERPINC1: Rating: GREEN; Mode of pathogenicity: None; Publications: 31359133, 30356112, 23910795, 28317092, 29747524, 11018075, 14590998; Phenotypes: hereditary antithrombin deficiency MONDO:0013144, Thrombophilia 7 due to antithrombin III deficiency, MIM#613118; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.12453 PNPT1 Arina Puzriakova reviewed gene: PNPT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 33199448; Phenotypes: Combined oxidative phosphorylation deficiency 13, OMIM:614932; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12432 SLC39A5 Zornitza Stark Gene: slc39a5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12429 SLC39A5 Zornitza Stark Classified gene: SLC39A5 as Amber List (moderate evidence)
Mendeliome v0.12429 SLC39A5 Zornitza Stark Gene: slc39a5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12428 SLC39A5 Zornitza Stark reviewed gene: SLC39A5: Rating: AMBER; Mode of pathogenicity: None; Publications: 35002215, 34302427, 31560770, 24891338; Phenotypes: Myopia 24, autosomal dominant, MIM# 615946; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12404 EMP2 Bryony Thompson Gene: emp2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12402 TSPAN7 Manny Jacobs reviewed gene: TSPAN7: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 10449641, 12070254, 10655063, 25081361; Phenotypes: Intellectual developmental disorder, X-linked 58, MIM #300210, MONDO:0010266; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.12401 EMP2 Bryony Thompson Classified gene: EMP2 as Amber List (moderate evidence)
Mendeliome v0.12401 EMP2 Bryony Thompson Gene: emp2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12400 EMP2 Bryony Thompson reviewed gene: EMP2: Rating: AMBER; Mode of pathogenicity: None; Publications: 24814193, 31508419; Phenotypes: nephrotic syndrome, type 10 MONDO:0014373; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12382 DVL2 Bryony Thompson Gene: dvl2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12382 DVL2 Bryony Thompson Classified gene: DVL2 as Amber List (moderate evidence)
Mendeliome v0.12382 DVL2 Bryony Thompson Gene: dvl2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12381 DVL2 Bryony Thompson gene: DVL2 was added
gene: DVL2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DVL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DVL2 were set to 35047859; 33599851; 30521570
Phenotypes for gene: DVL2 were set to Robinow syndrome MONDO:0019978
Review for gene: DVL2 was set to AMBER
Added comment: A single case with Robinow syndrome identified with a de novo frameshift variant in the last exon of the gene (c.2105dupC, p.Pro703Serfs*103). Also, a canine DVL2 frameshift variant has been associated with a Robinow-like syndrome in dogs, contributing to the brachycephalic phenotype and caudal vertebral anomalies.
Sources: Literature
Mendeliome v0.12379 SLC6A17 Zornitza Stark Gene: slc6a17 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12374 SLC6A17 Zornitza Stark Classified gene: SLC6A17 as Amber List (moderate evidence)
Mendeliome v0.12374 SLC6A17 Zornitza Stark Gene: slc6a17 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12373 SLC6A17 Zornitza Stark reviewed gene: SLC6A17: Rating: AMBER; Mode of pathogenicity: None; Publications: 25704603, 23672601; Phenotypes: Mental retardation, autosomal recessive 48, MIM# 616269; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12371 BNIP1 Bryony Thompson Gene: bnip1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12371 BNIP1 Bryony Thompson Classified gene: BNIP1 as Amber List (moderate evidence)
Mendeliome v0.12371 BNIP1 Bryony Thompson Gene: bnip1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12370 BNIP1 Bryony Thompson gene: BNIP1 was added
gene: BNIP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: BNIP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BNIP1 were set to 35266227; 31344970
Phenotypes for gene: BNIP1 were set to spondyloepiphyseal dysplasia MONDO:0016761
Review for gene: BNIP1 was set to AMBER
Added comment: Two apparently unrelated cases with spondyloepiphyseal dysplasia from India were identified with the same variant (c.84+3A>T). The kindred coefficient comparison of the 2 cases exome data suggested they were unrelated, however there was a stretch of shared homozygosity suggesting remote consanguinity. ~80% aberrantly spliced BNIP1 pre-mRNAs, reduced BNIP1 mRNA level to ~80%, and BNIP1 protein level reduction by ~50% were detected in one of the cases fibroblasts. A block at the terminal stage of autolysosome formation and/or clearance in patient fibroblasts was suggested based on the data. A drosophila model of the BNIP1 orthologue Sec20 also demonstrated defective autolysosome formation.
Sources: Literature
Mendeliome v0.12338 PADI6 Zornitza Stark Phenotypes for gene: PADI6 were changed from to Pre-implantation embryonic lethality 2 MIM#617234; Multi locus imprinting disturbance in offspring; Recurrent hydatiform mole
Mendeliome v0.12335 PADI3 Zornitza Stark Phenotypes for gene: PADI3 were changed from to Uncombable hair syndrome - MIM#191480
Mendeliome v0.12323 TTBK2 Manny Jacobs reviewed gene: TTBK2: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 18037885, 31485862, 20667868, 27165044; Phenotypes: Spinocerebellar ataxia 11, MIM# 604432, MONDO:0011464; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12311 AFP Zornitza Stark Added comment: Comment when marking as ready: Raised or low levels of AFP are observed in some medical conditions, kept Amber due to possible phenotypic overlap.
Mendeliome v0.12311 AFP Zornitza Stark Gene: afp has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12308 AFP Zornitza Stark Classified gene: AFP as Amber List (moderate evidence)
Mendeliome v0.12308 AFP Zornitza Stark Gene: afp has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12297 TIA1 Zornitza Stark Classified gene: TIA1 as Amber List (moderate evidence)
Mendeliome v0.12297 TIA1 Zornitza Stark Gene: tia1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12295 TIA1 Zornitza Stark reviewed gene: TIA1: Rating: AMBER; Mode of pathogenicity: None; Publications: 29235362, 29886022, 29773329, 29699721, 29216908, 24659297, 29457785, 28817800, 23401021, 23401021; Phenotypes: Amyotrophic lateral sclerosis 26 with or without frontotemporal dementia, MIM# 619133, Welander distal myopathy (MIM#604454); Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.12293 THSD1 Zornitza Stark Gene: thsd1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12290 THSD1 Zornitza Stark Classified gene: THSD1 as Amber List (moderate evidence)
Mendeliome v0.12290 THSD1 Zornitza Stark Gene: thsd1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12289 THSD1 Zornitza Stark reviewed gene: THSD1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Aneurysm, intracranial berry, 12 , MIM# 618734; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12289 EFNA4 Bryony Thompson Gene: efna4 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12288 RBMX Zornitza Stark Gene: rbmx has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12288 RBMX Zornitza Stark Classified gene: RBMX as Amber List (moderate evidence)
Mendeliome v0.12288 RBMX Zornitza Stark Gene: rbmx has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12287 RBMX Zornitza Stark gene: RBMX was added
gene: RBMX was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: RBMX was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: RBMX were set to 25256757; 34260915
Phenotypes for gene: RBMX were set to Intellectual developmental disorder, syndromic 11, Shashi type, MIM#300238
Review for gene: RBMX was set to AMBER
Added comment: Hemizygous truncating variant reported segregating in multiple affected individuals in a single family. Some supportive functional data.
Sources: Expert Review
Mendeliome v0.12285 PADI6 Krithika Murali reviewed gene: PADI6: Rating: GREEN; Mode of pathogenicity: None; Publications: 29693651, 33583041, 329228291, 33221824, 27545678; Phenotypes: Pre-implantation embryonic lethality 2 MIM#617234, Multi locus imprinting disturbance in offspring, Recurrent hydatiform mole; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.12284 PADI3 Krithika Murali reviewed gene: PADI3: Rating: GREEN; Mode of pathogenicity: None; Publications: 27866708, 22381266, 30763140; Phenotypes: Uncombable hair syndrome - MIM#191480; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12282 EFNA4 Bryony Thompson Classified gene: EFNA4 as Amber List (moderate evidence)
Mendeliome v0.12282 EFNA4 Bryony Thompson Gene: efna4 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12281 EFNA4 Bryony Thompson reviewed gene: EFNA4: Rating: AMBER; Mode of pathogenicity: None; Publications: 16540516, 19201948, 19772933, 23983218, 29168297, 29215649, 33065355, 34586326; Phenotypes: craniosynostosis MONDO:0015469; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12281 AFP Elena Savva reviewed gene: AFP: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 15280901, 18854864; Phenotypes: Alpha-fetoprotein deficiency MIM#615969, [Hereditary persistence of alpha-fetoprotein] MIM#615970; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12265 SMN2 Zornitza Stark Gene: smn2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12263 SMN2 Zornitza Stark Classified gene: SMN2 as Amber List (moderate evidence)
Mendeliome v0.12263 SMN2 Zornitza Stark Gene: smn2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12262 SMN2 Zornitza Stark reviewed gene: SMN2: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: {Spinal muscular atrophy, type III, modifier of} 253400; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12240 OPN1MW Zornitza Stark Gene: opn1mw has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12237 OPN1MW Zornitza Stark Classified gene: OPN1MW as Amber List (moderate evidence)
Mendeliome v0.12237 OPN1MW Zornitza Stark Gene: opn1mw has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12236 OPN1LW Zornitza Stark Gene: opn1lw has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12231 OPN1LW Zornitza Stark Classified gene: OPN1LW as Amber List (moderate evidence)
Mendeliome v0.12231 OPN1LW Zornitza Stark Gene: opn1lw has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12227 SERPINA1 Zornitza Stark Phenotypes for gene: SERPINA1 were changed from to Emphysema due to AAT deficiency, MIM#613490; Emphysema-cirrhosis, due to AAT deficiency, MIM#613490; Hemorrhagic diathesis due to antithrombin Pittburgh, MIM#613490; alpha 1-antitrypsin deficiency, MONDO#0013282
Mendeliome v0.12224 OPN1MW Krithika Murali reviewed gene: OPN1MW: Rating: AMBER; Mode of pathogenicity: None; Publications: 25168334, 32860923; Phenotypes: Blue cone monochromacy - MIM#303700, Colorblindness, deutan - MIM#303800; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.12224 OPN1LW Krithika Murali reviewed gene: OPN1LW: Rating: AMBER; Mode of pathogenicity: None; Publications: 25168334, 32860923; Phenotypes: Blue cone monochromacy - MIM#303700, Colorblindness, protan - MIM#303900; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.12224 SERPINA1 Samantha Ayres reviewed gene: SERPINA1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301692, 9041988, 34408829; Phenotypes: Emphysema due to AAT deficiency, MIM#613490, Emphysema-cirrhosis, due to AAT deficiency, MIM#613490, Hemorrhagic diathesis due to antithrombin Pittburgh, MIM#613490, alpha 1-antitrypsin deficiency, MONDO#0013282; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12218 TGM3 Zornitza Stark Gene: tgm3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12218 TGM3 Zornitza Stark Phenotypes for gene: TGM3 were changed from to Uncombable hair syndrome 2 MIM#617251
Mendeliome v0.12215 TGM3 Zornitza Stark Classified gene: TGM3 as Amber List (moderate evidence)
Mendeliome v0.12215 TGM3 Zornitza Stark Gene: tgm3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12208 NUP62 Zornitza Stark Gene: nup62 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12205 NUP62 Zornitza Stark Classified gene: NUP62 as Amber List (moderate evidence)
Mendeliome v0.12205 NUP62 Zornitza Stark Gene: nup62 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12203 CASP8 Zornitza Stark Added comment: Comment when marking as ready: Amber in view of the functional data.
Mendeliome v0.12203 CASP8 Zornitza Stark Gene: casp8 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12200 CASP8 Zornitza Stark Classified gene: CASP8 as Amber List (moderate evidence)
Mendeliome v0.12200 CASP8 Zornitza Stark Gene: casp8 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12198 ADCY3 Zornitza Stark Gene: adcy3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12195 ADCY3 Zornitza Stark Classified gene: ADCY3 as Amber List (moderate evidence)
Mendeliome v0.12195 ADCY3 Zornitza Stark Gene: adcy3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12182 NUP62 Krithika Murali reviewed gene: NUP62: Rating: AMBER; Mode of pathogenicity: None; Publications: 16786527; Phenotypes: Striatonigral degeneration, infantile - MIM#271930; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12152 CASP8 Ain Roesley changed review comment from: Boderline red/amber

1 family (the 2nd family reported in PMID:25814141 was found to be distantly related to the one in PMID:12353035)

Mice with targeted T cell and B cell caspase-8 deficiency present normal thymocyte development but a marked decrease in peripheral blood T-cells. Besides, when challenged with the lymphocytic choriomeningitis virus (LCMV), these animals showed a significantly impaired immune response to the infection that included impaired CD8 cell expansion and an abrogated ability to generate virus-specific CD8+ cytotoxic T-cells.; to: Borderline red/amber

1 family (the 2nd family reported in PMID:25814141 was found to be distantly related to the one in PMID:12353035)

Mice with targeted T cell and B cell caspase-8 deficiency present normal thymocyte development but a marked decrease in peripheral blood T-cells. Besides, when challenged with the lymphocytic choriomeningitis virus (LCMV), these animals showed a significantly impaired immune response to the infection that included impaired CD8 cell expansion and an abrogated ability to generate virus-specific CD8+ cytotoxic T-cells.
Mendeliome v0.12150 ADCY3 Elena Savva reviewed gene: ADCY3: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 11055432, 29311636, 29311637; Phenotypes: {Obesity, susceptibility to, BMIQ19} MIM#617885; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12109 SCP2 Zornitza Stark Gene: scp2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12108 SCP2 Zornitza Stark Classified gene: SCP2 as Amber List (moderate evidence)
Mendeliome v0.12108 SCP2 Zornitza Stark Gene: scp2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12107 SCP2 Zornitza Stark reviewed gene: SCP2: Rating: AMBER; Mode of pathogenicity: None; Publications: 26497993; Phenotypes: Leukoencephalopathy with dystonia and motor neuropathy, MIM#613724; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12099 TUBB1 Zornitza Stark Phenotypes for gene: TUBB1 were changed from to Macrothrombocytopenia, autosomal dominant, TUBB1-related, OMIM #613112; MONDO:0013141
Mendeliome v0.12096 TUBB1 Zornitza Stark reviewed gene: TUBB1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Macrothrombocytopenia, autosomal dominant, TUBB1-related, OMIM #613112, MONDO:0013141; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12086 TUFM Zornitza Stark Phenotypes for gene: TUFM were changed from to Combined oxidative phosphorylation deficiency 4, OMIM #610678; MONDO:0012534
Mendeliome v0.12068 LHX4 Alison Yeung Phenotypes for gene: LHX4 were changed from to Pituitary hormone deficiency, combined, 4, MIM# 262700
Mendeliome v0.12066 LHX4 Alison Yeung reviewed gene: LHX4: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Pituitary hormone deficiency, combined, 4, MIM# 262700; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.12066 LHX3 Alison Yeung Phenotypes for gene: LHX3 were changed from to Pituitary hormone deficiency, combined, 3, MIM# 221750
Mendeliome v0.12064 LHX3 Alison Yeung reviewed gene: LHX3: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Pituitary hormone deficiency, combined, 3, MIM# 221750; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.12062 TUBB1 Manny Jacobs reviewed gene: TUBB1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 32757236, PMID: 31565851, PMID: 29333906, PMID: 18849486; Phenotypes: Macrothrombocytopenia, autosomal dominant, TUBB1-related, OMIM #613112, MONDO:0013141; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12062 SASH1 Samantha Ayres reviewed gene: SASH1: Rating: AMBER; Mode of pathogenicity: None; Publications: 23333244, 27885802, 32981204; Phenotypes: Dyschromatosis universalis hereditaria 1, MIM #127500, familial generalized lentiginosis MONDO:007891; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.12049 TUFM Manny Jacobs reviewed gene: TUFM: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 28132884, PMID: 26741492, PMID: 17160893, PMID: 30903008; Phenotypes: Combined oxidative phosphorylation deficiency 4, OMIM #610678, MONDO:0012534; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12043 MSMB Zornitza Stark Marked gene: MSMB as ready
Mendeliome v0.12043 MSMB Zornitza Stark Gene: msmb has been classified as Red List (Low Evidence).
Mendeliome v0.12043 MSMB Zornitza Stark Phenotypes for gene: MSMB were changed from to {Prostate cancer, hereditary, 13} 611928
Mendeliome v0.12042 MSMB Zornitza Stark Mode of inheritance for gene: MSMB was changed from Unknown to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12041 MSMB Zornitza Stark Classified gene: MSMB as Red List (low evidence)
Mendeliome v0.12041 MSMB Zornitza Stark Gene: msmb has been classified as Red List (Low Evidence).
Mendeliome v0.12040 MSMB Zornitza Stark reviewed gene: MSMB: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: {Prostate cancer, hereditary, 13} 611928; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12013 SNAI2 Zornitza Stark Gene: snai2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12010 SNAI2 Zornitza Stark Classified gene: SNAI2 as Amber List (moderate evidence)
Mendeliome v0.12010 SNAI2 Zornitza Stark Gene: snai2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.12009 SNAI2 Zornitza Stark reviewed gene: SNAI2: Rating: AMBER; Mode of pathogenicity: None; Publications: 12444107, 30936914, 12955764, 24443330; Phenotypes: Waardenburg syndrome, type 2D, MIM# 608890, Piebaldism, MIM# 172800; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.11977 TEAD1 Zornitza Stark Gene: tead1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11976 TEAD1 Zornitza Stark edited their review of gene: TEAD1: Changed rating: AMBER; Changed publications: 26091538, 15016762, 33864784, 17689488, 30903741
Mendeliome v0.11975 TEAD1 Zornitza Stark Classified gene: TEAD1 as Amber List (moderate evidence)
Mendeliome v0.11975 TEAD1 Zornitza Stark Gene: tead1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11970 TDP1 Zornitza Stark Classified gene: TDP1 as Amber List (moderate evidence)
Mendeliome v0.11970 TDP1 Zornitza Stark Gene: tdp1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11969 TDP1 Zornitza Stark reviewed gene: TDP1: Rating: AMBER; Mode of pathogenicity: None; Publications: 31182267, 12244316; Phenotypes: Spinocerebellar ataxia, autosomal recessive, with axonal neuropathy 1 , MIM# 607250; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11963 TCAP Zornitza Stark Phenotypes for gene: TCAP were changed from to Muscular dystrophy, limb-girdle, autosomal recessive 7, MIM# 601954
Mendeliome v0.11961 TCAP Zornitza Stark reviewed gene: TCAP: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Muscular dystrophy, limb-girdle, autosomal recessive 7, MIM# 601954; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11906 LAMB2 Zornitza Stark Phenotypes for gene: LAMB2 were changed from to Pierson syndrome, MIM# 609049; Nephrotic syndrome, type 5, with or without ocular abnormalities, MIM# 614199
Mendeliome v0.11905 LAMB2 Zornitza Stark Publications for gene: LAMB2 were set to
Mendeliome v0.11904 LAMB2 Zornitza Stark Mode of inheritance for gene: LAMB2 was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11880 NOG Zornitza Stark Phenotypes for gene: NOG were changed from to Brachydactyly, type B2 - MIM#611377; Multiple synostoses syndrome 1 (MIM#186500); Stapes ankylosis with broad thumbs and toes (MIM#184460); Symphalangism, proximal, 1A (MIM#185800); Tarsal-carpal coalition syndrome (MIM#186570)
Mendeliome v0.11864 LAMB2 Alison Yeung Marked gene: LAMB2 as ready
Mendeliome v0.11864 LAMB2 Alison Yeung Gene: lamb2 has been classified as Green List (High Evidence).
Mendeliome v0.11864 LAMB2 Alison Yeung reviewed gene: LAMB2: Rating: GREEN; Mode of pathogenicity: None; Publications: 14136829, 15372515, 17256789; Phenotypes: Pierson syndrome, MIM# 609049, Nephrotic syndrome, type 5, with or without ocular abnormalities, MIM# 614199; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11860 NOG Krithika Murali reviewed gene: NOG: Rating: GREEN; Mode of pathogenicity: None; Publications: 11846737, 18440889, 12089654, 10080184, 15066478, 22088931, 17381491; Phenotypes: Brachydactyly, type B2 - MIM#611377, Multiple synostoses syndrome 1 (MIM#186500), Stapes ankylosis with broad thumbs and toes (MIM#184460), Symphalangism, proximal, 1A (MIM#185800), Tarsal-carpal coalition syndrome (MIM#186570); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.11792 NEK2 Zornitza Stark Gene: nek2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11789 NEK2 Zornitza Stark Classified gene: NEK2 as Amber List (moderate evidence)
Mendeliome v0.11789 NEK2 Zornitza Stark Gene: nek2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11788 SYCP3 Zornitza Stark Gene: sycp3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11785 SYCP3 Zornitza Stark Classified gene: SYCP3 as Amber List (moderate evidence)
Mendeliome v0.11785 SYCP3 Zornitza Stark Gene: sycp3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11784 SYCP3 Zornitza Stark reviewed gene: SYCP3: Rating: AMBER; Mode of pathogenicity: None; Publications: 14643120, 19110213, 33170803; Phenotypes: Spermatogenic failure 4, MIM# 270960, Pregnancy loss, recurrent, 4, MIM# 270960; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.11774 ADCY10 Elena Savva Gene: adcy10 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11771 C2CD6 Zornitza Stark Gene: c2cd6 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11771 C2CD6 Zornitza Stark Classified gene: C2CD6 as Amber List (moderate evidence)
Mendeliome v0.11771 C2CD6 Zornitza Stark Gene: c2cd6 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11770 C2CD6 Zornitza Stark gene: C2CD6 was added
gene: C2CD6 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: C2CD6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: C2CD6 were set to 34919125; 34998468; 31985809
Phenotypes for gene: C2CD6 were set to Spermatogenic failure 68 , MIM# 619805
Review for gene: C2CD6 was set to AMBER
Added comment: Single individual and two mouse models.
Sources: Expert list
Mendeliome v0.11768 NEK2 Krithika Murali reviewed gene: NEK2: Rating: AMBER; Mode of pathogenicity: None; Publications: 24043777; Phenotypes: ?Retinitis pigmentosa 67 MIM#615565; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11768 TXNRD2 Zornitza Stark Gene: txnrd2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11765 TXNRD2 Zornitza Stark Classified gene: TXNRD2 as Amber List (moderate evidence)
Mendeliome v0.11765 TXNRD2 Zornitza Stark Gene: txnrd2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11764 TXNRD2 Zornitza Stark reviewed gene: TXNRD2: Rating: AMBER; Mode of pathogenicity: None; Publications: 34258490; Phenotypes: Glucocorticoid deficiency 5 (GCCD5), MIM#617825, MONDO:0040502; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11764 ADCY10 Zornitza Stark Gene: adcy10 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11759 USP9Y Zornitza Stark Gene: usp9y has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11756 USP9Y Zornitza Stark Classified gene: USP9Y as Amber List (moderate evidence)
Mendeliome v0.11756 USP9Y Zornitza Stark Gene: usp9y has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11749 ACTN2 Zornitza Stark Classified gene: ACTN2 as Amber List (moderate evidence)
Mendeliome v0.11749 ACTN2 Zornitza Stark Gene: actn2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11748 ACTN2 Zornitza Stark reviewed gene: ACTN2: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Cardiomyopathy, hypertrophic, 23, with or without LVNC, MIM# 612158; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.11732 TXNRD2 Manny Jacobs reviewed gene: TXNRD2: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 24601690, PMID: 21247928; Phenotypes: # 617825 Glucocorticoid deficiency 5 (GCCD5) MONDO:0040502; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11731 ADCY10 Elena Savva Classified gene: ADCY10 as Amber List (moderate evidence)
Mendeliome v0.11731 ADCY10 Elena Savva Gene: adcy10 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11730 ADCY10 Elena Savva reviewed gene: ADCY10: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 11932268, 31119281, 25296721, 32913531, 34463764; Phenotypes: Hypercalciuria, absorptive, susceptibility to MIM#143870, asthenozoospermia with absorptive hypercalciuria; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.11730 USP9Y Belinda Chong reviewed gene: USP9Y: Rating: AMBER; Mode of pathogenicity: None; Publications: 10581029, 17213277, 15509635, 19737515; Phenotypes: Spermatogenic failure, Y-linked, 2, MIM#415000; Mode of inheritance: Other
Mendeliome v0.11708 WAS Zornitza Stark Phenotypes for gene: WAS were changed from to Wiskott-Aldrich syndrome, MIM# 301000; Thrombocytopaenia, X-linked, MIM# 313900; Neutropenia, severe congenital, X-linked , MIM#300299
Mendeliome v0.11705 WAS Zornitza Stark reviewed gene: WAS: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Wiskott-Aldrich syndrome, MIM# 301000, Thrombocytopaenia, X-linked, MIM# 313900, Neutropenia, severe congenital, X-linked , MIM#300299; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.11702 C8A Zornitza Stark Gene: c8a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11699 C8A Zornitza Stark Classified gene: C8A as Amber List (moderate evidence)
Mendeliome v0.11699 C8A Zornitza Stark Gene: c8a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11691 UNC119 Zornitza Stark changed review comment from: Immunodeficiency 13: Single case reported with the missense Gly22Val. The allele frequency of this variant is >2% in the African/African American subpopulation in gnomAD v2.1, including 6 homozygotes. RED for this association.

Amber for association with cone-rod dystrophy.; to: Immunodeficiency 13: Single case reported with the missense Gly22Val. The allele frequency of this variant is >2% in the African/African American subpopulation in gnomAD v2.1, including 6 homozygotes. RED for this association.

Borderline Green for association with cone-rod dystrophy.
Mendeliome v0.11691 UNC119 Zornitza Stark Classified gene: UNC119 as Amber List (moderate evidence)
Mendeliome v0.11691 UNC119 Zornitza Stark Gene: unc119 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11690 UNC119 Zornitza Stark reviewed gene: UNC119: Rating: AMBER; Mode of pathogenicity: None; Publications: 22184408; Phenotypes: Cone-rod dystrophy, MONDO:0015993, Immunodeficiency 13 MIM#615518; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.11680 C4A Zornitza Stark Gene: c4a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11677 C4A Ain Roesley edited their review of gene: C4A: Changed rating: AMBER; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11675 C4A Ain Roesley Classified gene: C4A as Amber List (moderate evidence)
Mendeliome v0.11675 C4A Ain Roesley Gene: c4a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11674 C4A Ain Roesley changed review comment from: Associated with increased risk for systemic lupus erythematosus (SLE).
This is mostly involving haplotypes, gene copy number, gene conversions with/without C4B; to: Associated with increased risk for systemic lupus erythematosus (SLE).
This is mostly involving haplotypes, gene copy number, gene conversions with/without C4B

There are no LP/P SNV in clinvar

PMID: 32048120; 2019 Update of the IUIS Phenotypical Classification indicates that complete C4 deficiency requires both C4A+C4B and C4A alone leads to partial deficiency
Mendeliome v0.11674 C4B Ain Roesley Gene: c4b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11674 C4B Zornitza Stark Gene: c4b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11669 C4B Ain Roesley Classified gene: C4B as Amber List (moderate evidence)
Mendeliome v0.11669 C4B Ain Roesley Gene: c4b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11668 C4B Ain Roesley changed review comment from: Associated with increased risk for systemic lupus erythematosus (SLE).
This is mostly involving haplotypes, gene copy number, gene conversions with/without C4A; to: Associated with increased risk for systemic lupus erythematosus (SLE).
This is mostly involving haplotypes, gene copy number, gene conversions with/without C4A

no LP/P SNVs in clinvar. (1 LP but evidence provided indicates that it was classified as a VUS)

PMID: 32048120;
2019 Update of the IUIS Phenotypical Classification indicates that complete C4 deficiency requires both C4A+C4B and C4A alone leads to partial deficiency
Mendeliome v0.11668 C4B Ain Roesley edited their review of gene: C4B: Changed rating: AMBER; Changed publications: 34764957, 12626442, 22387014, 17503323, 32048120
Mendeliome v0.11659 C8A Ain Roesley changed review comment from: 6 unrelated (2 japanese and 4 africans) with 3 different variants between them (2 splice - 1 with aberrant splicing proven on cDNA and 1 nonsense)

PMID: 8098723; 3 families hom for a nonsense and 2 families 3rd het for the same nonsense and unknown 2nd allele

Amber because no other reports apart from these papers and comprehensive sequencing was not done even in the 2020 paper.; to: 6 unrelated (2 japanese and 4 africans) with 3 different variants between them (2 splice - 1 with aberrant splicing proven on cDNA and 1 nonsense)


Amber because no other reports apart from these papers and comprehensive sequencing was not done even in the 2020 paper.
Mendeliome v0.11659 C8A Ain Roesley reviewed gene: C8A: Rating: AMBER; Mode of pathogenicity: None; Publications: 9759902, 32769119, 8098723; Phenotypes: C8 deficiency, type I MIM#613790; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.11659 UCP3 Belinda Chong reviewed gene: UCP3: Rating: AMBER; Mode of pathogenicity: None; Publications: 10618503, 11238538, 21544083; Phenotypes: {Obesity, severe, and type II diabetes}; Mode of inheritance: Other
Mendeliome v0.11626 SLCO1B3 Zornitza Stark Gene: slco1b3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11622 SLCO1B1 Zornitza Stark Classified gene: SLCO1B1 as Amber List (moderate evidence)
Mendeliome v0.11622 SLCO1B1 Zornitza Stark Gene: slco1b1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11621 SLCO1B1 Zornitza Stark edited their review of gene: SLCO1B1: Added comment: Digenic inheritance proposed, with variants in SLCO1B3 also required.; Changed rating: AMBER; Changed publications: 33860121; Changed phenotypes: Hyperbilirubinemia, Rotor type, digenic 237450; Changed mode of inheritance: Other
Mendeliome v0.11620 SLCO1B3 Zornitza Stark Classified gene: SLCO1B3 as Amber List (moderate evidence)
Mendeliome v0.11620 SLCO1B3 Zornitza Stark Gene: slco1b3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11619 SLCO1B3 Zornitza Stark reviewed gene: SLCO1B3: Rating: AMBER; Mode of pathogenicity: None; Publications: 33860121; Phenotypes: Hyperbilirubinemia, Rotor type, digenic, MIM# 237450; Mode of inheritance: Other
Mendeliome v0.11594 VSX1 Zornitza Stark Gene: vsx1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11591 VSX1 Zornitza Stark Classified gene: VSX1 as Amber List (moderate evidence)
Mendeliome v0.11591 VSX1 Zornitza Stark Gene: vsx1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11590 VSX1 Zornitza Stark reviewed gene: VSX1: Rating: AMBER; Mode of pathogenicity: None; Publications: 11978762, 35296157, 30574758, 30535423, 25963163; Phenotypes: Keratoconus 1, MIM# 148300; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.11588 VKORC1 Zornitza Stark Phenotypes for gene: VKORC1 were changed from to Vitamin K-dependent clotting factors, combined deficiency of, 2, MIM# 607473; Warfarin resistance, MIM# 122700
Mendeliome v0.11540 NDUFAF4 Krithika Murali edited their review of gene: NDUFAF4: Added comment: 3 unrelated families reported with patient-specific functional evidence provided for each.

PMID: 32949790 - report two siblings with facial dysmorphism and lactic acidosis diagnosed neonatally with subsequent fatal early encephalopathy with apneic episodes, irritability, central hypoventilation, liver involvement and hyperammonemia. Cerebral white matter anomalies reported in one patient and cardiomyopathy in the other. WES identified homozygous nonsense NDUFAF4 variants with absent NDUFAF4 expression in patient fibroblasts. OXPHOS assembly studies demonstrated almost undetectable levels of fully assembled complex I and complex I–containing supercomplexes and an abnormal accumulation of SCIII2IV1 supercomplexes. Morphologically, fibroblasts showed rounder mitochondria and a diminished degree of branching of the mitochondrial network.

PMID: 28853723 - report one patient born at 38 weeks after IOL for IUGR. Presented age 7 months with developmental regression, growth failure and central hypotonia. Brain MRI revealed diffuse bilateral signal alterations in the basal ganglia and thalami and an EEG showed generalized slowing with multifocal spikes consistent with an epileptogenic focus. Homozygous missense NDUFAF4 variants identified. Lentiviral complementation of patient fibroblasts with wild-type NDUFAF4 rescued complex I deficiency and assembly defect

PMID 18179882 - report multiple affected individuals from one family. Most presented soon after birth with severe metabolic acidosis and high plasma lactate levels. Patients who survived longer were repeatedly admitted because of exacerbation of the acidosis during intercurrent infections. One long-term survivor had profound ID.; Changed publications: 32949790, 28853723, 18179882
Mendeliome v0.11517 IGHMBP2 Zornitza Stark Marked gene: IGHMBP2 as ready
Mendeliome v0.11517 IGHMBP2 Zornitza Stark Gene: ighmbp2 has been classified as Green List (High Evidence).
Mendeliome v0.11517 IGHMBP2 Zornitza Stark Phenotypes for gene: IGHMBP2 were changed from to Neuronopathy, distal hereditary motor, type VI, MIM# 604320; Charcot-Marie-Tooth disease, axonal, type 2S, MIM# 616155
Mendeliome v0.11516 IGHMBP2 Zornitza Stark Publications for gene: IGHMBP2 were set to
Mendeliome v0.11515 IGHMBP2 Zornitza Stark Mode of inheritance for gene: IGHMBP2 was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11514 IGHMBP2 Zornitza Stark reviewed gene: IGHMBP2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neuronopathy, distal hereditary motor, type VI, MIM# 604320, Charcot-Marie-Tooth disease, axonal, type 2S, MIM# 616155; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11509 KIF23 Zornitza Stark Classified gene: KIF23 as Amber List (moderate evidence)
Mendeliome v0.11509 KIF23 Zornitza Stark Gene: kif23 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11508 KIF23 Zornitza Stark edited their review of gene: KIF23: Added comment: Second individual reported, elongation variant.; Changed rating: AMBER; Changed publications: 23570799, 33159567; Changed phenotypes: Anaemia, congenital dyserythropoietic, type IIIA 105600
Mendeliome v0.11442 TYROBP Zornitza Stark Phenotypes for gene: TYROBP were changed from to Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy 1, MIM# 221770
Mendeliome v0.11439 TYROBP Zornitza Stark reviewed gene: TYROBP: Rating: GREEN; Mode of pathogenicity: None; Publications: 10888890, 12370476, 27904822; Phenotypes: Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy 1, MIM# 221770; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11430 INO80 Zornitza Stark Gene: ino80 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11427 INO80 Zornitza Stark Classified gene: INO80 as Amber List (moderate evidence)
Mendeliome v0.11427 INO80 Zornitza Stark Gene: ino80 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11426 INO80 Zornitza Stark reviewed gene: INO80: Rating: AMBER; Mode of pathogenicity: None; Publications: 25312759; Phenotypes: Primary immunodeficiency, MONDO:0003778; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11423 TYROBP Manny Jacobs reviewed gene: TYROBP: Rating: GREEN; Mode of pathogenicity: None; Publications: 27904822; Phenotypes: # 221770 POLYCYSTIC LIPOMEMBRANOUS OSTEODYSPLASIA WITH SCLEROSING LEUKOENCEPHALOPATHY 1; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11350 KATNAL2 Zornitza Stark Gene: katnal2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11347 KATNAL2 Zornitza Stark Classified gene: KATNAL2 as Amber List (moderate evidence)
Mendeliome v0.11347 KATNAL2 Zornitza Stark Gene: katnal2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11346 KATNAL2 Zornitza Stark reviewed gene: KATNAL2: Rating: AMBER; Mode of pathogenicity: None; Publications: 34096614, 22495311, 21572417, 22495309, 22495306; Phenotypes: Oligo-astheno-teratozoospermia, Autism; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.11320 KCNMB1 Zornitza Stark Marked gene: KCNMB1 as ready
Mendeliome v0.11320 KCNMB1 Zornitza Stark Gene: kcnmb1 has been classified as Red List (Low Evidence).
Mendeliome v0.11320 KCNMB1 Zornitza Stark Phenotypes for gene: KCNMB1 were changed from to {Hypertension, diastolic, resistance to} 608622
Mendeliome v0.11319 KCNMB1 Zornitza Stark Classified gene: KCNMB1 as Red List (low evidence)
Mendeliome v0.11319 KCNMB1 Zornitza Stark Gene: kcnmb1 has been classified as Red List (Low Evidence).
Mendeliome v0.11318 KCNMB1 Zornitza Stark reviewed gene: KCNMB1: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: {Hypertension, diastolic, resistance to} 608622; Mode of inheritance: None
Mendeliome v0.11281 KLF11 Zornitza Stark Gene: klf11 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11278 KLF11 Zornitza Stark Classified gene: KLF11 as Amber List (moderate evidence)
Mendeliome v0.11278 KLF11 Zornitza Stark Gene: klf11 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11274 KLHL10 Zornitza Stark Gene: klhl10 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11271 KLHL10 Zornitza Stark Classified gene: KLHL10 as Amber List (moderate evidence)
Mendeliome v0.11271 KLHL10 Zornitza Stark Gene: klhl10 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11270 KLHL10 Zornitza Stark reviewed gene: KLHL10: Rating: AMBER; Mode of pathogenicity: None; Publications: 17047026, 15136734, 31479588; Phenotypes: Spermatogenic failure 11, MIM# 615081; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.11269 TLN1 Bryony Thompson Gene: tln1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11269 TLN1 Bryony Thompson Classified gene: TLN1 as Amber List (moderate evidence)
Mendeliome v0.11269 TLN1 Bryony Thompson Gene: tln1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11268 TLN1 Bryony Thompson gene: TLN1 was added
gene: TLN1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TLN1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TLN1 were set to 30888838
Phenotypes for gene: TLN1 were set to idiopathic spontaneous coronary artery dissection MONDO:0007385
Review for gene: TLN1 was set to AMBER
Added comment: 10 unique rare heterozygous missense variants in 11 individuals were identified in a 2 generation SCAD family and 56 unrelated individuals with sporadic SCAD. All variants had a MAF of less than 0.06% and occurred within highly conserved β-integrin, F-actin, or vinculin binding domains. Incomplete penetrance was evident in the familial case and five individuals with sporadic SCAD from whom parental DNA was available. No functional assays were conducted.
Sources: Literature
Mendeliome v0.11267 NAT8L Krithika Murali reviewed gene: NAT8L: Rating: AMBER; Mode of pathogenicity: None; Publications: 11310630, 19807691, 32275776; Phenotypes: ?N-acetylaspartate deficiency - MIM#614063; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11265 KLKB1 Zornitza Stark Gene: klkb1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11262 KLKB1 Zornitza Stark Classified gene: KLKB1 as Amber List (moderate evidence)
Mendeliome v0.11262 KLKB1 Zornitza Stark Gene: klkb1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11261 KLKB1 Zornitza Stark reviewed gene: KLKB1: Rating: AMBER; Mode of pathogenicity: None; Publications: 15461630, 33073460; Phenotypes: Fletcher factor (prekallikrein) deficiency, MIM# 612423; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11237 KRT74 Zornitza Stark Gene: krt74 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11234 KRT74 Zornitza Stark Classified gene: KRT74 as Amber List (moderate evidence)
Mendeliome v0.11234 KRT74 Zornitza Stark Gene: krt74 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11233 KRT74 Zornitza Stark reviewed gene: KRT74: Rating: AMBER; Mode of pathogenicity: None; Publications: 24714551, 21188418, 20346438, 21188418; Phenotypes: Ectodermal dysplasia 7, hair/nail type MIM#614929, Hypotrichosis 3 , MIM# 613981, Woolly hair, autosomal dominant, MIM# 194300; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.11228 NARS2 Zornitza Stark Phenotypes for gene: NARS2 were changed from to Combined oxidative phosphorylation deficiency 24 - MIM#616239; Deafness, autosomal recessive 94 - MIM#618434
Mendeliome v0.11215 NALCN Zornitza Stark Phenotypes for gene: NALCN were changed from to Congenital contractures of the limbs and face, hypotonia, and developmental delay - MIM#616266; Hypotonia, infantile, with psychomotor retardation and characteristic facies 1 - MIM#615419
Mendeliome v0.11203 NARS2 Krithika Murali reviewed gene: NARS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 25385316, 25807530, 30327238, 28077841; Phenotypes: Combined oxidative phosphorylation deficiency 24 - MIM#616239, ?Deafness, autosomal recessive 94 - MIM#618434; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11203 KRT83 Zornitza Stark Gene: krt83 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11200 KRT83 Zornitza Stark Classified gene: KRT83 as Amber List (moderate evidence)
Mendeliome v0.11200 KRT83 Zornitza Stark Gene: krt83 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11199 KRT83 Zornitza Stark reviewed gene: KRT83: Rating: AMBER; Mode of pathogenicity: None; Publications: 27965375, 15744029, 25557232; Phenotypes: Erythrokeratodermia variabilis et progressiva 5, MIM# 617756, Monilethrix , MIM#158000; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.11192 NALCN Krithika Murali reviewed gene: NALCN: Rating: GREEN; Mode of pathogenicity: None; Publications: 25683120, 23749988, 24075186, 30167850; Phenotypes: Congenital contractures of the limbs and face, hypotonia, and developmental delay - MIM#616266, Hypotonia, infantile, with psychomotor retardation and characteristic facies 1 - MIM#615419; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.11189 EARS2 Bryony Thompson Phenotypes for gene: EARS2 were changed from to Leigh syndrome MONDO:0009723; Combined oxidative phosphorylation deficiency 12 MIM#614924; leukoencephalopathy-thalamus and brainstem anomalies-high lactate syndrome MONDO:0013971
Mendeliome v0.11186 EARS2 Bryony Thompson reviewed gene: EARS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 22492562, 23008233, 25854774, 26619324, 26893310, 27206875, 27571996, 27117034; Phenotypes: Leigh syndrome MONDO:0009723, Combined oxidative phosphorylation deficiency 12 MIM#614924, leukoencephalopathy-thalamus and brainstem anomalies-high lactate syndrome MONDO:0013971; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.11169 KYNU Zornitza Stark Phenotypes for gene: KYNU were changed from to Hydroxykynureninuria MIM#236800; Vertebral, cardiac, renal, and limb defects syndrome 2 MIM#617661; Disorders of histidine, tryptophan or lysine metabolism
Mendeliome v0.11163 JAG1 Zornitza Stark changed review comment from: Two unrelated families reported with CMT type 2. Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Pre-existing rat model.
Sources: Literature; to: Association with Alagille is very well established.

Two unrelated families reported with CMT type 2. Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Pre-existing rat model.
Sources: Literature
Mendeliome v0.11159 JAK2 Zornitza Stark Gene: jak2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11159 JAK2 Zornitza Stark Phenotypes for gene: JAK2 were changed from to Thrombocythaemia 3, MIM# 614521
Mendeliome v0.11156 JAK2 Zornitza Stark Classified gene: JAK2 as Amber List (moderate evidence)
Mendeliome v0.11156 JAK2 Zornitza Stark Gene: jak2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11155 JAK2 Zornitza Stark reviewed gene: JAK2: Rating: AMBER; Mode of pathogenicity: None; Publications: 22397670, 35129130; Phenotypes: Thrombocythaemia 3, MIM# 614521; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.11152 ZNF513 Zornitza Stark Gene: znf513 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11149 ZNF513 Zornitza Stark Classified gene: ZNF513 as Amber List (moderate evidence)
Mendeliome v0.11149 ZNF513 Zornitza Stark Gene: znf513 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11148 ZNF513 Zornitza Stark reviewed gene: ZNF513: Rating: AMBER; Mode of pathogenicity: None; Publications: 20797688; Phenotypes: Retinitis pigmentosa 58 MIM#613617; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11113 RECQL Alison Yeung Gene: recql has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11113 RECQL Alison Yeung Classified gene: RECQL as Amber List (moderate evidence)
Mendeliome v0.11113 RECQL Alison Yeung Gene: recql has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11111 HIST1H4D Zornitza Stark Gene: hist1h4d has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11111 HIST1H4D Zornitza Stark Classified gene: HIST1H4D as Amber List (moderate evidence)
Mendeliome v0.11111 HIST1H4D Zornitza Stark Gene: hist1h4d has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11110 RECQL Dean Phelan gene: RECQL was added
gene: RECQL was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RECQL was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RECQL were set to PMID: 35025765
Phenotypes for gene: RECQL were set to Photosensitivity; facial dysmorphism; xeropthalmia; skeletal abnormalities
Review for gene: RECQL was set to AMBER
Added comment: PMID: 35025765
- Homozygous missense variants identified in two seemingly unrelated families with a genome instability disorder. Both families had the same missense variant. Phenotype was progeroid facial features, skin photosensitivity, xeroderma, and slender elongated thumbs.
Sources: Literature
Mendeliome v0.11107 AL117258.1 Melanie Marty changed review comment from: Gene also known as CIROP

Homozygous or compound heterozygous CIROP variants identified in 12 families with congenital heart defects associated with heterotaxy.

Functional tests performed on Xenopus and zebrafish embryos showed that CIROP was essential for left side symmetry and is expressed in ciliated left–right organisers.
Sources: Literature; to: Gene also known as CIROP and LMLN2

Homozygous or compound heterozygous CIROP variants identified in 12 families with congenital heart defects associated with heterotaxy.

Functional tests performed on Xenopus and zebrafish embryos showed that CIROP was essential for left side symmetry and is expressed in ciliated left–right organisers.
Sources: Literature
Mendeliome v0.11103 HIST1H4F Zornitza Stark Gene: hist1h4f has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11103 HIST1H4D Paul De Fazio gene: HIST1H4D was added
gene: HIST1H4D was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HIST1H4D was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HIST1H4D were set to 35202563
Phenotypes for gene: HIST1H4D were set to Neurodevelopmental disorder, HIST1H4D-related MONDO:0700092
Review for gene: HIST1H4D was set to AMBER
gene: HIST1H4D was marked as current diagnostic
Added comment: Single individual described with a de novo missense variant Arg41His (Arg40 in H4 nomenclature). Apart from language delay and moderate ID, phenotypes included facial dysmorphisms and cochlear abnormalities and arhinencephaly on MRI. Hearing was normal. Birth length, OFC, weight were all reduced (-2 to -2.5SD).
A zebrafish model has developmental defects.
Sources: Literature
Mendeliome v0.11101 HIST1H4F Zornitza Stark Classified gene: HIST1H4F as Amber List (moderate evidence)
Mendeliome v0.11101 HIST1H4F Zornitza Stark Gene: hist1h4f has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11099 CPSF3 Belinda Chong gene: CPSF3 was added
gene: CPSF3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CPSF3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CPSF3 were set to 35121750
Phenotypes for gene: CPSF3 were set to Intellectual disability syndrome
Review for gene: CPSF3 was set to GREEN
Added comment: study of a deficit of observed homozygous carriers of missense variants, versus an expected number in a set of 153,054 chip-genotyped Icelanders, to identify potentially pathogenic genotypes

Six homozygous carriers of missense variants in CPSF3 show severe intellectual disability, seizures, microcephaly, and abnormal muscle tone.

- Four identified through Icelandic geneology (p.Gly468Glu), three carrier couples total of four children who had died prematurely. Tested archival samples for two of these children, and confirm a homozygous genotype.
- Two of Mexican descent (p.Ile354Thr), first-degree cousins
Sources: Literature
Mendeliome v0.11097 AL117258.1 Melanie Marty gene: AL117258.1 was added
gene: AL117258.1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: AL117258.1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: AL117258.1 were set to 34903892
Phenotypes for gene: AL117258.1 were set to Heterotaxy, congenital heart defects
Review for gene: AL117258.1 was set to GREEN
Added comment: Gene also known as CIROP

Homozygous or compound heterozygous CIROP variants identified in 12 families with congenital heart defects associated with heterotaxy.

Functional tests performed on Xenopus and zebrafish embryos showed that CIROP was essential for left side symmetry and is expressed in ciliated left–right organisers.
Sources: Literature
Mendeliome v0.11097 NAV2 Alison Yeung Gene: nav2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11097 HIST1H4F Elena Savva gene: HIST1H4F was added
gene: HIST1H4F was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HIST1H4F was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HIST1H4F were set to PMID: 35202563
Phenotypes for gene: HIST1H4F were set to Neurodevelopmental disorders
Review for gene: HIST1H4F was set to AMBER
Added comment: PMID: 35202563 - single de novo missense in a patient with neurodevelopmental features of intellectual disability and motor and/or gross developmental delay.
- zebrafish studies show a significant increase in all of mild dev delay, necrosis, defective organogenesis and pre-gastrulation failure
Sources: Literature
Mendeliome v0.11097 NAV2 Alison Yeung Classified gene: NAV2 as Amber List (moderate evidence)
Mendeliome v0.11097 NAV2 Alison Yeung Gene: nav2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11092 NAV2 Dean Phelan gene: NAV2 was added
gene: NAV2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NAV2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NAV2 were set to PMID:35218524
Phenotypes for gene: NAV2 were set to Developmental delay; cerebellar hypoplasia; cerebellar dysplasia
Review for gene: NAV2 was set to AMBER
Added comment: PMID:35218524
- Two compound heterozygous LOF variants identified in one female with developmental delay and a diagnosis of cerebellar hypoplasia and dysplasia. Functional studies showed cellular migration deficits. Hypomorphic mouse model revealed developmental anomalies including cerebellar hypoplasia and dysplasia, corpus callosum hypo-dysgenesis, and agenesis of the olfactory bulbs.
Sources: Literature
Mendeliome v0.11091 TIAM1 Alison Yeung gene: TIAM1 was added
gene: TIAM1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TIAM1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TIAM1 were set to https://doi.org/10.1016/j.ajhg.2022.01.020
Phenotypes for gene: TIAM1 were set to Neurodevelopmental disorder, TIAM1-related, MONDO:0700092
Review for gene: TIAM1 was set to GREEN
Added comment: Reported in 4 unrelated individuals. Phenotype of developmental delay/intellectual disability and seizures. Loss of ortholog in Drosophila reduces the survival rate, and the surviving adults exhibit climbing defects, are prone to severe seizures, and have a short lifespan. Functional studies in 3 variants from two probands showed loss of function.
Sources: Literature
Mendeliome v0.11090 HIST1H4J Elena Savva reviewed gene: HIST1H4J: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 35202563, 31804630; Phenotypes: Neurodevelopmental syndrome, microcephaly, intellectual disability, dysmorphic features; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.11090 EHD1 Zornitza Stark Gene: ehd1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11090 EHD1 Zornitza Stark Classified gene: EHD1 as Amber List (moderate evidence)
Mendeliome v0.11090 EHD1 Zornitza Stark Gene: ehd1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11089 EHD1 Zornitza Stark gene: EHD1 was added
gene: EHD1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EHD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EHD1 were set to 35149593
Phenotypes for gene: EHD1 were set to Inherited renal tubular disease, MONDO:0015962, EHD1-related
Review for gene: EHD1 was set to AMBER
Added comment: Six individuals (5-33 years) with proteinuria and a high-frequency hearing deficit reported with the homozygous missense variant c.1192C>T (p.R398W) in EHD1. Proteinuria (0.7-2.1 g/d) consisted predominantly of low molecular weight proteins, reflecting impaired renal proximal tubular endocytosis of filtered proteins. Ehd1 knockout and Ehd1R398W/R398W knockin mice also showed a high-frequency hearing deficit and impaired receptor-mediated endocytosis in proximal tubules, and a zebrafish model showed impaired ability to reabsorb low molecular weight dextran. Single founder variant but two animal models, hence Amber
Sources: Literature
Mendeliome v0.11088 IL6ST Zornitza Stark Phenotypes for gene: IL6ST were changed from Hyper-IgE recurrent infection syndrome 4, autosomal recessive, MIM# 618523; Stuve-Wiedemann syndrome 2, MIM# 619751: skeletal dysplasia, neonatal lung dysfunction, thrombocytopenia, dermatitis, defective acute-phase response; Hyper-IgE syndrome, autosomal dominant; Immunodeficiency 94 with autoinflammation and dysmorphic facies, MIM# 619750 to Hyper-IgE recurrent infection syndrome 4, autosomal recessive, MIM# 618523; Stuve-Wiedemann syndrome 2, MIM# 619751: skeletal dysplasia, neonatal lung dysfunction, thrombocytopenia, dermatitis, defective acute-phase response; Hyper-IgE recurrent infection syndrome 4A, autosomal dominant, MIM# 619752; Immunodeficiency 94 with autoinflammation and dysmorphic facies, MIM# 619750
Mendeliome v0.11087 IL6ST Zornitza Stark Phenotypes for gene: IL6ST were changed from Hyper-IgE recurrent infection syndrome 4, autosomal recessive, MIM# 618523; Stuve-Wiedemann syndrome 2, MIM# 619751: skeletal dysplasia, neonatal lung dysfunction, thrombocytopenia, dermatitis, defective acute-phase response; Hyper-IgE syndrome, autosomal dominant to Hyper-IgE recurrent infection syndrome 4, autosomal recessive, MIM# 618523; Stuve-Wiedemann syndrome 2, MIM# 619751: skeletal dysplasia, neonatal lung dysfunction, thrombocytopenia, dermatitis, defective acute-phase response; Hyper-IgE syndrome, autosomal dominant; Immunodeficiency 94 with autoinflammation and dysmorphic facies, MIM# 619750
Mendeliome v0.11086 IL6ST Zornitza Stark edited their review of gene: IL6ST: Changed phenotypes: Hyper-IgE recurrent infection syndrome 4, autosomal recessive, MIM# 618523, Stuve-Wiedemann syndrome 2, MIM# 619751: skeletal dysplasia, neonatal lung dysfunction, thrombocytopenia, dermatitis, defective acute-phase response, Hyper-IgE syndrome, autosomal dominant, Immunodeficiency 94 with autoinflammation and dysmorphic facies, MIM# 619750
Mendeliome v0.11081 F8 Zornitza Stark Phenotypes for gene: F8 were changed from Haemophilia A, MIM# 306700; MONDO:0010602 to Haemophilia A, MIM# 306700; MONDO:0010602; Thrombophilia 13, X-linked, due to factor VIII defect, MIM# 301071
Mendeliome v0.11075 CDX2 Zornitza Stark Phenotypes for gene: CDX2 were changed from Persistent cloaca to Genetic multiple congenital anomalies/dysmorphic syndrome, MONDO:0043005; Congenital abnormalities of anus, renal and urogenital system, vertebrae and/or the limbs
Mendeliome v0.11071 CDX2 Chirag Patel edited their review of gene: CDX2: Added comment: 9 families, with heterozygous variants identified with WES, presenting with congenital abnormalities affecting the development of the anus, the renal and urogenital system, the vertebrae and/or the limbs in varying sequences and severity (incl. sirenomelia and persistent cloaca). A recurrent pathogenic missense variant in the HOX domain of the protein p.(Arg237His) was found in 3 unrelated families. In the mouse cdx2 is essential for anteroposterior patterning of embryonal axis and morphogenesis of cloacal structures. Cdx2 heterozygous conditional mutant mice show a variable phenotype (including imperforate anus, sirenomelia, posterior vertebral truncations, and bladder anomalies).; Changed rating: GREEN; Changed publications: PMID: 29177441, 34671974; Changed phenotypes: Congenital abnormalities of anus, renal and urogenital system, vertebrae and/or the limbs; Set current diagnostic: yes
Mendeliome v0.11071 CHKA Konstantinos Varvagiannis gene: CHKA was added
gene: CHKA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CHKA was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CHKA were set to 35202461
Phenotypes for gene: CHKA were set to Abnormal muscle tone; Global developmental delay; Intellectual disability; Seizures; Microcephaly; Abnormality of movement; Abnormality of nervous system morphology; Short stature
Penetrance for gene: CHKA were set to Complete
Review for gene: CHKA was set to GREEN
Added comment: Klöckner (2022 - PMID: 35202461) describe the phenotype of 6 individuals (from 5 unrelated families) harboring biallelic CHKA variants.

Shared features incl. abnormal muscle tone(6/6 - hypertonia or hypotonia, 3/6 each), DD/ID (6/6,severe in 4, severe/profound in 2), epilepsy (6/6 - onset: infancy - 3y2m | epileptic spasms or GS at onset), microcephaly (6/6), movement disorders (3/6 - incl. dyskinesia, rigidity, choreoatetotic movements). 2/5 individuals exhibited MRI abnormalities, notably hypomyelination. Short stature was observed in 4/6.

Eventual previous genetic testing was not discussed.

Exome sequencing (quattro ES for 2 sibs, trio ES for 1 individual, singleton for 3 probands) revealed biallelic CHKA variants in all affected individuals. Sanger sequencing was performed for confirmation and segregation studies.

Other variants (in suppl.) were not deemed to be causative for the neurodevelopmental phenotype.

3 different missense, 1 start-loss and 1 truncating variant were identified, namely (NM_0012772.2):
- c.421C>T/p.(Arg141Trp) [3 hmz subjects from 2 consanguineous families],
- c.580C>T/p.Pro194Ser [1 hmz individual born to consanguineous parents],
- c.2T>C/p.(Met1?) [1 hmz individual born to related parents],
- c.14dup/p.(Cys6Leufs*19) in trans with c.1021T>C/p.(Phe341Leu) in 1 individual.

CHKA encodes choline kinase alpha, an enzyme catalyzing the first step of phospholipid synthesis in the Kennedy pathway. The pathway is involved in de novo synthesis of glycerophospholipids, phosphatidylcholine and phosphatidylethanolamine being the most abundant in eukaryotic membranes.

CHKA with its paralog (CHKB) phosphorylates either choline or ethanolamine to phosphocholine or phosphoethanolamine respectively with conversion of ATP to ADP.

As the authors comment, biallelic pathogenic variants in CHKB cause a NDD with muscular dystrophy, hypotonia, ID, microcephaly and structural mitochondrial anomalies (MIM 602541). [Prominent mitochondrial patterning was observed in a single muscle biopsy available from an individual with biallelic CHKA variants].

Other disorders of the Kennedy pathway (due to biallelic PCYT2, SELENOI, PCYT1A variants) present with overlapping features incl. variable DD/ID (no-severe), microcephaly, seizures, visual impairment etc.

CHKA variants were either absent or observed once in gnomAD, affected highly conserved AAs with multiple in silico predictions in favor of a deleterious effect.

In silico modeling suggests structural effects for several of the missense variants (Arg141Trp, Pro194Ser presumably affect ADP binding, Phe341 lying close to the binding site of phosphocholine).

Each of the missense variants was expressed in yeast cells and W. Blot suggested expression at the expected molecular weight at comparative levels. The 3 aforementioned variants exhibited reduced catalytic activity (20%, 15%, 50% respectively).

NMD is thought to underly the deleterious effect of the frameshift one (not studied).

The start-loss variant is expected to result in significantly impaired expression and protein function as eventual utilization of the next possible start codon - occurring at position 123 - would remove 26% of the protein.

Chka(-/-) is embryonically lethal in mice, suggesting that complete loss is not compatible with life. Reduction of choline kinase activity by 30% in heterozygous mice did not appear to result in behavioral abnormalities although this was not studied in detail (PMID cited: 18029352). Finally, screening of 1566 mouse lines identified 198 genes whose disruption yields neuroanatomical phenotypes, Chka(+/-) mice being among these (PMID cited: 31371714).

There is no associated phenotype in OMIM, Gene2Phenotype or SysID.

Overall this gene can be considered for inclusion in the ID and epilepsy panes with green or amber rating (>3 individuals, >3 variants, variant studies, overlapping phenotype of disorders belonging to the same pathway, etc). Consider also inclusion in the microcephaly panel (where available this seemed to be of postnatal onset).
Sources: Literature
Mendeliome v0.11041 C17orf53 Zornitza Stark Gene: c17orf53 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11041 C17orf53 Zornitza Stark Classified gene: C17orf53 as Amber List (moderate evidence)
Mendeliome v0.11041 C17orf53 Zornitza Stark Gene: c17orf53 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11040 C17orf53 Zornitza Stark gene: C17orf53 was added
gene: C17orf53 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: C17orf53 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: C17orf53 were set to 34707299; 31467087
Phenotypes for gene: C17orf53 were set to Primary ovarian insufficiency
Review for gene: C17orf53 was set to AMBER
Added comment: PMID: 34707299. Homozygous LOF variant in individual with primary ovarian insufficiency PMID: 31467087. Mice with targeted mutations in Hrob are infertile due to depletion of germ cells.
Sources: Expert Review
Mendeliome v0.11036 SPATA16 Zornitza Stark Gene: spata16 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11033 SPATA16 Zornitza Stark Classified gene: SPATA16 as Amber List (moderate evidence)
Mendeliome v0.11033 SPATA16 Zornitza Stark Gene: spata16 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11009 IL6ST Zornitza Stark Phenotypes for gene: IL6ST were changed from Hyper-IgE recurrent infection syndrome 4, autosomal recessive, MIM# 618523; Stuve-Wiedemann-like syndrome: skeletal dysplasia, neonatal lung dysfunction, thrombocytopenia, dermatitis, defective acute-phase response; Hyper-IgE syndrome, autosomal dominant to Hyper-IgE recurrent infection syndrome 4, autosomal recessive, MIM# 618523; Stuve-Wiedemann syndrome 2, MIM# 619751: skeletal dysplasia, neonatal lung dysfunction, thrombocytopenia, dermatitis, defective acute-phase response; Hyper-IgE syndrome, autosomal dominant
Mendeliome v0.11008 IL6ST Zornitza Stark edited their review of gene: IL6ST: Changed phenotypes: Hyper-IgE recurrent infection syndrome 4, autosomal recessive, MIM# 618523, Stuve-Wiedemann syndrome 2, MIM# 619751: skeletal dysplasia, neonatal lung dysfunction, thrombocytopenia, dermatitis, defective acute-phase response, Hyper-IgE syndrome, autosomal dominant
Mendeliome v0.11004 SPATA16 Paul De Fazio reviewed gene: SPATA16: Rating: AMBER; Mode of pathogenicity: None; Publications: 17847006, 27086357, 29065458; Phenotypes: ?Spermatogenic failure 6 MIM#102530, Spermatogenic failure 6 MONDO:0007060; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.11003 NDUFA11 Zornitza Stark Gene: ndufa11 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.11000 NDUFA11 Zornitza Stark Classified gene: NDUFA11 as Amber List (moderate evidence)
Mendeliome v0.11000 NDUFA11 Zornitza Stark Gene: ndufa11 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10999 NDUFA11 Zornitza Stark reviewed gene: NDUFA11: Rating: AMBER; Mode of pathogenicity: None; Publications: 18306244, 31074871; Phenotypes: Mitochondrial complex I deficiency, nuclear type 14, MIM#618236; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10993 KIAA0391 Zornitza Stark Phenotypes for gene: KIAA0391 were changed from Mitochondrial disorder to Combined oxidative phosphorylation deficiency 54, MIM# 619737
Mendeliome v0.10952 POLRMT Zornitza Stark Phenotypes for gene: POLRMT were changed from Mitochondrial disorder; intellectual disability; hypotonia to Combined oxidative phosphorylation deficiency 55, MIM# 619743; intellectual disability; hypotonia
Mendeliome v0.10951 POLRMT Zornitza Stark edited their review of gene: POLRMT: Changed phenotypes: Combined oxidative phosphorylation deficiency 55, MIM# 619743, intellectual disability, hypotonia
Mendeliome v0.10918 RPL8 Bryony Thompson Gene: rpl8 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10918 RPL8 Bryony Thompson Classified gene: RPL8 as Amber List (moderate evidence)
Mendeliome v0.10918 RPL8 Bryony Thompson Gene: rpl8 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10914 RPL8 Bryony Thompson gene: RPL8 was added
gene: RPL8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RPL8 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RPL8 were set to 25424902; 34961992
Phenotypes for gene: RPL8 were set to Diamond-Blackfan anemia MONDO:0015253
Review for gene: RPL8 was set to AMBER
Added comment: 2 unrelated DBA cases with de novo missense variants, and functional studies in lymphoblastoid cells and yeast models demonstrate the 2 missense variants are functionally deficient proteins that affect ribosome production.
Sources: Literature
Mendeliome v0.10903 PYROXD2 Zornitza Stark Gene: pyroxd2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10903 PYROXD2 Zornitza Stark Classified gene: PYROXD2 as Amber List (moderate evidence)
Mendeliome v0.10903 PYROXD2 Zornitza Stark Gene: pyroxd2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10902 PYROXD2 Zornitza Stark gene: PYROXD2 was added
gene: PYROXD2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PYROXD2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PYROXD2 were set to 35055180
Phenotypes for gene: PYROXD2 were set to Mitochondrial disease, MONDO:0044970
Review for gene: PYROXD2 was set to AMBER
Added comment: Single individual reported, functional data.
Sources: Literature
Mendeliome v0.10896 HAND2 Zornitza Stark Gene: hand2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10893 HAND2 Zornitza Stark Classified gene: HAND2 as Amber List (moderate evidence)
Mendeliome v0.10893 HAND2 Zornitza Stark Gene: hand2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10853 MPDZ Paul De Fazio reviewed gene: MPDZ: Rating: AMBER; Mode of pathogenicity: None; Publications: 34135477, 29026089; Phenotypes: Nonsyndromic genetic hearing loss MONDO:0019497, MPDZ-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.10836 TMEM53 Lucy Spencer gene: TMEM53 was added
gene: TMEM53 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TMEM53 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMEM53 were set to PMID: 33824347
Phenotypes for gene: TMEM53 were set to Sclerosing bone disorder, macrocephaly, impaired vision, short stature
Review for gene: TMEM53 was set to GREEN
Added comment: PMID: 33824347- Previously unknown type of sclerosing bone disorder in 4 independent families, bi-allelic LOF variants in TMEM53. 5 individuals from 4 families, all have proportional or short limbed stature, not identifiable at birth. Head deformities (macrocephaly, dolichocephaly, prominent forehead), epicanthic folds, thick vermilion of upper and lower lips. Vision diminished after early childhood due to optic nerve compression.

3 of 4 families confirmed consanguineous, and all affected members from all 4 families have homozygous variants inherited from heterozygous parents. 3 families have the same splicing variant proven to cause exon 2 skipping and an NMD frameshift by RT-PCR. The other family has a an NMD frameshift variant. So 4 families but only 2 variants.
Sources: Literature
Mendeliome v0.10793 CHP1 Zornitza Stark gene: CHP1 was added
gene: CHP1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: CHP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CHP1 were set to 29379881; 32787936
Phenotypes for gene: CHP1 were set to Spastic ataxia 9, autosomal recessive, MIM #618438
Review for gene: CHP1 was set to GREEN
Added comment: 2 different consanguineous families with 2 affected siblings with ataxia (1 paediatric onset, 1 adult onset). 3 of the patients had cerebellar atrophy. WES identified homozygous variants in CHP1 gene in both families (K19del and Arg91Cys), which segregated with the disorder in the family.

Decreased CHP1 protein on IHC of cerebellar tissue in family with Arg91Cys variant. In vitro functional expression studies in HEK293 cells showed that the K19del mutation resulted in decreased protein expression, with normal levels of transcript, suggesting defects in protein stability. The mutant protein formed massive protein aggregates in transfected neuronal cell bodies and neurite-like projections, whereas the wildtype protein showed a more uniform distribution. The mutant protein altered CHP1 association into functional complexes and impaired membrane localization of the Na+/H+ transporter NHE1. The findings indicated that the CHP1 mutation likely causes ataxia in an NHE1-dependent manner, resembling the mechanism observed in the Chp1 vacillator mutant mouse.
Sources: Expert Review
Mendeliome v0.10788 CYS1 Zornitza Stark Gene: cys1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10788 CYS1 Zornitza Stark Classified gene: CYS1 as Amber List (moderate evidence)
Mendeliome v0.10788 CYS1 Zornitza Stark Gene: cys1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10787 CYS1 Zornitza Stark gene: CYS1 was added
gene: CYS1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CYS1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CYS1 were set to 34521872
Phenotypes for gene: CYS1 were set to Polycystic kidney disease, MONDO:0020642
Review for gene: CYS1 was set to AMBER
Added comment: Single family reported. However, extensive experimental data, including mouse model.
Sources: Literature
Mendeliome v0.10785 CAMK2G Zornitza Stark Gene: camk2g has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10785 CAMK2G Zornitza Stark Classified gene: CAMK2G as Amber List (moderate evidence)
Mendeliome v0.10785 CAMK2G Zornitza Stark Gene: camk2g has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10784 CAMK2G Zornitza Stark gene: CAMK2G was added
gene: CAMK2G was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: CAMK2G was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CAMK2G were set to 30184290; 23033978
Phenotypes for gene: CAMK2G were set to Mental retardation, autosomal dominant 59, MIM# 618522
Review for gene: CAMK2G was set to AMBER
Added comment: Two unrelated individuals reported with de novo (p.Arg292Pro) variant. Functional data suggests GoF.
Sources: Expert Review
Mendeliome v0.10780 NCAPD3 Zornitza Stark Gene: ncapd3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10777 NCAPD3 Zornitza Stark Classified gene: NCAPD3 as Amber List (moderate evidence)
Mendeliome v0.10777 NCAPD3 Zornitza Stark Gene: ncapd3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10776 NCAPD3 Zornitza Stark reviewed gene: NCAPD3: Rating: AMBER; Mode of pathogenicity: None; Publications: 27737959; Phenotypes: Microcephaly 22, primary, autosomal recessive, MIM# 617984; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10758 IKZF2 Zornitza Stark gene: IKZF2 was added
gene: IKZF2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: IKZF2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: IKZF2 were set to 34920454
Phenotypes for gene: IKZF2 were set to Immune dysregulation
Review for gene: IKZF2 was set to GREEN
Added comment: Six individuals with systemic lupus erythematosus, immune thrombocytopenia or EBV-associated haemophagocytic lymphohistiocytosis reported with variants in this gene. Patients exhibited hypogammaglobulinaemia, decreased number of T-follicular helper and NK-cells.
Sources: Literature
Mendeliome v0.10751 BET1 Zornitza Stark Gene: bet1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10751 BET1 Zornitza Stark Classified gene: BET1 as Amber List (moderate evidence)
Mendeliome v0.10751 BET1 Zornitza Stark Gene: bet1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10750 BET1 Zornitza Stark gene: BET1 was added
gene: BET1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: BET1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BET1 were set to 34779586
Phenotypes for gene: BET1 were set to Muscular dystrophy; Epilepsy
Review for gene: BET1 was set to AMBER
Added comment: Three individuals from 2 unrelated families reported.
Sources: Literature
Mendeliome v0.10749 NMNAT2 Ain Roesley reviewed gene: NMNAT2: Rating: AMBER; Mode of pathogenicity: None; Publications: 31136762; Phenotypes: Hydrops fetalis and multiple fetal anomalies; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.10736 HAND1 Zornitza Stark Gene: hand1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10736 HAND1 Zornitza Stark Classified gene: HAND1 as Amber List (moderate evidence)
Mendeliome v0.10736 HAND1 Zornitza Stark Gene: hand1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10719 GATA5 Zornitza Stark Gene: gata5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10716 GATA5 Zornitza Stark Classified gene: GATA5 as Amber List (moderate evidence)
Mendeliome v0.10716 GATA5 Zornitza Stark Gene: gata5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10705 FOXH1 Zornitza Stark Gene: foxh1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10702 FOXH1 Zornitza Stark Classified gene: FOXH1 as Amber List (moderate evidence)
Mendeliome v0.10702 FOXH1 Zornitza Stark Gene: foxh1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10701 MBOAT7 Zornitza Stark Marked gene: MBOAT7 as ready
Mendeliome v0.10701 MBOAT7 Zornitza Stark Gene: mboat7 has been classified as Green List (High Evidence).
Mendeliome v0.10701 MBOAT7 Zornitza Stark Phenotypes for gene: MBOAT7 were changed from to intellectual disability MIM#617188
Mendeliome v0.10700 MBOAT7 Zornitza Stark Publications for gene: MBOAT7 were set to
Mendeliome v0.10699 MBOAT7 Zornitza Stark Mode of inheritance for gene: MBOAT7 was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10698 HAND2 Krithika Murali reviewed gene: HAND2: Rating: AMBER; Mode of pathogenicity: None; Publications: 26865696, 32134193, 26676105, 30217752, 20819618; Phenotypes: Congenital heart disease; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.10683 OTUD6B Zornitza Stark Phenotypes for gene: OTUD6B were changed from to Intellectual developmental disorder with dysmorphic facies, seizures, and distal limb anomalies, OMIM #617452
Mendeliome v0.10680 OTUD6B Zornitza Stark reviewed gene: OTUD6B: Rating: GREEN; Mode of pathogenicity: None; Publications: 28343629, 32924626, 31147255; Phenotypes: Intellectual developmental disorder with dysmorphic facies, seizures, and distal limb anomalies, OMIM #617452; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10663 WNT7A Seb Lunke Phenotypes for gene: WNT7A were changed from to Fuhrmann syndrome, MIM# 228930; Ulna and fibula, absence of, with severe limb deficiency, MIM# 276820
Mendeliome v0.10660 WNT7A Seb Lunke reviewed gene: WNT7A: Rating: GREEN; Mode of pathogenicity: None; Publications: 21344627, 20949531, 16826533; Phenotypes: Fuhrmann syndrome, MIM# 228930, Ulna and fibula, absence of, with severe limb deficiency, MIM# 276820; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.10643 HAND1 Krithika Murali reviewed gene: HAND1: Rating: AMBER; Mode of pathogenicity: None; Publications: 31286141, 29016838, 29317578, 29179274, 28112363, 27942761, 26581070; Phenotypes: Congenital heart defects; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.10643 ILK Paul De Fazio reviewed gene: ILK: Rating: AMBER; Mode of pathogenicity: None; Publications: 17646580, 27886618, 25163546; Phenotypes: Dilated cardiomyopathy; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v0.10643 GATA5 Krithika Murali reviewed gene: GATA5: Rating: AMBER; Mode of pathogenicity: None; Publications: 28180938, 27066509, 34461831, 30229885, 28285006, 25543888, 25515806, 24796370, 23295592, 23289003, 22961344; Phenotypes: Congenital heart defects, multiple types, 5 - #617912; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.10640 FOXH1 Krithika Murali reviewed gene: FOXH1: Rating: AMBER; Mode of pathogenicity: None; Publications: 18538293, 19933292, 32003456, 12094232, 16304598; Phenotypes: Congenital heart disease, holoprosencephaly; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.10640 MBOAT7 Ain Roesley reviewed gene: MBOAT7: Rating: GREEN; Mode of pathogenicity: None; Publications: 33335874, 32645526, 32744787, 31852446, 31282596, 30701556; Phenotypes: intellectual disability MIM#617188; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.10640 LMBRD2 Zornitza Stark Phenotypes for gene: LMBRD2 were changed from Global developmental delay; Intellectual disability; Microcephaly; Seizures; Abnormality of nervous system morphology; Abnormality of the eye to Developmental delay with variable neurologic and brain abnormalities, MIM# 619694; Global developmental delay; Intellectual disability; Microcephaly; Seizures; Abnormality of nervous system morphology; Abnormality of the eye
Mendeliome v0.10639 LMBRD2 Zornitza Stark edited their review of gene: LMBRD2: Changed phenotypes: Developmental delay with variable neurologic and brain abnormalities, MIM# 619694, Global developmental delay, Intellectual disability, Microcephaly, Seizures, Abnormality of nervous system morphology, Abnormality of the eye
Mendeliome v0.10638 ANAPC7 Zornitza Stark Gene: anapc7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10638 ANAPC7 Zornitza Stark Classified gene: ANAPC7 as Amber List (moderate evidence)
Mendeliome v0.10638 ANAPC7 Zornitza Stark Gene: anapc7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10637 ANAPC7 Zornitza Stark gene: ANAPC7 was added
gene: ANAPC7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ANAPC7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ANAPC7 were set to 34942119
Phenotypes for gene: ANAPC7 were set to Ferguson-Bonni neurodevelopmental syndrome, MIM# 619699
Review for gene: ANAPC7 was set to AMBER
Added comment: 11 individuals of Amish heritage reported homozygous for an intragenic deletion. Clinical features included ID, hypotonia, deafness in 5, relatively small head size (but microcephaly only in 1), and occasional congenital anomalies.

Supportive mouse model.

Amber rating in light of this being a founder variant.
Sources: Literature
Mendeliome v0.10633 DLX5 Zornitza Stark changed review comment from: A homozygous missense mutation (Q178P) was identified in 2 affected sisters from a consanguineous Yemeni family with split-hand/foot malformation and hearing loss, who had no detectable chromosomal aberration, Shamseldin et al. (2012).

A heterozygosity missense mutation (Q186H) was identified in a 31-year-old Chinese woman with SHFM, Wang et al. (2014).
A heterozygosity nonsense mutationIn (E39X) was identified in the probands from 2 unrelated Polish families with isolated SHFM, Sowinska-Seidler et al. (2014).

Animal model evidence - mouse; to: A homozygous missense mutation (Q178P) was identified in 2 affected sisters from a consanguineous Yemeni family with split-hand/foot malformation and hearing loss, who had no detectable chromosomal aberration, Shamseldin et al. (2012).

A heterozygosity missense mutation (Q186H) was identified in a 31-year-old Chinese woman with SHFM, Wang et al. (2014).
A heterozygosity nonsense mutationIn (E39X) was identified in the probands from 2 unrelated Polish families with isolated SHFM, Sowinska-Seidler et al. (2014).

Animal model evidence - mouse

Green for mono-allelic, Amber for bi-allelic.
Mendeliome v0.10618 SLC39A7 Zornitza Stark Phenotypes for gene: SLC39A7 were changed from Antibody deficiency; early onset infections; blistering dermatosis; failure to thrive; thrombocytopaenia to Agammaglobulinaemia 9, autosomal recessive, MIM# 619693; Antibody deficiency; early onset infections; blistering dermatosis; failure to thrive; thrombocytopaenia
Mendeliome v0.10617 SLC39A7 Zornitza Stark edited their review of gene: SLC39A7: Changed phenotypes: Agammaglobulinemia 9, autosomal recessive, MIM# 619693, Antibody deficiency, early onset infections, blistering dermatosis, failure to thrive, thrombocytopaenia
Mendeliome v0.10605 IGFBP7 Zornitza Stark Gene: igfbp7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10602 IGFBP7 Zornitza Stark Classified gene: IGFBP7 as Amber List (moderate evidence)
Mendeliome v0.10602 IGFBP7 Zornitza Stark Gene: igfbp7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10601 IGFBP7 Zornitza Stark reviewed gene: IGFBP7: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Retinal arterial macroaneurysm with supravalvular pulmonic stenosis MIM#614224; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10570 CRACR2A Zornitza Stark Phenotypes for gene: CRACR2A were changed from Late onset combined immunodeficiency to primary immunodeficiency disease, MONDO:0003778, CRACR2A-associated; Late onset combined immunodeficiency
Mendeliome v0.10564 PRDM13 Zornitza Stark Added comment: Comment when marking as ready: Bi-allelic variants: Recessive disease causing ID and DSD described in three reportedly unrelated families (2 consanguineous), but all are from Malta, and all share the same 13bp deletion spanning an exon-intron boundary. Mouse KO is embryonically lethal, and tissue specific KO failed to replicate many of the patients phenotypes, other than hypoplasia of the cerebellar vermis and hemispheres at P21.
Mendeliome v0.10561 PRDM13 Seb Lunke reviewed gene: PRDM13: Rating: AMBER; Mode of pathogenicity: None; Publications: 34730112; Phenotypes: intellectual disability, MONDO:0001071, PRDM13-associated, ataxia with cerebellar hypoplasia, MONDO:MONDO:0016054. PRDM13-associated, congenital hypogonadotropic hypogonadism, MONDO:0015770 Edit; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10558 ATP5G3 Naomi Baker gene: ATP5G3 was added
gene: ATP5G3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATP5G3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ATP5G3 were set to PMID: 34636445
Phenotypes for gene: ATP5G3 were set to Dystonia, early-onset, and/or spastic paraplegia, MIM#619681
Review for gene: ATP5G3 was set to AMBER
Added comment: Note that new gene name is ATP5MC3.

Paper reports the same missense variant identified in a large single-family pedigree with dystonia and spastic paraplegia, and also de novo in a patient with childhood onset dystonic syndrome. Drosophila model with missense variant also studied. Functional studies of fibroblast cells lines from affected father and proband demonstrated decreased complex V function.
Sources: Literature
Mendeliome v0.10558 RPL10L Alison Yeung Gene: rpl10l has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10558 RPL10L Alison Yeung Classified gene: RPL10L as Amber List (moderate evidence)
Mendeliome v0.10558 RPL10L Alison Yeung Gene: rpl10l has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10556 RPL10L Dean Phelan gene: RPL10L was added
gene: RPL10L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RPL10L was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: RPL10L were set to PMID:32111475
Phenotypes for gene: RPL10L were set to MONDO_0004983, oligo-/azoospermia
Review for gene: RPL10L was set to AMBER
Added comment: PMID:32111475 - cohort study of patients with oligo-/azoospermia identified a homozygous variant in two brothers with severe oligozoospermia. Three additional patients with oligo-/azoospermia had heterozygous variants. No RPL10L variants were found in the fertile control subjects.

A further search did not identify additional publications.
Sources: Literature
Mendeliome v0.10552 TOPORS Dean Phelan reviewed gene: TOPORS: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID:34132027; Phenotypes: Postaxial polydactyly:multiple lingual hamartomas:dysmorphic features; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10552 CRACR2A Dean Phelan gene: CRACR2A was added
gene: CRACR2A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CRACR2A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CRACR2A were set to PMID:34908525
Phenotypes for gene: CRACR2A were set to Late onset combined immunodeficiency
Review for gene: CRACR2A was set to AMBER
Added comment: PMID:34908525 - one patient compound het (missense and PTC) with late onset combined immunodeficiency (current chest infections, panhypogammaglobulinemia and CD4+T cell lymphopenia). Functional studies showed defective JNK phosphorylation, defective SOCE and impaired cytokine production.

Further search did not identify any additional publications.
Sources: Literature
Mendeliome v0.10549 TBX2 Zornitza Stark Gene: tbx2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10546 TBX2 Zornitza Stark Classified gene: TBX2 as Amber List (moderate evidence)
Mendeliome v0.10546 TBX2 Zornitza Stark Gene: tbx2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10542 TBX2 Krithika Murali reviewed gene: TBX2: Rating: AMBER; Mode of pathogenicity: None; Publications: 29726930, 23727221, 20635360, 30223900; Phenotypes: Vertebral anomalies and variable endocrine and T-cell dysfunction - MIM#618223; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.10523 ARHGEF10 Zornitza Stark edited their review of gene: ARHGEF10: Changed rating: AMBER
Mendeliome v0.10523 MBNL1 Zornitza Stark Marked gene: MBNL1 as ready
Mendeliome v0.10523 MBNL1 Zornitza Stark Gene: mbnl1 has been classified as Red List (Low Evidence).
Mendeliome v0.10523 MBNL1 Zornitza Stark Classified gene: MBNL1 as Red List (low evidence)
Mendeliome v0.10523 MBNL1 Zornitza Stark Gene: mbnl1 has been classified as Red List (Low Evidence).
Mendeliome v0.10522 MBNL1 Zornitza Stark reviewed gene: MBNL1: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: ; Mode of inheritance: None
Mendeliome v0.10518 PRDM9 Zornitza Stark gene: PRDM9 was added
gene: PRDM9 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRDM9 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PRDM9 were set to 34257419
Phenotypes for gene: PRDM9 were set to Inherited primary ovarian failure MONDO:0019852
Review for gene: PRDM9 was set to GREEN
Added comment: The primordial follicle pool is determined by the meiosis process, which is initiated by programmed DNA double strand breaks (DSB) and homologous recombination. PRDM9 is a meiosis-specific histone H3 methyltransferase and a major determinant of meiotic recombination hotspots in mammals. 3 pathogenic heterozygous variants in PRDM9 identified in 4 patients with POI. Functional studies showed the variants in PRDM9 impaired its methyltransferase activity. Prdm9+/- mice were subfertile, and showed increased percentage of germ cells at abnormal pachytene stage with decreased number of PRDM9-dependent DSBs and insufficient recombination.
Sources: Literature
Mendeliome v0.10441 SIX5 Zornitza Stark Classified gene: SIX5 as Amber List (moderate evidence)
Mendeliome v0.10441 SIX5 Zornitza Stark Gene: six5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10440 SIX5 Zornitza Stark edited their review of gene: SIX5: Changed rating: AMBER; Changed publications: 17357085, 33624842, 20301554, 24730701, 22447252, 21280147, 14704431, 11950062, 10802667, 10802668
Mendeliome v0.10433 SKI Seb Lunke changed review comment from: Well established gene disease association with craniosynostosis, skeletal, and cardiovascular anomalies, high-arched palate, micrognathia. Inguinal or umbilical hernia also described. Most common skeletal manifestations are arachnodactyly, pectus deformity, camptodactyly, scoliosis.

LoF not fully established on only missense described so far. Some functional work suggest potential GoF for TGF beta signalling, but not conclusive. Not enough evidence so far to go against LoF.; to: Well established gene disease association with craniosynostosis, skeletal, and cardiovascular anomalies, high-arched palate, micrognathia. Inguinal or umbilical hernia also described. Most common skeletal manifestations are arachnodactyly, pectus deformity, camptodactyly, scoliosis.

LoF not fully established as only missense described so far. Some functional work suggest potential GoF for TGF beta signalling, but not conclusive. Not enough evidence so far to go against LoF.
Mendeliome v0.10433 SKI Seb Lunke commented on gene: SKI: Well established gene disease association with craniosynostosis, skeletal, and cardiovascular anomalies, high-arched palate, micrognathia. Inguinal or umbilical hernia also described. Most common skeletal manifestations are arachnodactyly, pectus deformity, camptodactyly, scoliosis.

LoF not fully established on only missense described so far. Some functional work suggest potential GoF for TGF beta signalling, but not conclusive. Not enough evidence so far to go against LoF.
Mendeliome v0.10360 CSTF2 Zornitza Stark Gene: cstf2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10360 CSTF2 Zornitza Stark Classified gene: CSTF2 as Amber List (moderate evidence)
Mendeliome v0.10360 CSTF2 Zornitza Stark Gene: cstf2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10359 CSTF2 Zornitza Stark gene: CSTF2 was added
gene: CSTF2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CSTF2 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: CSTF2 were set to 32816001
Phenotypes for gene: CSTF2 were set to Intellectual disability
Review for gene: CSTF2 was set to AMBER
Added comment: Four individuals from a single family, spanning two generations, segregating a missense variant. Functional data, including a mouse model and a gene reporter assay.
Sources: Literature
Mendeliome v0.10346 RNF212 Zornitza Stark Phenotypes for gene: RNF212 were changed from Recombination rate QTL 1, MIM#612042 to Recombination rate QTL 1, MIM#612042; Spermatogenic failure 62, MIM# 619673
Mendeliome v0.10298 CTU2 Zornitza Stark Phenotypes for gene: CTU2 were changed from to Microcephaly, facial dysmorphism, renal agenesis, and ambiguous genitalia syndrome, MIM#618142
Mendeliome v0.10295 CTU2 Zornitza Stark reviewed gene: CTU2: Rating: GREEN; Mode of pathogenicity: None; Publications: 27480277, 26633546, 31301155; Phenotypes: Microcephaly, facial dysmorphism, renal agenesis, and ambiguous genitalia syndrome, MIM#618142; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10292 CRELD1 Zornitza Stark Classified gene: CRELD1 as Amber List (moderate evidence)
Mendeliome v0.10292 CRELD1 Zornitza Stark Gene: creld1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10291 CRELD1 Zornitza Stark edited their review of gene: CRELD1: Changed rating: AMBER
Mendeliome v0.10290 SPIDR Zornitza Stark Gene: spidr has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10289 SPIDR Zornitza Stark reviewed gene: SPIDR: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Ovarian dysgenesis 9, MIM# 619665; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10261 MIB1 Zornitza Stark Classified gene: MIB1 as Amber List (moderate evidence)
Mendeliome v0.10261 MIB1 Zornitza Stark Gene: mib1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10260 MIB1 Zornitza Stark changed review comment from: Comment when marking as ready: Amber for LVNC/cardiomyopathy. Green for congenital heart disease.; to: Comment when marking as ready: RED for LVNC/cardiomyopathy. Amber for congenital heart disease.
Mendeliome v0.10257 MIB1 Chern Lim reviewed gene: MIB1: Rating: AMBER; Mode of pathogenicity: None; Publications: 23314057, 30322850, 23033978, 33057194; Phenotypes: ; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.10253 REL Zornitza Stark Phenotypes for gene: REL were changed from Combined immunodeficiency; T cells: normal, decreased memory CD4, poor proliferation; B cells: low, mostly naive, few switched memory B cells, impaired proliferation; Recurrent infections with bacteria, mycobacteria, salmonella and opportunistic organisms; Defective innate immunity to Immunodeficiency 92, MIM# 619652; Combined immunodeficiency; T cells: normal, decreased memory CD4, poor proliferation; B cells: low, mostly naive, few switched memory B cells, impaired proliferation; Recurrent infections with bacteria, mycobacteria, salmonella and opportunistic organisms; Defective innate immunity
Mendeliome v0.10251 REL Zornitza Stark Classified gene: REL as Amber List (moderate evidence)
Mendeliome v0.10251 REL Zornitza Stark Gene: rel has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10250 REL Zornitza Stark edited their review of gene: REL: Added comment: Second unrelated individual reported, homozygous splice site variant.

Immunodeficiency-92 (IMD92) is an autosomal recessive primary immunodeficiency characterized by the onset of recurrent infections in infancy or early childhood. Infectious agents are broad, including bacterial, viral, fungal, and parasitic, including Cryptosporidium and Mycobacteria. Patient lymphocytes show defects in both T- and B-cell proliferation, cytokine secretion, and overall function, and there is also evidence of dysfunction of NK, certain antigen-presenting cells, and myeloid subsets.; Changed rating: AMBER; Changed publications: 31103457, 34623332; Changed phenotypes: Immunodeficiency 92, MIM# 619652, Combined immunodeficiency, T cells: normal, decreased memory CD4, poor proliferation, B cells: low, mostly naive, few switched memory B cells, impaired proliferation, Recurrent infections with bacteria, mycobacteria, salmonella and opportunistic organisms, Defective innate immunity
Mendeliome v0.10249 SLC26A5 Zornitza Stark Classified gene: SLC26A5 as Amber List (moderate evidence)
Mendeliome v0.10249 SLC26A5 Zornitza Stark Gene: slc26a5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10248 SLC26A5 Zornitza Stark edited their review of gene: SLC26A5: Changed rating: AMBER; Changed publications: 24164807, 12239568, 10821263, 11423665, 12719379, 18466744, 27091614, 17998209
Mendeliome v0.10248 SEMA7A Zornitza Stark Added comment: Comment when marking as ready: AMBER for PFIC. RED for other associations.
Mendeliome v0.10248 SEMA7A Zornitza Stark Gene: sema7a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10245 SEMA7A Zornitza Stark Classified gene: SEMA7A as Amber List (moderate evidence)
Mendeliome v0.10245 SEMA7A Zornitza Stark Gene: sema7a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10244 SEMA7A Paul De Fazio edited their review of gene: SEMA7A: Changed rating: AMBER
Mendeliome v0.10244 SEMA7A Paul De Fazio changed review comment from: Koh et al 2006 (PMID:16372136) identified an association between common polymorphisms and decreased bone mineral density in 560 postmenopausal Korean women.

Zhao et al 2020 (PMID:31650878) identified a heterozygous splice variant at -3 (absent from gnomad) in a young woman with Kallman syndrome. It was inherited from her father, who had retarded pubertal development but a normal sense of smell.

Pan et al 2021 (PMID:34585848) identified a homozygous missense variant (gnomad: 107 hets 0 homs) in a child with progressive familial intrahepatic cholestasis. Mouse knock-ins recapitulated the patient phenotype.

Low evidence for association with disease.; to: Koh et al 2006 (PMID:16372136) identified an association between common polymorphisms and decreased bone mineral density in 560 postmenopausal Korean women.

Zhao et al 2020 (PMID:31650878) identified a heterozygous splice variant at -3 (absent from gnomad) in a young woman with Kallman syndrome. It was inherited from her father, who had retarded pubertal development but a normal sense of smell.

Pan et al 2021 (PMID:34585848) identified a homozygous missense variant (gnomad: 107 hets 0 homs) in a child with progressive familial intrahepatic cholestasis. Homozygous mice recapitulated the patient phenotype.

Rated amber due to 1 patient and mouse model in PMID:34585848.
Mendeliome v0.10187 RNF212 Zornitza Stark Phenotypes for gene: RNF212 were changed from to Recombination rate QTL 1, MIM#612042
Mendeliome v0.10181 ADCY5 Zornitza Stark edited their review of gene: ADCY5: Added comment: Neurodevelopmental disorder with hyperkinetic movements and dyskinesia (NEDHYD) is an autosomal recessive complex neurologic disorder characterized by severe global developmental delay with axial hypotonia, impaired intellectual development, poor overall growth, and abnormal involuntary hyperkinetic movements, including dystonia, myoclonus, spasticity, and orofacial dyskinesia. It is the most severe manifestation of ADCY5-related dyskinetic disorders. Five individuals from 2 families reported.

Autosomal recessive hyperkinetic movement disorder with dyskinesia, myoclonus, chorea, and dystonia-2 (HYDMCD2) is characterized by the onset of abnormal involuntary movements, mainly affecting the limbs and causing walking difficulties, in the first decade. The severity is variable; some patients have orofacial dyskinesia, resulting in speech difficulties, or develop neuropsychiatric features, including anxiety and social withdrawal. Cardiomyopathy has rarely been described and may be a manifestation of the disorder. Eight individuals from 2 families reported.; Changed publications: 22782511, 24700542, 33051786, 32647899, 33704598, 34631954, 28971144, 30975617; Changed phenotypes: Dyskinesia, familial, with facial myokymia, MIM# 606703, MONDO:0011707, Hyperkinetic movement disorder with dyskinesia, myoclonus, chorea, and dystonia-2 (HYDMCD2), MIM#619647, Neurodevelopmental disorder with hyperkinetic movements and dyskinesia (NEDHYD), MIM#619651; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.10174 RNF212 Paul De Fazio reviewed gene: RNF212: Rating: RED; Mode of pathogenicity: None; Publications: 18239089, 29277047; Phenotypes: Recombination rate QTL 1 MIM#612042; Mode of inheritance: Unknown; Current diagnostic: yes
Mendeliome v0.10172 C1QBP Zornitza Stark Phenotypes for gene: C1QBP were changed from to Combined oxidative phosphorylation deficiency 33, MIM# 617713
Mendeliome v0.10169 C1QBP Zornitza Stark reviewed gene: C1QBP: Rating: GREEN; Mode of pathogenicity: None; Publications: 28942965; Phenotypes: Combined oxidative phosphorylation deficiency 33, MIM# 617713; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10145 GFM1 Zornitza Stark Phenotypes for gene: GFM1 were changed from to Combined oxidative phosphorylation deficiency 1 MIM#609060
Mendeliome v0.10130 WNT4 Zornitza Stark Gene: wnt4 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10127 WNT4 Zornitza Stark Classified gene: WNT4 as Amber List (moderate evidence)
Mendeliome v0.10127 WNT4 Zornitza Stark Gene: wnt4 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10126 WNT4 Zornitza Stark reviewed gene: WNT4: Rating: AMBER; Mode of pathogenicity: None; Publications: 22503279, 21377155, 16959810, 18179883, 15317892, 18182450; Phenotypes: Mullerian aplasia and hyperandrogenism (MIM#158330), SERKAL syndrome, OMIM #611812; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.10111 ASTL Zornitza Stark gene: ASTL was added
gene: ASTL was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: ASTL was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ASTL were set to 34704130
Phenotypes for gene: ASTL were set to Oocyte maturation defect 11, MIM# 619643
Review for gene: ASTL was set to RED
Added comment: Oocyte maturation defect-11 (OOMD11) is characterized by reduced or absent fertility and poor embryonic outcomes with assisted reproductive technology. Single family with two affected siblings reported.
Sources: Expert list
Mendeliome v0.10110 TERB2 Zornitza Stark Gene: terb2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10110 TERB2 Zornitza Stark Classified gene: TERB2 as Amber List (moderate evidence)
Mendeliome v0.10110 TERB2 Zornitza Stark Gene: terb2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10109 TERB2 Zornitza Stark gene: TERB2 was added
gene: TERB2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TERB2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TERB2 were set to 33211200
Phenotypes for gene: TERB2 were set to Spermatogenic failure 59, MIM# 619645
Review for gene: TERB2 was set to AMBER
Added comment: One family with three affected siblings; mouse model.
Sources: Literature
Mendeliome v0.10108 SPIDR Bryony Thompson Classified gene: SPIDR as Amber List (moderate evidence)
Mendeliome v0.10108 SPIDR Bryony Thompson Gene: spidr has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10107 SPIDR Bryony Thompson gene: SPIDR was added
gene: SPIDR was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SPIDR was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SPIDR were set to 34794894; 34697795; 27967308
Phenotypes for gene: SPIDR were set to Primary ovarian insufficiency
Review for gene: SPIDR was set to AMBER
Added comment: 3 POI cases from 2 unrelated families with homozygous nonsense variants, and in vitro functional assays demonstrating both variants alter SPIDR activity in homologous recombination.
Sources: Literature
Mendeliome v0.10105 REC8 Bryony Thompson Gene: rec8 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10105 REC8 Bryony Thompson Classified gene: REC8 as Amber List (moderate evidence)
Mendeliome v0.10105 REC8 Bryony Thompson Gene: rec8 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10103 REC8 Bryony Thompson gene: REC8 was added
gene: REC8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: REC8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: REC8 were set to 34794894; 15515002; 34707299
Phenotypes for gene: REC8 were set to Primary ovarian insufficiency
Review for gene: REC8 was set to AMBER
Added comment: PMID: 34707299 - a French POI case with compound het predicted loss of function variants
PMID: 15515002 - Rec8-/- female mice demonstrated ovarian dysgenesis and lack of ovarian follicles at reproductive maturity.
PMID: 27603904 - 2 sisters with POI segregating a missense in REC8 inherited from the unaffected mother (p.Gln154Arg) and a missense in GDF9 inherited from the father. Possible digenic inheritance.
Sources: Literature
Mendeliome v0.10100 MSH5 Bryony Thompson changed review comment from: A homozygous missense mutation (p.D487Y) in two sisters with POI. Also, homologous mutation in mice results in atrophic ovaries without oocytes, and in vitro functional study revealed that mutant MSH5 impaired DNA homologous recombination repair. Null mouse model is viable, but sterile. A case with congenital adrenal hyperplasia, ovarian failure and Ehlers-Danlos syndrome had a de novo t(6;14)(p21;q32) translocation, including CYP21A2,TNXB and MSH5.
Sources: Literature; to: 4 unrelated male azoospermia cases with 3 different homozygous frameshift/missense variants. A homozygous missense mutation (p.D487Y) in two sisters with POI. Also, homologous mutation in mice results in atrophic ovaries without oocytes, and in vitro functional study revealed that mutant MSH5 impaired DNA homologous recombination repair. Null mouse model is viable, but sterile. A case with congenital adrenal hyperplasia, ovarian failure and Ehlers-Danlos syndrome had a de novo t(6;14)(p21;q32) translocation, including CYP21A2,TNXB and MSH5.
Sources: Literature
Mendeliome v0.10100 MSH5 Bryony Thompson changed review comment from: A homozygous missense mutation (p.D487Y) in two sisters with POI. Also, homologous mutation in mice results in atrophic ovaries without oocytes, and in vitro functional study revealed that mutant MSH5 impaired DNA homologous recombination repair. Null mouse model is viable, but sterile. A case with congenital adrenal hyperplasia, ovarian failure and Ehlers-Danlos syndrome had a de novo t(6;14)(p21;q32) translocation, including CYP21A2,TNXB and MSH5.
Sources: Literature; to: 4 unrelated male azoospermia cases with 3 different homozygous frameshift/missense variants. A homozygous missense mutation (p.D487Y) in two sisters with POI. Also, homologous mutation in mice results in atrophic ovaries without oocytes, and in vitro functional study revealed that mutant MSH5 impaired DNA homologous recombination repair. Null mouse model is viable, but sterile. A case with congenital adrenal hyperplasia, ovarian failure and Ehlers-Danlos syndrome had a de novo t(6;14)(p21;q32) translocation, including CYP21A2,TNXB and MSH5.
Sources: Literature
Mendeliome v0.10089 GFM1 Ain Roesley reviewed gene: GFM1: Rating: GREEN; Mode of pathogenicity: None; Publications: 31680380, 25852744, 26937387; Phenotypes: Combined oxidative phosphorylation deficiency 1 MIM#609060; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.10087 HELQ Bryony Thompson Gene: helq has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10087 HELQ Bryony Thompson Classified gene: HELQ as Amber List (moderate evidence)
Mendeliome v0.10087 HELQ Bryony Thompson Gene: helq has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10086 HELQ Bryony Thompson gene: HELQ was added
gene: HELQ was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HELQ was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: HELQ were set to 34794894; 24005329; 33095795
Phenotypes for gene: HELQ were set to Primary ovarian insufficiency
Review for gene: HELQ was set to AMBER
Added comment: Sources: Literature
Mendeliome v0.10067 SNIP1 Zornitza Stark Classified gene: SNIP1 as Amber List (moderate evidence)
Mendeliome v0.10067 SNIP1 Zornitza Stark Gene: snip1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10066 SNIP1 Zornitza Stark edited their review of gene: SNIP1: Added comment: A single (founder) variant NM_024700.4:c.1097A>G, p.(Glu366Gly) has been reported in over 30 cases of Psychomotor retardation, epilepsy, and craniofacial dysmorphism OMIM:614501 in the Amish community (PMIDs: 22279524; 34570759). Cases are homozygous for this variant and unaffected members of the families are heterozygous or wt. Overexpression of the equivalent mouse variant in mouse inner medullary collecting duct cells, resulted in a more aggregated appearance in the nucleus compared to wildtype. The variant protein maybe unstable as Western blots showed reduced levels of the variant protein (PMID: 22279524). Whole transcriptomic analysis of patient blood was performed in PMID: 34570759. This revealed 11 upregulated and 32 downregulated genes, of which 24 had previously been associated with neurological disease.; Changed rating: AMBER; Changed publications: 22279524, 34570759
Mendeliome v0.10066 TAF4 Zornitza Stark Gene: taf4 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10066 TAF4 Zornitza Stark Classified gene: TAF4 as Amber List (moderate evidence)
Mendeliome v0.10066 TAF4 Zornitza Stark Gene: taf4 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10065 TAF4 Zornitza Stark gene: TAF4 was added
gene: TAF4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TAF4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TAF4 were set to 33875846; 28191890
Phenotypes for gene: TAF4 were set to Neurodevelopmental disorder
Review for gene: TAF4 was set to AMBER
Added comment: Three individuals reported with de novo LoF variants as part of large cohorts, limited phenotypic information available.
Sources: Literature
Mendeliome v0.10055 MMP15 Zornitza Stark Gene: mmp15 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10055 MMP15 Zornitza Stark Classified gene: MMP15 as Amber List (moderate evidence)
Mendeliome v0.10055 MMP15 Zornitza Stark Gene: mmp15 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10054 MMP15 Zornitza Stark gene: MMP15 was added
gene: MMP15 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MMP15 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MMP15 were set to 33875846
Phenotypes for gene: MMP15 were set to Cholestasis; Congenital heart disease
Review for gene: MMP15 was set to AMBER
Added comment: Three individuals from two families with bi-allelic variants and very similar phenotype including rare combination of symtoms (Alagille-like) cholestasis with hepatomegaly and congenital heart disease.
Sources: Literature
Mendeliome v0.10044 ECM1 Zornitza Stark changed review comment from: PMID: 11929856 - Hamada et al 2002 - looked at 6 different unrelated consanguineous families (from Saudi Arabia, Kuwait, Pakistan, The Netherlands, UK, and a group of South African families with a probable common ancestor) with a clinical diagnosis of Lipoid proteinosis (LP)/Urbach–Wiethe disease. They performed a genome-wide linkage analysis and identified a region and then looked at the expression of candidate genes in fibroblasts from patients compared to controls. ECM1 was found to have lower expression levels. 6 homozygous deletion variants were identified in the patients. In one family they established that the parents were heterozygous for the variant.

PMID: 28720532 - Afifi et al 2017 - studied 12 patients from 10 unrelated consanguineous Egyptian families with a clinical diagnosis of lipoid proteinosis. The patients reported progressive hoarseness of voice and easily damaged skin by minor trauma or friction. Homozygous ECM1 variants were detected in affected members in all families: 1 family had a missense variant, 5 families had splice site variants and 4 families had indels predicted to cause frameshifts. Parents were found to be heterozygous for the variants.

PMID: 33159951 - Zhu et al 2021 - a novel homozygous three-nucleotide duplication (c.506_508dupCTG) in ECM in two siblings affected with LP from a consanguineous Chinese family.; to: Lipoid proteinosis of Urbach and Wiethe is a rare autosomal recessive disorder typified by generalized thickening of skin, mucosae, and certain viscera. Classic features include beaded eyelid papules and laryngeal infiltration leading to hoarseness. The disorder is clinically heterogeneous, with affected individuals displaying differing degrees of skin scarring and infiltration, variable signs of hoarseness and respiratory distress, and in some cases neurologic abnormalities such as temporal lobe epilepsy. Histologically, there is widespread deposition of hyaline (glycoprotein) material and disruption/reduplication of basement membrane

PMID: 11929856 - Hamada et al 2002 - looked at 6 different unrelated consanguineous families (from Saudi Arabia, Kuwait, Pakistan, The Netherlands, UK, and a group of South African families with a probable common ancestor) with a clinical diagnosis of Lipoid proteinosis (LP)/Urbach–Wiethe disease. They performed a genome-wide linkage analysis and identified a region and then looked at the expression of candidate genes in fibroblasts from patients compared to controls. ECM1 was found to have lower expression levels. 6 homozygous deletion variants were identified in the patients. In one family they established that the parents were heterozygous for the variant.

PMID: 28720532 - Afifi et al 2017 - studied 12 patients from 10 unrelated consanguineous Egyptian families with a clinical diagnosis of lipoid proteinosis. The patients reported progressive hoarseness of voice and easily damaged skin by minor trauma or friction. Homozygous ECM1 variants were detected in affected members in all families: 1 family had a missense variant, 5 families had splice site variants and 4 families had indels predicted to cause frameshifts. Parents were found to be heterozygous for the variants.

PMID: 33159951 - Zhu et al 2021 - a novel homozygous three-nucleotide duplication (c.506_508dupCTG) in ECM in two siblings affected with LP from a consanguineous Chinese family.
Mendeliome v0.10041 SMPX Zornitza Stark edited their review of gene: SMPX: Added comment: PMID 33974137: Four different missense variants were identified in ten patients from nine families in five different countries. Haplotype analysis of patients with similar ancestry revealed two different founder mutations in Southern Europe and France, indicating that the prevalence in these populations may be higher. Clinical features: adult-onset, usually distal more than proximal limb muscle weakness, slowly progressing over decades with preserved walking. Lower limb muscle imaging showed a characteristic pattern of muscle involvement and fatty degeneration. Histopathological and electron microscopic analysis of patient muscle biopsies revealed myopathic findings with rimmed vacuoles and the presence of sarcoplasmic inclusions, some with amyloid-like characteristics. In silico predictions and subsequent cell culture studies showed that the missense mutations increase aggregation propensity of the SMPX protein. In cell culture studies, overexpressed SMPX localized to stress granules and slowed down their clearance.; Changed publications: 21549342, 21549336, 21893181, 22911656, 28542515, 33974137; Changed phenotypes: Deafness, X-linked 4, MIM# 300066, Distal myopathy, adult-onset
Mendeliome v0.10030 LAMB1 Zornitza Stark Phenotypes for gene: LAMB1 were changed from Lissencephaly 5, MIM# 615191; Cystic leukoencephalopathy to Lissencephaly 5, MIM# 615191; Cystic leukoencephalopathy; Adult-onset leukoencephalopathy
Mendeliome v0.10029 LAMB1 Zornitza Stark Publications for gene: LAMB1 were set to 23472759; 25925986; 29888467; 25925986; 32548278
Mendeliome v0.10028 LAMB1 Zornitza Stark Mode of inheritance for gene: LAMB1 was changed from BIALLELIC, autosomal or pseudoautosomal to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.10027 LAMB1 Zornitza Stark edited their review of gene: LAMB1: Added comment: Association between mono-allelic variants and adult-onset leukoencephalopathy:

LAMB1 variants found in 5 families with cerebral small vessel disease. 4 are truncating frameshifts (and 2 of the families have the same frameshift), 1 is a canonical splice. All families had adult onset of symptoms ranging from 20-63yo. All have white matter hypersignals. ‘These variants are associated with a novel phenotype characterized by the association of a hippocampal type episodic memory defect and a diffuse vascular leukoencephalopathy.’; Changed publications: 23472759, 25925986, 29888467, 25925986, 32548278, 34606115; Changed phenotypes: Lissencephaly 5, MIM# 615191, Cystic leukoencephalopathy, Adult-onset leukoencephalopathy; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.10026 ATP5A1 Naomi Baker reviewed gene: ATP5A1: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 34483339; Phenotypes: feeding intolerance, failure to thrive, hyperammonemia, lactic acidemia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.10025 FOXR1 Zornitza Stark Gene: foxr1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10025 FOXR1 Zornitza Stark Classified gene: FOXR1 as Amber List (moderate evidence)
Mendeliome v0.10025 FOXR1 Zornitza Stark Gene: foxr1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10019 FOXR1 Paul De Fazio changed review comment from: 1 patient described with a de novo missense variant. Phenotypes include: postnatal microcephaly, progressive brain atrophy, skeletal abnormalities, brain abnormalities, ophthalmic abnormalities, neuromuscular abnornmalities, and dysmorphic features.

In vitro functional evidence is supportive of pathogenicity (variant causes protein instability and abnormal nuclear aggregation).

A mouse knockout has comparable phenotypes, and a severe survival deficit.

Rated amber (1 patient, functional evidence, mouse model).
Sources: Literature; to: 1 patient described with a de novo missense variant. Phenotypes include: postnatal microcephaly, progressive brain atrophy, skeletal abnormalities, brain abnormalities, ophthalmic abnormalities, neuromuscular abnormalities, and dysmorphic features. A variant in ATP1A3 was considered to have contributed to the final phenotype.

In vitro functional evidence is supportive of pathogenicity (variant causes protein instability and abnormal nuclear aggregation).

A mouse knockout has comparable phenotypes, and a severe survival deficit.

Rated amber (1 patient, functional evidence, mouse model).
Sources: Literature
Mendeliome v0.10019 OGDH Zornitza Stark Gene: ogdh has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10019 OGDH Zornitza Stark Classified gene: OGDH as Amber List (moderate evidence)
Mendeliome v0.10019 OGDH Zornitza Stark Gene: ogdh has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10018 OGDH Zornitza Stark gene: OGDH was added
gene: OGDH was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: OGDH was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: OGDH were set to 32383294
Phenotypes for gene: OGDH were set to Developmental delay; ataxia; seizure; raised lactate
Review for gene: OGDH was set to AMBER
Added comment: Two siblings reported with homozygous missense variant in this gene and global developmental delay, elevated lactate, ataxia and seizure. Fibroblast analysis and modeling of the mutation in Drosophila were used to evaluate pathogenicity of the variant. Note previous report of an individual with developmental delay, hypotonia, and movement disorders and metabolic decompensation and biochemical evidence of OGDH deficiency but genetic testing not done.
Sources: Literature
Mendeliome v0.10017 FOXR1 Paul De Fazio gene: FOXR1 was added
gene: FOXR1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FOXR1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: FOXR1 were set to 34723967
Phenotypes for gene: FOXR1 were set to Postnatal microcephaly, progressive brain atrophy and global developmental delay
Review for gene: FOXR1 was set to AMBER
gene: FOXR1 was marked as current diagnostic
Added comment: 1 patient described with a de novo missense variant. Phenotypes include: postnatal microcephaly, progressive brain atrophy, skeletal abnormalities, brain abnormalities, ophthalmic abnormalities, neuromuscular abnornmalities, and dysmorphic features.

In vitro functional evidence is supportive of pathogenicity (variant causes protein instability and abnormal nuclear aggregation).

A mouse knockout has comparable phenotypes, and a severe survival deficit.

Rated amber (1 patient, functional evidence, mouse model).
Sources: Literature
Mendeliome v0.10004 UNC93B1 Zornitza Stark Gene: unc93b1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10001 UNC93B1 Zornitza Stark Classified gene: UNC93B1 as Amber List (moderate evidence)
Mendeliome v0.10001 UNC93B1 Zornitza Stark Gene: unc93b1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.10000 UNC93B1 Zornitza Stark reviewed gene: UNC93B1: Rating: AMBER; Mode of pathogenicity: None; Publications: 29768176; Phenotypes: Encephalopathy, acute, infection-induced (herpes-specific), susceptibility to, 1; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9979 SMAD2 Melanie Marty changed review comment from: 9 individuals from 5 families with wide spectrum of autosomal dominant aortic and arterial aneurysmal disease combined with connective tissue disease similar to Marfan syndrome and Loeys-Dietz syndrome.; to: 10 individuals from 5 families with wide spectrum of autosomal dominant aortic and arterial aneurysmal disease combined with connective tissue disease similar to Marfan syndrome and Loeys-Dietz syndrome.
Mendeliome v0.9970 GTPBP3 Zornitza Stark Phenotypes for gene: GTPBP3 were changed from to Combined oxidative phosphorylation deficiency 23 MIM#616198
Mendeliome v0.9967 GTPBP3 Zornitza Stark reviewed gene: GTPBP3: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Combined oxidative phosphorylation deficiency 23 MIM#616198; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9952 NADSYN1 Zornitza Stark Phenotypes for gene: NADSYN1 were changed from Multiple congenital abnormalities; absent kidneys; cardiac; limb; vertebral to Vertebral, cardiac, renal, and limb defects syndrome 3, MONDO:0030077; Vertebral, cardiac, renal, and limb defects syndrome 3, OMIM:618845
Mendeliome v0.9951 NADSYN1 Zornitza Stark edited their review of gene: NADSYN1: Changed phenotypes: Vertebral, cardiac, renal, and limb defects syndrome 3, MONDO:0030077, Vertebral, cardiac, renal, and limb defects syndrome 3, OMIM:618845
Mendeliome v0.9949 GTPBP3 Ain Roesley reviewed gene: GTPBP3: Rating: GREEN; Mode of pathogenicity: None; Publications: 34276756, 25434004; Phenotypes: Combined oxidative phosphorylation deficiency 23 MIM#616198; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.9949 CPEB1 Bryony Thompson Gene: cpeb1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9949 CPEB1 Bryony Thompson Classified gene: CPEB1 as Amber List (moderate evidence)
Mendeliome v0.9949 CPEB1 Bryony Thompson Gene: cpeb1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9948 CPEB1 Bryony Thompson gene: CPEB1 was added
gene: CPEB1 was added to Mendeliome. Sources: Literature
SV/CNV tags were added to gene: CPEB1.
Mode of inheritance for gene: CPEB1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CPEB1 were set to 34794894; 33095795; 32354341; 30689869; 11702780
Phenotypes for gene: CPEB1 were set to Primary ovarian insufficiency
Review for gene: CPEB1 was set to AMBER
Added comment: Large CNVs including CPEB1 mainly reported, but also include BNC1.
PMID: 33095795 - 1 POI case with missense variant p.R87C, which has 101 hets in gnomAD v2.1 (too common for a Mendelian dominantly inherited disease). Also another POI case with an 83.8Kb deletion including CPEB1.
PMID: 32354341 - 1 primary amenorrhea case heterozygous deletion of exons 8-12 of CPEB1
PMID: 30689869 - 6 POI cases (including previously reported) with a 15q25.2 deletion including CPEB1, but also including POI gene BNC1. Also, a homozygous microdeletion involving CPEB1 intron 1 in one case.
PMID: 11702780 - knockout mouse model had vestigial ovaries devoid of oocytes
Sources: Literature
Mendeliome v0.9943 DDR2 Zornitza Stark Phenotypes for gene: DDR2 were changed from to Spondylometaepiphyseal dysplasia, short limb-hand type, MIM#271665; Warburg-Cinotti syndrome, MIM# 618175
Mendeliome v0.9940 DDR2 Zornitza Stark reviewed gene: DDR2: Rating: GREEN; Mode of pathogenicity: None; Publications: 19110212, 20223752, 30449416; Phenotypes: Spondylometaepiphyseal dysplasia, short limb-hand type, MIM#271665, Warburg-Cinotti syndrome, MIM# 618175; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.9918 DAZL Bryony Thompson Gene: dazl has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9918 DAZL Bryony Thompson Classified gene: DAZL as Amber List (moderate evidence)
Mendeliome v0.9918 DAZL Bryony Thompson Gene: dazl has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9917 DAZL Bryony Thompson gene: DAZL was added
gene: DAZL was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DAZL was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DAZL were set to 34794894; 33095795; 16884537; 9288969
Phenotypes for gene: DAZL were set to Primary ovarian insufficiency
Review for gene: DAZL was set to AMBER
Added comment: PMID: 33095795 - Single POI case with heterozygous stopgain (c.640C>T:p.Q214*).
PMID: 16884537 - 4 heterozygous unrelated early menopause/POI cases with heterozygous missense (all rare in gnomAD v2.1, except p.Asn10His which has 14 hets)
PMID: 9288969 - supporting knockout mouse model
Sources: Literature
Mendeliome v0.9915 DAG1 Zornitza Stark reviewed gene: DAG1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21388311, 25934851, 24052401, 25503980; Phenotypes: Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 9, Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 9, 613818, Walker-Warburg syndrome and tectocerebellar dysgraphia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9900 POLR3H Bryony Thompson Gene: polr3h has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9900 POLR3H Bryony Thompson Classified gene: POLR3H as Amber List (moderate evidence)
Mendeliome v0.9900 POLR3H Bryony Thompson Gene: polr3h has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9899 POLR3H Bryony Thompson gene: POLR3H was added
gene: POLR3H was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: POLR3H was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: POLR3H were set to 34794894; 30830215
Phenotypes for gene: POLR3H were set to Primary ovarian insufficiency
Review for gene: POLR3H was set to AMBER
Added comment: A homozygous missense variant (p.Asp50Gly) was identified homozygous in 2 unrelated families. A mull mouse model was embryonic lethal, but a mouse model homozygous for the missense were viable and showed delayed pubertal development, characterised by late first oestrus or preputial separation.
Sources: Literature
Mendeliome v0.9898 POLR2C Bryony Thompson Gene: polr2c has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9898 POLR2C Bryony Thompson Classified gene: POLR2C as Amber List (moderate evidence)
Mendeliome v0.9898 POLR2C Bryony Thompson Gene: polr2c has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9897 POLR2C Bryony Thompson gene: POLR2C was added
gene: POLR2C was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: POLR2C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: POLR2C were set to 34794894; 29367954
Phenotypes for gene: POLR2C were set to Primary ovarian insufficiency
Review for gene: POLR2C was set to AMBER
Added comment: One family with POI segregating a nonsense variant (p.Lys152Ter) and a case with sporadic POI with a splice region variant (c.206-3C>T). Knockdown of the gene in an embryonic carcinoma cell line resulted in decreased protein production and impaired cell proliferation.
Two missense in premature ovarian failure cases submitted to ClinVar by Shandong Provincial Hospital Affiliated to Shandong University (SCV001877131.1, SCV001877153.1).
Sources: Literature
Mendeliome v0.9896 ELAC2 Zornitza Stark Phenotypes for gene: ELAC2 were changed from to Combined oxidative phosphorylation deficiency 17, MIM#615440
Mendeliome v0.9893 ELAC2 Zornitza Stark reviewed gene: ELAC2: Rating: GREEN; Mode of pathogenicity: None; Publications: 23849775, 31045291; Phenotypes: Combined oxidative phosphorylation deficiency 17, MIM#615440; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9860 UCP2 Zornitza Stark Gene: ucp2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9857 UCP2 Zornitza Stark Classified gene: UCP2 as Amber List (moderate evidence)
Mendeliome v0.9857 UCP2 Zornitza Stark Gene: ucp2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9856 UCP2 Zornitza Stark reviewed gene: UCP2: Rating: AMBER; Mode of pathogenicity: None; Publications: 19065272, 11381268; Phenotypes: {Obesity, susceptibility to, BMIQ4} 607447, Hyperinsulinism; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9818 MBTPS2 Zornitza Stark Marked gene: MBTPS2 as ready
Mendeliome v0.9818 MBTPS2 Zornitza Stark Gene: mbtps2 has been classified as Green List (High Evidence).
Mendeliome v0.9818 MBTPS2 Zornitza Stark Phenotypes for gene: MBTPS2 were changed from to Osteogenesis imperfecta, type XIX, (MIM301014); IFAP syndrome with or without BRESHECK syndrome (MIM#308205); Keratosis follicularis spinulosa decalvans, X-linked (MIM#308800); Olmsted syndrome, X-linked (MIM#300918)
Mendeliome v0.9817 MBTPS2 Zornitza Stark Publications for gene: MBTPS2 were set to
Mendeliome v0.9816 MBTPS2 Zornitza Stark Mode of inheritance for gene: MBTPS2 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.9779 MBTPS2 Daniel Flanagan reviewed gene: MBTPS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 27380894, 19361614, 21426410; Phenotypes: Osteogenesis imperfecta, type XIX, (MIM301014), IFAP syndrome with or without BRESHECK syndrome (MIM#308205), Keratosis follicularis spinulosa decalvans, X-linked (MIM#308800), ?Olmsted syndrome, X-linked (MIM#300918); Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.9776 NEBL Bryony Thompson Classified gene: NEBL as Amber List (moderate evidence)
Mendeliome v0.9776 NEBL Bryony Thompson Gene: nebl has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9766 DSTYK Zornitza Stark Classified gene: DSTYK as Amber List (moderate evidence)
Mendeliome v0.9766 DSTYK Zornitza Stark Gene: dstyk has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9765 DSTYK Zornitza Stark edited their review of gene: DSTYK: Changed rating: AMBER
Mendeliome v0.9725 ETV6 Zornitza Stark Phenotypes for gene: ETV6 were changed from to Thrombocytopaenia 5, MIM# 616216
Mendeliome v0.9722 ETV6 Zornitza Stark reviewed gene: ETV6: Rating: GREEN; Mode of pathogenicity: None; Publications: 25581430, 25807284; Phenotypes: Thrombocytopaenia 5, MIM# 616216; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9704 MICAL1 Zornitza Stark Gene: mical1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9703 MICAL1 Bryony Thompson Classified gene: MICAL1 as Amber List (moderate evidence)
Mendeliome v0.9703 MICAL1 Bryony Thompson Gene: mical1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9702 MICAL1 Bryony Thompson gene: MICAL1 was added
gene: MICAL1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: MICAL1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MICAL1 were set to 29394500; 21638339
Phenotypes for gene: MICAL1 were set to Autosomal dominant epilepsy with auditory features (ADEAF)
Review for gene: MICAL1 was set to AMBER
Added comment: Two families with supporting in vitro functional assays. Assessment of expression pattern of Mical-1 in the temporal neocortex of patients with intractable temporal epilepsy and pilocarpine-induced rat model, suggests Mical-1 may associate with inner pathophysiological modulation in epilepsy.
Sources: Expert list
Mendeliome v0.9699 CNTN2 Bryony Thompson Classified gene: CNTN2 as Amber List (moderate evidence)
Mendeliome v0.9699 CNTN2 Bryony Thompson Gene: cntn2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9698 CNTN2 Bryony Thompson reviewed gene: CNTN2: Rating: AMBER; Mode of pathogenicity: None; Publications: 23518707, 34120799, 34691156; Phenotypes: Epilepsy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9661 B3GAT3 Zornitza Stark changed review comment from: More than 5 unrelated families reported.; to: 26 patients from 13 families with variable phenotypes resembling Larsen, Antley-Bixler, Shprintzen-Goldberg, and Geroderma osteodysplastica syndromes. Multiple skeletal and cardiac abnormalities reported.
Mendeliome v0.9643 SIK3 Zornitza Stark Gene: sik3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9642 SIK3 Zornitza Stark Classified gene: SIK3 as Amber List (moderate evidence)
Mendeliome v0.9642 SIK3 Zornitza Stark Gene: sik3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9636 C9orf3 Zornitza Stark gene: C9orf3 was added
gene: C9orf3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: C9orf3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: C9orf3 were set to 34596301
Phenotypes for gene: C9orf3 were set to Dystonia 31, MIM# 619565
Review for gene: C9orf3 was set to GREEN
Added comment: Dystonia-31 (DYT31) is an autosomal recessive progressive neurologic disorder characterized by involuntary muscle twisting movements and postural abnormalities affecting the upper and lower limbs, neck, face, and trunk. Some patients may have orofacial dyskinesia resulting in articulation and swallowing difficulties. The age at onset ranges from childhood to young adulthood. There are usually no additional neurologic symptoms, although late-onset parkinsonism was reported in 1 family.

5 individuals from 4 unrelated families reported.

HGNC approved name is AOPEP.
Sources: Literature
Mendeliome v0.9635 TOP2B Zornitza Stark Phenotypes for gene: TOP2B were changed from Autosomal dominant deafness; Antibody deficiency, recurrent infections, facial dysmorphism, limb anomalies; Intellectual disability to Autosomal dominant deafness; B-cell immunodeficiency, distal limb anomalies, and urogenital malformations, MIM# 609296; Intellectual disability
Mendeliome v0.9634 TOP2B Zornitza Stark edited their review of gene: TOP2B: Changed phenotypes: Autosomal dominant deafness, B-cell immunodeficiency, distal limb anomalies, and urogenital malformations, MIM# 609296, Intellectual disability
Mendeliome v0.9628 SIK3 Krithika Murali gene: SIK3 was added
gene: SIK3 was added to Mendeliome. Sources: Expert list,Literature
Mode of inheritance for gene: SIK3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SIK3 were set to 30232230; 22318228
Phenotypes for gene: SIK3 were set to ?Spondyloepimetaphyseal dysplasia, Krakow type - #618162
Review for gene: SIK3 was set to AMBER
Added comment: Biallelic SIK3 variants reported in 2 siblings from a consanguineous family with an uncharacterised skeletal dysplasia. Radiographic features included widened/flared metaphyses with irregular ossifications, motheaten long bones, fragmentation of the proximal metacarpals, rounded vertebral bodies, and a distinctive transverse gap seen in the tibias.

In addition to the skeletal phenotype, the siblings manifested significant developmental delay with brain MRI abnormalities, a severe unclassified immunodeficiency, and normal parathyroid hormone concentration with mild hypercalcemia.

One sibling had a more severe phenotype, particularly immunodeficiency, and died of Epstein-Barr virus induced small muscle cancer at 10 years of age.

Mouse models support impaired chondrocyte development with skeletal dysplasia phenotye.
Sources: Expert list, Literature
Mendeliome v0.9605 OTUD7A Zornitza Stark Classified gene: OTUD7A as Amber List (moderate evidence)
Mendeliome v0.9605 OTUD7A Zornitza Stark Gene: otud7a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9604 OTUD7A Zornitza Stark edited their review of gene: OTUD7A: Added comment: Additional patient reported in PMID 33381903, with hypotonia, ID and seizures. Bi-allelic LoF variants. Some supportive functional data.; Changed rating: AMBER; Changed publications: 31997314, 29395075, 29395074, 33381903
Mendeliome v0.9590 TUB Zornitza Stark Gene: tub has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9587 TUB Zornitza Stark Classified gene: TUB as Amber List (moderate evidence)
Mendeliome v0.9587 TUB Zornitza Stark Gene: tub has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9586 TUB Zornitza Stark reviewed gene: TUB: Rating: AMBER; Mode of pathogenicity: None; Publications: 24375934, 28852204; Phenotypes: Retinal dystrophy and obesity, MIM# 616188; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9572 CACNA1A Anna Ritchie reviewed gene: CACNA1A: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 34267336; Phenotypes: ; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9556 SLC4A3 Zornitza Stark Gene: slc4a3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9556 SLC4A3 Zornitza Stark Classified gene: SLC4A3 as Amber List (moderate evidence)
Mendeliome v0.9556 SLC4A3 Zornitza Stark Gene: slc4a3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9555 EHBP1L1 Zornitza Stark Gene: ehbp1l1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9555 EHBP1L1 Zornitza Stark Classified gene: EHBP1L1 as Amber List (moderate evidence)
Mendeliome v0.9555 EHBP1L1 Zornitza Stark Gene: ehbp1l1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9543 EHBP1L1 Krithika Murali gene: EHBP1L1 was added
gene: EHBP1L1 was added to Mendeliome. Sources: Expert list,Literature
Mode of inheritance for gene: EHBP1L1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EHBP1L1 were set to 34645488; 26833786
Phenotypes for gene: EHBP1L1 were set to Non-immune hydrops fetalis
Review for gene: EHBP1L1 was set to AMBER
Added comment: No OMIM gene disease association.

Biallelic EHBP1L1 variants identified in 2 consanguineous families from Saudi Arabia with non-immune hydrops fetalis resulting in recurrent fetal loss. Supportive mouse models for this phenotype also reported.
Sources: Expert list, Literature
Mendeliome v0.9538 GNPNAT1 Zornitza Stark reviewed gene: GNPNAT1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Rhizomelic dysplasia, Ain-Naz type, MIM#619598; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9537 CEP19 Zornitza Stark Gene: cep19 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9536 CEP19 Zornitza Stark edited their review of gene: CEP19: Changed rating: AMBER
Mendeliome v0.9504 AHR Zornitza Stark reviewed gene: AHR: Rating: AMBER; Mode of pathogenicity: None; Publications: 31009037, 33193710; Phenotypes: Foveal hypoplasia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9481 BCL9L Zornitza Stark Gene: bcl9l has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9480 BCL9L Zornitza Stark Classified gene: BCL9L as Amber List (moderate evidence)
Mendeliome v0.9480 BCL9L Zornitza Stark Gene: bcl9l has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9479 BCL9L Zornitza Stark reviewed gene: BCL9L: Rating: AMBER; Mode of pathogenicity: None; Publications: 30366904; Phenotypes: Congenital heart disease; Mode of inheritance: None
Mendeliome v0.9473 KCNJ13 Zornitza Stark changed review comment from: LCA and bi-allelic variants: at least 4 individuals reported. Green.

Single family reported with snowflake vitreoretinal degeneration and mono-allelic variant, supportive functional data. Amber/Red.; to: Variants in KCNJ13 are associated with two retinal disorders; Leber congenital amaurosis (LCA) and snowflake vitreoretinal degeneration (SVD), though individuals with bi-allelic variants and LCA with subsequent fibrovascular proliferation described (PMID 31647904).

LCA and bi-allelic variants: at least 4 individuals reported. Green.

Single family reported with snowflake vitreoretinal degeneration and mono-allelic variant, supportive functional data. Amber/Red.
Mendeliome v0.9469 BCL9L Krithika Murali gene: BCL9L was added
gene: BCL9L was added to Mendeliome. Sources: Literature,Expert list,Other
Mode of inheritance for gene: BCL9L was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BCL9L were set to 23035047; 8757136
Phenotypes for gene: BCL9L were set to Heterotaxy; Congenital Heart Disease
Review for gene: BCL9L was set to AMBER
Added comment: Novel gene disease assocaition. Saunders et al., 2012 (PMID: 23035047) report biallelic BCL9L variants in 2 affected brothers with heterotaxy and congenital heart disease, heterozygous in unaffected parents. Functional evidence in zebrafish (PMID 8757136)
Sources: Literature, Expert list, Other
Mendeliome v0.9422 JAG2 Zornitza Stark Phenotypes for gene: JAG2 were changed from muscular dystrophy to Muscular dystrophy, limb-girdle, autosomal recessive 27, MIM# 619566; muscular dystrophy
Mendeliome v0.9421 JAG2 Zornitza Stark reviewed gene: JAG2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Muscular dystrophy, limb-girdle, autosomal recessive 27, MIM# 619566; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9398 KCNC2 Zornitza Stark Gene: kcnc2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9397 KCNC2 Zornitza Stark Classified gene: KCNC2 as Amber List (moderate evidence)
Mendeliome v0.9397 KCNC2 Zornitza Stark Gene: kcnc2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9392 KCNC2 Daniel Flanagan gene: KCNC2 was added
gene: KCNC2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: KCNC2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KCNC2 were set to PMID:32392612; 31972370
Phenotypes for gene: KCNC2 were set to epileptic encephalopathy; spastic tetraplegia; opisthotonos attacks; intellectual disability; West syndrome
Review for gene: KCNC2 was set to AMBER
Added comment: PMID: 31972370. De novo missense variant (p.Val471Leu) identified in a child with early severe developmental and epileptic encephalopathy, spastic tetraplegia, opisthotonos attacks.

PMID: 32392612. De novo missense variant (p.Asp167Tyr) identified in a neurofibromatosis type 1 related West syndrome patient. Functional analysis showed a significant reduction of the mean potassium current and a shift in the voltage dependence of steady-state activation. Maternally inherited NF1 variant (p.T1951Nfs*5) also identified, the mother was "clinically unremarkable".
Sources: Expert list
Mendeliome v0.9389 ZAR1 Zornitza Stark gene: ZAR1 was added
gene: ZAR1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: ZAR1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZAR1 were set to 29574422; 31598710; 12539046
Phenotypes for gene: ZAR1 were set to Multi locus imprinting disturbance in offspring
Review for gene: ZAR1 was set to RED
Added comment: Single report of biallelic variants in this gene in a mother of a child with Multi locus imprinting disturbance (MLID) with some features of Beckwith Wiedemann Syndrome. Shown to be a maternal effect gene that functions at the oocyte to embryo transition.
Sources: Expert Review
Mendeliome v0.9388 UHRF1 Zornitza Stark gene: UHRF1 was added
gene: UHRF1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: UHRF1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UHRF1 were set to 29574422; 28976982
Phenotypes for gene: UHRF1 were set to Multi locus imprinting disturbance in offspring
Review for gene: UHRF1 was set to RED
Added comment: Single report of biallelic variants in this gene in a mother of a child with Multi locus imprinting disturbance (MLID) and Silver Russell Syndrome phenotype. Maenohara et al demonstrate functions of UHRF1 during the global epigenetic reprogramming of oocytes and early embryos.
Sources: Expert Review
Mendeliome v0.9384 L3MBTL1 Zornitza Stark Marked gene: L3MBTL1 as ready
Mendeliome v0.9384 L3MBTL1 Zornitza Stark Gene: l3mbtl1 has been classified as Red List (Low Evidence).
Mendeliome v0.9384 L3MBTL1 Zornitza Stark gene: L3MBTL1 was added
gene: L3MBTL1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: L3MBTL1 was set to MONOALLELIC, autosomal or pseudoautosomal, maternally imprinted (paternal allele expressed)
Publications for gene: L3MBTL1 were set to 23543057; 15123827; 30794780
Phenotypes for gene: L3MBTL1 were set to Affected tissue: myeloid lineages; Phenotype resulting from under expression: lymphoid malignancy
Review for gene: L3MBTL1 was set to RED
Added comment: Germline variation in this imprinted gene is not currently associated with disease.

Somatic deletions of 20q are associated with chronic myeloid malignancies. Aziz et al showed that a single heterozygous 20q deletion consistently resulted in the complete loss of expression of the imprinted genes L3MBTL1 and SGK2, indicative of a pathogenetic role for loss of the active paternally inherited locus. Concomitant loss of both L3MBTL1 and SGK2 dysregulated erythropoiesis and megakaryopoiesis.
Sources: Expert Review
Mendeliome v0.9383 KCNQ1OT1 Zornitza Stark gene: KCNQ1OT1 was added
gene: KCNQ1OT1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: KCNQ1OT1 was set to MONOALLELIC, autosomal or pseudoautosomal, maternally imprinted (paternal allele expressed)
Publications for gene: KCNQ1OT1 were set to 22205991; 15372379; 23511928; 30794780; 29377879; 10220444; 32447323; 33177595; 29047350
Phenotypes for gene: KCNQ1OT1 were set to Beckwith-Wiedemann syndrome OMIM:130650; Russell-Silver Syndrome
Review for gene: KCNQ1OT1 was set to AMBER
Added comment: Limited evidence that isolated intragenic variation in KCNQ1OT1 is definitively associated with a phenotype.

KCNQ1OT1 encodes the regulatory antisense non-coding RNA KCNQ1OT1 (KCNQ1 overlapping) and is located within the KCNQ1OT1:TSS DMR (imprinting control region 2; IC2) at 11p15.5. IC2 is located within KCNQ1 intron 10. KCNQ1OT1 is maternally imprinted and paternally expressed. On the paternal chromosome, KCNQ1OT1 is transcribed and represses in cis the flanking imprinted genes, including the growth inhibitor CDKN1C, which is normally transcribed from the maternal allele. In 50% of the BWS patients, loss of methylation (LOM) of IC2 leads to biallelic expression of KCNQ1OT1 and biallelic silencing of CDKN1C (PMID 30635621). Expression is increased in BWS due to IC2 epimutations or paternal UPD.

Single nucleotide variants within KCNQ1OT1 have not been definitively associated with human disease. A heterozygous maternally inherited non-coding variant was identified in an individual with isolated omphalocele. This variant was shown to alter the methylation pattern of the imprinted allele (PMID 29047350).

Eggerman et al (PMID 32447323) described a 132 base pair deletion within KCNQ1OT1 associated with growth retardation in the case of paternal but not maternal transmission. This intragenic deletion did not affect IC2 methylation.

Microdeletions of IC2 involving KCNQ1OT1 on the paternal allele have been identified in a small number of patients with Russell-Silver syndrome. Similarly, microdeletions of IC2 involving KCNQ1OT1 on the maternal allele have been identified in a small number of patients with BWS. These deletions also variably involve KCNQ1 or CDKN1C. LoF in CDKN1C is a known cause of BWS. There is some evidence to suggest that disruption of KCNQ1 prevents maternal methylation at IC2 (PMID 30778172).
Sources: Expert Review
Mendeliome v0.9379 OOEP Zornitza Stark gene: OOEP was added
gene: OOEP was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: OOEP was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: OOEP were set to 29574422
Phenotypes for gene: OOEP were set to Multi locus imprinting disturbance in offspring
Review for gene: OOEP was set to RED
Added comment: Single report of biallelic variants in this gene in a mother of a child with Multi locus imprinting disturbance (MLID) and a transient neonatal diabetes mellitus phenotype.

This gene encodes part of the subcortical maternal complex (SCMC). Other genes in this group act as 'maternal effect' genes and are associated with early embryonic arrest, recurrent hydatiform mole and MLID in offspring.

As is the case for other genes encoding components of the SCMC, the pathogenicity of variants can be difficult to establish as reproductive outcomes are not recorded in genomic databases and variants may be listed in population databases as they are not classed as pathogenic in males or women with no reproductive history.

Functional studies of genes encoding components of the SCMC are limited as their expression is restricted to the oocyte and early embryo.
Sources: Literature
Mendeliome v0.9370 NLRP5 Zornitza Stark Phenotypes for gene: NLRP5 were changed from Early embryonic arrest to Early embryonic arrest; Multi locus imprinting disturbance in offspring
Mendeliome v0.9366 NLRP5 Zornitza Stark edited their review of gene: NLRP5: Added comment: 'Maternal effect gene'
Part of the subcortical maternal complex

Report of five mothers carrying either monoallelic or biallelic variants in NLRP5, who had both unaffected offspring and offspring with BWS-MLID (Doherty 2015). Report of one family where the mother carried biallelic variants in NLRP5, had one offspring with BWS, one unaffected offspring and multiple miscarriages (Sparago 2019).

Reports of at least three unrelated individuals with recurrent early embryonic arrest carrying biallelic variants in NLRP5. Functional work suggesting protein degradation in affected human cell lines (Mu 2019, Xu 2020).; Changed rating: GREEN; Changed publications: 32222962, 31829238, 30877238, 26323243, 34440388; Changed phenotypes: Early embryonic arrest, Multi locus imprinting disturbance in offspring; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.9355 TARS2 Krithika Murali reviewed gene: TARS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 33153448, 24827421, 34508595; Phenotypes: Combined oxidative phosphorylation deficiency 21 - 615918, Epilepsy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9355 SLC4A3 Daniel Flanagan gene: SLC4A3 was added
gene: SLC4A3 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: SLC4A3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SLC4A3 were set to PMID: 29167417; 34557911
Phenotypes for gene: SLC4A3 were set to Short QT syndrome
Review for gene: SLC4A3 was set to AMBER
Added comment: Moderate evidence for autosomal dominant short QT syndrome 1 by ClinGen /gene curation expert panel (PMID: 34557911). A single missense variant (absent gnomAD) identified in two SQTS families. In family 1, it segregated with SQTS (QTc<370ms) in 23 carriers, and 19 non-carriers had a QTc>370ms. In family 2, it segregated in 4 individuals. Experimental evidence from in vitro and zebrafish models suggests reduced membrane localization of the mutated protein leads to intracellular alkalinization and shortening of the cardiomyocyte action potential duration.
ClinGen expert panel was divided between strong (4 votes) and moderate (5 votes).
Sources: Expert Review
Mendeliome v0.9351 MARS Zornitza Stark changed review comment from: Association with CMT: Two families reported. One mutation positive family member was asymptomatic. Second case is proband only testing with no segregation or functional data. Note one of the variants identified in dominant MARS1-associated neuropathy, p.Arg618Cys, has also been reported in AR MARS1-related pulmonary interstiatial/liver disease.; to: Association with CMT and mono-allelic variants: Two families reported. One mutation positive family member was asymptomatic. Second case is proband only testing with no segregation or functional data. Note one of the variants identified in dominant MARS1-associated neuropathy, p.Arg618Cys, has also been reported in AR MARS1-related pulmonary interstiatial/liver disease.
Mendeliome v0.9351 MARS Zornitza Stark changed review comment from: Two families reported. One mutation positive family member was asymptomatic. Second case is proband only testing with no segregation or functional data. Note one of the variants identified in dominant MARS1-associated neuropathy, p.Arg618Cys, has also been reported in AR MARS1-related pulmonary interstiatial/liver disease.; to: Association with CMT: Two families reported. One mutation positive family member was asymptomatic. Second case is proband only testing with no segregation or functional data. Note one of the variants identified in dominant MARS1-associated neuropathy, p.Arg618Cys, has also been reported in AR MARS1-related pulmonary interstiatial/liver disease.
Mendeliome v0.9333 PLXNA1 Zornitza Stark gene: PLXNA1 was added
gene: PLXNA1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLXNA1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: PLXNA1 were set to 34054129
Phenotypes for gene: PLXNA1 were set to Neurodevelopmental disorder with cerebral and eye anomalies
Review for gene: PLXNA1 was set to GREEN
Added comment: Dworschak et al. (2021) via WES reported 10 patients from 7 families with biallelic (n=7) or de novo (n=3) PLXNA1 variants. Shared phenotypic features include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Seizures were predominantly reported in patients with monoallelic variants. Zebrafish studies showed an embryonic role of plxna1a in the development of the central nervous system and the eye. Biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.
Sources: Literature
Mendeliome v0.9327 VARS2 Zornitza Stark Phenotypes for gene: VARS2 were changed from to Combined oxidative phosphorylation deficiency 20; OMIM #615917
Mendeliome v0.9324 VARS2 Zornitza Stark reviewed gene: VARS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 24827421, 25058219, 29137650, 29314548, 31064326, 31623496; Phenotypes: Combined oxidative phosphorylation deficiency 20, OMIM #615917; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9299 ATP11A Zornitza Stark Gene: atp11a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9299 ATP11A Zornitza Stark Classified gene: ATP11A as Amber List (moderate evidence)
Mendeliome v0.9299 ATP11A Zornitza Stark Gene: atp11a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9297 ABHD16A Lucy Spencer gene: ABHD16A was added
gene: ABHD16A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ABHD16A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ABHD16A were set to PMID: 34587489
Phenotypes for gene: ABHD16A were set to Spastic paraplegia
Review for gene: ABHD16A was set to GREEN
Added comment: 11 individuals from 6 families with a complicated form of hereditary spastic paraplegia who carry bi-allelic deleterious variants in ABHD16A. Affected individuals present with a similar phenotype consisting of global developmental delay/intellectual disability, progressive spasticity affecting the upper and lower limbs, and corpus callosum and white matter anomalies. Immunoblot analysis on extracts from fibroblasts from four affected individuals demonstrated little to no ABHD16A protein levels compared to controls.
In 5 of the families the affected members were homozygous, 3 of these families were consanguineous. 2 families have the same variant- both families are French-Canadian.
4 missense variants, 1 frameshift, 1 nonsense.
From PMID: 34587489
Sources: Literature
Mendeliome v0.9297 ATP11A Elena Savva gene: ATP11A was added
gene: ATP11A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATP11A was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ATP11A were set to PMID: 34403372
Phenotypes for gene: ATP11A were set to Neurological disorder
Mode of pathogenicity for gene: ATP11A was set to Other
Review for gene: ATP11A was set to AMBER
Added comment: PMID: 34403372:
- Single de novo missense variant reported in a patient with developmental delay and neurological deterioration.
- Patient MRI showed severe cerebral atrophy, ventriculomegaly, hypomyelination leukodystrophy, thinned corpus callosum. Axonal neuropathy suggested.
- K/I heterozygous mice died perinatally.
- Functional studies on missense variant show plasma membrane lipid content impairment, reduced ATPase activity etc.

gnomAD: some NMD PTCs present, good quality variants found with 4-5 hets.
Sources: Literature
Mendeliome v0.9297 WLS Teresa Zhao changed review comment from: - We identified homozygous mutations in 10 affected persons from 5 unrelated families.
- Patients had multiorgan defects, including microcephal, facial dysmorphism, foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects.
- The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis.
Sources: Literature; to: - Homozygous mutations in 10 affected persons from 5 unrelated families.
- Patients had multiorgan defects, including microcephal, facial dysmorphism, foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects.
- The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis.
Sources: Literature
Mendeliome v0.9297 WLS Teresa Zhao gene: WLS was added
gene: WLS was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: WLS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: WLS were set to PMID: 34587386
Phenotypes for gene: WLS were set to Syndromic structural birth defects
Review for gene: WLS was set to GREEN
Added comment: - We identified homozygous mutations in 10 affected persons from 5 unrelated families.
- Patients had multiorgan defects, including microcephal, facial dysmorphism, foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects.
- The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis.
Sources: Literature
Mendeliome v0.9297 SHQ1 Zornitza Stark Gene: shq1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9297 SARS Bryony Thompson Gene: sars has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9297 SHQ1 Zornitza Stark Classified gene: SHQ1 as Amber List (moderate evidence)
Mendeliome v0.9297 SHQ1 Zornitza Stark Gene: shq1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9296 SHQ1 Zornitza Stark gene: SHQ1 was added
gene: SHQ1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SHQ1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SHQ1 were set to 34542157; 29178645
Phenotypes for gene: SHQ1 were set to Dystonia; Neurodegeneration
Review for gene: SHQ1 was set to AMBER
Added comment: Three unrelated families reported. Family 1: isolated dystonia only; Family 2: dystonia, and neurodegeneration; Family 3: neurodegeneration.

Rated Amber as phenotypes likely represent a continuum but currently unclear.
Sources: Literature
Mendeliome v0.9295 SARS Bryony Thompson Classified gene: SARS as Amber List (moderate evidence)
Mendeliome v0.9295 SARS Bryony Thompson Gene: sars has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9294 SARS Bryony Thompson gene: SARS was added
gene: SARS was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SARS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SARS were set to 28236339; 34570399
Phenotypes for gene: SARS were set to Intellectual disability
Review for gene: SARS was set to AMBER
Added comment: Summary - 2 unrelated families with overlapping ID phenotype, and supporting in vitro and patient cell assays.
PMID: 28236339 - an Iranian family (distantly related) segregating a homozygous missense (c.514G>A, p.Asp172Asn) with moderate ID, microcephaly, ataxia, speech impairment, and aggressive behaviour. Also, supporting in vitro functional assays demonstrating altered protein function.
PMID: 34570399 - a consanguineous Turkish family segregating a homozygous missense (c.638G>T, p.(Arg213Leu)) with developmental delay, central deafness, cardiomyopathy, and metabolic decompensation during fever leading to death. Also, reduced protein level and enzymatic activity in patient cells.
Sources: Literature
Mendeliome v0.9285 PTPRC Zornitza Stark Phenotypes for gene: PTPRC were changed from to Severe combined immunodeficiency, T cell-negative, B-cell/natural killer-cell positive MIM# 608971; Hepatitis C virus, susceptibility to MIM# 609532
Mendeliome v0.9282 PTPRC Zornitza Stark reviewed gene: PTPRC: Rating: GREEN; Mode of pathogenicity: None; Publications: 11145714, 12073144, 22689986, 10700239; Phenotypes: Severe combined immunodeficiency, T cell-negative, B-cell/natural killer-cell positive MIM# 608971, Hepatitis C virus, susceptibility to MIM# 609532; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9274 CDH15 Zornitza Stark commented on gene: CDH15: PMID: 19012874 - 4 unrelated patients with missense variants and mild-severe ID. Only two genes checked. All variants are common in gnomAD (>20 hets each) and classified as VUS or likely benign in ClinVar (paper is from 2008, pre-dates gnomAD). Functional studies were performed showing a LOF effect, where cell adhesion was reduced.
However NMD PTCs are present in gnomAD (many >=6 hets each)

PMID: 12052883 - null mouse model were viable, showed no gross developmental defects. In particular, the skeletal musculature appeared essentially normal. In the cerebellum of M-cadherin-lacking mutants, typical contactus adherens junctions were present and similar in size and numbers to the equivalent junctions in wild-type animals. However, the adhesion plaques in the cerebellum of these mutants appeared to contain elevated levels of N-cadherin compared to wild-type animals.

PMID: 28422132 - reviewed microdeletions spanning multiple genes including CDH15, suggests it may contribute to a more severe neurological phenotype, with particular regard to brain malformations.

PMID: 26506440 - speculates low penetrance for PTCs in this gene. Acknowledges variants in ExAC, describes them as benign

Note no P/LP variants in ClinVar
Mendeliome v0.9256 MPL Zornitza Stark Phenotypes for gene: MPL were changed from Myelofibrosis with myeloid metaplasia, somatic, MIM#2544503; Thrombocythemia 2, MIM#601977, AD, SMu; Thrombocytopenia, congenital amegakaryocytic, MIM#604498, AR to Myelofibrosis with myeloid metaplasia, somatic, MIM#254450; Thrombocythemia 2, MIM#601977, AD, SMu; Thrombocytopenia, congenital amegakaryocytic, MIM#604498, AR
Mendeliome v0.9251 ATP6V0C Zornitza Stark Gene: atp6v0c has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9251 ATP6V0C Zornitza Stark Classified gene: ATP6V0C as Amber List (moderate evidence)
Mendeliome v0.9251 ATP6V0C Zornitza Stark Gene: atp6v0c has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9250 ATP6V0C Zornitza Stark gene: ATP6V0C was added
gene: ATP6V0C was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATP6V0C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ATP6V0C were set to 33190975; 33090716
Phenotypes for gene: ATP6V0C were set to Epilepsy; Intellectual Disability; microcephaly
Review for gene: ATP6V0C was set to AMBER
Added comment: 9 individuals reported with deletions and ID/seizures/microcephaly, minimum overlapping region implicates ATP6V0C as the causative gene. Single case report of de novo SNV and ID/seizures.
Sources: Literature
Mendeliome v0.9219 FMN1 Bryony Thompson Gene: fmn1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9219 FMN1 Bryony Thompson Classified gene: FMN1 as Amber List (moderate evidence)
Mendeliome v0.9219 FMN1 Bryony Thompson Gene: fmn1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9218 FMN1 Bryony Thompson gene: FMN1 was added
gene: FMN1 was added to Mendeliome. Sources: Literature
SV/CNV tags were added to gene: FMN1.
Mode of inheritance for gene: FMN1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FMN1 were set to 20610440; 19383632; 15202026
Phenotypes for gene: FMN1 were set to oligosyndactyly; radioulnar synostosis; hearing loss; renal defects
Review for gene: FMN1 was set to AMBER
Added comment: A 263 Kb homozygous deletion of FMN1 has been identified in a single case with oligosyndactyly, radioulnar synostosis, hearing loss and renal defects. Also, a supporting null mouse model with oligosyndactyly. Also, a large duplication including GREM1 reported in association with Cenani–Lenz syndrome.
Sources: Literature
Mendeliome v0.9217 LBX1 Zornitza Stark Gene: lbx1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9217 LBX1 Zornitza Stark Classified gene: LBX1 as Amber List (moderate evidence)
Mendeliome v0.9217 LBX1 Zornitza Stark Gene: lbx1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9216 LBX1 Zornitza Stark gene: LBX1 was added
gene: LBX1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: LBX1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LBX1 were set to 30487221
Phenotypes for gene: LBX1 were set to Central hypoventilation syndrome, congenital, 3, MIM#619483
Review for gene: LBX1 was set to AMBER
Added comment: Two siblings reported with homozygous LoF variant in this gene, supportive mouse model.
Sources: Expert Review
Mendeliome v0.9196 HSCB Zornitza Stark Gene: hscb has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9196 HSCB Zornitza Stark Classified gene: HSCB as Amber List (moderate evidence)
Mendeliome v0.9196 HSCB Zornitza Stark Gene: hscb has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9195 HSCB Zornitza Stark gene: HSCB was added
gene: HSCB was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: HSCB was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HSCB were set to 32634119
Phenotypes for gene: HSCB were set to Anaemia, sideroblastic, 5, MIM# 619523
Review for gene: HSCB was set to AMBER
Added comment: Single individual reported with compound heterozygous variants in this gene. Good functional data including animal model.
Sources: Expert list
Mendeliome v0.9192 CADM3 Zornitza Stark reviewed gene: CADM3: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Charcot-Marie-Tooth disease, axonal, type 2FF, MIM# 619519; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9180 WNT9B Zornitza Stark Gene: wnt9b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9177 WNT9B Zornitza Stark Classified gene: WNT9B as Amber List (moderate evidence)
Mendeliome v0.9177 WNT9B Zornitza Stark Gene: wnt9b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9176 WNT9B Zornitza Stark reviewed gene: WNT9B: Rating: AMBER; Mode of pathogenicity: None; Publications: 34145744; Phenotypes: Renal agenesis/hypoplasia/dysplasia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9171 ERGIC1 Zornitza Stark Gene: ergic1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9171 ERGIC1 Zornitza Stark Classified gene: ERGIC1 as Amber List (moderate evidence)
Mendeliome v0.9171 ERGIC1 Zornitza Stark Gene: ergic1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9170 ERGIC1 Zornitza Stark gene: ERGIC1 was added
gene: ERGIC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ERGIC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ERGIC1 were set to 28317099; 34037256
Phenotypes for gene: ERGIC1 were set to Arthrogryposis multiplex congenita 2, neurogenic type; OMIM # 208100
Review for gene: ERGIC1 was set to AMBER
Added comment: Reinstein et al. (2018) used WES in a large consanguineous Israeli Arab kindred consisting of 16 patients affected with the neurogenic type of arthrogryposis multiplex congenita. They identified a homozygous missense (V98E) mutation in ERGIC1 gene, which segregated with the disorder in the kindred, and was not found in the ExAC database or in 212 ethnically matched controls. Functional studies of the variant and studies of patient cells were not performed. ERGIC1 encodes a cycling membrane protein which has a possible role in transport between endoplasmic reticulum and Golgi.

Marconi et al (2021) used genome sequencing in a consanguineous family with 2 affected siblings presenting congenital arthrogryposis and some facial dysmorphism. They identified a homozygous 22.6 Kb deletion encompassing the promoter and first exon of ERGIC1. mRNA quantification showed the complete absence of ERGIC1 expression in the two affected siblings and a decrease in heterozygous parents.
Sources: Literature
Mendeliome v0.9162 GPX1 Zornitza Stark gene: GPX1 was added
gene: GPX1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: GPX1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GPX1 were set to 1131421; 476008; 5766310; 2492138
Phenotypes for gene: GPX1 were set to Haemolytic anaemia due to glutathione peroxidase deficiency MIM#614164
Review for gene: GPX1 was set to RED
Added comment: No individuals reported with GPX1 variants identified as the cause of Haemolytic anaemia due to glutathione peroxidase deficiency. Multiple papers report a number of cases of Haemolytic anaemia due to glutathione peroxidase deficiency, however there is no defined link or variant to GPX1 (PMID: 5766310. PMID: 1131421, PMID: 2492138, PMID: 476008)

Overall, lowered glutathione peroxidase activity has been observed in a number of individuals with haemolytic anaemia however the evidence for a cause-and-effect relationship between the enzyme deficiency and the presenting anaemia is not evident.
Sources: Expert Review
Mendeliome v0.9160 CYB5A Zornitza Stark Phenotypes for gene: CYB5A were changed from to Methemoglobinaemia and ambiguous genitalia, MIM# 250790
Mendeliome v0.9157 CYB5A Zornitza Stark reviewed gene: CYB5A: Rating: GREEN; Mode of pathogenicity: None; Publications: 22170710, 32051920; Phenotypes: Methemoglobinemia and ambiguous genitalia 250790; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9122 SLC26A1 Zornitza Stark Classified gene: SLC26A1 as Amber List (moderate evidence)
Mendeliome v0.9122 SLC26A1 Zornitza Stark Gene: slc26a1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9121 SLC26A1 Zornitza Stark reviewed gene: SLC26A1: Rating: AMBER; Mode of pathogenicity: None; Publications: 27210743, 20160351, 30383413, 27125215; Phenotypes: Nephrolithiasis, calcium oxalate, MIM#167030; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.9108 GSR Zornitza Stark Gene: gsr has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9105 GSR Zornitza Stark Classified gene: GSR as Amber List (moderate evidence)
Mendeliome v0.9105 GSR Zornitza Stark Gene: gsr has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9104 GSR Zornitza Stark reviewed gene: GSR: Rating: AMBER; Mode of pathogenicity: None; Publications: 17185460, 31122244; Phenotypes: Haemolytic anaemia due to glutathione reductase deficiency, MIM# 618660; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9088 IFIH1 Sarah Pantaleo changed review comment from: Rare, likely loss-of-functions IFIH1 variants identified in eight independent probands with Very Early Onset Inflammatory Bowel Disease (VEOIBD) from a combined cohort of 42 children. IFIH1 variants were significantly enriched in children with VEOIBD as compared to controls (p=0.007).
In one case of neonatal-onset IBD, a homozygous truncating variant was identified. seven carriers of LoF variants (three of whom have a second hypomorphic missense variant). Luciferase reporter assays employed to assess MDA5 activity (encoded by IFIH1). In three cases, the functional studies demonstrated that the second missense variant either did not affect protein function or was in cis with the LoF variant.; to: IFIH1 encodes MDA5, a key cystolic sensor for viral nucleic acids. Rare, likely loss-of-functions IFIH1 variants identified in eight independent probands with Very Early Onset Inflammatory Bowel Disease (VEOIBD) from a combined cohort of 42 children. IFIH1 variants were significantly enriched in children with VEOIBD as compared to controls (p=0.007).
In one case of neonatal-onset IBD, a homozygous truncating variant was identified. There were seven carriers of LoF variants identified (range of onset 6 months to 6 years of age). In three of these cases, a second hypomorphic missense variant was identified.
Luciferase reporter assays were employed to assess MDA5 activity. In some cases, the second missense variant was either proven to not affect protein function or was in cis with the LoF variant.
Complete and partial MDA5 deficiency is associated with VEOIBD with variable penetrance and expressivity, suggesting a role for impaired intestinal viral sensing in IBD pathogenesis.
Mendeliome v0.9088 IFIH1 Sarah Pantaleo changed review comment from: Rare, likely loss-of-functions IFIH1 variants identified in eight patients with Very Early Onset Inflammatory Bowel Disease (VEOIBD) with VEOIBD from a combined cohort of 42 children. One homozygous truncating variant in a neonate from a consanguineous family, seven carriers of LoF variants (three of whom also have a second hypomorphic missense variant). Luciferase reporter assays employed to assess MDA5 activity (encoded by IFIH1). In three cases, the functional studies demonstrated that the second missense variant either did not affect protein function or was in cis with the LoF variant.; to: Rare, likely loss-of-functions IFIH1 variants identified in eight independent probands with Very Early Onset Inflammatory Bowel Disease (VEOIBD) from a combined cohort of 42 children. IFIH1 variants were significantly enriched in children with VEOIBD as compared to controls (p=0.007).
In one case of neonatal-onset IBD, a homozygous truncating variant was identified. seven carriers of LoF variants (three of whom have a second hypomorphic missense variant). Luciferase reporter assays employed to assess MDA5 activity (encoded by IFIH1). In three cases, the functional studies demonstrated that the second missense variant either did not affect protein function or was in cis with the LoF variant.
Mendeliome v0.9081 FGF8 Dean Phelan reviewed gene: FGF8: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 34433009; Phenotypes: Femoral hypoplasia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9075 LRP1 Elena Savva reviewed gene: LRP1: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 26142438, 33776059; Phenotypes: ?Keratosis pilaris atrophicans MIM#604093; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9075 CFAP206 Seb Lunke Gene: cfap206 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9071 CFAP206 Seb Lunke Classified gene: CFAP206 as Amber List (moderate evidence)
Mendeliome v0.9071 CFAP206 Seb Lunke Gene: cfap206 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9069 ZNF668 Zornitza Stark Gene: znf668 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9069 ZNF668 Zornitza Stark Classified gene: ZNF668 as Amber List (moderate evidence)
Mendeliome v0.9069 ZNF668 Zornitza Stark Gene: znf668 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9067 CFAP206 Ain Roesley gene: CFAP206 was added
gene: CFAP206 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CFAP206 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: CFAP206 were set to Multiple morphological abnormalities of the fagella
Penetrance for gene: CFAP206 were set to unknown
Review for gene: CFAP206 was set to AMBER
Added comment: 1x hom with a fs variant

Sperm from knockout mouse model mainly had a fagellum of normal length but most of them showed abnormal forms including bent and coiled fagella. There was also a significant increase of sperm cells with absent or short fagella compared to the WT mice.
Sources: Literature
Mendeliome v0.9026 TOM1 Zornitza Stark gene: TOM1 was added
gene: TOM1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: TOM1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TOM1 were set to 31263572
Phenotypes for gene: TOM1 were set to Immunodeficiency 85 and autoimmunity, MIM# 619510
Review for gene: TOM1 was set to RED
Added comment: Parent and child reported with onset of atopic eczema and recurrent respiratory infections in the first decade of life; autoimmune enteropathy with vomiting, diarrhoea, and poor overall growth. More variable features included autoimmune oligoarthritis, interstitial pneumonitis, and EBV viremia. Laboratory studies showed hypogammaglobulinaemia and abnormal T-cell function, consistent with a combined immunodeficiency. Missense variant in TOM1, with limited functional data.
Sources: Expert list
Mendeliome v0.9023 KIDINS220 Zornitza Stark Phenotypes for gene: KIDINS220 were changed from Spastic paraplegia, intellectual disability, nystagmus, and obesity, MIM# 617296; cerebral ventriculomegaly; limb contractures to Spastic paraplegia, intellectual disability, nystagmus, and obesity, MIM# 617296; Ventriculomegaly and arthrogryposis, MIM# 619501
Mendeliome v0.9022 CHRM1 Bryony Thompson Gene: chrm1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9022 CHRM1 Bryony Thompson Classified gene: CHRM1 as Amber List (moderate evidence)
Mendeliome v0.9022 CHRM1 Bryony Thompson Gene: chrm1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9021 CHRM1 Bryony Thompson gene: CHRM1 was added
gene: CHRM1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CHRM1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CHRM1 were set to 34212451; 31981491; 12483218
Phenotypes for gene: CHRM1 were set to Neurodevelopmental delay; intellectual disability; autism
Review for gene: CHRM1 was set to AMBER
Added comment: PMID: 34212451 - 2 unrelated cases with de novo missense variants (p.Pro380Leu and p.Phe425Ser), one case with early-onset refractory epilepsy, severe disability, and progressive cerebral and cerebellar atrophy, and the second case with mild dysmorphism, global developmental delay, and moderate intellectual disability. In vitro biochemical analyses of p.Pro380Leu demonstrated a reduction in protein levels, impaired cellular trafficking, and defective activation of intracellular signaling pathways.
PMID: 31981491 - an autism spectrum disorder (no other information on phenotype, except ascertained to have severe neurodevelopmental delay) case with a de novo missense variant p.(Arg210Leu)
PMID: 12483218 - null mouse model assessing memory demonstrated selective cognitive dysfunction.
Sources: Literature
Mendeliome v0.9020 FGF20 Zornitza Stark Gene: fgf20 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9020 FGF20 Zornitza Stark Classified gene: FGF20 as Amber List (moderate evidence)
Mendeliome v0.9020 FGF20 Zornitza Stark Gene: fgf20 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.9019 FGF20 Zornitza Stark gene: FGF20 was added
gene: FGF20 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: FGF20 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FGF20 were set to 22698282
Phenotypes for gene: FGF20 were set to Renal hypodysplasia/aplasia 2, MIM#615721
Review for gene: FGF20 was set to AMBER
Added comment: Multiple affected fetuses in a consanguineous family; functional data.
Sources: Expert Review
Mendeliome v0.9012 NPR2 Zornitza Stark changed review comment from: Over 15 unrelated families; Biallelic (missense, nonsense, frameshift, splice) NPR2 variants; loss of function; multiple mouse models.

Disorder is characterised by severe dwarfism with shortening of the middle and distal segments of the limbs (disproportionate) with skeletal growth falling off sharply after birth.; to: Bi-allelic variants: Over 15 unrelated families; Biallelic (missense, nonsense, frameshift, splice) NPR2 variants; loss of function; multiple mouse models.

Disorder is characterised by severe dwarfism with shortening of the middle and distal segments of the limbs (disproportionate) with skeletal growth falling off sharply after birth.

Mono-allelic variants have been linked to both tall stature and short stature disorders. Multiple families.
Mendeliome v0.9003 ROR2 Zornitza Stark Phenotypes for gene: ROR2 were changed from to Robinow syndrome, autosomal recessive MIM# 268310; hypertelorism; short stature; mesomelic shortening of the limbs; hypoplastic genitalia; rib/vertebral anomalies; abnormal morphogenesis of the face; Brachydactyly, type B1 MIM# 113000; hypoplasia/aplasia of distal phalanges and nails (2-5)
Mendeliome v0.9000 ROR2 Zornitza Stark reviewed gene: ROR2: Rating: GREEN; Mode of pathogenicity: None; Publications: 10932186, 10932187, 10986040, 19461659; Phenotypes: Robinow syndrome, autosomal recessive MIM# 268310, hypertelorism, short stature, mesomelic shortening of the limbs, hypoplastic genitalia, rib/vertebral anomalies, abnormal morphogenesis of the face, Brachydactyly, type B1 MIM# 113000, hypoplasia/aplasia of distal phalanges and nails (2-5); Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.9000 PROP1 Zornitza Stark Phenotypes for gene: PROP1 were changed from to Pituitary hormone deficiency, combined, 2 MIM# 262600; Ateliotic dwarfism with hypogonadism; growth failure; short stature; failure to thrive; absent sexual development at puberty; GH, PRL, TSH, LH, and FSH deficiency; pituitary hypoplasia
Mendeliome v0.8997 PROP1 Zornitza Stark reviewed gene: PROP1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301521, 31090814; Phenotypes: Pituitary hormone deficiency, combined, 2 MIM# 262600, Ateliotic dwarfism with hypogonadism, growth failure, short stature, failure to thrive, absent sexual development at puberty, GH, PRL, TSH, LH, and FSH deficiency, pituitary hypoplasia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8994 POU1F1 Zornitza Stark Phenotypes for gene: POU1F1 were changed from to Pituitary hormone deficiency, combined, 1 MIM# 613038; pituitary hypoplasia; severe growth failure; combined GH, PRL and TSH deficiency; distinct facial features (prominent forehead, mid-facial hypoplasia, depressed nasal bridge, deep-set eyes and a short nose with anteverted nostrils)
Mendeliome v0.8991 POU1F1 Zornitza Stark reviewed gene: POU1F1: Rating: GREEN; Mode of pathogenicity: None; Publications: 1302000, 1472057, 9392392, 15928241, 7833912, 12773133; Phenotypes: Pituitary hormone deficiency, combined, 1 MIM# 613038, pituitary hypoplasia, severe growth failure, combined GH, PRL and TSH deficiency, distinct facial features (prominent forehead, mid-facial hypoplasia, depressed nasal bridge, deep-set eyes and a short nose with anteverted nostrils); Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8990 OPDM2 Bryony Thompson STR: OPDM2 was added
STR: OPDM2 was added to Mendeliome. Sources: Literature
Mode of inheritance for STR: OPDM2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: OPDM2 were set to 32413282; 33374016
Phenotypes for STR: OPDM2 were set to Oculopharyngodistal myopathy 2 MIM#618940
Review for STR: OPDM2 was set to GREEN
STR: OPDM2 was marked as clinically relevant
Added comment: NM_005716.4:c.-211GGC[X]
>15 Chinese families/probands with a heterozygous trinucleotide repeat expansion (CGG(n)) in 5'UTR exon 1 of the GIPC1 gene. The expansion was found by a combination of linkage analysis, whole-exome sequencing, long-range sequencing, and PCR analysis, and segregated with the disorder in the family. Repeat lengths in the patients ranged from 70 to 138. Normal repeat lengths ranged from 12 to 32.
Sources: Literature
Mendeliome v0.8980 NIID Bryony Thompson STR: NIID was added
STR: NIID was added to Mendeliome. Sources: Literature
Mode of inheritance for STR: NIID was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: NIID were set to 31178126; 31332381; 31819945; 33887199; 33943039; 32250060; 31332380; 32852534; 32989102; 34333668
Phenotypes for STR: NIID were set to Neuronal intranuclear inclusion disease MIM#603472; Oculopharyngodistal myopathy 3 MIM#619473; Tremor, hereditary essential, 6 MIM#618866
Review for STR: NIID was set to GREEN
STR: NIID was marked as clinically relevant
Added comment: NM_001364012.2:c.-164GGC[X]
Expanded repeat in NOTCH2NLC sequence is (GGC)9(GGA)2(GGC)2.
Large number of families and sporadic cases reported with expansions, with a range of neurodegenerative phenotypes, including: dementia, Parkinsonism/tremor, peripheral neuropathy, leukoencephalopathy, myopathy, motor neurone disease.
Normal repeat range: 4-40, 1 control had 61 repeats and may have been a presymptomatic carrier.
Intermediate range: 41-60 identified in Parkinson's disease
Pathogenic repeat range: >=60-520
Mechanism of disease is translation of repeat expansion into a toxic polyglycine protein, identified in both mouse models and tissue samples from affected individuals.
Sources: Literature
Mendeliome v0.8978 SUCO Bryony Thompson Gene: suco has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8978 SUCO Bryony Thompson Classified gene: SUCO as Amber List (moderate evidence)
Mendeliome v0.8978 SUCO Bryony Thompson Gene: suco has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8977 SUCO Bryony Thompson gene: SUCO was added
gene: SUCO was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SUCO was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SUCO were set to 29620724; 20440000
Phenotypes for gene: SUCO were set to Osteogenesis imperfecta
Review for gene: SUCO was set to AMBER
Added comment: A single case with diffuse osteopenia, multiple fractures with limb deformities, and short long bones, with biallelic variants (a missense and a splice site variant). Also, a null mouse model with acute onset skeletal defects that include impaired bone formation and spontaneous fractures.
Sources: Literature
Mendeliome v0.8956 RMRP Zornitza Stark changed review comment from: Over 60 pathogenic RMRP variants have been reported resulting in CHH phenotypes; multiple mouse models

Homozygous and Compound heterozygous (insertions, duplications and missense) variants have been reported resulting in loss of function.
*Founder variant g.70A>G (Amish and Finnish populations)

CHH individuals present with variable features that may include: shortened limbs, short stature, metaphysical dysplasia, fine, sparse and/or light-coloured hair, hematologic abnormalities and a spectrum of combined immunodeficiency.; to: Over 60 pathogenic RMRP variants have been reported resulting in CHH phenotypes; multiple mouse models

Homozygous and Compound heterozygous (insertions, duplications and missense) variants have been reported resulting in loss of function.
*Founder variant g.70A>G (Amish and Finnish populations)

CHH individuals present with variable features that may include: shortened limbs, short stature, metaphysical dysplasia, fine, sparse and/or light-coloured hair, hematologic abnormalities and a spectrum of combined immunodeficiency.

Anauxetic dysplasia 1, MIM# 607095 is a more severe phenotype, whereas Metaphyseal dysplasia without hypotrichosis, MIM# 250460 is milder.
Mendeliome v0.8953 RMRP Zornitza Stark reviewed gene: RMRP: Rating: GREEN; Mode of pathogenicity: None; Publications: 16244706, 21396580, 22420014; Phenotypes: Cartilage hair hypoplasia (CHH) MIM#250250, shortened limbs, short stature, metaphysical dysplasia, fine, sparse and/or light-coloured hair, hematologic abnormalities, CID, impaired lymphocyte proliferation, low Ig levels, antibodies variably decreased, bone marrow failure, autoimmunity, susceptibility to lymphoma and other cancers, impaired spermatogenesis, neuronal dysplasia of the intestine; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8946 RAG1 Zornitza Stark Phenotypes for gene: RAG1 were changed from to Alpha/beta T-cell lymphopenia with gamma/delta T-cell expansion, severe cytomegalovirus infection, and autoimmunity MIM# 609889; Combined cellular and humoral immune defects with granulomas MIM# 233650; Omenn syndrome MIM# 603554; Severe combined immunodeficiency, B cell-negative MIM# 601457
Mendeliome v0.8943 RAG2 Zornitza Stark Phenotypes for gene: RAG2 were changed from to Omenn syndrome MIM# 603554; Severe combined immunodeficiency, B cell-negative MIM# 601457; Combined cellular and humoral immune defects with granulomas MIM# 233650
Mendeliome v0.8939 RAG2 Danielle Ariti reviewed gene: RAG2: Rating: GREEN; Mode of pathogenicity: None; Publications: 9630231, 11313270, 31885011, 8810255, 15025726, 18463379; Phenotypes: Omenn syndrome MIM# 603554, Severe combined immunodeficiency, B cell-negative MIM# 601457, Combined cellular and humoral immune defects with granulomas MIM# 233650; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8937 RAG1 Danielle Ariti reviewed gene: RAG1: Rating: GREEN; Mode of pathogenicity: None; Publications: 16276422, 18463379, 20489056, 9630231, 11313270, 17476359, 8810255, 6823332; Phenotypes: Alpha/beta T-cell lymphopenia with gamma/delta T-cell expansion, severe cytomegalovirus infection, and autoimmunity MIM# 609889, Combined cellular and humoral immune defects with granulomas MIM# 233650, Omenn syndrome MIM# 603554, Severe combined immunodeficiency, B cell-negative MIM# 601457; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8935 MTHFD1 Danielle Ariti reviewed gene: MTHFD1: Rating: GREEN; Mode of pathogenicity: None; Publications: Combined immunodeficiency and megaloblastic anemia with or without hyperhomocysteinaemia MIM # 617780, Decreased Ig levels, poor antibody responses to conjugated polysaccharide antigens, low B/T/NK cells, Recurrent bacterial infection, megaloblastic anaemia, failure to thrive, neutropenia, seizures, intellectual disability, folate-responsive, Lymphopaenia; Phenotypes: 32414565, 19033438; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8932 GHSR Zornitza Stark Gene: ghsr has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8929 GHSR Zornitza Stark Classified gene: GHSR as Amber List (moderate evidence)
Mendeliome v0.8929 GHSR Zornitza Stark Gene: ghsr has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8928 GHSR Zornitza Stark reviewed gene: GHSR: Rating: AMBER; Mode of pathogenicity: None; Publications: 25557026, 19789204, 16511605; Phenotypes: Growth hormone deficiency, isolated partial, MIM# 615925; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8910 EPHX1 Zornitza Stark Gene: ephx1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8907 EPHX1 Zornitza Stark Classified gene: EPHX1 as Amber List (moderate evidence)
Mendeliome v0.8907 EPHX1 Zornitza Stark Gene: ephx1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8906 EPHX1 Zornitza Stark reviewed gene: EPHX1: Rating: AMBER; Mode of pathogenicity: None; Publications: 34342583; Phenotypes: Lipoatrophic diabetes; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8861 IGF2 Zornitza Stark changed review comment from: RSS phenotype.; to: Silver-Russell syndrome-3 (SRS3) is characterized by intrauterine growth retardation with relative macrocephaly, followed by feeding difficulties and postnatal growth restriction. Dysmorphic facial features include triangular face, prominent forehead, and low-set ears. Other variable features include limb defects, genitourinary and cardiovascular anomalies, hearing impairment, and developmental delay. Disruption of any gene in the HMGA2-PLAG1-IGF2 pathway results in a decrease in IGF2 expression and produces an SRS phenotype similar to that of patients carrying 11p15.5 epigenetic defects.

Begemann et al. (2015) performed exome sequencing in 4 affected people with severe growth restriction in one family, and identified a heterozygous nonsense mutation in the IGF2 gene that segregated fully with the disorder. Affected individuals inherited the mutation from their healthy fathers, and it originated from the healthy paternal grandmother. Clinical features occurred only in those who inherited the variant allele through paternal transmission, consistent with maternal imprinting of IGF2.

Many other cases reported since with de novo mutations in IGF2 present on the paternal allele.
Mendeliome v0.8851 WIPF1 Zornitza Stark Phenotypes for gene: WIPF1 were changed from to Wiskott-Aldrich syndrome 2 MIM# 614493; Reduced T cells; defective lymphocyte responses to anti-CD3; high IgE; Thrombocytopenia with or without small platelets; recurrent bacterial and viral Infections; eczema; bloody diarrhoea; gastrointestinal bleeding; WAS protein absent
Mendeliome v0.8836 WIPF1 Danielle Ariti reviewed gene: WIPF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 22231303, 27742395, 11869681, 14757742; Phenotypes: Wiskott-Aldrich syndrome 2 MIM# 614493, Reduced T cells, defective lymphocyte responses to anti-CD3, high IgE, Thrombocytopenia with or without small platelets, recurrent bacterial and viral Infections, eczema, bloody diarrhoea, gastrointestinal bleeding, WAS protein absent; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8836 PGRMC1 Bryony Thompson Classified gene: PGRMC1 as Amber List (moderate evidence)
Mendeliome v0.8836 PGRMC1 Bryony Thompson Gene: pgrmc1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8835 PGRMC1 Bryony Thompson reviewed gene: PGRMC1: Rating: AMBER; Mode of pathogenicity: None; Publications: 33867527, 23783460; Phenotypes: Isolated paediatric cataract; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.8834 RNF220 Zornitza Stark gene: RNF220 was added
gene: RNF220 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RNF220 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RNF220 were set to 33964137; 10881263
Phenotypes for gene: RNF220 were set to Leukodystrophy; CNS hypomyelination; Ataxia; Intellectual disability; Sensorineural hearing impairment; Elevated hepatic transaminases; Hepatic fibrosis; Dilated cardiomyopathy; Spastic paraplegia; Dysarthria; Abnormality of the corpus callosum
Review for gene: RNF220 was set to GREEN
Added comment: Sferra et al (2021 - PMID: 33964137) provide extensive evidence that biallelic RNF220 mutations cause a disorder characterized by hypomyelinating leukodystrophy, ataxia (9/9 - onset 1-5y), borderline intellectual functioning (3/9) / intellectual disability (5/9 - in most cases mild), sensorineural deafness (9/9) with complete hearing loss in the first decade of life, hepatopathy (9/9) with associated periportal fibrosis, and dilated cardiomyopathy (9/9) which was fatal.

Other neurologic manifestations apart from ataxia incl. hyperreflexia (8/8), spastic paraplegia (9/9), dysarthria (9/9), peripheral neuropathy (4/9), seizures in one case (1/9). Upon brain MRI there was thin corpus callosum (9/9) or cerebellar atrophy in some (2/9).

The authors identified homozygosity for 2 recurrent missense RNF220 variants in affected members belonging to these 5 broad consanguineous pedigrees (7 families), namely NM_018150.4:c.1094G>A / p.Arg365Gly in 4 Roma families in the context of a shared haplotype (/founder effect) as well as c.1088G>A / p.Arg363Gly in a large pedigree from southern Italy initially reported by Leuzzi et al (2000 - PMID: 10881263).

Extensive segregation analyses were carried out including several affected and unaffected members.

RNF220 encodes ring finger protein 220, which functions as an E3 ubiquitin ligase. Previous studies have shown among others a role in modulation of Sonic hedgehog/GLI signaling and cerebellar development

Evidence for the role of RNF220 included relevant expression, localization within the cell, interaction partners (lamin B1, 20S proteasome), similarities with other laminopathies in terms of phenotype, etc :
*RNF220 has a relevant expression pattern in CNS (based on qRT-PCR analyses in human brain, cerebellum, cerebral cortex / mRNA levels in human fetal CNS with higher expression in cerebellum, spinal cord and cortex / previous GTEx data / protein levels in mouse CNS)
*The protein displays nuclear localization based on iPSC cells differentiated to motor neurons (also supported by data from the Human Protein Atlas). Transfection of COS-1 cells demonstrated localization primarily to the nucleus (as also previously demonstrated in HEK293T cells) in vesicle like structures with ASF2/SF2 colocalization suggesting enrichment in nuclear speckles. There was also partial co-distribution with the 20S proteasome. R363Q and R365Q additionally coalesced in the cytoplasm forming protein aggregates/inclusions.
*Immunofluorescence studies in patient fibroblasts also confirmed abnormal increase of the protein in the cytoplasm and increased fluorescence with the 20S proteasome.
*Proteomic identification of RNF220-interacting proteins in transfected HEK293T cells demonstrated enrichment for all members of the lamin protein family (incl . lamin B1, AC, B2).
*RNAi-mediated downregulation of RNF222 in Drosophila suggested altered subcellular localization and accumulation of the fly orthologue for human lamin B1.
*Immunoprecipitation of lamin B1 from the nuclear matrix of cerebellar cells suggested significant interaction of endogenous lamin B1 with RNF220, while transfection studies in HEK293T cells for wt/mt suggested reduced binding to endogenous lamin B1 for RNF220 mt compared to wt (more prominent for R365Q). RNF220 mutants also reduced ubiquitination of nuclear lamin B1 compared to wt.
*Patient fibroblasts immunostained with different nuclear envelope markers displayed abnormal nuclear shapes with multiple invaginations and lobulations, findings also observed in laminopathies.
Sources: Literature
Mendeliome v0.8830 ARF3 Zornitza Stark Gene: arf3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8830 ARF3 Zornitza Stark Classified gene: ARF3 as Amber List (moderate evidence)
Mendeliome v0.8830 ARF3 Zornitza Stark Gene: arf3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8829 ARF3 Zornitza Stark gene: ARF3 was added
gene: ARF3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ARF3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ARF3 were set to 34346499
Phenotypes for gene: ARF3 were set to Global developmental delay; Intellectual disability; Seizures; Morphological abnormality of the central nervous system
Review for gene: ARF3 was set to AMBER
Added comment: Sakamoto et al (2021 - PMID: 34346499) provide some evidence that monoallelic ARF3 pathogenic variants may be associated with a NDD with brain abnormality.

Using trio exome sequencing, the authors identified 2 individuals with NDD harboring de novo ARF3 variants, namely: NM_001659.2:c.200A>T / p.Asp67Val and c.296G>T / p.Arg99Leu.

Individual 1 (with Asp67Val / age : 4y10m), appeared to be more severelely affected with prenatal onset progressive microcephaly, severe global DD, epilepsy. Upon MRI there was cerebellar and brainstem atrophy. Individual 2 (Arg99Leu / 14y) had severe DD and ID (IQ of 23), epilepsy and upon MRI cerebellar hypoplasia. This subject did not exhibit microcephaly. Common facial features incl. broad nose, full cheeks, small philtrum, strabismus, thin upper lips and abnormal jaw. There was no evidence of systemic involvement in both.

ARF3 encodes ADP-ribosylation factor 3. Adenosine diphosphate ribosylation factors (ARFs) are key proteins for regulation of cargo sorting at the Golgi network, with ARF3 mainly working at the trans-Golgi network. ARFs belong to the small GTP-binding protein (G protein) superfamily. ARF3 switches between an active GTP-bound form and an inactive GDP-bound form, regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) respectively.

Members of the ARF superfamily regulate various aspects of membrane traffic, among others in neurons.

There are 5 homologs of ARF families, divided in 3 classes. ARF3 and ARF1 belong to class I. Monoallelic ARF1 mutations are associated with Periventricular nodular heterotopia 8 (MIM 618185).

In vivo, in vitro and in silico studies for the 2 variants suggest that both impair the Golgi transport system although each variant most likely exerts a different effect (gain-of-function for Arg99Leu vs loss-of-function/dominant-negative for Asp67Val).

This was also reflected in somewhat different phenotype of the subjects with the respective variants. Common features included severe DD, epilepsy and brain abnormalities although Asp67Val was associated with diffuse brain atrophy as well as congenital microcephaly and Arg99Leu with cerebellar hypoplasia.

Evidence to support the effect of each variant include:

Arg99Leu:
Had identical Golgi localization to that of wt
Had increased binding activity with GGA1, a protein recruited by the GTP-bound active form of ARF3 to the TGN membrane (supporting GoF)
In silico structural analysis suggested it may fail to stabilize the conformation of Asp26, resulting in impaired GTP hydrolysis (GoF).
In transgenic fruit flies, evaluation of the ARF3 variant toxicity using the rough eye phenotype this variant was associated with increased severity of the r-e phenotype similar to a previously studied GoF variant (Gln71Leu)

Asp67Val:
Did not show a Golgi-like pattern of localization (similar to Thr31Asn a previously studied dominant-negative variant)
Displayed decreased protein stability
In silico structural analysis suggested that Asp67Val may lead to compromised binding of GTP or GDP (suggestive of LoF)
In transgenic Drosophila eye-specific expression of Asp67Val (similar to Thr31Asn, a known dominant-negative variant) was lethal possibly due to high toxicity in very small amounts in tissues outside the eye.

There is no associated phenotype in OMIM, G2P or SysID.
Sources: Literature
Mendeliome v0.8825 PLXNA2 Zornitza Stark Gene: plxna2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8825 PLXNA2 Zornitza Stark Classified gene: PLXNA2 as Amber List (moderate evidence)
Mendeliome v0.8825 PLXNA2 Zornitza Stark Gene: plxna2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8824 PLXNA2 Zornitza Stark gene: PLXNA2 was added
gene: PLXNA2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLXNA2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PLXNA2 were set to 34327814
Phenotypes for gene: PLXNA2 were set to Intellectual disability; Abnormality of the face; Failure to thrive; Abnormal heart morphology
Review for gene: PLXNA2 was set to AMBER
Added comment: Altuame et al (2021 - PMID: 34327814) describe 3 individuals from 2 consanguineous Arab families with biallelic PLXNA2 variants.

The index patient from the 1st family presented with CHD (hypoplastic right ventricle, ASD), DD and moderate ID (IQ of 40), failure to thrive as well as some dysmorphic features (obtuse mandibular angle, mild overbite, synophrys with downslanting p-f, strabismus, etc). There were additional features (eg. postaxial polydactyly) which were found in other affected and unaffected family members.

Exome sequencing with autozygome analysis revealed homozygosity for a PLXNA2 stopgain variant (NM_025179:c.3603C>A / p.(Cys1201*)).

Sanger confirmation was carried out and segregation analyses confirmed carrier status of the unaffected parents and a sib as well as a brother homozygous for the same variant. Clinical evaluation of the latter, following this finding revealed borderline intellectual functioning, ADHD, failure to thrive. There was no mandibular anomaly or overbite and no clinical evidence of CHD (no echo performed).

The index patient from the 2nd consanguineous family was evaluated for ID (IQ of 63), with previous borderline motor development, ADHD and some dysmorphic features (obtuse mandibular angle and overbite). There was no clinical evidence of CHD (no echo performed).

Exome sequencing with autozygosity mapping revealed a homozygous missense PLXNA2 variant (c.3073G>A / p.(Asp1025Asn), present only once in gnomAD (htz), with rather non-concordant in silico predictions SIFT 0.22, PolyPhen 0.682 and CADD 23.5. The aa was however highly conserved.

Segregation analysis confirmed carrier state of the parents and 2 unaffected sibs, with a 3rd sib homozygous for the wt allele.

As the authors discuss:
*PLXNA2 belongs to the plexin family of genes, encoding transmbembrane proteins functioning as semaphorin receptors. It has predominant expression in neural tissue. The protein is thought to bind semaphorin-3A, -3C or -5 followed by plexin A2 dimerization, activation of its GTPase-activating protein domain, negative regulation of Rap1B GTPase and initiation of a signal transduction cascade mediating axonal repulsion/guidance, dendritic guidance, neuronal migration.
*Murine Plxna2 knockout models display structural brain defects. In addition they display congenital heart defects incl. persistent truncus arteriosus and interrupted aortic arch.
*Rare CNVs in adult humans with tetralogy of Fallot have suggested a potential role of PLXNA2 in cardiac development and CHD.
*Expression and the role of PLXNA2 in human chondrocytes as well as a GWAS in 240 japanese patients with mandibular prognathism where PLXNA2 was suggested as a susceptibility locus.

Overall, the authors recognize some common features (as for cognitive functioning, some dysmorphic features incl. obtuse mandibular angle and overbite in 2 unrelated subjects, failure to thrive 3/3) and provide plausible explanations for the variability / discordance of others eg:
- Cyanotic heart disease explaining discordance in cognitive outcome among sibs
- Incomplete penetrance for CHD (and/or ID or mandibular anomaly) as for few AR disorders and/or
- Additional pathogenic variants possibly explaining the CHD in the first subject.

There is no associated phenotype in OMIM or G2P. SysID includes PLXNA2 among the candidate ID genes.
Sources: Literature
Mendeliome v0.8808 VPS50 Zornitza Stark Gene: vps50 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8808 VPS50 Zornitza Stark Classified gene: VPS50 as Amber List (moderate evidence)
Mendeliome v0.8808 VPS50 Zornitza Stark Gene: vps50 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8807 VPS50 Zornitza Stark gene: VPS50 was added
gene: VPS50 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: VPS50 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: VPS50 were set to 34037727
Phenotypes for gene: VPS50 were set to Neonatal cholestatic liver disease; Failure to thrive; Profound global developmental delay; Postnatal microcephaly; Seizures; Abnormality of the corpus callosum
Review for gene: VPS50 was set to AMBER
Added comment: Schneeberger et al (2021 - PMID: 34037727) describe the phenotype of 2 unrelated individuals with biallelic VPS50 variants.

Common features included transient neonatal cholestasis, failure to thrive, severe DD with failure to achieve milestones (last examination at 2y and 2y2m respectively), postnatal microcephaly, seizures (onset at 6m and 25m) and irritability. There was corpus callosum hypoplasia on brain imaging.

Both individuals were homozygous for variants private to each family (no/not known consanguinity applying to each case). The first individual was homozygous for a splicing variant (NM_017667.4:c.1978-1G>T) and had a similarly unaffected sister deceased with no available DNA for testing. The other individual was homozygous for an in-frame deletion (c.1823_1825delCAA / p.(Thr608del)).

VPS50 encodes a critical component of the endosome-associated recycling protein (EARP) complex, which functions in recycling endocytic vesicles back to the plasma membrane [OMIM based on Schindler et al]. The complex contains VPS50, VPS51, VPS52, VPS53, the three latter also being components of GARP (Golgi-associated-retrograde protein) complex. GARP contains VPS54 instead of VPS50 and is required for trafficking of proteins to the trans-golgi network. Thus VPS50 (also named syndetin) and VPS54 function in the EARP and GARP complexes, to define directional movement of their endocytic vesicles [OMIM based on Schindler et al]. The VPS50 subunit is required for recycling of the transferrin receptor.

As discussed by Schneeberger et al (refs provided in text):
- VPS50 has a high expression in mouse and human brain as well as throughout mouse brain development.
- Mice deficient for Vps50 have not been reported. vps50 knockdown in zebrafish results in severe developmental defects of the body axis. Knockout mice for other proteins of the EARP/GARP complex (e.g. Vps52, 53 and 54) display embryonic lethality.

Studies performed by Schneeberger et al included:
- Transcript analysis for the 1st variant demonstrated skipping of ex21 (in patient derived fabriblasts) leading to an in frame deletion of 81 bp (r.1978_2058del) with predicted loss of 27 residues (p.Leu660_Leu686del).
- Similar VPS50 mRNA levels but significant reduction of protein levels (~5% and ~8% of controls) were observed in fibroblasts from patients 1 and 2. Additionally, significant reductions in the amounts of VPS52 and VPS53 protein levels were observed despite mRNA levels similar to controls. Overall, this suggested drastic reduction of functional EARP complex levels.
- Lysosomes appeared to have similar morphology, cellular distribution and likely unaffected function in patient fibroblasts.
- Transferrin receptor recycling was shown to be delayed in patient fibroblasts suggestive of compromise of endocytic-recycling function.

As the authors comment, the phenotype of both individuals with biallelic VPS50 variants overlaps with the corresponding phenotype reported in 15 subjects with biallelic VPS53 or VPS51 mutations notably, severe DD/ID, microcephaly and early onset epilepsy, CC anomalies. Overall, for this group, they propose the term "GARP and/or EARP deficiency disorders".

There is no VPS50-associated phenotype in OMIM or G2P. SysID includes VPS50 among the ID candidate genes.
Sources: Literature
Mendeliome v0.8791 LAMB3 Zornitza Stark Phenotypes for gene: LAMB3 were changed from Epidermolysis bullosa, junctional, Herlitz type, MIM# 226700; Epidermolysis bullosa, junctional, non-Herlitz type, MIM# 226650 to Amelogenesis imperfecta, type IA, MIM# 104530; Epidermolysis bullosa, junctional, Herlitz type, MIM# 226700; Epidermolysis bullosa, junctional, non-Herlitz type, MIM# 226650
Mendeliome v0.8790 LAMB3 Zornitza Stark Publications for gene: LAMB3 were set to 11023379; 7706760
Mendeliome v0.8789 LAMB3 Zornitza Stark Mode of inheritance for gene: LAMB3 was changed from BIALLELIC, autosomal or pseudoautosomal to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.8788 LAMB3 Zornitza Stark edited their review of gene: LAMB3: Changed publications: 11023379, 7706760, 23958762, 7706760, 23632796, 26502894, 27220909, 25769099, 24494736; Changed phenotypes: Amelogenesis imperfecta, type IA, MIM# 104530, Epidermolysis bullosa, junctional, Herlitz type, MIM# 226700, Epidermolysis bullosa, junctional, non-Herlitz type, MIM# 226650; Changed mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.8773 SP110 Zornitza Stark Phenotypes for gene: SP110 were changed from to Hepatic veno-occlusive disease with immunodeficiency MIM#235550; Hepatic veno-occlusive disease; susceptibility to Pneumocystis jirovecii pneumonia; cytomegalovirus; thrombocytopaenia; hepatosplenomegaly; cerebrospinal leukodystrophy; memory T/B cell deficiency; low Ig levels; absent tissue plasma cells; absent lymph node germinal centers; hypogammaglobulinaemia
Mendeliome v0.8767 SPINK5 Danielle Ariti reviewed gene: SPINK5: Rating: ; Mode of pathogenicity: None; Publications: 33534181, 20657595; Phenotypes: Netherton syndrome MIM# 256500, Low switched and non-switched B cells, High IgE and IgA, Antibody variably decreased, Congenital ichthyosis, bamboo hair, atopic diathesis, increased bacterial infections, failure to thrive, food allergies; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8767 SP110 Danielle Ariti reviewed gene: SP110: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301448, 31721003; Phenotypes: Hepatic veno-occlusive disease with immunodeficiency MIM#235550, Hepatic veno-occlusive disease, susceptibility to Pneumocystis jirovecii pneumonia, cytomegalovirus, thrombocytopaenia, hepatosplenomegaly, cerebrospinal leukodystrophy, memory T/B cell deficiency, low Ig levels, absent tissue plasma cells, absent lymph node germinal centers, hypogammaglobulinaemia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8749 AMBN Zornitza Stark Marked gene: AMBN as ready
Mendeliome v0.8749 AMBN Zornitza Stark Gene: ambn has been classified as Green List (High Evidence).
Mendeliome v0.8749 AMBN Zornitza Stark Phenotypes for gene: AMBN were changed from to Amelogenesis imperfecta, type IF MIM#616270
Mendeliome v0.8748 AMBN Zornitza Stark Publications for gene: AMBN were set to
Mendeliome v0.8747 AMBN Zornitza Stark Mode of inheritance for gene: AMBN was changed from Unknown to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8746 AMBN Zornitza Stark reviewed gene: AMBN: Rating: GREEN; Mode of pathogenicity: None; Publications: 24858907, 26502894, 31402633, 30174330; Phenotypes: Amelogenesis imperfecta, type IF MIM#616270; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8734 COLGALT1 Bryony Thompson gene: COLGALT1 was added
gene: COLGALT1 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: COLGALT1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COLGALT1 were set to 30412317; 33709034; 31759980
Phenotypes for gene: COLGALT1 were set to Brain small vessel disease 3 MIM#618360
Review for gene: COLGALT1 was set to GREEN
Added comment: 3 unrelated cases with biallelic variants, and supporting functional assays. The main features of the cases were porencephalic cysts, leukoencephalopathy, lacunar infarcts, cerebral microbleeds/haemorrhages and calcifications. A null mouse model was embryonic lethal, but had defects in the vascular networks of the embryos.
Sources: Other
Mendeliome v0.8733 JAKMIP1 Seb Lunke Gene: jakmip1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8733 JAKMIP1 Seb Lunke Classified gene: JAKMIP1 as Amber List (moderate evidence)
Mendeliome v0.8733 JAKMIP1 Seb Lunke Gene: jakmip1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8732 JAKMIP1 Seb Lunke gene: JAKMIP1 was added
gene: JAKMIP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: JAKMIP1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: JAKMIP1 were set to 29158550; 26627310; 27799067
Phenotypes for gene: JAKMIP1 were set to Intellectual disability; Seizures
Review for gene: JAKMIP1 was set to AMBER
Added comment: Identified in two independent patients in the literature with a mouse model.

Patient 1 (27799067) with developmental delay, speech delay, and cognitive impairment; self-injurious and aggressive behaviour, seizures, dysmorphic features. De-novo missense JAKMIP1 (p.D586H).

Patient 2 (29158550) with feeding difficulties, hypotonia, epilepsy, severe ID, no active speech, kyphoscoliosis, constipation, autism, short stature. Splice variant c.1432-2A>G, no segregation or RNA data available.

KO mouse model (27799067) displays social deficits, stereotyped activity, abnormal postnatal vocalizations, and other autistic-like behaviors.
Sources: Literature
Mendeliome v0.8696 CD19 Zornitza Stark changed review comment from: More than 5 unrelated families reported.; to: More than 5 unrelated families reported. Clinical features include increased susceptibility to infection, hypogammaglobulinaemia, and normal numbers of mature B cells in blood, indicating a B-cell antibody-deficient immunodeficiency disorder.
Mendeliome v0.8686 OTX2 Zornitza Stark edited their review of gene: OTX2: Added comment: Three families reported with variants in OTX2 and otocyephaly-dysgnathia. Note variants were inherited in two of the families: in one family, from mother with microphthalmia (recognised OTX2 phenotype) and the other from an unaffected father. Lamb animal model reported.; Changed publications: 24167467, 25589041, 31969185; Changed phenotypes: Microphthalmia, syndromic 5, MIM# 610125, Pituitary hormone deficiency, combined, 6, MIM# 613986, Retinal dystrophy, early-onset, with or without pituitary dysfunction, MIM# 610125, Otocephaly-dysgnathia complex
Mendeliome v0.8657 ACAN Zornitza Stark edited their review of gene: ACAN: Added comment: Patients with SSOAD exhibit a broad phenotypic spectrum involving short stature associated with advanced bone maturation and early-onset osteoarthritis (OA), as well as mild dysmorphic features consisting of midface hypoplasia, brachydactyly, broad great toes, and lumbar lordosis. Other features include intervertebral disc disease and osteochondritis dissecans, which is characterized by separation of articular cartilage and subchondral bone from the articular surface. Phenotypes are highly variable even among patients within the same family, and there are no apparent genotype-phenotype correlations.

Well established gene-disease association, multiple families reported.

Note fewer families reported with bi-allelic variants in this gene and extreme short stature.; Changed publications: 24762113, 27870580, 19110214, 30124491, 28331218, 20137779; Changed phenotypes: Short stature and advanced bone age, with or without early-onset osteoarthritis and/or osteochondritis dissecans, OMIM# 165800, Spondyloepimetaphyseal dysplasia, aggrecan type 612813
Mendeliome v0.8654 NFKB2 Zornitza Stark Phenotypes for gene: NFKB2 were changed from to Immunodeficiency, common variable, 10 MIM# 615577; Low serum IgG, IgA, IgM; low B cell numbers; low switched memory B cells; Recurrent sinopulmonary infections, Alopecia; endocrinopathies; ACTH deficiency
Mendeliome v0.8648 MCM4 Zornitza Stark Gene: mcm4 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8648 MCM4 Zornitza Stark Phenotypes for gene: MCM4 were changed from to Immunodeficiency 54 MIM# 609981; Decreased NK cell number and function; Viral infections (EBV, HSV, VZV); Short stature; B cell lymphoma; Adrenal failure; Failure to thrive; Microcephaly; Increased chromosomal breakage; Hyperpigmentation; Lymphadenopathy
Mendeliome v0.8645 MCM4 Zornitza Stark Classified gene: MCM4 as Amber List (moderate evidence)
Mendeliome v0.8645 MCM4 Zornitza Stark Gene: mcm4 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8644 MCM4 Zornitza Stark reviewed gene: MCM4: Rating: AMBER; Mode of pathogenicity: None; Publications: 22354167, 22354170, 22499342; Phenotypes: Immunodeficiency 54 MIM# 609981, Decreased NK cell number and function, Viral infections (EBV, HSV, VZV), Short stature, B cell lymphoma, Adrenal failure, Failure to thrive, Microcephaly, Increased chromosomal breakage, Hyperpigmentation, Lymphadenopathy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8644 MAP3K14 Zornitza Stark Phenotypes for gene: MAP3K14 were changed from to NIK deficiency; Poor T cell proliferation to antigen; Low B-cell numbers; Low NK number and function; recurrent bacterial/viral/ cryptosporidium infections; hypogammaglobulinaemia; decreased immunoglobulin levels
Mendeliome v0.8641 MAP3K14 Zornitza Stark reviewed gene: MAP3K14: Rating: GREEN; Mode of pathogenicity: None; Publications: 10319865, 11238593, 12352969; Phenotypes: NIK deficiency, Poor T cell proliferation to antigen, Low B-cell numbers, Low NK number and function, recurrent bacterial/viral/ cryptosporidium infections, hypogammaglobulinaemia, decreased immunoglobulin levels; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8641 LRBA Zornitza Stark Phenotypes for gene: LRBA were changed from to Immunodeficiency, common variable, 8, with autoimmunity MIM# 614700; Normal-decreased CD4 numbers; T cell dysregulation; Low-normal B cells; Reduced IgG and IgA; Recurrent infections; chronic diarrhoea; inflammatory bowel disease; hypogammaglobulinaemia; pneumonitis; autoimmune disorders; thrombocytopaenia
Mendeliome v0.8638 LRBA Zornitza Stark reviewed gene: LRBA: Rating: GREEN; Mode of pathogenicity: None; Publications: 22608502, 22721650, 25468195, 26206937, 33155142; Phenotypes: Immunodeficiency, common variable, 8, with autoimmunity MIM# 614700, Normal-decreased CD4 numbers, T cell dysregulation, Low-normal B cells, Reduced IgG and IgA, Recurrent infections, chronic diarrhoea, inflammatory bowel disease, hypogammaglobulinaemia, pneumonitis, autoimmune disorders, thrombocytopaenia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8638 NFKB2 Danielle Ariti reviewed gene: NFKB2: Rating: GREEN; Mode of pathogenicity: None; Publications: 24140114, 24888602, 25524009, 31417880; Phenotypes: Immunodeficiency, common variable, 10 MIM# 615577, Low serum IgG, IgA, IgM, low B cell numbers, low switched memory B cells, Recurrent sinopulmonary infections, Alopecia, endocrinopathies, ACTH deficiency; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8634 RNF2 Zornitza Stark reviewed gene: RNF2: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Lou-Schoch-Yamamoto syndrome , MIM#619460; Mode of inheritance: None
Mendeliome v0.8632 GIMAP5 Zornitza Stark gene: GIMAP5 was added
gene: GIMAP5 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: GIMAP5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GIMAP5 were set to 33956074
Phenotypes for gene: GIMAP5 were set to Portal hypertension, noncirrhotic, 2, MIM# 619463
Review for gene: GIMAP5 was set to GREEN
Added comment: 8 individuals from 4 unrelated families reported with onset of disease in the first decade of life. Clinical features included jaundice, hyperbilirubinaemia, pancytopaenia, including neutropaenia, lymphopaenia, and thrombocytopaenia, hepatosplenomegaly, and oesophageal varices. Some individuals had recurrent infections or features suggestive of an immunodeficiency. Liver biopsy was notable for the absence of cirrhosis and the presence of nodular regeneration.
Sources: Expert list
Mendeliome v0.8629 IL7R Zornitza Stark Phenotypes for gene: IL7R were changed from to Severe combined immunodeficiency, T-cell negative, B-cell/natural killer cell-positive type MIM# 608971; fever; rash; failure to thrive; recurrent respiratory and gastric infections; diarrhoea; lymphadenopathy; pneumonitis; Pancytopaenia; low T-cell numbers; decreased immunoglobulins; normal-high B/NK-cell numbers.
Mendeliome v0.8626 MALT1 Zornitza Stark Phenotypes for gene: MALT1 were changed from to Immunodeficiency 12 MIM# 615468; poor T-cell proliferation; normal T/B cell numbers; poor specific antibody response; recurrent bacterial/fungal/viral infections; bronchiectasis; failure to thrive
Mendeliome v0.8623 IL2RG Zornitza Stark Phenotypes for gene: IL2RG were changed from to Combined immunodeficiency, X-linked, moderate MIM# 312863; Severe combined immunodeficiency, X-linked MIM# 300400; recurrent viral/fungal/bacterial infections; Low T/NK cells; Low Ig levels; lymphocytopaenia; hypogammaglobulinaemia; failure to thrive; diarrhoea; Pneumonia; Thymic hypoplasia
Mendeliome v0.8620 IL2RG Zornitza Stark reviewed gene: IL2RG: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301584, 8462096, 8401490, 7883965, 9399950; Phenotypes: Combined immunodeficiency, X-linked, moderate MIM# 312863, Severe combined immunodeficiency, X-linked MIM# 300400, recurrent viral/fungal/bacterial infections, Low T/NK cells, Low Ig levels, lymphocytopaenia, hypogammaglobulinaemia, failure to thrive, diarrhoea, Pneumonia, Thymic hypoplasia; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.8620 IKZF1 Zornitza Stark Phenotypes for gene: IKZF1 were changed from to Immunodeficiency, common variable, 13 MIM# 616873; recurrent bacterial respiratory infections; Thrombocytopaenia; immunodeficiency; Hypogammaglobulinaemia; decrease B-cells; decrease B-cell differentiation; decrease memory B/T cells; Low Ig; pneumocystis early CID onset
Mendeliome v0.8617 IKZF1 Zornitza Stark reviewed gene: IKZF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21548011, 26981933, 29889099, 31057532, 7923373, 11805317; Phenotypes: Immunodeficiency, common variable, 13 MIM# 616873, recurrent bacterial respiratory infections, Thrombocytopaenia, immunodeficiency, Hypogammaglobulinaemia, decrease B-cells, decrease B-cell differentiation, decrease memory B/T cells, Low Ig, pneumocystis early CID onset; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8617 ITK Zornitza Stark Phenotypes for gene: ITK were changed from to Lymphoproliferative syndrome 1 MIM# 613011; Lymphadenopathy; Recurrent infections; Hypogammaglobulinaemia; Evidence of EBV infection; EBV associated B cell Lymphoproliferation; High EBV viral load; Normal-low serum Ig; Depleted CD4+ T cells; Anaemia; Thrombocytopaenia; Hepatosplenomegaly
Mendeliome v0.8614 IL7R Danielle Ariti reviewed gene: IL7R: Rating: GREEN; Mode of pathogenicity: None; Publications: 9843216, 19890784, 26123418, 11023514, 7964471; Phenotypes: Severe combined immunodeficiency, T-cell negative, B-cell/natural killer cell-positive type MIM# 608971, fever, rash, failure to thrive, recurrent respiratory and gastric infections, diarrhoea, lymphadenopathy, pneumonitis, Pancytopaenia, low T-cell numbers, decreased immunoglobulins, normal-high B/NK-cell numbers.; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8614 ITK Danielle Ariti reviewed gene: ITK: Rating: GREEN; Mode of pathogenicity: None; Publications: 19425169, 22289921, 25061172, 26056787, 9311799, 10213685; Phenotypes: Lymphoproliferative syndrome 1 MIM# 613011, Lymphadenopathy, Recurrent infections, Hypogammaglobulinaemia, Evidence of EBV infection, EBV associated B cell Lymphoproliferation, High EBV viral load, Normal-low serum Ig, Depleted CD4+ T cells, Anaemia, Thrombocytopaenia, Hepatosplenomegaly; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8614 MALT1 Danielle Ariti reviewed gene: MALT1: Rating: AMBER; Mode of pathogenicity: None; Publications: 23727036, 24332264, 14576442, 31037583; Phenotypes: Immunodeficiency 12 MIM# 615468, poor T-cell proliferation, normal T/B cell numbers, poor specific antibody response, recurrent bacterial/fungal/viral infections, bronchiectasis, failure to thrive; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8586 TP73 Ee Ming Wong changed review comment from: - Seven individuals from five unrelated families homozygous for TP73 variants (includes 1x large deletion, 1x splice variant, 1x frameshift and 2x nonsense variants)
- Epithelial cells from TP73 variant carriers showed reduced number of ciliated cells and shortened cilia resulting in abnormal ciliary clearance of the airways compared to healthy controls; to: - Seven individuals from five unrelated families homozygous for TP73 variants (includes 1x large deletion, 1x splice variant, 1x frameshift and 2x nonsense variants)
- In vitro ciliogenesis experiments demonstrated that epithelial cells from TP73 variant carriers had reduced number of ciliated cells and shortened cilia resulting in abnormal ciliary clearance of the airways compared to healthy controls
Mendeliome v0.8586 HMGB1 Ain Roesley changed review comment from: 1x de novo fs, no functional studies done but cited Itou 2011 - mouse and zebrafish studies demonstrated the role of HMGB1 in regulating digit number during embryonic limb development
Sources: Literature; to: 1x de novo fs in a proband with severe mirror image foot polydactyly. No functional studies done but cited Itou 2011 - mouse and zebrafish studies demonstrated the role of HMGB1 in regulating digit number during embryonic limb development
Sources: Literature
Mendeliome v0.8586 HMGB1 Ain Roesley gene: HMGB1 was added
gene: HMGB1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HMGB1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HMGB1 were set to 34159400
Phenotypes for gene: HMGB1 were set to Mirror image foot polydactyly
Penetrance for gene: HMGB1 were set to unknown
Review for gene: HMGB1 was set to RED
Added comment: 1x de novo fs, no functional studies done but cited Itou 2011 - mouse and zebrafish studies demonstrated the role of HMGB1 in regulating digit number during embryonic limb development
Sources: Literature
Mendeliome v0.8583 PRDX3 Hazel Phillimore changed review comment from: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex.
Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres.
The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote of a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism.
The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense.
Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity.
PRXD3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated.
Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species.
In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress.
Sources: Literature; to: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex.
Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres.
The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote with a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism.
The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense.
Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity.
PRDX3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated.
Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species.
In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress.
Sources: Literature
Mendeliome v0.8583 PRDX3 Hazel Phillimore gene: PRDX3 was added
gene: PRDX3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRDX3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PRDX3 were set to PMID: 33889951
Phenotypes for gene: PRDX3 were set to cerebellar ataxia (early onset, mild to moderate, progressive)
Penetrance for gene: PRDX3 were set to unknown
Review for gene: PRDX3 was set to GREEN
Added comment: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex.
Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres.
The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote of a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism.
The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense.
Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity.
PRXD3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated.
Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species.
In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress.
Sources: Literature
Mendeliome v0.8577 EIF4A3 Zornitza Stark Phenotypes for gene: EIF4A3 were changed from to Robin sequence with cleft mandible and limb anomalies, MIM# 268305; Richieri-Costa-Pereira syndrome
Mendeliome v0.8574 EIF4A3 Zornitza Stark reviewed gene: EIF4A3: Rating: GREEN; Mode of pathogenicity: None; Publications: 24360810; Phenotypes: Robin sequence with cleft mandible and limb anomalies, MIM# 268305, Richieri-Costa-Pereira syndrome; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8571 PDCL3 Zornitza Stark Gene: pdcl3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8571 PDCL3 Zornitza Stark Classified gene: PDCL3 as Amber List (moderate evidence)
Mendeliome v0.8571 PDCL3 Zornitza Stark Gene: pdcl3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8570 PDCL3 Zornitza Stark gene: PDCL3 was added
gene: PDCL3 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: PDCL3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PDCL3 were set to 32621347
Phenotypes for gene: PDCL3 were set to Megacystis-microcolon
Review for gene: PDCL3 was set to AMBER
Added comment: Single publication (PMID 32621347): one family with two affected fetuses - one with megacystis and microcolon, and the other with megacystisis and bilateral diaphragmatic hernia (prune-belly phenotype). Compound het LOF variants in PDCL3 (one frameshift and one missense). Complete absence of PDLC3 expression demonstrated in one of the affected fetuses. No homozygous LOF PDCL3 variants in gnomAD. PCDL3 negatively modulates actin folding and is strongly expressed in smooth muscle of bladder and colon.
Sources: Expert Review
Mendeliome v0.8569 SGO1 Zornitza Stark Gene: sgo1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8566 SGO1 Zornitza Stark Classified gene: SGO1 as Amber List (moderate evidence)
Mendeliome v0.8566 SGO1 Zornitza Stark Gene: sgo1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8565 SGO1 Zornitza Stark reviewed gene: SGO1: Rating: AMBER; Mode of pathogenicity: None; Publications: 25282101; Phenotypes: Chronic atrial and intestinal dysrhythmia, MIM# 616201; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8550 ZNF687 Ain Roesley reviewed gene: ZNF687: Rating: AMBER; Mode of pathogenicity: None; Publications: 26849110, 29493781, 32106343; Phenotypes: Paget disease of bone 6, MIM#616833; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.8547 LAMTOR2 Zornitza Stark Gene: lamtor2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8544 LAMTOR2 Zornitza Stark Classified gene: LAMTOR2 as Amber List (moderate evidence)
Mendeliome v0.8544 LAMTOR2 Zornitza Stark Gene: lamtor2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8543 LAMTOR2 Zornitza Stark reviewed gene: LAMTOR2: Rating: AMBER; Mode of pathogenicity: None; Publications: 17195838, 24092934; Phenotypes: Immunodeficiency due to defect in MAPBP-interacting protein, MIM# 610798; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8543 IKZF3 Zornitza Stark Gene: ikzf3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8543 IKZF3 Zornitza Stark Classified gene: IKZF3 as Amber List (moderate evidence)
Mendeliome v0.8543 IKZF3 Zornitza Stark Gene: ikzf3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8542 IKZF3 Zornitza Stark gene: IKZF3 was added
gene: IKZF3 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: IKZF3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: IKZF3 were set to 34155405
Phenotypes for gene: IKZF3 were set to Immunodeficiency 84, MIM# 619437
Review for gene: IKZF3 was set to AMBER
Added comment: Single family reported where heterozygous missense variant in this gene segregated with immunodeficiency in a mother and two children. Findings included low levels of B cells and impaired early B-cell development, variable T-cell abnormalities, hypogammaglobulinaemia, increased susceptibility to infection with Epstein-Barr virus (EBV). One individual developed lymphoma in adulthood. Mouse model recapitulated phenotype.
Sources: Expert Review
Mendeliome v0.8538 LCK Zornitza Stark Gene: lck has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8538 LCK Zornitza Stark Phenotypes for gene: LCK were changed from to Immunodeficiency 22 MIM# 615758; Recurrent infections; Immune dysregulation; autoimmunity; Low CD4+; low CD8+; restricted T cell repertoire; poor TCR signaling; Normal IgG/IgA; high IgM; failure to thrive; diarrhoea; lymphopaenia; hypogammaglobulinaemia; anaemia; thrombocytopaenia; CD4+ T-cell lymphopaenia
Mendeliome v0.8535 LCK Zornitza Stark Classified gene: LCK as Amber List (moderate evidence)
Mendeliome v0.8535 LCK Zornitza Stark Gene: lck has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8534 LCK Zornitza Stark Classified gene: LCK as Amber List (moderate evidence)
Mendeliome v0.8534 LCK Zornitza Stark Gene: lck has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8533 LCK Zornitza Stark reviewed gene: LCK: Rating: AMBER; Mode of pathogenicity: None; Publications: 22985903, 1579166, 11021796; Phenotypes: Immunodeficiency 22 MIM# 615758, Recurrent infections, Immune dysregulation, autoimmunity, Low CD4+, low CD8+, restricted T cell repertoire, poor TCR signaling, Normal IgG/IgA, high IgM, failure to thrive, diarrhoea, lymphopenia, hypogammaglobulinemia, anaemia, thrombocytopaenia, CD4+ T-cell lymphopenia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8522 SYNCRIP Zornitza Stark gene: SYNCRIP was added
gene: SYNCRIP was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SYNCRIP was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SYNCRIP were set to 34157790; 30504930; 27479843; 23020937
Phenotypes for gene: SYNCRIP were set to Global developmental delay; Intellectual disability; Autism; Myoclonic atonic seizures; Abnormality of nervous system morphology
Review for gene: SYNCRIP was set to GREEN
Added comment: Semino et al (2021 - PMID: 34157790) provide clinical details on 3 unrelated individuals with de novo SYNCRIP variants and provide a review of 5 additional subjects previously identified within large cohorts in the literature and databases.

Features included DD, ID (7/7 for whom this information was available), ASD or autistic features (4/7). MRI abnormalities were observed in 3 (widening of CSF spaces, periventricular nodular heterotopia, prominent lat. ventricles). Epilepsy (myoclonic-astatic epilepsy / Doose syndrome) was reported for 2(/8) individuals.

The 3 patients here reported were identified following trio/singleton exome with Sanger confirmation of the variants and their de novo occurrence.

Variants are in almost all cases de novo (7/7 for whom this was known) and in 5/8 cases were pLoF, in 2/8 missense SNVs while a case from DECIPHER had a 77.92 kb whole gene deletion not involving other genes with unknown inheritance.

Overall the variants reported to date include [NM_006372.5]:
1 - c.858_859del p.(Gly287Leufs*5)
2 - c.854dupA p.(Asn285Lysfs*8)
3 - c.734T>C p.(Leu245Pro)
4 - chr6:85605276-85683190 deletion (GRCh38)
5 - c.629T>C p.(Phe210Ser)
6 - c.1573_1574delinsTT p.(Gln525Leu)
7 - c.1247_1250del p.(Arg416Lysfs*145)
8 - c.1518_1519insC p.(Ala507Argfs*14)

[P1-3: this report, P4: DECIPHER 254774, P5-6: Guo et al 2019 - PMID: 30504930, P7: Lelieveld et al 2016 - PMID: 27479843, P8: Rauch et al 2012 - PMID: 23020937 / all other Refs not here reviewed, clinical details summarized by Semino et al in table 1]

SYNCRIP (also known as HNRNPQ) encodes synaptotagmin‐binding cytoplasmic RNA‐interacting protein. As the authors note, this RNA-binding protein is involved in multiple pathways associated with neuronal/muscular developmental disorders. Several references are provided for its involvement in regulation of RNA metabolism, among others sequence recognition, pre-mRNA splicing, translation, transport and degradation.

Mutations in other RNA-interacting proteins and hnRNP members (e.g. HNRNPU, HNRNPD) are associated with NDD.

The missense variant (p.Leu245Pro) is within RRM2 one of the 3 RNA recognition motif (RRM) domains of the protein. These 3 domains, corresponding to the central part of the protein (aa 150-400), are relatively intolerant to variation (based on in silico predictions and/or variation in gnomAD). Leu245 localizes within an RNA binding pocket and in silico modeling suggests alteration of the tertiary structure and RNA-binding capacity of RRM2.

There are no additional studies performed.

Overall haploinsufficiency appears to be the underlying disease mechanism based on the truncating variants and the gene deletion. [pLI in gnomAD : 1, %HI : 2.48%]

Animal models are not discussed.

There is no associated phenotype in OMIM. This gene is included in the DD panel of G2P (monoallelic LoF variants / SYNCRIP-related developmental disorder). SysID also lists SYNCRIP within the current primary ID genes.
Sources: Literature
Mendeliome v0.8511 CAMK4 Zornitza Stark gene: CAMK4 was added
gene: CAMK4 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: CAMK4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CAMK4 were set to 30262571; 33098801; 33211350
Phenotypes for gene: CAMK4 were set to Intellectual disability; Autism; Behavioral abnormality; Abnormality of movement; Dystonia; Ataxia; Chorea; Myoclonus
Review for gene: CAMK4 was set to GREEN
Added comment: 3 publications by Zech et al (2018, 2020 - PMIDs : 30262571, 33098801, 33211350) provide clinical details on 3 individuals, each harboring a private de novo CAMK4 variant.

Overlapping features included DD, ID, behavoral issues, autism and abnormal hyperkinetic movements. Dystonia and chorea in all 3 appeared 3-20 years after initial symptoms.

CAMK4 encodes Calcium/Calmodulin-dependent protein kinase IV, an important mediator of calcium-mediated activity and dynamics, particularly in the brain. It is involved in neuronal transmission, synaptic plasticity, and neuronal gene expression required for brain development and neuronal homeostasis (summary by OMIM based on Zech et al, 2018).

The 473 aa enzyme has a protein kinase domain (aa 46-300) and a C-terminal autoregulatory domain (aa 305-341) the latter comprising an autoinhibitory domain (AID / aa 305-321) and a calmodulin-binding domain (CBD / aa 322-341) [NP_001735.1 / NM_001744.4 - also used below].

Variants in all 3 subjects were identified following trio-WES and were in all cases protein-truncating, mapping to exon 10 or exon 10-intron 10 junction, expected to escape NMD and cause selective abrogation of the autoinhibitory domain (aa 305-321) leading overall to gain-of-function.

Variation databases include pLoF CAMK4 variants albeit in all cases usptream or downstream of this region (pLI of this gene in gnomAD: 0.51). Variants leading to selective abrogation of the autoregulatory domain have not been reported.

Extensive evidence for the GoF effect of the variant has been provided in the first publication. Several previous studies have demonstrated that abrogation of the AID domain leads to consitutive activation (details below).

Mouse models - though corresponding to homozygous loss of function - support a role for CAMKIV in cognitive and motor symptoms. Null mice display tremulous and ataxic movements, deficiencies in balance and sensorimotor performance associated with reduced number of Purkinje neurons (Ribar et al 2000, PMID: 11069976 - not reviewed). Wei et al (2002, PMID: 12006982 - not reviewed) provided evidence for alteration in hippocampal physiology and memory function.

Heterozygous mutations in other genes for calcium/calmodulin-dependent protein kinases (CAMKs) e.g. CAMK2A/CAMK2B (encoding subunits of CAMKII) have been reported in individuals with ID.

---

The proband in the first publication (PMID: 30262571) was a male with DD, ID, behavioral difficulties (ASD, autoaggression, stereotypies) and hyperkinetic movement disorder (myoclonus, chorea, ataxia) with severe generalized dystonia (onset at the age of 13y). Brain MRI demonstrated cerebellar atrophy.

Extensive work-up incl. karyotyping, CMA, DYT-TOR1A, THAP1, GCH1, SCA1/2/3/6/7/8/12/17, Friedreich's ataxia and FMR1 analysis was negative.F

Trio WES identified a dn splice site variant (c.981+1G>A) in the last exon-intron junction. RT-PCR followed by gel electrophoresis and Sanger in fibroblasts from an affected and control subject revealed that the proband had - as predicted by the type/location of the variant - in equal amount 2 cDNA products, a normal as well as a truncated one.

Sequencing of the shortest revealed utilization of a cryptic donor splice site upstream of the mutated donor leading to a 77bp out-of-frame deletion and introduction of a premature stop codon in the last codon (p.Lys303Serfs*28). Western blot in fibroblast cell lines revealed 2 bands corresponding to the normal protein product as well as to the p.Lys303Serfs*28 although expression of the latter was lower than that of the full length protein.

Several previous studies have shown that mutant CAMKIV species that lack the autoinhibitory domain are consitutively active (several Refs provided). Among others Chatila et al (1996, PMID: 8702940) studied an in vitro-engineered truncation mutant (Δ1-317 - truncation at position 317 of the protein) with functionally validated gain-of-function effect.

To prove enhanced activity of the splicing variant, Zech et al assessed phosphorylation of CREB (cyclic AMP-responsive element binding protein), a downstream substrate of CAMKIV. Immunobloting revealed significant increase of CREB phosphorylation in patient fibroblasts compared to controls. Overactivation of CAMKIV signaling was reversed when cells were treated with STO-609 an inhibitor of CAMKK, the ustream activator of CAMKIV.

Overall the authors demonstrated that loss of CAMKIV autoregulatory domain due to this splice variant had a gain-of-function effect.

----

Following trio-WES, Zech et al (2020 - PMID: 33098801) identified another relevant subject within cohort of 764 individuals with dystonia. This 12-y.o. male, harboring a different variant affecting the same donor site (c.981+1G>T), presented DD, ID, dystonia (onset at 3y) and additional movement disorders (myoclonus, ataxia) as well as similar behavior (ASD, autoaggression, stereotypies). [Details in suppl. p20].

----

Finally Zech et al (2020 - PMID: 33211350) reported on a 24-y.o. woman with adolescence onset choreodystonia. Other features included DD, moderate ID, absence seizures in infancy, OCD with anxiety and later diagnosis of ASD. Trio WES revealed a dn stopgain variant (c.940C>T; p.Gln314*).
Sources: Expert Review
Mendeliome v0.8487 COL25A1 Zornitza Stark edited their review of gene: COL25A1: Added comment: PMID: 2643702 - Patient: 273182 reported in DECIPHER, chet COL25A1 missense variants (listed as Likely Pathogenic). Phenotype includes Duane anomaly of the eye.

PMID: 31875546 - Mouse models, including Col25a1 KO and muscle-specific KO mice showed a significant reduction in the number of motor neurons in the cranial nerve nuclei, including the oculomotor, trochlear, trigeminal, and facial motor nuclei. Abnormalities in motor innervation of muscles of the head, such as the extraocular and masseter muscles, were also observed

PMID: 31875546 - Functional studies in human cell lines showed that the reported COL25A1 variants (G382R and G497X) impaired the interaction of COL25A1 with receptor protein tyrosine phosphatases, thereby reducing the ability to attract motor axons.; Changed rating: GREEN; Changed publications: 25500261, 26486031, 31875546, 26437029
Mendeliome v0.8478 CD40LG Zornitza Stark Phenotypes for gene: CD40LG were changed from to Immunodeficiency, X-linked, with hyper-IgM MIM# 308230; Severe opportunistic infections (recurrent), idiopathic neutropaenia; dysgammaglobulinaemia hepatitis; cholangitis; cholangiocarcinoma; autoimmune blood cytopenias; haemolytic anaemia; thrombocytopaenia; diarrhoea; peripheral neuroectodermal tumours
Mendeliome v0.8468 CD40LG Danielle Ariti reviewed gene: CD40LG: Rating: GREEN; Mode of pathogenicity: None; Publications: 7679801, 7679206, 8094231, 9933119, 15358621, 15997875, 7678782, 7915248, 15367912, 7518839, 16311023, 9933119, 12402041, 7882172, 33475257; Phenotypes: mmunodeficiency, X-linked, with hyper-IgM MIM# 308230, Severe opportunistic infections (recurrent), idiopathic neutropaenia, dysgammaglobulinaemia hepatitis, cholangitis, cholangiocarcinoma, autoimmune blood cytopenias, haemolytic anaemia, thrombocytopaenia, diarrhoea, peripheral neuroectodermal tumours; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.8388 PCDHGC4 Zornitza Stark gene: PCDHGC4 was added
gene: PCDHGC4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PCDHGC4 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PCDHGC4 were set to 34244665
Phenotypes for gene: PCDHGC4 were set to Intellectual disability; Seizures
Review for gene: PCDHGC4 was set to GREEN
Added comment: Eight variants reported in 19 members of nine unreleted families with a neurodevelopmental syndrome. Severe or moderate intellectual disabilty in eight families and seizures in four families. Four of the variants were LoF, in silico analysis of the remaining missense (n=3) and splice variants were predicted to be pathogenic.
Sources: Literature
Mendeliome v0.8316 ADA Zornitza Stark Phenotypes for gene: ADA were changed from to Severe combined immunodeficiency due to ADA deficiency, MIM# 102700; MONDO:0007064
Mendeliome v0.8313 ADA Zornitza Stark reviewed gene: ADA: Rating: GREEN; Mode of pathogenicity: None; Publications: 3007108, 3475710, 8178821, 8227344, 2783588; Phenotypes: Severe combined immunodeficiency due to ADA deficiency, MIM# 102700, MONDO:0007064; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8312 C2orf69 Zornitza Stark gene: C2orf69 was added
gene: C2orf69 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: C2orf69 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: C2orf69 were set to 34038740; 33945503
Phenotypes for gene: C2orf69 were set to Combined oxidative phosphorylation deficiency-53 (COXPD53), MIM#619423
Review for gene: C2orf69 was set to GREEN
Added comment: PMID 34038740: 20 affected children from 8 unrelated families reported, presenting with fatal syndrome consisting of severe autoinflammation and progredient leukoencephalopathy with recurrent seizures; 12 of these subjects, whose DNA was available, segregated homozygous loss-of-function C2orf69 variants. Endogenous C2ORF69 was found to be (1) loosely bound to mitochondria, (2) affects mitochondrial membrane potential and oxidative respiration in cultured neurons, and (3) controls the levels of the glycogen branching enzyme 1 (GBE1) consistent with a glycogen-storage-associated mitochondriopathy. Zebrafish model.

PMID 33945503: 8 individuals from 5 families reported with muscle hypotonia, developmental delay, progressive microcephaly, and brain MRI abnormalities. Age at onset ranged from birth to 6 months of age. Six patients had vision impairment, liver abnormalities, inflammation/inflammatory arthritis, and 5 patients had seizures.
Sources: Literature
Mendeliome v0.8310 NYNRIN Zornitza Stark Gene: nynrin has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8309 NYNRIN Zornitza Stark Classified gene: NYNRIN as Amber List (moderate evidence)
Mendeliome v0.8309 NYNRIN Zornitza Stark Gene: nynrin has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8306 NYNRIN Laura Raiti gene: NYNRIN was added
gene: NYNRIN was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NYNRIN was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NYNRIN were set to PMID: 30885698
Review for gene: NYNRIN was set to AMBER
Added comment: 3 individuals with Wilms Tumour reported (2 children from 1 family, the 3rd child from a second family).
Biallelic truncating mutations in NYNRIN in three children with Wilms Tumour from two families, each parent was heterozygous for one of the mutations.
One of the affected children had an inguinal hernia and another had epilepsy, hypothyroidism, and intellectual disability.
Sources: Literature
Mendeliome v0.8304 ZC3H14 Zornitza Stark edited their review of gene: ZC3H14: Changed rating: AMBER; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8302 RNF2 Zornitza Stark Gene: rnf2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8302 RNF2 Zornitza Stark Classified gene: RNF2 as Amber List (moderate evidence)
Mendeliome v0.8302 RNF2 Zornitza Stark Gene: rnf2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8300 IRX5 Zornitza Stark Gene: irx5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8297 IRX5 Zornitza Stark Classified gene: IRX5 as Amber List (moderate evidence)
Mendeliome v0.8297 IRX5 Zornitza Stark Gene: irx5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8296 IRX5 Zornitza Stark edited their review of gene: IRX5: Changed rating: AMBER
Mendeliome v0.8296 IRX6 Zornitza Stark reviewed gene: IRX6: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: ; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8296 IRX6 Zornitza Stark Gene: irx6 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8296 IRX6 Zornitza Stark Classified gene: IRX6 as Amber List (moderate evidence)
Mendeliome v0.8296 IRX6 Zornitza Stark Gene: irx6 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8292 RNF2 Eleanor Williams gene: RNF2 was added
gene: RNF2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RNF2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: RNF2 were set to 33864376
Phenotypes for gene: RNF2 were set to epilepsy; intellectual disability; intrauterine growth retardation
Review for gene: RNF2 was set to AMBER
Added comment: Not associated with any phenotype in OMIM.

PMID:33864376 (Luo et al 2021) report 2 cases of children with de novo missense variants (p.R70H and p.S82R) in RNF2 and a phenotype of intrauterine growth retardation, severe intellectual disabilities, behavioral problems, seizures, feeding difficulties and dysmorphic features. Seizures started in infancy. Both variants are absent from gnomad. Functional studies in Drosophila showed that the disease-linked variants (p.R70H and p.S82R) behave as LoF alleles.
Sources: Literature
Mendeliome v0.8292 IRX5 Eleanor Williams changed review comment from: Associated with Hamamy syndrome #611174 (AR) in OMIM. Hamamy syndrome is characterised by craniofacial dysmorphism, hearing loss, skeletal anomalies, microcytic hypochromic anemia and congenital heart defects. Severe myopia has also been reported. Homozygous missense variants in IRX5 were reported in 2 families with this condition.

Cone dystrophy
-------------------
PMID: 33891002 - Khol et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments.

Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected.

They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.; to: Associated with Hamamy syndrome #611174 (AR) in OMIM. Hamamy syndrome is characterised by craniofacial dysmorphism, hearing loss, skeletal anomalies, microcytic hypochromic anemia and congenital heart defects. Severe myopia has also been reported. Homozygous missense variants in IRX5 were reported in 2 families with this condition (PMID: 22581230;17230486)

Duplication of gene
-------------------
PMID: 33891002 - Kohl et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments.

Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected.

They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.

Loss of function/gene
---------
PMID: 28041643 - Carss et al 2017 - screened a cohort of 722 individuals with inherited retinal disease using WES/WGS. 1 case reported with a biallelic deletion in IRX5 reported which leads to a frameshift ENST00000394636.4; c.1362_1366delTAAAG, p.Lys455ProfsTer19 in a patient with retinitis pigmentosa.

PMID: 32045705 - Apuzzo et al 2020 - report 2 cases of loss of a region in 16q12.1q21 which encompasses IRX5 and IRX6 and many other genes, which together with 3 other previous reports of deletions in this region help define a syndrome with features that include dysmorphic features, short stature, microcephaly, global developmental delay/intellectual disability, autism spectrum disorder (ASD) and ocular abnormalities (nystagmus and strabismus).
Mendeliome v0.8292 IRX6 Eleanor Williams changed review comment from: Not associated with any disorder in OMIM or Gene2Phenotype.

PMID: 33891002 - Khol et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments.

Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected.

They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.
Sources: Literature; to: Not associated with any disorder in OMIM or Gene2Phenotype.

PMID: 33891002 - Kohl et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments.

Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected.

They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.
Sources: Literature
Mendeliome v0.8289 HID1 Zornitza Stark gene: HID1 was added
gene: HID1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HID1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HID1 were set to 33999436
Phenotypes for gene: HID1 were set to Syndromic infantile encephalopathy; Hypopituitarism
Review for gene: HID1 was set to GREEN
Added comment: 7 individuals from 6 unrelated families reported. Clinical features included: hypopituitarism in combination with brain atrophy, thin corpus callosum, severe developmental delay, visual impairment, and epilepsy
Sources: Literature
Mendeliome v0.8288 KIF1B Zornitza Stark Gene: kif1b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8285 KIF1B Zornitza Stark reviewed gene: KIF1B: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: ; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.8284 ERGIC3 Seb Lunke Gene: ergic3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8284 ERGIC3 Seb Lunke Classified gene: ERGIC3 as Amber List (moderate evidence)
Mendeliome v0.8284 ERGIC3 Seb Lunke Gene: ergic3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8269 HEATR5B Seb Lunke Gene: heatr5b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8269 HEATR5B Seb Lunke Classified gene: HEATR5B as Amber List (moderate evidence)
Mendeliome v0.8269 HEATR5B Seb Lunke Gene: heatr5b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8264 IRX6 Eleanor Williams gene: IRX6 was added
gene: IRX6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: IRX6 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: IRX6 were set to 33891002
Phenotypes for gene: IRX6 were set to cone dystrophy, MONDO:0000455
Mode of pathogenicity for gene: IRX6 was set to Other
Review for gene: IRX6 was set to GREEN
Added comment: Not associated with any disorder in OMIM or Gene2Phenotype.

PMID: 33891002 - Khol et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments.

Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected.

They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.
Sources: Literature
Mendeliome v0.8264 EPHA7 Zornitza Stark Gene: epha7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8264 EPHA7 Zornitza Stark Classified gene: EPHA7 as Amber List (moderate evidence)
Mendeliome v0.8264 EPHA7 Zornitza Stark Gene: epha7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8263 EPHA7 Zornitza Stark gene: EPHA7 was added
gene: EPHA7 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: EPHA7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: EPHA7 were set to 34176129
Phenotypes for gene: EPHA7 were set to Intellectual disability
Review for gene: EPHA7 was set to AMBER
Added comment: Lévy et al (2021 - PMID: 34176129) provide evidence that haploinssuficiency of EPHA7 results in a neurodevelopmental disorder.

The authors report on 12 individuals belonging to 9 unrelated families, all harboring with 6q microdeletions spanning EPHA7.

Overlapping features included DD (13/13), ID (10/10 - mild in most cases, individuals with larger CNVs/additional variants had more severe phenotype), speech delay and behavioral disorders. Variable other features incl. hypotonia (70%), non specific facial features, eye abnormalities (40%) and cardiac defects (25%).

The CNVs ranged from 152 kb to few Mb in size but in 4 subjects (P5-8) were only minimal, involving only EPHA7.

9 out of 12 individuals had inherited the deletion (5 subjects paternal, 4 maternal), in 1 subject (P12) this occured de novo, while for 2 others inheritance was not specified. Most deletions were inherited from an unaffected parent (in 6/7 families), with unclear contribution in a further one.

The authors discuss on previous studies suggesting an important role for EphA7 in brain development (modulation of cell-cell adhesion and repulsion, regulation of dendrite morphogenesis in early corticogenesis, role in dendritic spine formation later in development. EphA7 has also been proposed to drive neuronal maturation and synaptic function).

Haploinsufficiency for other ephrins or ephrin receptors has been implicated in other NDDs.

Overall Lévy et al promote incomplete penetrance and variable expressivity with haploinsufficiency of this gene being a risk factor for NDD. [The gene has also an %HI of 2.76% and a pLI of 1].
Sources: Expert Review
Mendeliome v0.8259 GRK2 Zornitza Stark Gene: grk2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8259 GRK2 Zornitza Stark Classified gene: GRK2 as Amber List (moderate evidence)
Mendeliome v0.8259 GRK2 Zornitza Stark Gene: grk2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8258 GRK2 Zornitza Stark gene: GRK2 was added
gene: GRK2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GRK2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GRK2 were set to 33200460
Phenotypes for gene: GRK2 were set to Jeune asphyxiating thoracic dystrophy (ATD)
Review for gene: GRK2 was set to AMBER
Added comment: Two unrelated families reported and some functional data.
Sources: Literature
Mendeliome v0.8236 ATP9A Zornitza Stark Classified gene: ATP9A as Amber List (moderate evidence)
Mendeliome v0.8236 ATP9A Zornitza Stark Gene: atp9a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8229 ATP9A Arina Puzriakova gene: ATP9A was added
gene: ATP9A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATP9A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ATP9A were set to http://dx.doi.org/10.1136/jmedgenet-2021-107843
Phenotypes for gene: ATP9A were set to Neurodevelopmental delay; Postnatal microcephaly; Failure to thrive; Gastrointestinal symptoms
Review for gene: ATP9A was set to AMBER
Added comment: Vogt et al. 2021 report on 3 individuals from 2 unrelated consanguineous families with different homozygous truncating variants in ATP9A, presenting with DD/ID of variable degree (2 mild, 1 severe), postnatal microcephaly (OFC range: −2.33 SD to −3.58 SD), failure to thrive, and gastrointestinal symptoms. Patient-derived fibroblasts showed reduced expression of ATP9A, and consistent with previous findings also overexpression of interacting partners, ARPC3 and SNX3.
Sources: Literature
Mendeliome v0.8203 TIE1 Zornitza Stark Gene: tie1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8203 TIE1 Zornitza Stark Classified gene: TIE1 as Amber List (moderate evidence)
Mendeliome v0.8203 TIE1 Zornitza Stark Gene: tie1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8202 TIE1 Zornitza Stark gene: TIE1 was added
gene: TIE1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TIE1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TIE1 were set to 32947856; 24764452
Phenotypes for gene: TIE1 were set to Lymphatic malformation 11, MIM# 619401
Review for gene: TIE1 was set to AMBER
Added comment: Three families reported, supportive animal model, though variants are missense and present at a low frequency in gnomad.
Sources: Literature
Mendeliome v0.8201 ERGIC3 Elena Savva gene: ERGIC3 was added
gene: ERGIC3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ERGIC3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ERGIC3 were set to PMID: 33710394; 31585110
Phenotypes for gene: ERGIC3 were set to Intellectual disability
Review for gene: ERGIC3 was set to AMBER
Added comment: PMID: 33710394 - two homozygous sibs with mild ID, a novel canonical splice (c.717+1G>A). Absent in gnomAD, no splice studies. Classed as a VUS.

PMID: 31585110 - 1 hom (p.Gln233Argfs*10) in a male 8yo with Growth retardation, Microcephaly, Learning disability, Facial dysmorphism, Abnormal pigmentation.
Sources: Literature
Mendeliome v0.8201 HEATR5B Teresa Zhao gene: HEATR5B was added
gene: HEATR5B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HEATR5B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HEATR5B were set to PMID: 33824466
Phenotypes for gene: HEATR5B were set to pontocerebellar hypoplasia
Review for gene: HEATR5B was set to AMBER
Added comment: Four affected children from two families presenting with pontocerebellar hypoplasiawith neonatal seizures, severe ID and motor delay.

Two homozygous splice variants were reported ((c.5051–1G>A and c.5050+4A>G) in intron 31 of HEATR5B gene. Aberrant splicing was found in patient fibroblasts, which correlated
with reduced levels of HEATR5B protein.

Homozygous knockout mice were not viable.

*NOTE: gene (and alias) not found in OMIM
Sources: Literature
Mendeliome v0.8152 TNC Zornitza Stark Gene: tnc has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8149 TNC Zornitza Stark Classified gene: TNC as Amber List (moderate evidence)
Mendeliome v0.8149 TNC Zornitza Stark Gene: tnc has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8148 TNC Zornitza Stark reviewed gene: TNC: Rating: AMBER; Mode of pathogenicity: None; Publications: 23936043, 34093110, 33763067; Phenotypes: Deafness, autosomal dominant 56, MIM# 615629; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8103 KIF1B Bryony Thompson Classified gene: KIF1B as Amber List (moderate evidence)
Mendeliome v0.8103 KIF1B Bryony Thompson Gene: kif1b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8102 ARHGEF10 Bryony Thompson Gene: arhgef10 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8102 ARHGEF10 Bryony Thompson Classified gene: ARHGEF10 as Amber List (moderate evidence)
Mendeliome v0.8102 ARHGEF10 Bryony Thompson Gene: arhgef10 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8087 SLIT3 Zornitza Stark Gene: slit3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8087 SLIT3 Zornitza Stark Classified gene: SLIT3 as Amber List (moderate evidence)
Mendeliome v0.8087 SLIT3 Zornitza Stark Gene: slit3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.8086 SLIT3 Zornitza Stark gene: SLIT3 was added
gene: SLIT3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLIT3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLIT3 were set to 33933663
Phenotypes for gene: SLIT3 were set to Congenital diaphragmatic hernia
Review for gene: SLIT3 was set to AMBER
Added comment: Two affected individuals, single family, supportive mouse model.
Sources: Literature
Mendeliome v0.8084 LCP2 Zornitza Stark Phenotypes for gene: LCP2 were changed from Severe combined immunodeficiency to Immunodeficiency 81, MIM# 619374; Severe combined immunodeficiency
Mendeliome v0.8083 LCP2 Zornitza Stark edited their review of gene: LCP2: Changed phenotypes: Immunodeficiency 81, MIM# 619374, Severe combined immunodeficiency
Mendeliome v0.8079 POPDC3 Zornitza Stark changed review comment from: 5 affected individuals from 3 unrelated families reported, supportive animal model data.
Sources: Literature; to: 5 affected individuals from 3 unrelated families reported, supportive animal model data. Presentation was between adolescence and 40s with proximal muscle weakness primarily affecting the lower limbs, resulting in increased falls and difficulty running. The disorder was slowly progressive, with later involvement of the upper limbs. MRI showed fatty replacement of the thigh muscles and medial gastrocnemius, with some paraspinal muscles also affected. Some patients had calf hypertrophy. Serum CK was markedly elevated.
Sources: Literature
Mendeliome v0.8078 POPDC3 Zornitza Stark gene: POPDC3 was added
gene: POPDC3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: POPDC3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: POPDC3 were set to 31610034
Phenotypes for gene: POPDC3 were set to Muscular dystrophy, limb-girdle, autosomal recessive 26, MIM# 618848
Review for gene: POPDC3 was set to GREEN
Added comment: 5 affected individuals from 3 unrelated families reported, supportive animal model data.
Sources: Literature
Mendeliome v0.8053 NFS1 Zornitza Stark Phenotypes for gene: NFS1 were changed from Complex II/III deficiency; multisystem organ failure to Combined oxidative phosphorylation deficiency 52, MIM#619386; Complex II/III deficiency; multisystem organ failure
Mendeliome v0.8051 NFS1 Zornitza Stark edited their review of gene: NFS1: Changed phenotypes: Combined oxidative phosphorylation deficiency 52, MIM#619386, Complex II/III deficiency, multisystem organ failure
Mendeliome v0.8037 GATA2 Zornitza Stark Phenotypes for gene: GATA2 were changed from to Immunodeficiency 21, MIM# 614172; GATA2 deficiency with susceptibility to MDS/AML MONDO:0042982; Emberger syndrome, MIM# 614038; Deafness-lymphoedema-leukaemia syndrome MONDO:0013540
Mendeliome v0.8034 GATA2 Zornitza Stark reviewed gene: GATA2: Rating: GREEN; Mode of pathogenicity: None; Publications: 21670465, 21242295, 21892158; Phenotypes: Immunodeficiency 21, MIM# 614172, GATA2 deficiency with susceptibility to MDS/AML MONDO:0042982, Emberger syndrome, MIM# 614038, Deafness-lymphoedema-leukaemia syndrome MONDO:0013540; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8034 GATA1 Zornitza Stark Phenotypes for gene: GATA1 were changed from to Thrombocytopaenia, X-linked, with or without dyserythropoietic anaemia, MIM# 300367
Mendeliome v0.8032 GATA1 Zornitza Stark reviewed gene: GATA1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Thrombocytopaenia, X-linked, with or without dyserythropoietic anaemia, MIM# 300367; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.8020 ANKRD26 Zornitza Stark Phenotypes for gene: ANKRD26 were changed from to Thrombocytopaenia 2, MIM# 188000
Mendeliome v0.8017 ANKRD26 Zornitza Stark reviewed gene: ANKRD26: Rating: GREEN; Mode of pathogenicity: None; Publications: 21211618; Phenotypes: Thrombocytopaenia 2, MIM# 188000; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8011 ADA2 Zornitza Stark commented on gene: ADA2: Vasculitis, autoinflammation, immunodeficiency, and haematologic defects syndrome (VAIHS) is an autosomal recessive multisystem disorder with onset in childhood. The phenotype is highly variable, but most patients have features of a systemic vascular inflammatory disorder with skin ulceration and recurrent strokes affecting the small vessels of the brain resulting in neurologic dysfunction. Other features may include recurrent fever, elevated acute-phase proteins, myalgias, lesions resembling polyarteritis nodosa, and/or livedo racemosa or reticularis with an inflammatory vasculitis on biopsy. Some patients may have renal and/or gastrointestinal involvement, hypertension, aneurysms, or ischemic necrosis of the digits. Some affected individuals have immunodeficiency. At least 10 unrelated families reported, the p.Gly47Arg variant is a common founder variant in the Jewish population.
Mendeliome v0.8009 IFT74 Zornitza Stark edited their review of gene: IFT74: Added comment: PMID 33531668: Identified IFT74 as a JBTS-associated gene in 3 unrelated families through WES. All the affected individuals carried truncated variants and shared one missense variant (p.Q179E) found only in East Asians. The expression of the human p.Q179E-IFT74 variant displayed compromised rescue effects in zebrafish ift74 morphants. Attenuated ciliogenesis; altered distribution of IFT proteins and ciliary membrane proteins, including ARL13B, INPP5E, and GPR161; and disrupted hedgehog signaling were observed in patient fibroblasts with IFT74 variants.; Changed publications: 27486776, 32144365, 33531668; Changed phenotypes: Bardet-Biedl syndrome 20, MIM# 617119, Joubert syndrome
Mendeliome v0.8002 SEMA3F Zornitza Stark gene: SEMA3F was added
gene: SEMA3F was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SEMA3F was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SEMA3F were set to 33495532
Phenotypes for gene: SEMA3F were set to Hypogonadotropic hypogonadism
Review for gene: SEMA3F was set to GREEN
Added comment: Screened 216 patients with Idiopathic hypogonadotropic hypogonadism by exome sequencing. Identified 10 individuals from 7 families with heterozygous SEMA3F missense variants. In 4 of the kindreds, there was at least one more gene known to be associated with IHH (oligogenecity). Provide unequivocal human embryonic data showing the expression of SEMA3F along the developing human GnRH migratory pathway. SEMA3Fs harboring the P452T, T29M, and T724M missense variants showed impaired SEMA3F secretion in whole cell lysates.
Sources: Literature
Mendeliome v0.7990 LAMA5 Bryony Thompson reviewed gene: LAMA5: Rating: AMBER; Mode of pathogenicity: None; Publications: 33242826, 29534211, 16790509, 30589377, 28735299, 30631761; Phenotypes: bent bone dysplasia, nephrotic syndrome, Presynaptic congenital myasthenic syndrome, multisystem syndrome, developmental delay; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7986 RELN Ee Ming Wong edited their review of gene: RELN: Added comment: - Six affected individuals carrying missense variants in RELN including
1. Two individuals with compound heterozygous variants
- One of the variants has 26 homozygotes in gnomAD and therefore pathogenicity of this variant is in question
- LoF demonstrated for three of the variants (reduced RELN secretion), except for p.Y1821H which demonstrated an apparently increased RELN secretion (GoF)
2. Two brothers carrying the maternally inherited variant (mother apparently healthy)
- LoF demonstrated for these variants
3. Two individuals de novo for RELN variants
- Dominant negative demonstrated for these variants where secretion of WT-RELN was impaired when co-transfected with mutant constructs in HEK293T cells; Changed rating: AMBER; Changed publications: Riva et al bioRxiv (pre-print, not peer-reviewed); Changed phenotypes: Pachygyria, Polymicrogyria, Heterotopia; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7985 NIID Bryony Thompson STR: NIID was added
STR: NIID was added to Mendeliome. Sources: Literature
Mode of inheritance for STR: NIID was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: NIID were set to 31178126; 31332381; 31819945; 33887199; 33943039; 32250060; 31332380; 32852534; 32989102
Phenotypes for STR: NIID were set to Neuronal intranuclear inclusion disease MIM#603472; Tremor, hereditary essential, 6 MIM#618866
Review for STR: NIID was set to GREEN
STR: NIID was marked as clinically relevant
Added comment: NM_001364012.2:c.-164GGC[(66_517)]
Large number of families and sporadic cases reported with expansions, with a range of neurodegenerative phenotypes, including: dementia, Parkinsonism/tremor, peripheral neuropathy, leukoencephalopathy, myopathy, motor neurone disease.
Normal repeat range: 7-60
Pathogenic repeat range: >=61-500
Mechanism of disease is translation of repeat expansion into a toxic polyglycine protein, identified in both mouse models and tissue samples from affected individuals.
Sources: Literature
Mendeliome v0.7975 ZBTB42 Zornitza Stark Gene: zbtb42 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7975 ZBTB42 Zornitza Stark Classified gene: ZBTB42 as Amber List (moderate evidence)
Mendeliome v0.7975 ZBTB42 Zornitza Stark Gene: zbtb42 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7974 ZBTB42 Zornitza Stark gene: ZBTB42 was added
gene: ZBTB42 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: ZBTB42 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZBTB42 were set to 25055871
Phenotypes for gene: ZBTB42 were set to Lethal congenital contracture syndrome 6, MIM# 616248
Review for gene: ZBTB42 was set to AMBER
Added comment: Homozygous missense variant reported in a family with three stillbirths and a phenotype consistent with LCCS. Supportive zebrafish model.
Sources: Expert Review
Mendeliome v0.7949 SASH3 Zornitza Stark gene: SASH3 was added
gene: SASH3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SASH3 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: SASH3 were set to 33876203
Phenotypes for gene: SASH3 were set to Combined immunodeficiency; immune dysregulation
Review for gene: SASH3 was set to GREEN
Added comment: Four unrelated males reported presenting with combined immunodeficiency and immune dysregulation manifesting as recurrent sinopulmonary, cutaneous and mucosal infections, and refractory autoimmune cytopaenias. One missense variant, rest were nonsense.
Sources: Literature
Mendeliome v0.7939 WDR91 Zornitza Stark Classified gene: WDR91 as Amber List (moderate evidence)
Mendeliome v0.7939 WDR91 Zornitza Stark Gene: wdr91 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7938 WDR91 Zornitza Stark reviewed gene: WDR91: Rating: AMBER; Mode of pathogenicity: None; Publications: 34028500, 28860274, 32732226; Phenotypes: Hydrocephalus, cerebellar hypoplasia, hygroma; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7936 WRAP73 Zornitza Stark Gene: wrap73 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7936 WRAP73 Zornitza Stark Classified gene: WRAP73 as Amber List (moderate evidence)
Mendeliome v0.7936 WRAP73 Zornitza Stark Gene: wrap73 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7935 WRAP73 Zornitza Stark gene: WRAP73 was added
gene: WRAP73 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: WRAP73 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: WRAP73 were set to 33693649
Phenotypes for gene: WRAP73 were set to Microsperophakia
Review for gene: WRAP73 was set to AMBER
Added comment: Two Indian families with same homozygous missense, (p.Pro383Leu) and supportive functional data (zebrafish model).
Sources: Literature
Mendeliome v0.7911 MYOF Zornitza Stark gene: MYOF was added
gene: MYOF was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: MYOF was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MYOF were set to 32542751
Phenotypes for gene: MYOF were set to Hereditary angioedema-7 (HAE7), MIM#619366
Review for gene: MYOF was set to RED
Added comment: Three individuals from one family reported, onset of recurrent episodic swelling of the face, lips, and oral mucosa was in the second decade. Variant was also present in another unaffected family member. Some functional data.
Sources: Expert list
Mendeliome v0.7910 KNG1 Zornitza Stark Gene: kng1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7907 KNG1 Zornitza Stark Classified gene: KNG1 as Amber List (moderate evidence)
Mendeliome v0.7907 KNG1 Zornitza Stark Gene: kng1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7906 KNG1 Zornitza Stark reviewed gene: KNG1: Rating: AMBER; Mode of pathogenicity: None; Publications: 31087670, 33114181; Phenotypes: Hereditary angioedema-6 (HAE6), MIM#619363; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7906 ANGPT1 Zornitza Stark Gene: angpt1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7905 ANGPT1 Zornitza Stark reviewed gene: ANGPT1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Hereditary angioedema-5 (HAE5), MIM#619361; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7905 PLG Zornitza Stark changed review comment from: Association between mono-allelic variants and HAE: Over 20 families reported with a recurrent variant, p.Lys330Glu. Single family reported with a different variant. Note bi-allelic variants are associated with a separate disorder.

Bi-allelic variants and plasminogen deficiency: congenital plasminogen deficiency is characterised clinically by chronic mucosal pseudomembranous lesions consisting of subepithelial fibrin deposition and inflammation. The most common clinical manifestation is ligneous ('wood-like') conjunctivitis, a redness and subsequent formation of pseudomembranes mostly on the palpebral surfaces of the eye that progress to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa. The lesions may be triggered by local injury and/or infection and often recur after local excision. Pseudomembranous lesions of other mucous membranes often occur in the mouth, nasopharynx, trachea, and female genital tract. Some affected children also have congenital occlusive hydrocephalus. At least 3 unrelated families reported.; to: Association between mono-allelic variants and HAE: Over 20 families reported with a recurrent variant, p.Lys330Glu. Single family reported with a different variant. Note bi-allelic variants are associated with a separate disorder.

Bi-allelic variants and plasminogen deficiency: congenital plasminogen deficiency is characterised clinically by chronic mucosal pseudomembranous lesions consisting of subepithelial fibrin deposition and inflammation. The most common clinical manifestation is ligneous ('wood-like') conjunctivitis, a redness and subsequent formation of pseudomembranes mostly on the palpebral surfaces of the eye that progress to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa. The lesions may be triggered by local injury and/or infection and often recur after local excision. Pseudomembranous lesions of other mucous membranes often occur in the mouth, nasopharynx, trachea, and female genital tract. Some affected children also have congenital occlusive hydrocephalus. Over 20 unrelated families reported.
Mendeliome v0.7897 ATXN2L Seb Lunke Gene: atxn2l has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7897 ATXN2L Seb Lunke Classified gene: ATXN2L as Amber List (moderate evidence)
Mendeliome v0.7897 ATXN2L Seb Lunke Gene: atxn2l has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7896 ATXN2L Seb Lunke gene: ATXN2L was added
gene: ATXN2L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATXN2L was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ATXN2L were set to 33283965; 33057194
Phenotypes for gene: ATXN2L were set to macrocephaly; intellectual disability
Review for gene: ATXN2L was set to AMBER
Added comment: Sources: Literature
Mendeliome v0.7894 SLC30A5 Seb Lunke Classified gene: SLC30A5 as Amber List (moderate evidence)
Mendeliome v0.7894 SLC30A5 Seb Lunke Gene: slc30a5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7893 CADM3 Seb Lunke Added comment: Comment when marking as ready: Three families, but evidence not that great and missing segregation, so stays amber.
Mendeliome v0.7893 CADM3 Seb Lunke Gene: cadm3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7893 CADM3 Seb Lunke Classified gene: CADM3 as Amber List (moderate evidence)
Mendeliome v0.7893 CADM3 Seb Lunke Gene: cadm3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7891 SLC30A5 Melanie Marty gene: SLC30A5 was added
gene: SLC30A5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC30A5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC30A5 were set to 33547425; 12095919
Phenotypes for gene: SLC30A5 were set to Perinatal lethal cardiomyopathy
Review for gene: SLC30A5 was set to AMBER
Added comment: Four affected children from two unrelated families with cardiomyopathy, hydrops fetalis, or cystic hygroma that all deceased perinatally. 2 different homozygous PTCs variants found. Knockout of SLC30A5 in mouse models showed reduced body growth and reduced bone density. About 60% of the mice died due to bradyarrhythmia.
Sources: Literature
Mendeliome v0.7891 CADM3 Teresa Zhao gene: CADM3 was added
gene: CADM3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CADM3 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: CADM3 were set to PMID: 33889941
Phenotypes for gene: CADM3 were set to Charcot-Marie-Tooth disease
Review for gene: CADM3 was set to AMBER
Added comment: Three families reported with the same missense variant in CADM3 p.Tyr172Cys (one family de novo), with mice work to show reduced expression of the mutant protein in axons and abnormal axonal organization.
Sources: Literature
Mendeliome v0.7870 MBD5 Zornitza Stark Tag SV/CNV tag was added to gene: MBD5.
Mendeliome v0.7870 MBD5 Zornitza Stark Marked gene: MBD5 as ready
Mendeliome v0.7870 MBD5 Zornitza Stark Gene: mbd5 has been classified as Green List (High Evidence).
Mendeliome v0.7870 MBD5 Zornitza Stark Phenotypes for gene: MBD5 were changed from to Mental retardation, autosomal dominant 1, MIM# 156200; MONDO:0007974
Mendeliome v0.7869 MBD5 Zornitza Stark Publications for gene: MBD5 were set to
Mendeliome v0.7868 MBD5 Zornitza Stark Mode of inheritance for gene: MBD5 was changed from Unknown to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7867 MBD5 Zornitza Stark reviewed gene: MBD5: Rating: GREEN; Mode of pathogenicity: None; Publications: 18812405, 21981781, 23708187, 22726846, 33912662; Phenotypes: Mental retardation, autosomal dominant 1, MIM# 156200, MONDO:0007974; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7830 MC1R Zornitza Stark Gene: mc1r has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7827 MC1R Zornitza Stark Classified gene: MC1R as Amber List (moderate evidence)
Mendeliome v0.7827 MC1R Zornitza Stark Gene: mc1r has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7826 MC1R Zornitza Stark reviewed gene: MC1R: Rating: AMBER; Mode of pathogenicity: None; Publications: 12876664; Phenotypes: {Albinism, oculocutaneous, type II, modifier of}, MIM# 203200; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7817 TBXA2R Zornitza Stark Gene: tbxa2r has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7814 TBXA2R Zornitza Stark Classified gene: TBXA2R as Amber List (moderate evidence)
Mendeliome v0.7814 TBXA2R Zornitza Stark Gene: tbxa2r has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7813 TBXA2R Zornitza Stark reviewed gene: TBXA2R: Rating: AMBER; Mode of pathogenicity: None; Publications: 7929844, 19828703, 22517902; Phenotypes: {Bleeding disorder, platelet-type, 13, susceptibility to}, MIM# 614009; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7810 MCFD2 Zornitza Stark Phenotypes for gene: MCFD2 were changed from to Factor V and factor VIII, combined deficiency of, MIM# 613625; MONDO:0013331
Mendeliome v0.7807 MCFD2 Zornitza Stark reviewed gene: MCFD2: Rating: GREEN; Mode of pathogenicity: None; Publications: 12717434, 16304051, 18391077; Phenotypes: Factor V and factor VIII, combined deficiency of, MIM# 613625, MONDO:0013331; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7807 LMAN1 Zornitza Stark Phenotypes for gene: LMAN1 were changed from to Combined factor V and VIII deficiency, MIM# 227300; MONDO:0009206
Mendeliome v0.7804 LMAN1 Zornitza Stark reviewed gene: LMAN1: Rating: GREEN; Mode of pathogenicity: None; Publications: 9546392, 16304051; Phenotypes: Combined factor V and VIII deficiency, MIM# 227300, MONDO:0009206; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7804 ITGA2B Zornitza Stark Phenotypes for gene: ITGA2B were changed from to Bleeding disorder, platelet-type, 16, MIM# 187800; MONDO:000855; Glanzmann thrombasthaenia 1, MIM# 273800
Mendeliome v0.7801 ITGA2B Zornitza Stark reviewed gene: ITGA2B: Rating: GREEN; Mode of pathogenicity: None; Publications: 1638023, 21454453, 8282784, 16463284; Phenotypes: Bleeding disorder, platelet-type, 16, MIM# 187800, MONDO:000855, Glanzmann thrombasthaenia 1, MIM# 273800; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7801 LMOD1 Zornitza Stark Gene: lmod1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7798 LMOD1 Zornitza Stark Classified gene: LMOD1 as Amber List (moderate evidence)
Mendeliome v0.7798 LMOD1 Zornitza Stark Gene: lmod1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7797 LMOD1 Zornitza Stark reviewed gene: LMOD1: Rating: AMBER; Mode of pathogenicity: None; Publications: 28292896; Phenotypes: Megacystis-microcolon-intestinal hypoperistalsis syndrome 3, MIM# 619362; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7777 GP1BB Zornitza Stark Phenotypes for gene: GP1BB were changed from to Bernard-Soulier syndrome, type B, MIM# 231200; Macrothrombocytopaenia
Mendeliome v0.7774 GP1BB Zornitza Stark reviewed gene: GP1BB: Rating: GREEN; Mode of pathogenicity: None; Publications: 8703016, 9116284, 10887115, 33813986, 33657022, 33216977, 31997307, 1730088, 11222377; Phenotypes: Bernard-Soulier syndrome, type B, MIM# 231200, Macrothrombocytopaenia; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7774 CREB3L3 Zornitza Stark Gene: creb3l3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7773 CREB3L3 Zornitza Stark reviewed gene: CREB3L3: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Hypertriglyceridaemia-2, MIM#619324; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7767 FGB Zornitza Stark changed review comment from: Inherited disorders of fibrinogen affect either the quantity (afibrinogenaemia and hypofibrinogenaemia) or the quality (dysfibrinogenemia) of the circulating fibrinogen or both.

Afibrinogenaemia is characterized by the complete absence of immunoreactive fibrinogen. Bleeding due to afibrinogenaemia usually manifests in the neonatal period, with 85% of cases presenting umbilical cord bleeding, but a later age of onst is not unusual. Bleeding may occur in the skin, gastrointestinal tract, genitourinary tract, or the central nervous system, with intracranial haemorrhage being reported as the major cause of death. Patients are susceptible to spontaneous rupture of the spleen. First-trimester pregnancy loss is common. Both arterial and venous thromboembolic complications have been reported. Hypofibrinogenaemia is a milder disorder. Well established gene-disease association.; to: Inherited disorders of fibrinogen affect either the quantity (afibrinogenaemia and hypofibrinogenaemia) or the quality (dysfibrinogenemia) of the circulating fibrinogen or both.

Afibrinogenaemia is characterized by the complete absence of immunoreactive fibrinogen. Bleeding due to afibrinogenaemia usually manifests in the neonatal period, with 85% of cases presenting umbilical cord bleeding, but a later age of onst is not unusual. Bleeding may occur in the skin, gastrointestinal tract, genitourinary tract, or the central nervous system, with intracranial haemorrhage being reported as the major cause of death. Patients are susceptible to spontaneous rupture of the spleen. First-trimester pregnancy loss is common. Both arterial and venous thromboembolic complications have been reported. Hypofibrinogenaemia is a milder disorder.

Well established gene-disease association.
Mendeliome v0.7767 F9 Zornitza Stark Phenotypes for gene: F9 were changed from to Haemophilia B, MIM# 306900; Thrombophilia, X-linked, due to factor IX defect, MIM# 300807
Mendeliome v0.7764 F9 Zornitza Stark reviewed gene: F9: Rating: GREEN; Mode of pathogenicity: None; Publications: 19846852, 34015304, 33656538; Phenotypes: Haemophilia B, MIM# 306900, Thrombophilia, X-linked, due to factor IX defect, MIM# 300807; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.7758 F5 Zornitza Stark Phenotypes for gene: F5 were changed from to Factor V deficiency, MIM# 227400; MONDO:0009210; Thrombophilia due to activated protein C resistance, MIM# 188055; MONDO:0008560; {Thrombophilia, susceptibility to, due to factor V Leiden}, MIM# 188055
Mendeliome v0.7756 F5 Zornitza Stark reviewed gene: F5: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Factor V deficiency, MIM# 227400, MONDO:0009210, Thrombophilia due to activated protein C resistance, MIM# 188055, MONDO:0008560, {Thrombophilia, susceptibility to, due to factor V Leiden}, MIM# 188055; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7750 MCM7 Zornitza Stark Gene: mcm7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7750 MCM7 Zornitza Stark Classified gene: MCM7 as Amber List (moderate evidence)
Mendeliome v0.7750 MCM7 Zornitza Stark Gene: mcm7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7749 MCM7 Arina Puzriakova gene: MCM7 was added
gene: MCM7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MCM7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MCM7 were set to 33654309; 34059554
Phenotypes for gene: MCM7 were set to Meier-Gorlin syndrome; Microcephaly; Intellectual disability; Lipodystrophy; Adrenal insufficiency
Review for gene: MCM7 was set to AMBER
Added comment: MCM7 is a component of the MCM complex, a DNA helicase which is essential for DNA replication. Other components have been linked to disease with phenotypes including microcephaly and ID. MCM7 is not associated with any phenotype in OMIM or G2P at present.
------
Currently there are 3 unrelated pedigrees in literature with different biallelic MCM7 variants associated with disease (see below). Although there is some functional data in support of variant-level deleteriousness or gene-level pathogenicity, the clinical gestalt is very different between the 3 families.

- PMID: 33654309 (2021) - Two unrelated individuals with different compound het variants in MCM7 but disparate clinical features. One patient had typical Meier-Gorlin syndrome (including growth retardation, microcephaly, congenital lung emphysema, absent breast development, microtia, facial dysmorphism) whereas the second case had a multi-system disorder with neonatal progeroid appearance, lipodystrophy and adrenal insufficiency. While small at birth, the second patient did not demonstrate reduced stature or microcephaly at age 14.5 years. Both individuals had normal neurodevelopment.
Functional studies using patient-derived fibroblasts demonstrate that the identified MCM7 variants were deleterious at either transcript or protein levels and through interfering with MCM complex formation, impact efficiency of S phase progression.

- PMID: 34059554 (2021) - Homozygous missense variant identified in three affected individuals from a consanguineous family with severe primary microcephaly, severe ID and behavioural abnormalities. Knockdown of Mcm7 in mouse neuroblastoma cells lead to reduced cell viability and proliferation with increased apoptosis, which were rescued by overexpression of wild-type but not mutant MCM7.
Sources: Literature
Mendeliome v0.7712 COX16 Zornitza Stark reviewed gene: COX16: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Mitochondrial complex IV deficiency, nuclear type 22, MIM# 619355; Mode of inheritance: None
Mendeliome v0.7687 CHUK Zornitza Stark Gene: chuk has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7684 CHUK Zornitza Stark Classified gene: CHUK as Amber List (moderate evidence)
Mendeliome v0.7684 CHUK Zornitza Stark Gene: chuk has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7683 CHUK Zornitza Stark reviewed gene: CHUK: Rating: AMBER; Mode of pathogenicity: None; Publications: 25691407, 20961246, 10195895, 10195896, 29523099, 28513979; Phenotypes: Popliteal pterygium syndrome, Bartsocas-Papas type 2, MIM# 619339, Cocoon syndrome, MIM# 613630, AEC-like syndrome; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7682 TMEM251 Zornitza Stark reviewed gene: TMEM251: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Dysostosis multiplex, Ain-Naz type 619345; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7670 UFSP2 Zornitza Stark reviewed gene: UFSP2: Rating: AMBER; Mode of pathogenicity: None; Publications: 33473208, 26428751, 28892125; Phenotypes: Neurodevelopmental disorder, Hip dysplasia, Beukes type, MIM#142669, Spondyloepimetaphyseal dysplasia, Di Rocco type, MIM# 617974; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7631 CPE Zornitza Stark Gene: cpe has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7631 CPE Zornitza Stark Classified gene: CPE as Amber List (moderate evidence)
Mendeliome v0.7631 CPE Zornitza Stark Gene: cpe has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7630 CPE Zornitza Stark gene: CPE was added
gene: CPE was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: CPE was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CPE were set to 26120850; 32936766
Phenotypes for gene: CPE were set to Intellectual developmental disorder and hypogonadotropic hypogonadism, MIM# 619326
Review for gene: CPE was set to AMBER
Added comment: Four affected individuals from two unrelated families reported, bi-allelic LoF variants.
Sources: Expert Review
Mendeliome v0.7617 LEMD2 Zornitza Stark reviewed gene: LEMD2: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Marbach-Rustad progeroid syndrome, OMIM# 619322; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7580 THBS2 Zornitza Stark Phenotypes for gene: THBS2 were changed from to {Lumbar disc herniation, susceptibility to} 603932
Mendeliome v0.7578 THBS2 Zornitza Stark reviewed gene: THBS2: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: {Lumbar disc herniation, susceptibility to} 603932; Mode of inheritance: None
Mendeliome v0.7541 RCAN1 Zornitza Stark Gene: rcan1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7541 RCAN1 Zornitza Stark Classified gene: RCAN1 as Amber List (moderate evidence)
Mendeliome v0.7541 RCAN1 Zornitza Stark Gene: rcan1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7540 RCAN1 Zornitza Stark gene: RCAN1 was added
gene: RCAN1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RCAN1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RCAN1 were set to 33863784
Phenotypes for gene: RCAN1 were set to FSGS; proteinuria
Review for gene: RCAN1 was set to AMBER
Added comment: Two families reported, some functional data.
Sources: Literature
Mendeliome v0.7522 NEPRO Zornitza Stark Gene: nepro has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7522 NEPRO Zornitza Stark Classified gene: NEPRO as Amber List (moderate evidence)
Mendeliome v0.7522 NEPRO Zornitza Stark Gene: nepro has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7512 LSM7 Bryony Thompson Gene: lsm7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7512 LSM7 Bryony Thompson Classified gene: LSM7 as Amber List (moderate evidence)
Mendeliome v0.7512 LSM7 Bryony Thompson Gene: lsm7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7511 LSM7 Bryony Thompson gene: LSM7 was added
gene: LSM7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LSM7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LSM7 were set to DOI:https://doi.org/10.1016/j.xhgg.2021.100034
Phenotypes for gene: LSM7 were set to Leukodystrophy; foetal death
Review for gene: LSM7 was set to AMBER
Added comment: Homozygous variant (p.Asp41Asn) identified in a child with leukodystrophy and a homozygous variant (p.Arg69Pro) identified in an individual that died in utero. In vitro and in vivo (zebrafish) assays supporting pathogenicity of the 2 variants.
Sources: Literature
Mendeliome v0.7507 POLR3K Zornitza Stark Gene: polr3k has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7507 POLR3K Zornitza Stark Classified gene: POLR3K as Amber List (moderate evidence)
Mendeliome v0.7507 POLR3K Zornitza Stark Gene: polr3k has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7506 POLR3K Zornitza Stark gene: POLR3K was added
gene: POLR3K was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: POLR3K was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: POLR3K were set to 30584594; 33659930
Phenotypes for gene: POLR3K were set to Hypomyelinating leukodystrophy-21, MIM#619310
Review for gene: POLR3K was set to AMBER
Added comment: Two individuals from same ethnic background reported with a common homozygous missense variant in this gene, suggestive of founder effect. Some functional evidence, and note other gene family members are linked to similar phenotypes. Neurodegenerative phenotype: global developmental delay apparent from infancy with loss of motor, speech, and cognitive milestones in the first decades of life.
Sources: Expert Review
Mendeliome v0.7488 APOL1 Eleanor Williams reviewed gene: APOL1: Rating: AMBER; Mode of pathogenicity: None; Publications: 33517446; Phenotypes: {Focal Segmental Glomerulosclerosis 4, Susceptibility to} OMIM:612551, {End-stage renal disease, nondiabetic, susceptibility to} OMIM:612551; Mode of inheritance: None
Mendeliome v0.7470 NEPRO Chern Lim gene: NEPRO was added
gene: NEPRO was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NEPRO was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NEPRO were set to 26633546; 29620724; 31250547
Phenotypes for gene: NEPRO were set to Anauxetic dysplasia 3, MIM618853
Review for gene: NEPRO was set to AMBER
Added comment: PMIDs 26633546, 29620724: 2 families with the same homozygous missense variant, haplotype analysis confirmed the founder nature of the variant.

PMID 31250547: 1 family with homozygous novel missense

All 5 affected individuals have severe short stature, brachydactyly, skin laxity, joint hypermobility, and joint dislocations. They also have short metacarpals, broad middle phalanges, and metaphyseal irregularities. No functional studies.
Sources: Literature
Mendeliome v0.7464 JAG2 Belinda Chong gene: JAG2 was added
gene: JAG2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: JAG2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: JAG2 were set to PMID: 33861953
Phenotypes for gene: JAG2 were set to muscular dystrophy
Review for gene: JAG2 was set to GREEN
Added comment: Whole-exome sequencing identified 13 families with rare homozygous or compound heterozygous JAG2 variants. Bi-allelic variants include 10 missense variants that disrupt highly conserved amino acids, a nonsense variant, two frameshift variants, an in-frame deletion, and a microdeletion encompassing JAG2. Onset of muscle weakness occurred from infancy to young adulthood. Serum creatine kinase (CK) levels were normal or mildly elevated. Muscle histology was primarily dystrophic. MRI of the lower extremities revealed a distinct, slightly asymmetric pattern of muscle involvement with cores of preserved and affected muscles in quadriceps and tibialis anterior, in some cases resembling patterns seen in POGLUT1-associated muscular dystrophy.
Sources: Literature
Mendeliome v0.7464 VPS41 Kristin Rigbye changed review comment from: "Five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function."; to: "Five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function."

"Affected individuals were born after uneventful pregnancies and presented in most cases early in life with developmental delay. Various degrees of ataxia, hypotonia, and dystonia were present in all affected individuals, preventing independent ambulation. Likewise, nystagmus was commonly described. In addition, all affected individuals displayed intellectual disability and speech delay. Two siblings further presented with therapy-resistant epilepsy. No major dysmorphic features were found. In two individuals, retinal pigment alterations were noticed. Brain MRI revealed mild cerebellar atrophy and vermian atrophy without other major structural abnormalities in most affected individuals while in one case (Subject 9) bilateral hyperintensities at the nucleus caudatus area were noted. No hearing or vision problems were noted and in cases where nerve conduction studies were performed, these were normal. Transmission electron microscopy (TEM) on peripheral blood lymphocytes from Subject 2 and lymphoblastoid cells from Subject 3 revealed more multilayered vesicles compared to control cells."
Mendeliome v0.7441 CARS2 Zornitza Stark Phenotypes for gene: CARS2 were changed from to Combined oxidative phosphorylation deficiency 27, MIM# 616672; MONDO:0014728
Mendeliome v0.7438 CARS2 Zornitza Stark reviewed gene: CARS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 25361775, 25787132, 30139652; Phenotypes: Combined oxidative phosphorylation deficiency 27, MIM# 616672, MONDO:0014728; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7438 PPP2R5C Zornitza Stark Gene: ppp2r5c has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7438 PPP2R5C Sue White Classified gene: PPP2R5C as Amber List (moderate evidence)
Mendeliome v0.7438 PPP2R5C Sue White Gene: ppp2r5c has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7437 PPP2R5C Sue White gene: PPP2R5C was added
gene: PPP2R5C was added to Mendeliome. Sources: Research
Mode of inheritance for gene: PPP2R5C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: PPP2R5C were set to macrocephaly; intellectual disability
Penetrance for gene: PPP2R5C were set to Complete
Review for gene: PPP2R5C was set to AMBER
Added comment: Emerging unpublished evidence of monoallelic missense variants causing intellectual disability and macrocephaly
Sources: Research
Mendeliome v0.7423 CIZ1 Zornitza Stark Gene: ciz1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7420 CIZ1 Zornitza Stark Classified gene: CIZ1 as Amber List (moderate evidence)
Mendeliome v0.7420 CIZ1 Zornitza Stark Gene: ciz1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7419 CIZ1 Zornitza Stark reviewed gene: CIZ1: Rating: AMBER; Mode of pathogenicity: None; Publications: 27163549, 29154038, 22447717; Phenotypes: Dystonia 23 MIM#614860; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7395 CHST11 Zornitza Stark Gene: chst11 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7395 CHST11 Zornitza Stark Classified gene: CHST11 as Amber List (moderate evidence)
Mendeliome v0.7395 CHST11 Zornitza Stark Gene: chst11 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7394 CHST11 Zornitza Stark gene: CHST11 was added
gene: CHST11 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: CHST11 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CHST11 were set to 26436107; 29514872
Phenotypes for gene: CHST11 were set to Osteochondrodysplasia, brachydactyly, and overlapping malformed digits, MIM# 618167
Review for gene: CHST11 was set to AMBER
Added comment: Osteochondrodysplasia, brachydactyly, and overlapping malformed digits (OCBMD) is characterized by bilateral symmetric skeletal defects that primarily affect the limbs. Affected individuals have mild short stature due to shortening of the lower leg bones, as well as hand and foot malformations, predominantly brachydactyly and overlapping digits. Other skeletal defects include scoliosis, dislocated patellae and fibulae, and pectus excavatum.

Two unrelated families reported, note one had a homozygous deletion. One family had 10 affected individuals.
Sources: Expert Review
Mendeliome v0.7392 PSMB8 Zornitza Stark Marked gene: PSMB8 as ready
Mendeliome v0.7392 PSMB8 Zornitza Stark Gene: psmb8 has been classified as Green List (High Evidence).
Mendeliome v0.7392 PSMB8 Zornitza Stark Phenotypes for gene: PSMB8 were changed from to Proteasome-associated autoinflammatory syndrome 1, MIM# 256040; MONDO:0054698
Mendeliome v0.7391 PSMB8 Zornitza Stark Publications for gene: PSMB8 were set to
Mendeliome v0.7390 PSMB8 Zornitza Stark Mode of inheritance for gene: PSMB8 was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7389 PSMB8 Zornitza Stark reviewed gene: PSMB8: Rating: GREEN; Mode of pathogenicity: None; Publications: 21129723, 21881205, 21852578, 21953331; Phenotypes: Proteasome-associated autoinflammatory syndrome 1, MIM# 256040, MONDO:0054698; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7382 PLIN1 Zornitza Stark Gene: plin1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7379 PLIN1 Zornitza Stark Classified gene: PLIN1 as Amber List (moderate evidence)
Mendeliome v0.7379 PLIN1 Zornitza Stark Gene: plin1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7378 PLIN1 Zornitza Stark reviewed gene: PLIN1: Rating: AMBER; Mode of pathogenicity: None; Publications: 21345103, 31504636, 30020498, 25114292; Phenotypes: Lipodystrophy, familial partial, type 4, MIM# 613877; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7360 HNRNPDL Bryony Thompson gene: HNRNPDL was added
gene: HNRNPDL was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: HNRNPDL was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: HNRNPDL were set to 24647604; 31267206; 31995753; 32407983; 32904822; 32367994
Phenotypes for gene: HNRNPDL were set to Muscular dystrophy, limb-girdle, autosomal dominant 3 MIM#609115
Review for gene: HNRNPDL was set to GREEN
gene: HNRNPDL was marked as current diagnostic
Added comment: At least 5 families reported with either D378H/N, and supporting functional assays demonstrating that these variants affect protein function. No other pathogenic variants have been reported. A VUS has been reported (along with another SETX variant) in an individual with a multi-system disorder, including a metabolic myopathy.
Sources: Expert list
Mendeliome v0.7340 PRDM15 Zornitza Stark Gene: prdm15 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7340 PRDM15 Zornitza Stark Classified gene: PRDM15 as Amber List (moderate evidence)
Mendeliome v0.7340 PRDM15 Zornitza Stark Gene: prdm15 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7339 PRDM15 Zornitza Stark gene: PRDM15 was added
gene: PRDM15 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRDM15 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PRDM15 were set to 31950080
Phenotypes for gene: PRDM15 were set to Steroid resistant nephrotic syndrome; Holoprosencephaly
Review for gene: PRDM15 was set to AMBER
Added comment: Four consanguineous families reported with same homozygous variant, C844Y, shown to be LoF. Syndromic SRNS including HPE, brain malformations, polydactyly, congenital heart disease. Mouse model, extensive functional data focused on the brain phenotype. Two additional homozygous missense identified with isolated SRNS.
Sources: Literature
Mendeliome v0.7329 DISP1 Zornitza Stark Gene: disp1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7326 DISP1 Zornitza Stark Classified gene: DISP1 as Amber List (moderate evidence)
Mendeliome v0.7326 DISP1 Zornitza Stark Gene: disp1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7325 DISP1 Zornitza Stark reviewed gene: DISP1: Rating: AMBER; Mode of pathogenicity: None; Publications: 19184110, 26748417, 23542665; Phenotypes: Holoprosencephaly; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7301 RMI2 Zornitza Stark Gene: rmi2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7298 RMI2 Zornitza Stark Classified gene: RMI2 as Amber List (moderate evidence)
Mendeliome v0.7298 RMI2 Zornitza Stark Gene: rmi2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7297 RMI2 Zornitza Stark reviewed gene: RMI2: Rating: AMBER; Mode of pathogenicity: None; Publications: 27977684; Phenotypes: Bloom-like syndrome; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7277 GTF2E2 Zornitza Stark Gene: gtf2e2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7274 GTF2E2 Zornitza Stark Classified gene: GTF2E2 as Amber List (moderate evidence)
Mendeliome v0.7274 GTF2E2 Zornitza Stark Gene: gtf2e2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7273 GTF2E2 Zornitza Stark reviewed gene: GTF2E2: Rating: AMBER; Mode of pathogenicity: None; Publications: 26996949; Phenotypes: Trichothiodystrophy 6, nonphotosensitive, MIM# 616943, MONDO:0014841; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7254 MDM2 Chern Lim reviewed gene: MDM2: Rating: AMBER; Mode of pathogenicity: None; Publications: 28846075; Phenotypes: ?Lessel-Kubisch syndrome (MIM#618681); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7249 NDUFB11 Kristin Rigbye changed review comment from: Variable syndromic features have been observed in affected individuals, however anaemia and cardiomyopathy appear to be consistent features in males and females, respectively (PMID: 28050600, PMID: 30423443, PMID: 27488349).

Affected females have previously been reported with inherited pathogenic variants from their unaffected mothers. It has been suggested that this may be due to patterns of somatic X-chromosome inactivation, mosaicism or additional genetic or external factors (PMID: 28050600).

Affected females have been reported with null alleles, whereas affected males have only been identified with missense variants or a recurrent single residue in-frame deletion, suggesting that some residual enzyme activity is required for males to be viable, whereas complete loss of function variants may be lethal when hemizygous (PMID: 30423443).
Note: female carriers of missense variants have not been reported as clinically affected.

Western blots from cells of male patients with the recurrent F93del variant showed reduced protein levels, and recombinant cells demonstrated a proliferation defect, consistent with the anaemia phenotype (PMID: 27488349).; to: Variable syndromic features have been observed in affected individuals, however anaemia and cardiomyopathy appear to be consistent features in males and females, respectively (PMID: 28050600, PMID: 30423443, PMID: 27488349).

It has been suggested that heterozygous females do not display the severe phenotype associated with mitochondrial complex 1 deficiency due to highly skewed XCI favouring expression of the wild type allele, whereas these null variants result in a severe lethal disorder in hemizygous males (PMID: 25772934).

Affected females have previously been reported with inherited pathogenic variants from their unaffected mothers. It has been suggested that this may be due to patterns of somatic X-chromosome inactivation, mosaicism or additional genetic or external factors (PMID: 28050600).

Affected females have been reported with null alleles, whereas affected males have only been identified with missense variants or a recurrent single residue in-frame deletion, suggesting that some residual enzyme activity is required for males to be viable, whereas complete loss of function variants may be lethal when hemizygous (PMID: 30423443).
Note: female carriers of missense variants have not been reported as clinically affected.

Western blots from cells of male patients with the recurrent F93del variant showed reduced protein levels, and recombinant cells demonstrated a proliferation defect, consistent with the anaemia phenotype (PMID: 27488349).
Mendeliome v0.7243 MFAP5 Zornitza Stark Classified gene: MFAP5 as Amber List (moderate evidence)
Mendeliome v0.7243 MFAP5 Zornitza Stark Gene: mfap5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7242 MFAP5 Zornitza Stark reviewed gene: MFAP5: Rating: AMBER; Mode of pathogenicity: None; Publications: 25434006, 30763214, 33807627, 33514025, 29524629; Phenotypes: Aortic aneurysm, familial thoracic MIM# 616166; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7210 NDUFA8 Zornitza Stark Classified gene: NDUFA8 as Amber List (moderate evidence)
Mendeliome v0.7210 NDUFA8 Zornitza Stark Gene: ndufa8 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7209 NDUFA8 Zornitza Stark edited their review of gene: NDUFA8: Changed rating: AMBER; Changed publications: 32385911, 33153867; Changed phenotypes: Mitochondrial complex I deficiency, nuclear type 37, MIM# 619272, Developmental delay, microcehaly, seizures
Mendeliome v0.7194 UNC50 Zornitza Stark Gene: unc50 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7194 UNC50 Zornitza Stark Classified gene: UNC50 as Amber List (moderate evidence)
Mendeliome v0.7194 UNC50 Zornitza Stark Gene: unc50 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7192 PLCH1 Zornitza Stark Gene: plch1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7192 PLCH1 Zornitza Stark Classified gene: PLCH1 as Amber List (moderate evidence)
Mendeliome v0.7192 PLCH1 Zornitza Stark Gene: plch1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7191 UNC50 Arina Puzriakova gene: UNC50 was added
gene: UNC50 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UNC50 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UNC50 were set to 29016857; 33820833
Phenotypes for gene: UNC50 were set to Arthrogryposis multiplex congenita
Review for gene: UNC50 was set to AMBER
Added comment: UNC50 is currently not associated with any phenotype in OMIM (last edited on 02/01/2018) or Gene2Phenotype.

- PMID: 29016857 (2017) - Homozygosity mapping of disease loci combined with WES in a single male from a consanguineous family presenting with lethal AMC revealed a homozygous frameshift deletion in UNC50 gene (c.750_751del:p.Cys251Phefs*4). Functional studies in C. elegans showed the variant caused loss of acetylcholine receptor expression in the muscle.

- PMID: 33820833 (2021) - Single individual reported with the same homozygous c.750_751del:p.Cys251Phefs*4 variant in UNC50 as previously described. The case was identified from a cohort of 315 genetically undiagnosed and unrelated AMC families. Arthrogryposis and tetra ventricular dilation were detected prenatally.

-- Note: it isn't definitively clear whether these are different individuals. Both are singleton males born to consanguineous parents, with the same variant and similar phenotype. Also both infants died at 28 w.g. However, the 2021 paper (PMID:33820833) states their patient was selected from a cohort of cases without a molecular diagnosis and indicate the UNC50 gene had already previously been identified in relation to this phenotype, highlighting the earlier paper (PMID:29016857). There is also no mention of tetra ventricular dilation in the first case, so it is likely that these do represent distinct individuals. Additional cases needed to provide clarity.
Sources: Literature
Mendeliome v0.7191 PLCH1 Arina Puzriakova gene: PLCH1 was added
gene: PLCH1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLCH1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PLCH1 were set to 33820834
Phenotypes for gene: PLCH1 were set to Holoprosencephaly spectrum; Severe developmental delay; Brain malformations
Review for gene: PLCH1 was set to AMBER
Added comment: PLCH1 is currently not associated with any phenotype in OMIM (last edited on 16/06/2009) or Gene2Phenotype.

- PMID: 33820834 (2021) - Two sibling pairs from two unrelated families with a holoprosencephaly spectrum phenotype and different homozygous PLCH1 variants (c.2065C>T, p.Arg689* and c.4235delA, p.Cys1079ValfsTer16, respectively). One family presented with congenital hydrocephalus, epilepsy, significant developmental delay and a monoventricle or fused thalami; while sibs from the second family had alobar holoprosencephaly and cyclopia. 3/4 individuals also displayed a cleft palate and congenital heart disease.
Human embryo immunohistochemistry showed PLCH1 to be expressed in the notorcord, developing spinal cord (in a ventral to dorsal gradient), dorsal root ganglia, cerebellum and dermatomyosome.
Sources: Literature
Mendeliome v0.7188 PDIA6 Zornitza Stark Gene: pdia6 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7188 PDIA6 Zornitza Stark Classified gene: PDIA6 as Amber List (moderate evidence)
Mendeliome v0.7188 PDIA6 Zornitza Stark Gene: pdia6 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7187 PDIA6 Zornitza Stark gene: PDIA6 was added
gene: PDIA6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PDIA6 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: PDIA6 were set to Asphyxiating thoracic dystrophy (ATD) syndrome and infantile‐onset diabetes
Review for gene: PDIA6 was set to AMBER
Added comment: Amber in view of the good quality functional data.

1 case with asphyxiating thoracic dystrophy (ATD) syndrome and infantile‐onset diabetes. Whole exome sequencing revealed a homozygous frameshift variant in the PDIA6 gene. RNA expression was reduced in a gene dosage‐dependent manner, supporting a loss‐of‐function effect of this variant. Phenotypic correlation with the previously reported mouse model recapitulated the growth defect and delay, early lethality, coagulation, diabetes, immunological, and polycystic kidney disease phenotypes. The phenotype of the current patient is consistent with phenotypes associated with the disruption of PDIA6 and the sensors of UPR in mice and humans.
Sources: Literature
Mendeliome v0.7186 EXOSC1 Zornitza Stark gene: EXOSC1 was added
gene: EXOSC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EXOSC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EXOSC1 were set to 33463720
Phenotypes for gene: EXOSC1 were set to Pontocerebellar hypoplasia
Review for gene: EXOSC1 was set to RED
Added comment: An 8‐months‐old male with developmental delay, microcephaly, subtle dysmorphism, hypotonia, pontocerebellar hypoplasia and delayed myelination. Similarly affected elder sibling succumbed at the age of 4‐years 6‐months. Exome sequencing revealed a homozygous missense variant (c.104C >T, p.Ser35Leu) in EXOSC1. In silico mutagenesis revealed loss of a polar contact with neighbouring Leu37 residue. Quantitative real‐time PCR indicated no appreciable differences in EXOSC1 transcript levels. Immunoblotting and blue native PAGE revealed reduction in the EXOSC1 protein levels and EXO9 complex in the proband, respectively. Of note, bi‐allelic variants in other exosome subunits EXOSC3, EXOSC8 and EXOSC9 have been reported to cause pontocerebellar hypoplasia type 1B, type 1C and type 1D, respectively.
Sources: Literature
Mendeliome v0.7161 PSAP Zornitza Stark Phenotypes for gene: PSAP were changed from Parkinson disease, AD; Combined SAP deficiency 611721; Gaucher disease, atypical, MIM# 610539; Krabbe disease, atypical, MIM# 611722; Metachromatic leukodystrophy due to SAP-b deficiency, MIM# 249900 to Parkinson disease, AD; Combined SAP deficiency, MIM# 611721; Encephalopathy due to prosaposin deficiency, MONDO:0012719; Krabbe disease, atypical, MIM# 611722; MONDO:0012720; Metachromatic leukodystrophy due to SAP-b deficiency, MIM# 249900; MONDO:0009590; Gaucher disease, atypical, MIM# 610539; MONDO:0012517
Mendeliome v0.7160 PSAP Zornitza Stark edited their review of gene: PSAP: Changed phenotypes: Combined SAP deficiency, MIM# 611721, Encephalopathy due to prosaposin deficiency, MONDO:0012719, Krabbe disease, atypical, MIM# 611722, MONDO:0012720, Metachromatic leukodystrophy due to SAP-b deficiency, MIM# 249900, MONDO:0009590, Gaucher disease, atypical, MIM# 610539, MONDO:0012517
Mendeliome v0.7148 MIA3 Zornitza Stark Gene: mia3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7148 MIA3 Zornitza Stark Classified gene: MIA3 as Amber List (moderate evidence)
Mendeliome v0.7148 MIA3 Zornitza Stark Gene: mia3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7147 MIA3 Zornitza Stark gene: MIA3 was added
gene: MIA3 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: MIA3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MIA3 were set to 32101163; 33778321
Phenotypes for gene: MIA3 were set to Ondontochondrodysplasia 2 with hearing loss and diabetes , MIM#619269
Review for gene: MIA3 was set to AMBER
Added comment: Odontochondrodysplasia-2 with hearing loss and diabetes (ODCD2) is characterized by growth retardation with proportionate short stature, dentinogenesis imperfecta, sensorineural hearing loss, insulin-dependent diabetes, and mild intellectual disability.

Four affected siblings reported. Mouse model has absence of bone mineralization.
Sources: Expert list
Mendeliome v0.7135 LAMP2 Zornitza Stark changed review comment from: XLD. Vacuolar cardiomyopathy and myopathy. Gene encodes lysosome-associated membrane protein-2.; to: XLD. Gene encodes lysosome-associated membrane protein-2.

Danon disease is an X-linked dominant disorder predominantly affecting cardiac muscle. Skeletal muscle involvement and mental retardation are variable features. The accumulation of glycogen in muscle and lysosomes originally led to the classification of Danon disease as a variant of glycogen storage disease II (Pompe disease) with 'normal acid maltase' or alpha-glucosidase, however, it may be more accurately classified as a lysosomal disorder.
Mendeliome v0.7127 VWA1 Melanie Marty gene: VWA1 was added
gene: VWA1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: VWA1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: VWA1 were set to 33459760; 33693694; 33559681
Phenotypes for gene: VWA1 were set to Hereditary motor neuropathy
Review for gene: VWA1 was set to GREEN
Added comment: Six different truncating variants identified in 15 affected individuals from six families (biallelic inheritance). Disease manifested in childhood or adulthood with proximal and distal muscle weakness predominantly of the lower limbs. Myopathological and neurophysiological findings were indicative of combined neurogenic and myopathic pathology. Early childhood foot deformity was frequent, but no sensory signs were observed.

An additional 17 individuals from 15 families with hereditary motor neuropathy were identified. A 10-bp repeat expansion at the end of exon 1 was observed in 14 families and was homozygous in 10 of them. This mutation, c.62_71dup [p.Gly25Argfs*74], leads to a frameshift that results in a reduction in VWA1 transcript levels via nonsense-mediated decay.
Sources: Literature
Mendeliome v0.7127 GIPC1 Alison Yeung Classified gene: GIPC1 as Amber List (moderate evidence)
Mendeliome v0.7127 GIPC1 Alison Yeung Gene: gipc1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7124 GIPC1 Dean Phelan reviewed gene: GIPC1: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 33374016; Phenotypes: Oculopharyngodistal myopathy 2 (MIM#618940); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7118 SLC45A1 Zornitza Stark Gene: slc45a1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7115 SLC45A1 Zornitza Stark Classified gene: SLC45A1 as Amber List (moderate evidence)
Mendeliome v0.7115 SLC45A1 Zornitza Stark Gene: slc45a1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7114 SLC45A1 Zornitza Stark reviewed gene: SLC45A1: Rating: AMBER; Mode of pathogenicity: None; Publications: 28434495; Phenotypes: Intellectual developmental disorder with neuropsychiatric features, MIM# 617532; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7114 MESP1 Zornitza Stark Gene: mesp1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7114 MESP1 Zornitza Stark Classified gene: MESP1 as Amber List (moderate evidence)
Mendeliome v0.7114 MESP1 Zornitza Stark Gene: mesp1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7113 MESP1 Zornitza Stark gene: MESP1 was added
gene: MESP1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: MESP1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MESP1 were set to 28677747; 28050627; 27185833; 26694203
Phenotypes for gene: MESP1 were set to Congenital heart disease
Review for gene: MESP1 was set to AMBER
Added comment: Rare/novel variants reported in at least 7 unrelated individuals with congenital heart disease, in-silicos conflicting, familial segregation only available for some (one de novo, three inherited, others unresolved). Functional data implicates gene in cardiac development.
Sources: Expert list
Mendeliome v0.7112 HYAL1 Zornitza Stark Gene: hyal1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7109 HYAL1 Zornitza Stark Classified gene: HYAL1 as Amber List (moderate evidence)
Mendeliome v0.7109 HYAL1 Zornitza Stark Gene: hyal1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7108 HYAL1 Zornitza Stark reviewed gene: HYAL1: Rating: AMBER; Mode of pathogenicity: None; Publications: 10339581, 18344557, 21559944; Phenotypes: Mucopolysaccharidosis type IX, MIM# 601492, MONDO:0011093; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7081 NDUFB7 Bryony Thompson Gene: ndufb7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7081 NDUFB7 Bryony Thompson Classified gene: NDUFB7 as Amber List (moderate evidence)
Mendeliome v0.7081 NDUFB7 Bryony Thompson Gene: ndufb7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7080 NDUFB7 Bryony Thompson gene: NDUFB7 was added
gene: NDUFB7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NDUFB7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NDUFB7 were set to 33502047; 27626371
Phenotypes for gene: NDUFB7 were set to Congenital lactic acidosis; hypertrophic cardiomyopathy
Review for gene: NDUFB7 was set to AMBER
Added comment: Single patient with a homozygous variant impacting RNA splicing (c.113-10C>G) with intrauterine growth restriction and anaemia, which displayed postpartum hypertrophic cardiomyopathy, lactic acidosis, encephalopathy, and a severe complex I defect with fatal outcome. Also, a supporting knockout cell line model demonstrating impaired complex I assembly.
Sources: Literature
Mendeliome v0.7079 CELA3B Bryony Thompson Gene: cela3b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7079 CELA3B Bryony Thompson Classified gene: CELA3B as Amber List (moderate evidence)
Mendeliome v0.7079 CELA3B Bryony Thompson Gene: cela3b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7075 CELA3B Bryony Thompson gene: CELA3B was added
gene: CELA3B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CELA3B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CELA3B were set to 31369399; 33565216
Phenotypes for gene: CELA3B were set to Chronic pancreatitis
Mode of pathogenicity for gene: CELA3B was set to Other
Review for gene: CELA3B was set to AMBER
Added comment: PMID: 33565216 - p.Arg90Cys (c.268C>T) identified in a chronic pancreatitis (also diabetes and pancreatic adenocarcinoma present in some individuals) pedigree. Variant was present in 2 affected individuals and not present in 7 healthy relatives. Also, supporting in vitro functional assays demonstrating gain of function mechanism for R90C and R90L, and supporting mouse model.
PMID: 31369399 - p.Arg90Leu (c.269G>T) identified in 4 French chronic pancreatitis cases and 0 controls. However, there are 229 hets in gnomAD v2.1 with this variant.
Sources: Literature
Mendeliome v0.7056 CCDC88C Paul De Fazio changed review comment from: Heterozygous missense variant (gnomad: 1 het) reported in a 48-year-old Sudanese female presented with pure early onset hereditary spastic paraplegia. In contrast to previous reports, she developed neurological symptoms in early childhood and showed neither features of cerebellar ataxia, extrapyramidal signs, nor evidence of intellectual involvement. Functional studies showed the varaint induced JNK hyper-phosphorylation and enhanced apoptosis. 4 unaffected family members did not have the variant.

This phenotype appears to be sufficiently dissimilar to the 2 previously reported SCA families to not constitute a 3rd supporting report in that context.; to: Heterozygous missense variant (gnomad: 1 het) reported in a 48-year-old Sudanese female presented with pure early onset hereditary spastic paraplegia. In contrast to previous reports, she developed neurological symptoms in early childhood and showed neither features of cerebellar ataxia, extrapyramidal signs, nor evidence of intellectual involvement. Functional studies showed the varaint induced JNK hyper-phosphorylation and enhanced apoptosis. 4 unaffected family members did not have the variant.

NB: Rated Amber as this phenotype appears to be sufficiently dissimilar to the 2 previously reported SCA families to not constitute a 3rd supporting report in that context. Gene remains Green for the AR ID phenotype.
Mendeliome v0.7056 CCDC88C Paul De Fazio edited their review of gene: CCDC88C: Changed rating: AMBER; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.7048 EDN1 Zornitza Stark Gene: edn1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7045 EDN1 Zornitza Stark Classified gene: EDN1 as Amber List (moderate evidence)
Mendeliome v0.7045 EDN1 Zornitza Stark Gene: edn1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7044 EDN1 Zornitza Stark reviewed gene: EDN1: Rating: AMBER; Mode of pathogenicity: None; Publications: 23315542, 23913798, 24268655; Phenotypes: Auriculocondylar syndrome 3, MIM# 615706; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7028 ARAP3 Zornitza Stark Gene: arap3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7028 ARAP3 Zornitza Stark Classified gene: ARAP3 as Amber List (moderate evidence)
Mendeliome v0.7028 ARAP3 Zornitza Stark Gene: arap3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7027 ARAP3 Zornitza Stark gene: ARAP3 was added
gene: ARAP3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ARAP3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ARAP3 were set to 32908855
Phenotypes for gene: ARAP3 were set to Lymphoedema
Review for gene: ARAP3 was set to AMBER
Added comment: Three unrelated families reported with rare missense variants in this gene as part of a lymphoedema cohort. However, incomplete information regarding segregation and no supporting functional data.
Sources: Literature
Mendeliome v0.7004 PRIM1 Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature
Mendeliome v0.7004 PRIM1 Zornitza Stark Gene: prim1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7004 PRIM1 Zornitza Stark Classified gene: PRIM1 as Amber List (moderate evidence)
Mendeliome v0.7004 PRIM1 Zornitza Stark Gene: prim1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.7003 PRIM1 Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature
Mendeliome v0.7003 PRIM1 Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature
Mendeliome v0.7003 PRIM1 Zornitza Stark gene: PRIM1 was added
gene: PRIM1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRIM1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PRIM1 were set to 33060134
Phenotypes for gene: PRIM1 were set to Microcephalic primordial dwarfism, MONDO:0017950
Review for gene: PRIM1 was set to AMBER
Added comment: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature
Mendeliome v0.6975 STAMBP Zornitza Stark Marked gene: STAMBP as ready
Mendeliome v0.6975 STAMBP Zornitza Stark Gene: stambp has been classified as Green List (High Evidence).
Mendeliome v0.6975 STAMBP Zornitza Stark Phenotypes for gene: STAMBP were changed from to Microcephaly-capillary malformation syndrome, MIM# 614261; MONDO:0013659
Mendeliome v0.6974 STAMBP Zornitza Stark Publications for gene: STAMBP were set to
Mendeliome v0.6973 STAMBP Zornitza Stark Mode of inheritance for gene: STAMBP was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6972 STAMBP Zornitza Stark reviewed gene: STAMBP: Rating: GREEN; Mode of pathogenicity: None; Publications: 23542699, 31638258, 29907875, 27531570, 25692795, 25266620; Phenotypes: Microcephaly-capillary malformation syndrome, MIM# 614261, MONDO:0013659; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6969 NHEJ1 Zornitza Stark Phenotypes for gene: NHEJ1 were changed from to Severe combined immunodeficiency with microcephaly, growth retardation, and sensitivity to ionizing radiation, MIM# 611291; Cernunnos-XLF deficiency MONDO:0012650
Mendeliome v0.6966 NHEJ1 Zornitza Stark reviewed gene: NHEJ1: Rating: GREEN; Mode of pathogenicity: None; Publications: 30898087, 30666249, 28741180, 25288157, 24511403, 21721379, 21535335; Phenotypes: Severe combined immunodeficiency with microcephaly, growth retardation, and sensitivity to ionizing radiation, MIM# 611291, Cernunnos-XLF deficiency MONDO:0012650; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6921 TMEM231 Zornitza Stark changed review comment from: Two families described with the Joubert phenotype, severely affected, not ambulant.; to: More than 3 unrelated families reported with each phenotype, functional data.
Mendeliome v0.6898 MIB1 Zornitza Stark Added comment: Comment when marking as ready: Amber for LVNC/cardiomyopathy. Green for congenital heart disease.
Mendeliome v0.6897 MIB1 Zornitza Stark reviewed gene: MIB1: Rating: AMBER; Mode of pathogenicity: None; Publications: 30322850, 23314057; Phenotypes: Left ventricular noncompaction 7, MIM# 615092, cardiomyopathy; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6894 IPO8 Zornitza Stark Gene: ipo8 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6894 IPO8 Zornitza Stark Classified gene: IPO8 as Amber List (moderate evidence)
Mendeliome v0.6894 IPO8 Zornitza Stark Gene: ipo8 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6893 IPO8 Zornitza Stark gene: IPO8 was added
gene: IPO8 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: IPO8 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: IPO8 were set to Loeys-Dietz syndrome-like; cardiovascular, neurologic, skeletal and immunologic abnormalities
Review for gene: IPO8 was set to AMBER
Added comment: 12 individuals from 9 unrelated families in a cohort submitted for publication with bi-allelic IPO8 variants. Variants were nonsense/splice and some missense. Patients displayed a phenotype reminiscent of Loeys Dietz syndrome that variably combined cardiovascular, neurologic, skeletal and immunologic abnormalities along with dysmorphic features. Western blot on patient cells (4 individuals) showed reduced IPO8 expression. Disruption of IPO8 homologue in zebrafish associated with cardiac anomalies. Transcriptome analysis in zebrafish showed that IPO8-deficient zebrafish had abnormal TGFbeta pathway expression.
Sources: Expert Review
Mendeliome v0.6811 INPP4A Zornitza Stark Gene: inpp4a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6811 INPP4A Zornitza Stark Classified gene: INPP4A as Amber List (moderate evidence)
Mendeliome v0.6811 INPP4A Zornitza Stark Gene: inpp4a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6810 INPP4A Zornitza Stark gene: INPP4A was added
gene: INPP4A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: INPP4A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: INPP4A were set to 31978615; 31938306; 25338135; 20011524
Phenotypes for gene: INPP4A were set to Intellectual disability
Review for gene: INPP4A was set to AMBER
Added comment: Two families reported with bi-allelic variants and a neurological phenotype. Supportive mouse model and expression data.
Sources: Literature
Mendeliome v0.6808 SATB1 Zornitza Stark edited their review of gene: SATB1: Added comment: Kohlschutter-Tonz syndrome-like (KTZSL) is characterized by global developmental delay with moderately to severely impaired intellectual development, poor or absent speech, and delayed motor skills. Although the severity of the disorder varies, many patients are nonverbal and have hypotonia with inability to sit or walk. Early-onset epilepsy is common and may be refractory to treatment, leading to epileptic encephalopathy and further interruption of developmental progress. Most patients have feeding difficulties with poor overall growth and dysmorphic facial features, as well as significant dental anomalies resembling amelogenesis imperfecta. This phenotype was reported in 28 patients (patients 13 to 40, PMID 33513338), including 9 patients from 3 families. Most variants were de novo, though some were inherited, suggestive of incomplete penetrance and variable expressivity.; Changed phenotypes: Developmental delay with dysmorphic facies and dental anomalies, MIM# 619228, Kohlschutter-Tonz syndrome-like, MIM# 619229
Mendeliome v0.6802 FLII Zornitza Stark Gene: flii has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6802 FLII Zornitza Stark Classified gene: FLII as Amber List (moderate evidence)
Mendeliome v0.6802 FLII Zornitza Stark Gene: flii has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6801 FLII Zornitza Stark gene: FLII was added
gene: FLII was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FLII was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FLII were set to 32870709
Phenotypes for gene: FLII were set to Dilated cardiomyopathy
Review for gene: FLII was set to AMBER
Added comment: Two unrelated families reported with homozygous missense variants. Emerging evidence.
Sources: Literature
Mendeliome v0.6800 RHBDF1 Zornitza Stark Gene: rhbdf1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6800 RHBDF1 Zornitza Stark Classified gene: RHBDF1 as Amber List (moderate evidence)
Mendeliome v0.6800 RHBDF1 Zornitza Stark Gene: rhbdf1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6799 RHBDF1 Zornitza Stark gene: RHBDF1 was added
gene: RHBDF1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RHBDF1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RHBDF1 were set to 32870709
Phenotypes for gene: RHBDF1 were set to Dilated cardiomyopathy
Review for gene: RHBDF1 was set to AMBER
Added comment: Three families reported with homozygous variants in this gene and onset of DCM in infancy/childhood. Two of the families had the same truncating variant, indicative of founder effect, and one family had a homozygous missense variant.
Sources: Literature
Mendeliome v0.6798 MYLK3 Zornitza Stark Gene: mylk3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6798 MYLK3 Zornitza Stark Classified gene: MYLK3 as Amber List (moderate evidence)
Mendeliome v0.6798 MYLK3 Zornitza Stark Gene: mylk3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6797 MYLK3 Zornitza Stark gene: MYLK3 was added
gene: MYLK3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MYLK3 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: MYLK3 were set to 29235529; 31244672; 32213617; 32870709
Phenotypes for gene: MYLK3 were set to Dilated cardiomyopathy
Review for gene: MYLK3 was set to AMBER
Added comment: Two families reported with mono-allelic variants (one extension, one frameshift), and three consanguineous families reported with bi-allelic variants (two hmz frameshift, one hmz missense). Supportive mouse models.
Sources: Literature
Mendeliome v0.6793 MPEG1 Zornitza Stark gene: MPEG1 was added
gene: MPEG1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: MPEG1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MPEG1 were set to 33224153; 33692780; 28422754
Phenotypes for gene: MPEG1 were set to Immunodeficiency 77, MIM# 619223
Review for gene: MPEG1 was set to GREEN
Added comment: Immunodeficiency-77 (IMD77) is an immunologic disorder characterized by recurrent and persistent polymicrobial infections with multiple unusual organisms. Skin and pulmonary infections are the most common, consistent with increased susceptibility to epithelial cell infections. The age at onset is highly variable: some patients have recurrent infections from childhood, whereas others present in late adulthood. The limited number of reported patients are all female, suggesting incomplete penetrance or a possible sex-influenced trait. Patient cells, mainly macrophages, show impaired killing of intracellular bacteria and organisms, including nontubercular mycobacteria, although there is also impaired killing of other organisms, such as Pseudomonas, Candida, and Aspergillus.

Four individuals reported, functional data, including animal model.
Sources: Expert list
Mendeliome v0.6765 TAOK2 Bryony Thompson Gene: taok2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6764 TAOK2 Bryony Thompson Classified gene: TAOK2 as Amber List (moderate evidence)
Mendeliome v0.6764 TAOK2 Bryony Thompson Gene: taok2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6763 TAOK2 Bryony Thompson gene: TAOK2 was added
gene: TAOK2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TAOK2 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: TAOK2 were set to 28385331; 29467497
Phenotypes for gene: TAOK2 were set to Generalized verrucosis; abnormal T cell activation
Review for gene: TAOK2 was set to AMBER
Added comment: PMID: 28385331 - A single consanguineous family with generalized verrucosis and abnormal T cell activation, and a homozygous missense (p.R700C), with some assays on patient fibroblasts.
PMID: 29467497 - One of the several genes in the 16p11.2 microdeletion region associated with autism. Taok2 heterozygous and knockout mice had gene dosage-dependent impairments in cognition, anxiety, social interaction, brain size, and neural connectivity. 3 de novo variants and 3 predicted loss of function variants identified in 6 unrelated autism cases. 2 of the de novo variants have supporting functional assays, but 1 of them co-occurs in an individual with a CHD8 frameshift. 1 of the predicted loss of function variants was also identified in the unaffected father and sibling.
Sources: Literature
Mendeliome v0.6758 POLR3GL Zornitza Stark edited their review of gene: POLR3GL: Changed rating: AMBER; Changed phenotypes: Short stature, oligodontia, dysmorphic facies, and motor delay (SOFM), MIM#619234
Mendeliome v0.6755 ZCCHC8 Bryony Thompson Gene: zcchc8 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6755 ZCCHC8 Bryony Thompson Classified gene: ZCCHC8 as Amber List (moderate evidence)
Mendeliome v0.6755 ZCCHC8 Bryony Thompson Gene: zcchc8 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6754 ZCCHC8 Bryony Thompson gene: ZCCHC8 was added
gene: ZCCHC8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZCCHC8 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ZCCHC8 were set to 31488579
Phenotypes for gene: ZCCHC8 were set to Pulmonary fibrosis
Review for gene: ZCCHC8 was set to AMBER
Added comment: A missense variant (P186L) segregates over 3 generations in a single family, and supporting in vitro assays and mouse model.
Sources: Literature
Mendeliome v0.6726 COPB1 Zornitza Stark Gene: copb1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6726 COPB1 Zornitza Stark Classified gene: COPB1 as Amber List (moderate evidence)
Mendeliome v0.6726 COPB1 Zornitza Stark Gene: copb1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6725 COPB1 Zornitza Stark gene: COPB1 was added
gene: COPB1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: COPB1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COPB1 were set to 33632302
Phenotypes for gene: COPB1 were set to Severe intellectual disability; variable microcephaly; cataracts
Review for gene: COPB1 was set to AMBER
Added comment: Two unrelated families, some supportive functional data.
Sources: Literature
Mendeliome v0.6699 KDM5C Zornitza Stark changed review comment from: Progressive lower limb spasticity is a feature of this ID syndrome. More than 5 unrelated families reported.; to: Intellectual disability, progressive lower limb spasticity, epilepsy and a number of other more variable features. Affected females reported PMID 32279304.
Mendeliome v0.6693 C12orf65 Zornitza Stark Phenotypes for gene: C12orf65 were changed from to Spastic paraplegia 55, autosomal recessive, MIM#615035; Combined oxidative phosphorylation deficiency 7, MIM# 613559
Mendeliome v0.6690 C12orf65 Zornitza Stark reviewed gene: C12orf65: Rating: GREEN; Mode of pathogenicity: None; Publications: 23188110, 24080142, 24198383, 20598281, 32808965, 32478789, 28804760; Phenotypes: Spastic paraplegia 55, autosomal recessive, MIM#615035, Combined oxidative phosphorylation deficiency 7, MIM# 613559; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6684 CYP2U1 Zornitza Stark edited their review of gene: CYP2U1: Added comment: SPG56 is an autosomal recessive neurodegenerative disorder characterized by early-onset progressive lower-limb spasticity resulting in walking difficulties. Upper limbs are often also affected, and some patients may have a subclinical axonal neuropathy. Onset is typically in the first decade. More than 5 unrelated families reported.; Changed rating: GREEN; Changed publications: 23176821, 32006740, 29034544
Mendeliome v0.6679 ADAMTS13 Zornitza Stark Phenotypes for gene: ADAMTS13 were changed from to Thrombotic thrombocytopenic purpura, hereditary, MIM# 274150
Mendeliome v0.6676 ADAMTS13 Zornitza Stark reviewed gene: ADAMTS13: Rating: GREEN; Mode of pathogenicity: None; Publications: 11586351, 30312976; Phenotypes: Thrombotic thrombocytopenic purpura, hereditary, MIM# 274150; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6668 WBP11 Zornitza Stark Phenotypes for gene: WBP11 were changed from malformation syndrome affecting the cardiac, skeletal, gastrointestinal and renal systems to Vertebral, cardiac, tracheoesophageal, renal, and limb defects, MIM# 619227; malformation syndrome affecting the cardiac, skeletal, gastrointestinal and renal systems
Mendeliome v0.6667 WBP11 Zornitza Stark reviewed gene: WBP11: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Vertebral, cardiac, tracheoesophageal, renal, and limb defects, MIM# 619227; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6660 CST3 Zornitza Stark Gene: cst3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6657 CST3 Zornitza Stark Classified gene: CST3 as Amber List (moderate evidence)
Mendeliome v0.6657 CST3 Zornitza Stark Gene: cst3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6656 CST3 Zornitza Stark reviewed gene: CST3: Rating: AMBER; Mode of pathogenicity: None; Publications: 3495457; Phenotypes: Cerebral amyloid angiopathy, MIM# 105150; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6639 DONSON Zornitza Stark Phenotypes for gene: DONSON were changed from to Microcephaly, short stature, and limb abnormalities, MIM# 617604; Microcephaly-micromelia syndrome, MIM# 251230; MONDO:0009619
Mendeliome v0.6636 DONSON Zornitza Stark reviewed gene: DONSON: Rating: GREEN; Mode of pathogenicity: None; Publications: 28191891, 28630177, 28191891; Phenotypes: Microcephaly, short stature, and limb abnormalities, MIM# 617604, Microcephaly-micromelia syndrome, MIM# 251230, MONDO:0009619; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6636 SQOR Zornitza Stark Gene: sqor has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6635 SQOR Zornitza Stark Classified gene: SQOR as Amber List (moderate evidence)
Mendeliome v0.6635 SQOR Zornitza Stark Gene: sqor has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6607 RPL18 Zornitza Stark Gene: rpl18 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6607 RPL18 Zornitza Stark Classified gene: RPL18 as Amber List (moderate evidence)
Mendeliome v0.6607 RPL18 Zornitza Stark Gene: rpl18 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6606 RPL18 Zornitza Stark gene: RPL18 was added
gene: RPL18 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: RPL18 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RPL18 were set to 28280134; 32075953
Phenotypes for gene: RPL18 were set to Diamond-Blackfan anemia 18, MIM# 618310
Review for gene: RPL18 was set to AMBER
Added comment: One family and a zebrafish model.
Sources: Expert list
Mendeliome v0.6589 ACKR3 Zornitza Stark reviewed gene: ACKR3: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Oculomotor-abducens synkinesis, MIM# 619215; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6589 SYCP2L Zornitza Stark Gene: sycp2l has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6589 SYCP2L Zornitza Stark Classified gene: SYCP2L as Amber List (moderate evidence)
Mendeliome v0.6589 SYCP2L Zornitza Stark Gene: sycp2l has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6582 SYCP2L Arina Puzriakova gene: SYCP2L was added
gene: SYCP2L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SYCP2L was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SYCP2L were set to 32303603
Phenotypes for gene: SYCP2L were set to Premature ovarian insufficiency
Review for gene: SYCP2L was set to AMBER
Added comment: - PMID: 32303603 (2021) - Two unrelated individuals with premature ovarian insufficiency and homozygous variants (c.150_151del (p.Ser52Profs*7), c.999A>G (p.Ile333Met)) in SYCP2L.
In vitro assays revealed that mutant SYCP2L proteins induced mislocalisation and reduced expression. Sycp2l knockout mice exhibit accelerated reproductive ageing.
Sources: Literature
Mendeliome v0.6568 EN1 Zornitza Stark Phenotypes for gene: EN1 were changed from ENDOVE syndrome, limb-only type, MIM# 619217 to ENDOVE syndrome, limb-only type, MIM# 619217; ENDOVE syndrome, limb-brain type, MIM# 619218
Mendeliome v0.6567 EN1 Zornitza Stark changed review comment from: Three unrelated families reported (though two shown to be related by descent) with predominantly a skeletal phenotype comprising mesomelic shortening and deformation of the lower limbs due to severe hypoplasia of the tibia and fibula. This was accompanied by abnormalities of the digits of the hands and feet, with cutaneous and osseous syndactyly as well as dysplastic, missing, and/or volar nails. In addition, genitourinary anomalies were observed in some. Homozygous deletions identified in all, with the minimal deleted region being a 27-kb interval (chr2: 118,561,492-118,589,320) located approximately 300 kb upstream of the EN1 gene. Mouse model recapitulated the phenotype.
Sources: Literature; to: Three unrelated families reported (though two shown to be related by descent) with predominantly a skeletal phenotype comprising mesomelic shortening and deformation of the lower limbs due to severe hypoplasia of the tibia and fibula. This was accompanied by abnormalities of the digits of the hands and feet, with cutaneous and osseous syndactyly as well as dysplastic, missing, and/or volar nails. In addition, genitourinary anomalies were observed in some. Homozygous deletions identified in all, with the minimal deleted region being a 27-kb interval (chr2: 118,561,492-118,589,320) located approximately 300 kb upstream of the EN1 gene. Mouse model recapitulated the phenotype.

An additional fourth individual had cerebellar hypoplasia in addition to the skeletal phenotype, and a bi-allelic LoF variant.
Sources: Literature
Mendeliome v0.6567 EN1 Zornitza Stark edited their review of gene: EN1: Changed phenotypes: ENDOVE syndrome, limb-only type, MIM# 619217, ENDOVE syndrome, limb-brain type, MIM# 619218
Mendeliome v0.6566 EN1 Zornitza Stark gene: EN1 was added
gene: EN1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EN1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EN1 were set to 33568816
Phenotypes for gene: EN1 were set to ENDOVE syndrome, limb-only type, MIM# 619217
Review for gene: EN1 was set to GREEN
Added comment: Three unrelated families reported (though two shown to be related by descent) with predominantly a skeletal phenotype comprising mesomelic shortening and deformation of the lower limbs due to severe hypoplasia of the tibia and fibula. This was accompanied by abnormalities of the digits of the hands and feet, with cutaneous and osseous syndactyly as well as dysplastic, missing, and/or volar nails. In addition, genitourinary anomalies were observed in some. Homozygous deletions identified in all, with the minimal deleted region being a 27-kb interval (chr2: 118,561,492-118,589,320) located approximately 300 kb upstream of the EN1 gene. Mouse model recapitulated the phenotype.
Sources: Literature
Mendeliome v0.6552 KIDINS220 Zornitza Stark Phenotypes for gene: KIDINS220 were changed from to Spastic paraplegia, intellectual disability, nystagmus, and obesity, MIM# 617296; cerebral ventriculomegaly; limb contractures
Mendeliome v0.6539 KIDINS220 Eleanor Williams reviewed gene: KIDINS220: Rating: AMBER; Mode of pathogenicity: None; Publications: 33205811, 28934391, 22048169; Phenotypes: cerebral ventriculomegaly, limb contractures; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6538 EIF5A Zornitza Stark gene: EIF5A was added
gene: EIF5A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EIF5A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: EIF5A were set to 33547280
Phenotypes for gene: EIF5A were set to Intellectual disability; microcephaly; dysmorphism
Review for gene: EIF5A was set to GREEN
Added comment: 7 unrelated individuals reported with de novo variants in this gene and variable combinations of developmental delay, microcephaly, micrognathia and dysmorphism.
Sources: Literature
Mendeliome v0.6527 APOO Zornitza Stark reviewed gene: APOO: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Developmental delay, Lactic acidosis, Muscle weakness, Hypotonia, Repetitive infections, Cognitive impairment, Autistic behaviour; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.6527 APOO Zornitza Stark Gene: apoo has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6527 APOO Zornitza Stark Classified gene: APOO as Amber List (moderate evidence)
Mendeliome v0.6527 APOO Zornitza Stark Gene: apoo has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6526 APOO Arina Puzriakova gene: APOO was added
gene: APOO was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: APOO was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: APOO were set to 32439808
Phenotypes for gene: APOO were set to Developmental delay; Lactic acidosis; Muscle weakness; Hypotonia; Repetitive infections; Cognitive impairment; Autistic behaviour
Review for gene: APOO was set to RED
Added comment: - PMID: 32439808 (2021) - Three generation family with c.350T>C variant in APOO, encoding a component of the MICOS complex which plays a role in maintaining inner mitochondrial membrane architecture.
Phenotypes include fatigue and muscle weakness (6/8), learning difficulties and cognitive impairment (4/8), and increased blood lactate (2/8). Four individuals were asymptomatic carriers, including one male (authors indicate variability in female carriers was due to skewed X-inactivation, although skewing studies were inconclusive in some cases). Variability in clinical presentation suggests reduced penetrance or possible contribution of additional factors.
Functional studies showed altered MICOS assembly and abnormalities in mitochondria ultrastructure in patient-derived fibroblasts. Knockdown studies in Drosophila and yeast demonstrated mitochondrial structural and functional deficiencies.
Sources: Literature
Mendeliome v0.6509 PSAP Zornitza Stark Phenotypes for gene: PSAP were changed from Parkinson disease, AD to Parkinson disease, AD; Combined SAP deficiency 611721; Gaucher disease, atypical, MIM# 610539; Krabbe disease, atypical, MIM# 611722; Metachromatic leukodystrophy due to SAP-b deficiency, MIM# 249900
Mendeliome v0.6508 PSAP Zornitza Stark reviewed gene: PSAP: Rating: GREEN; Mode of pathogenicity: None; Publications: 32201884; Phenotypes: Combined SAP deficiency 611721, Gaucher disease, atypical, MIM# 610539, Krabbe disease, atypical, MIM# 611722, Metachromatic leukodystrophy due to SAP-b deficiency, MIM# 249900; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6505 IRF4 Bryony Thompson Gene: irf4 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6505 IRF4 Bryony Thompson Phenotypes for gene: IRF4 were changed from Whipple's disease; [Skin/hair/eye pigmentation, variation in, 8] 611724 to Whipple's disease; [Skin/hair/eye pigmentation, variation in, 8] 611724; Combined immunodeficiency
Mendeliome v0.6502 IRF4 Bryony Thompson Classified gene: IRF4 as Amber List (moderate evidence)
Mendeliome v0.6502 IRF4 Bryony Thompson Added comment: Comment on list classification: Single case and mouse model for recessive combined immunodeficiency
Mendeliome v0.6502 IRF4 Bryony Thompson Gene: irf4 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6501 IRF4 Bryony Thompson reviewed gene: IRF4: Rating: AMBER; Mode of pathogenicity: None; Publications: 29408330; Phenotypes: Combined immunodeficiency; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6485 MAST2 Elena Savva gene: MAST2 was added
gene: MAST2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MAST2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: MAST2 were set to PMID: 33465109
Phenotypes for gene: MAST2 were set to Thrombophilia; venous thrombosis
Review for gene: MAST2 was set to RED
Added comment: Single missense identified in a family with venous thrombosis and thrombophilia. Missense variant reviewed by in silicos only. Shown to affect regulation of TFP1 and SERPINE1 gene expression.

RNAi of MAST2 followed by RNAseq showed expression changes in many downstream targets
Sources: Literature
Mendeliome v0.6482 BANF1 Zornitza Stark Gene: banf1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6479 BANF1 Zornitza Stark Classified gene: BANF1 as Amber List (moderate evidence)
Mendeliome v0.6479 BANF1 Zornitza Stark Gene: banf1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6478 BANF1 Zornitza Stark reviewed gene: BANF1: Rating: AMBER; Mode of pathogenicity: None; Publications: 32783369, 21549337; Phenotypes: Nestor-Guillermo progeria syndrome, MIM# 614008; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6468 ANKZF1 Bryony Thompson Gene: ankzf1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6468 ANKZF1 Bryony Thompson Classified gene: ANKZF1 as Amber List (moderate evidence)
Mendeliome v0.6468 ANKZF1 Bryony Thompson Gene: ankzf1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6467 ANKZF1 Bryony Thompson gene: ANKZF1 was added
gene: ANKZF1 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: ANKZF1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ANKZF1 were set to 28302725
Phenotypes for gene: ANKZF1 were set to Infantile-onset inflammatory bowel disease
Review for gene: ANKZF1 was set to AMBER
Added comment: Two unrelated cases (1 homozygous and 1 compound heterozygous), and supporting in vitro and yeast assays indicating that loss-of-function mutations in ANKZF1 result in deregulation of mitochondrial integrity.
Sources: Other
Mendeliome v0.6466 ANGPT1 Bryony Thompson Classified gene: ANGPT1 as Amber List (moderate evidence)
Mendeliome v0.6466 ANGPT1 Bryony Thompson Gene: angpt1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6465 ANGPT1 Bryony Thompson gene: ANGPT1 was added
gene: ANGPT1 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: ANGPT1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ANGPT1 were set to 28601681; 24852101; 30689269; 10617467; 8980224
Phenotypes for gene: ANGPT1 were set to Hereditary angioedema
Review for gene: ANGPT1 was set to AMBER
Added comment: A missense variant (A119S) identified in 4 affected individuals in a single family. Supportive data in patient cells, functional assays of the variant, and animal models (both overexpression and null) for the gene.
Sources: Other
Mendeliome v0.6464 CLTCL1 Bryony Thompson Gene: cltcl1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6464 CLTCL1 Bryony Thompson Classified gene: CLTCL1 as Amber List (moderate evidence)
Mendeliome v0.6464 CLTCL1 Bryony Thompson Gene: cltcl1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6463 CLTCL1 Bryony Thompson gene: CLTCL1 was added
gene: CLTCL1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CLTCL1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CLTCL1 were set to 26068709; 29402896; 22511880; 31354784
Phenotypes for gene: CLTCL1 were set to Congenital insensitivity to pain
Review for gene: CLTCL1 was set to AMBER
Added comment: PMID: 26068709 - Three siblings in a single consanguineous family with congenital insensitivity to pain, inability to feel touch, and cognitive delay and a homozygous rare missense variant (Glu330Lys - no homozygotes in gnomAD v2.1). In vitro functional assays of the variant suggested a deleterious effect on the protein. Additionally cellular assays suggested a role for the gene in neural crest development and in the genesis of pain and touch sensing neurons.

PMID: 29402896 - more in depth functional assays and proteomic analyses suggesting a role for the protein in regulating sensory neuron differentiation in the human peripheral system

Other reports of associations with limited evidence:
PMID: 22511880 - Identified as a candidate gene in an autism study, but the homozygous variant (reported as R125C, but actually R1165C) has 40 homozygotes in gnomAD v2.1. And many of the other compound heterozygous candidate variants in the study are too common in gnomAD v2.1, with many homozygotes present. The missense reported in the pain insensitivity family Glu330Lys was reported with another rare missense variant (Glu1310Lys) in one of the autism cases, but no other phenotype information was provided.

PMID: 31354784 - a single case with infantile spasm reported with compound het missense (Met1316Val & Arg1165Cys), but both are very common in gnomAD v2.1 with 33,000 and 40 homozygotes, respectively.
Sources: Literature
Mendeliome v0.6457 ALPI Zornitza Stark Classified gene: ALPI as Amber List (moderate evidence)
Mendeliome v0.6457 ALPI Zornitza Stark Gene: alpi has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6456 ALPI Zornitza Stark edited their review of gene: ALPI: Changed rating: AMBER
Mendeliome v0.6456 NMNAT2 Bryony Thompson Gene: nmnat2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6456 NMNAT2 Bryony Thompson Gene: nmnat2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6456 NMNAT2 Bryony Thompson Classified gene: NMNAT2 as Amber List (moderate evidence)
Mendeliome v0.6456 NMNAT2 Bryony Thompson Gene: nmnat2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6455 NMNAT2 Bryony Thompson gene: NMNAT2 was added
gene: NMNAT2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NMNAT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NMNAT2 were set to 31132363; 25271157; 20126265
Phenotypes for gene: NMNAT2 were set to polyneuropathy; erythromelalgia
Review for gene: NMNAT2 was set to AMBER
Added comment: A single family with siblings with a homozygous variant that confers a partial loss of function. Strong supporting functional evidence that the gene plays a key role in axonal survival.
Sources: Literature
Mendeliome v0.6450 USF1 Bryony Thompson reviewed gene: USF1: Rating: RED; Mode of pathogenicity: None; Publications: 14991056, 16076849, 31725952; Phenotypes: Hyperlipidemia, familial combined, susceptibility to MIM#602491; Mode of inheritance: Unknown
Mendeliome v0.6424 AKAP6 Zornitza Stark Gene: akap6 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6421 AKAP6 Zornitza Stark Classified gene: AKAP6 as Amber List (moderate evidence)
Mendeliome v0.6421 AKAP6 Zornitza Stark Gene: akap6 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6402 PSMB10 Zornitza Stark Phenotypes for gene: PSMB10 were changed from Autoinflammatory syndrome to Proteasome-associated autoinflammatory syndrome 5, MIM# 619175
Mendeliome v0.6401 PSMB10 Zornitza Stark edited their review of gene: PSMB10: Changed phenotypes: Proteasome-associated autoinflammatory syndrome 5, MIM# 619175
Mendeliome v0.6395 SHROOM3 Zornitza Stark Gene: shroom3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6395 SHROOM3 Zornitza Stark Classified gene: SHROOM3 as Amber List (moderate evidence)
Mendeliome v0.6395 SHROOM3 Zornitza Stark Gene: shroom3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6394 SHROOM3 Zornitza Stark gene: SHROOM3 was added
gene: SHROOM3 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: SHROOM3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SHROOM3 were set to 32621286
Phenotypes for gene: SHROOM3 were set to Anencephaly; cleft lip and palate
Review for gene: SHROOM3 was set to AMBER
Added comment: Animal model and other functional data link SHROOM3 to neural tube development. Single family reported with bi-allelic LoF in a fetus with anencephaly and CL/P.
Sources: Expert Review
Mendeliome v0.6350 LAMB3 Zornitza Stark Marked gene: LAMB3 as ready
Mendeliome v0.6350 LAMB3 Zornitza Stark Gene: lamb3 has been classified as Green List (High Evidence).
Mendeliome v0.6350 LAMB3 Zornitza Stark Phenotypes for gene: LAMB3 were changed from to Epidermolysis bullosa, junctional, Herlitz type, MIM# 226700; Epidermolysis bullosa, junctional, non-Herlitz type, MIM# 226650
Mendeliome v0.6349 LAMB3 Zornitza Stark Publications for gene: LAMB3 were set to
Mendeliome v0.6348 LAMB3 Zornitza Stark Mode of inheritance for gene: LAMB3 was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6347 LAMB3 Zornitza Stark reviewed gene: LAMB3: Rating: GREEN; Mode of pathogenicity: None; Publications: 11023379, 7706760; Phenotypes: Epidermolysis bullosa, junctional, Herlitz type, MIM# 226700, Epidermolysis bullosa, junctional, non-Herlitz type, MIM# 226650; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6321 FCHO1 Zornitza Stark Phenotypes for gene: FCHO1 were changed from Combined immunodeficiency; T cells: low, poor proliferation; B cells: normal number; Recurrent infections (viral, mycobacteria, bacterial, fungal); lymphoproliferation; Failure to thrive; Increased activation-induced T-cell death; Defective clathrin-mediated endocytosis to Immunodeficiency 76, MIM# 619164; Combined immunodeficiency; T cells: low, poor proliferation; B cells: normal number; Recurrent infections (viral, mycobacteria, bacterial, fungal); lymphoproliferation; Failure to thrive; Increased activation-induced T-cell death; Defective clathrin-mediated endocytosis
Mendeliome v0.6320 FCHO1 Zornitza Stark edited their review of gene: FCHO1: Changed phenotypes: Immunodeficiency 76, MIM# 619164, Combined immunodeficiency, T cells: low, poor proliferation, B cells: normal number, Recurrent infections (viral, mycobacteria, bacterial, fungal), lymphoproliferation, Failure to thrive, Increased activation-induced T-cell death, Defective clathrin-mediated endocytosis
Mendeliome v0.6320 FSTL5 Eleanor Williams gene: FSTL5 was added
gene: FSTL5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FSTL5 was set to Unknown
Publications for gene: FSTL5 were set to 33105483
Phenotypes for gene: FSTL5 were set to isolated club-foot; iTEV; Talipes equinovarus
Review for gene: FSTL5 was set to RED
Added comment: PMID: 33105483 - Khanshour et al 20201 - GWAS study of isolated Talipes equinovarus (clubfoot, iTEV) identified an associated locus within FSTL5. They show that Fstl5 is expressed in the embryonic hindlimb in bats, chicks and mice. However, Fstl5 was expressed more highly in neural tissues in mice, and rats lacking Fstl5 showed no gross developmental malformations. Conditional overexpression of Fstl5 in osteochondroprogenitors resulted in sexually dimorphic differences in skeletal development in mice.
Sources: Literature
Mendeliome v0.6314 CFHR3 Elena Savva reviewed gene: CFHR3: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID:32424742; Phenotypes: {Hemolytic uremic syndrome, atypical, susceptibility to} MIM#235400, {Macular degeneration, age-related, reduced risk of} MIM#603075; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6314 CFHR1 Elena Savva reviewed gene: CFHR1: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID:32424742; Phenotypes: {Hemolytic uremic syndrome, atypical, susceptibility to} MIM#235400, {Macular degeneration, age-related, reduced risk of} MIM#603075; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6311 SCARB1 Bryony Thompson Gene: scarb1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6308 SCARB1 Bryony Thompson Classified gene: SCARB1 as Amber List (moderate evidence)
Mendeliome v0.6308 SCARB1 Bryony Thompson Gene: scarb1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6307 CETP Bryony Thompson Gene: cetp has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6304 CETP Bryony Thompson Classified gene: CETP as Amber List (moderate evidence)
Mendeliome v0.6304 CETP Bryony Thompson Gene: cetp has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6302 DMGDH Bryony Thompson Classified gene: DMGDH as Amber List (moderate evidence)
Mendeliome v0.6302 DMGDH Bryony Thompson Gene: dmgdh has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6301 DMGDH Bryony Thompson edited their review of gene: DMGDH: Changed rating: AMBER
Mendeliome v0.6301 CD320 Bryony Thompson Gene: cd320 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6299 CD320 Bryony Thompson Classified gene: CD320 as Amber List (moderate evidence)
Mendeliome v0.6299 CD320 Bryony Thompson Gene: cd320 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6298 SHPK Bryony Thompson Gene: shpk has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6298 SHPK Bryony Thompson Classified gene: SHPK as Amber List (moderate evidence)
Mendeliome v0.6298 SHPK Bryony Thompson Gene: shpk has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6297 SHPK Bryony Thompson gene: SHPK was added
gene: SHPK was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SHPK was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SHPK were set to 25647543; 27604308
Phenotypes for gene: SHPK were set to Sedoheptulokinase deficiency MIM#617213
Review for gene: SHPK was set to AMBER
Added comment: 2 unrelated cases reported, with elevated excretion of erythritol and sedoheptulose, and each had a homozygous nonsense variant. The first patient presented with neonatal cholestasis, hypoglycemia, and anemia, while the second patient presented with congenital arthrogryposis multiplex, multiple contractures, and dysmorphisms. Due to inconsistency in phenotypes, likely SHPK deficiency is a benign disorder.
Sources: Literature
Mendeliome v0.6296 PNLIP Bryony Thompson Gene: pnlip has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6296 PNLIP Bryony Thompson Classified gene: PNLIP as Amber List (moderate evidence)
Mendeliome v0.6296 PNLIP Bryony Thompson Gene: pnlip has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6293 SUGCT Zornitza Stark Gene: sugct has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6290 SUGCT Zornitza Stark Classified gene: SUGCT as Amber List (moderate evidence)
Mendeliome v0.6290 SUGCT Zornitza Stark Gene: sugct has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6289 SUGCT Zornitza Stark reviewed gene: SUGCT: Rating: AMBER; Mode of pathogenicity: None; Publications: 28766179, 18926513, 33483254, 32779420, 27604308; Phenotypes: Glutaric aciduria III MIM#231690, Organic acidurias; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6289 SLC36A2 Zornitza Stark Gene: slc36a2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6286 SLC36A2 Zornitza Stark Classified gene: SLC36A2 as Amber List (moderate evidence)
Mendeliome v0.6286 SLC36A2 Zornitza Stark Gene: slc36a2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6285 SLC36A2 Zornitza Stark reviewed gene: SLC36A2: Rating: AMBER; Mode of pathogenicity: None; Publications: 19033659, 26141664, 27604308; Phenotypes: Hyperglycinuria MIM#138500, Iminoglycinuria, digenic MIM#242600, Disorders of amino acid transport; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6285 SARDH Zornitza Stark Gene: sardh has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6282 SARDH Zornitza Stark Classified gene: SARDH as Amber List (moderate evidence)
Mendeliome v0.6282 SARDH Zornitza Stark Gene: sardh has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6281 SARDH Zornitza Stark reviewed gene: SARDH: Rating: AMBER; Mode of pathogenicity: None; Publications: 22825317, 27604308; Phenotypes: Sarcosinemia MIM#268900, Disorders of serine, glycine or glycerate metabolism; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6281 OPLAH Zornitza Stark Gene: oplah has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6278 OPLAH Zornitza Stark Classified gene: OPLAH as Amber List (moderate evidence)
Mendeliome v0.6278 OPLAH Zornitza Stark Gene: oplah has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6277 OPLAH Zornitza Stark reviewed gene: OPLAH: Rating: AMBER; Mode of pathogenicity: None; Publications: 27604308, 27477828; Phenotypes: 5-oxoprolinase deficiency MIM#260005, Disorders of the gamma-glutamyl cycle; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6277 KHK Zornitza Stark Gene: khk has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6274 KHK Zornitza Stark Classified gene: KHK as Amber List (moderate evidence)
Mendeliome v0.6274 KHK Zornitza Stark Gene: khk has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6273 KHK Zornitza Stark reviewed gene: KHK: Rating: AMBER; Mode of pathogenicity: None; Publications: 7833921, 27604308, 29870677; Phenotypes: Fructosuria MIM#229800, Disorders of fructose metabolism; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6273 HAL Zornitza Stark Gene: hal has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6270 HAL Zornitza Stark Classified gene: HAL as Amber List (moderate evidence)
Mendeliome v0.6270 HAL Zornitza Stark Gene: hal has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6269 HAL Zornitza Stark reviewed gene: HAL: Rating: AMBER; Mode of pathogenicity: None; Publications: 27604308, 15806399, 20156889; Phenotypes: Histidinemia MIM#235800, Disorders of histidine, tryptophan or lysine metabolism; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6268 GGT1 Zornitza Stark Classified gene: GGT1 as Amber List (moderate evidence)
Mendeliome v0.6268 GGT1 Zornitza Stark Gene: ggt1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6267 GGT1 Zornitza Stark reviewed gene: GGT1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: ; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6267 DCXR Zornitza Stark Gene: dcxr has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6267 DCXR Zornitza Stark Classified gene: DCXR as Amber List (moderate evidence)
Mendeliome v0.6267 DCXR Zornitza Stark Gene: dcxr has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6266 DCXR Zornitza Stark gene: DCXR was added
gene: DCXR was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: DCXR was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DCXR were set to 22042873
Phenotypes for gene: DCXR were set to Pentosuria MIM#260800; Disorders of pentose metabolism
Review for gene: DCXR was set to AMBER
Added comment: At least 9 Ashkenazi Jewish probands reported. The condition is clinically benign.
Sources: Expert list
Mendeliome v0.6265 CTH Zornitza Stark Gene: cth has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6262 CTH Zornitza Stark Classified gene: CTH as Amber List (moderate evidence)
Mendeliome v0.6262 CTH Zornitza Stark Gene: cth has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6261 CTH Zornitza Stark reviewed gene: CTH: Rating: AMBER; Mode of pathogenicity: None; Publications: 12574942, 20584029, 24761004, 15151507; Phenotypes: Cystathioninuria MIM#219500; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6261 ACSF3 Zornitza Stark Gene: acsf3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6261 ACSF3 Zornitza Stark Phenotypes for gene: ACSF3 were changed from to Combined malonic and methylmalonic aciduria MIM#614265
Mendeliome v0.6258 ACSF3 Zornitza Stark Classified gene: ACSF3 as Amber List (moderate evidence)
Mendeliome v0.6258 ACSF3 Zornitza Stark Gene: acsf3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6257 ACSF3 Zornitza Stark reviewed gene: ACSF3: Rating: AMBER; Mode of pathogenicity: None; Publications: 21841779, 30740739; Phenotypes: Combined malonic and methylmalonic aciduria MIM#614265; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6247 ESRP2 Zornitza Stark Gene: esrp2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6244 ESRP2 Zornitza Stark Classified gene: ESRP2 as Amber List (moderate evidence)
Mendeliome v0.6244 ESRP2 Zornitza Stark Gene: esrp2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6243 ESRP2 Zornitza Stark reviewed gene: ESRP2: Rating: AMBER; Mode of pathogenicity: None; Publications: 29805042; Phenotypes: Cleft lip; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6221 KL Bryony Thompson Gene: kl has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6219 KL Bryony Thompson Classified gene: KL as Amber List (moderate evidence)
Mendeliome v0.6219 KL Bryony Thompson Gene: kl has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6218 KL Bryony Thompson reviewed gene: KL: Rating: AMBER; Mode of pathogenicity: None; Publications: 17710231, 31013726, 9363890; Phenotypes: Tumoral calcinosis, hyperphosphatemic, familial, 3 MIM#617994, Hyperphosphatemia; Mode of inheritance: None
Mendeliome v0.6208 CLRN2 Zornitza Stark Gene: clrn2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6207 EGFR Eleanor Williams reviewed gene: EGFR: Rating: AMBER; Mode of pathogenicity: None; Publications: 33326033; Phenotypes: Adrenocortical carcinoma; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.6206 DUOXA1 Zornitza Stark Gene: duoxa1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6206 DUOXA1 Zornitza Stark Classified gene: DUOXA1 as Amber List (moderate evidence)
Mendeliome v0.6206 DUOXA1 Zornitza Stark Gene: duoxa1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6205 DUOXA1 Zornitza Stark gene: DUOXA1 was added
gene: DUOXA1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: DUOXA1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: DUOXA1 were set to 29650690
Phenotypes for gene: DUOXA1 were set to congenital hypothyroidism, No OMIM #
Review for gene: DUOXA1 was set to AMBER
Added comment: 12 cases, but digenic model with variants in other genes
Sources: Expert Review
Mendeliome v0.6204 DUOX1 Zornitza Stark Gene: duox1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6204 DUOX1 Zornitza Stark Classified gene: DUOX1 as Amber List (moderate evidence)
Mendeliome v0.6204 DUOX1 Zornitza Stark Gene: duox1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6203 DUOX1 Zornitza Stark gene: DUOX1 was added
gene: DUOX1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: DUOX1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: DUOX1 were set to 29650690
Phenotypes for gene: DUOX1 were set to congenital hypothyroidism, No OMIM #
Review for gene: DUOX1 was set to AMBER
Added comment: 11 cases, but digenic model, with variants in other genes.
Sources: Expert Review
Mendeliome v0.6202 TTF1 Zornitza Stark Gene: ttf1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6199 TTF1 Zornitza Stark Classified gene: TTF1 as Amber List (moderate evidence)
Mendeliome v0.6199 TTF1 Zornitza Stark Gene: ttf1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6198 TTF1 Zornitza Stark reviewed gene: TTF1: Rating: AMBER; Mode of pathogenicity: None; Publications: 30022773; Phenotypes: congenital hypothyroidism, thyroid dysgenesis, No OMIM #; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6185 CLRN2 Zornitza Stark Classified gene: CLRN2 as Amber List (moderate evidence)
Mendeliome v0.6185 CLRN2 Zornitza Stark Gene: clrn2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6178 HEY2 Zornitza Stark gene: HEY2 was added
gene: HEY2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HEY2 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Publications for gene: HEY2 were set to 32820247
Phenotypes for gene: HEY2 were set to congenital heart defects and thoracic aortic aneurysms
Review for gene: HEY2 was set to RED
Added comment: A very large family affected by CHD and familial thoracic aortic aneurysms. Trio genome sequencing was carried out in an index patient with critical CHD, and family members had either exome or Sanger sequencing. Identified homozygous loss-of-function variant (c.318_319delAG, p.G108*) in HEY2 in 3 individuals in family with critical CHD, whereas the 20 heterozygous carriers show a spectrum of CVDs (CHD and FTAA, but varying expressivity and incomplete penetrance). Other studies show that knockout of HEY2 in mice results in cardiovascular defects (CVDs), including septal defects, cardiomyopathy, a thin-walled aorta, and valve anomalies.
Sources: Literature
Mendeliome v0.6172 BCAT2 Bryony Thompson gene: BCAT2 was added
gene: BCAT2 was added to Mendeliome. Sources: NHS GMS
Mode of inheritance for gene: BCAT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BCAT2 were set to 14755340; 25653144
Phenotypes for gene: BCAT2 were set to Hypervalinemia or hyperleucine-isoleucinemia MIM#618850; disorder of branched-chain amino acid metabolism
Review for gene: BCAT2 was set to AMBER
Added comment: A single case reported with compound heterozygous variants with functional studies demonstrating that the two variants resulted in decreased BCAT2 enzyme activity. Also, a null mouse model has a phenotype similar to human maple syrup urine disease.
Sources: NHS GMS
Mendeliome v0.6171 CLRN2 Paul De Fazio gene: CLRN2 was added
gene: CLRN2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CLRN2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CLRN2 were set to 33496845
Phenotypes for gene: CLRN2 were set to Non-syndromic hearing loss
Review for gene: CLRN2 was set to AMBER
gene: CLRN2 was marked as current diagnostic
Added comment: Missense variant segregates with non-syndromic hearing loss in 3 members of a consanguineous family, two from one nuclear family and one from another. The variant was also shown to result in some transcripts being abnormally spliced, resulting in a premature stop codon.

Functional studies in zebrafish and mice show the gene plays an essential role in normal organization and maintenance of the auditory hair bundles, and for hearing function.

Rated Amber due to supporting functional studies in mice.
Sources: Literature
Mendeliome v0.6171 CFAP47 Hazel Phillimore gene: CFAP47 was added
gene: CFAP47 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CFAP47 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: CFAP47 were set to PMID: 33472045
Phenotypes for gene: CFAP47 were set to asthenoteratozoospermia; morphological abnormalities of the flagella (MMAF)
Review for gene: CFAP47 was set to AMBER
Added comment: CFAP47 also known as CXorf22. 3 different missense variants in 3 unrelated Chinese individuals with asthenoteratozoospermia associated with morphological abnormalities of the flagella (MMAF). Immunoblotting and immunofluorescence showed reduced levels of CFAP47 in spermatozoa in all 3 men. A separate asthenoteratozoospermia cohort showed 1 individual with CNV including whole gene deletion of CFAP47.
Mouse model (with frameshift variants generated (via CRISPR-Cas9 technology) were sterile and presented with reduced sperm motility and abnormal flagellar morphology.
Sources: Literature
Mendeliome v0.6164 MYADML2 Paul De Fazio gene: MYADML2 was added
gene: MYADML2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MYADML2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MYADML2 were set to 32778762
Phenotypes for gene: MYADML2 were set to Cranial asymmetry, reduced bone maturation, multiple dislocations, lumbar lordosis, and prominent clavicles
Review for gene: MYADML2 was set to RED
gene: MYADML2 was marked as current diagnostic
Added comment: 5 sibs from a consanguineous family identified to have biallelic deletion encompassing part of the PYCR1 gene and the coding region of the MYADML2 gene.

According to the authors: "All five affected sibs had the most common features of ARCL (autosomal recessive cutis laxa) but not many of the less common ones. We attributed the anomalies not typical for ARCL to MYADML2 deficit, because no other genetic defect possibly a candidate to underlie the skeletal phenotype was found."

Phenotype may still be explained by the PYCR1 deletion alone.
Sources: Literature
Mendeliome v0.6164 SQOR Zornitza Stark gene: SQOR was added
gene: SQOR was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SQOR was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SQOR were set to 32160317
Phenotypes for gene: SQOR were set to Leigh-like disorder
Review for gene: SQOR was set to AMBER
Added comment: Two unrelated families and some functional data.
Sources: Literature
Mendeliome v0.6163 HYAL2 Zornitza Stark Gene: hyal2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6163 HYAL2 Zornitza Stark Classified gene: HYAL2 as Amber List (moderate evidence)
Mendeliome v0.6163 HYAL2 Zornitza Stark Gene: hyal2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6162 HYAL2 Zornitza Stark gene: HYAL2 was added
gene: HYAL2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HYAL2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HYAL2 were set to 28081210; 23172227; 26515055
Phenotypes for gene: HYAL2 were set to Cleft lip and palate; cor triatriatum; congenital cardiac malformations
Review for gene: HYAL2 was set to AMBER
Added comment: 2 unrelated consanguineous extended families (Amish and Arab) with an orofacial clefting phenotype with cardiac anomalies.
Sources: Literature
Mendeliome v0.6149 NOS1AP Zornitza Stark edited their review of gene: NOS1AP: Added comment: Nephrotic syndrome type 22 (NPHS22) is an autosomal recessive renal disease characterized by onset of progressive kidney dysfunction in infancy. Affected individuals usually present with edema associated with hypoproteinemia, proteinuria, and microscopic hematuria. Renal biopsy shows effacement of the podocyte foot processes, glomerulosclerosis, and thickening of the glomerular basement membrane. The disease is steroid-resistant and progressive, resulting in end-stage renal disease usually necessitating kidney transplant.

Two unrelated families and animal model.

No PMID yet: https://advances.sciencemag.org/content/7/1/eabe1386; Changed rating: GREEN; Changed phenotypes: Nephrotic syndrome, type 22, MIM# 619155; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6142 NDUFC2 Zornitza Stark Gene: ndufc2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6142 NDUFC2 Zornitza Stark Classified gene: NDUFC2 as Amber List (moderate evidence)
Mendeliome v0.6142 NDUFC2 Zornitza Stark Gene: ndufc2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6141 NDUFC2 Zornitza Stark gene: NDUFC2 was added
gene: NDUFC2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: NDUFC2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NDUFC2 were set to 32969598
Phenotypes for gene: NDUFC2 were set to Mitochondrial complex I deficiency, nuclear type 36, MIM# 619170
Review for gene: NDUFC2 was set to AMBER
Added comment: Mitochondrial complex I deficiency nuclear type 36 (MC1DN36) is an autosomal recessive metabolic disorder characterized by global developmental delay, hypotonia, and failure to thrive apparent from infancy or early childhood. Affected individuals usually do not acquire ambulation, show progressive spasticity, and have impaired intellectual development with absent speech. More variable features may include pale optic discs, poor eye contact, seizures, and congenital heart defects. Laboratory studies show increased serum lactate; metabolic acidosis may occur during stress or infection. Brain imaging shows T2-weighted abnormalities in the basal ganglia and brainstem, consistent with a clinical diagnosis of Leigh syndrome. Two unrelated families reported, some functional data.
Sources: Expert list
Mendeliome v0.6137 UROC1 Zornitza Stark Gene: uroc1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6134 UROC1 Zornitza Stark Classified gene: UROC1 as Amber List (moderate evidence)
Mendeliome v0.6134 UROC1 Zornitza Stark Gene: uroc1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6133 UROC1 Zornitza Stark reviewed gene: UROC1: Rating: AMBER; Mode of pathogenicity: None; Publications: 19304569, 30619714; Phenotypes: Urocanase deficiency, MIM#276880; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6131 PLEKHA7 Zornitza Stark Gene: plekha7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6128 PLEKHA7 Zornitza Stark Classified gene: PLEKHA7 as Amber List (moderate evidence)
Mendeliome v0.6128 PLEKHA7 Zornitza Stark Gene: plekha7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6127 PLEKHA7 Zornitza Stark reviewed gene: PLEKHA7: Rating: AMBER; Mode of pathogenicity: None; Publications: 29805042; Phenotypes: Cleft lip and palate; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6119 FOXF1 Zornitza Stark changed review comment from: Congenital alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is characterized histologically by failure of formation and ingrowth of alveolar capillaries that then do not make contact with alveolar epithelium, medial muscular thickening of small pulmonary arterioles with muscularization of the intraacinar arterioles, thickened alveolar walls, and anomalously situated pulmonary veins running alongside pulmonary arterioles and sharing the same adventitial sheath. Less common features include a reduced number of alveoli and a patchy distribution of the histopathologic changes. The disorder is associated with persistent pulmonary hypertension of the neonate and shows varying degrees of lability and severity. Affected infants present with respiratory distress resulting from pulmonary hypertension in the early postnatal period, and the disease is uniformly fatal within the newborn period. Additional features of ACDMPV include multiple congenital anomalies affecting the cardiovascular, gastrointestinal, genitourinary, and musculoskeletal systems, as well as disruption of the normal right-left asymmetry of intrathoracic or intraabdominal organs.; to: Congenital alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is characterized histologically by failure of formation and ingrowth of alveolar capillaries that then do not make contact with alveolar epithelium, medial muscular thickening of small pulmonary arterioles with muscularization of the intraacinar arterioles, thickened alveolar walls, and anomalously situated pulmonary veins running alongside pulmonary arterioles and sharing the same adventitial sheath. Less common features include a reduced number of alveoli and a patchy distribution of the histopathologic changes. The disorder is associated with persistent pulmonary hypertension of the neonate and shows varying degrees of lability and severity. Affected infants present with respiratory distress resulting from pulmonary hypertension in the early postnatal period, and the disease is uniformly fatal within the newborn period. Additional features of ACDMPV include multiple congenital anomalies affecting the cardiovascular, gastrointestinal, genitourinary, and musculoskeletal systems, as well as disruption of the normal right-left asymmetry of intrathoracic or intraabdominal organs.

Over 50 families reported.
Mendeliome v0.6116 STEAP3 Zornitza Stark Gene: steap3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6113 STEAP3 Zornitza Stark Classified gene: STEAP3 as Amber List (moderate evidence)
Mendeliome v0.6113 STEAP3 Zornitza Stark Gene: steap3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6112 STEAP3 Zornitza Stark reviewed gene: STEAP3: Rating: AMBER; Mode of pathogenicity: None; Publications: 22031863, 25515317; Phenotypes: Anemia, hypochromic microcytic, with iron overload 2, MIM# 615234; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6108 CREB3L3 Bryony Thompson Classified gene: CREB3L3 as Amber List (moderate evidence)
Mendeliome v0.6108 CREB3L3 Bryony Thompson Gene: creb3l3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6107 CREB3L3 Bryony Thompson gene: CREB3L3 was added
gene: CREB3L3 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: CREB3L3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CREB3L3 were set to 32580631; 29954705; 27982131; 27291420; 26427795; 21666694
Phenotypes for gene: CREB3L3 were set to Hyperlipidaemia; hypertriglyceridemia
Review for gene: CREB3L3 was set to AMBER
Added comment: PMID: 26427795 - a loss of function variant (c.359delG p.K120fsX20) was identified in 2 affected adult siblings and a 13 yo normotriglyceridemic daughter of one of the siblings.
PMID: 21666694 - Lipoprotein profiles of the families of 4 individuals with CREB3L3 nonsense mutations showed a significantly elevated mean plasma TG level in 11 mutation carriers compared with 5 non-carrier first-degree relatives (9.67 ± 4.70 vs. 1.66 ± 0.55 mM, P = 0.021, Wilcoxon test). 3 of those families have the same variant - Lys245GlufsTer130, which has 126 (281,946 alleles) hets in gnomAD v2.1.
PMID: 32580631 - case-control analysis of nonmonogenic severe hypertriglyceridemia cases (N=265) vs normolipidemic controls (N=477), identified 5 cases with LoF variants (3 of whom had the Lys245GlufsTer130 frameshift) and none in controls. OR 20.2 (95% CI 1.11–366.1) p = 0.002, adjusted p = 0.03.
The frequency of Lys245GlufsTer130 is higher than expected for a dominant disorder, but other loss of function variants have been identified. The gene may be associated with variable penetrance. There are multiple supporting null mouse models with hyperlipidaemia.
Sources: Expert list
Mendeliome v0.6102 CBY1 Bryony Thompson gene: CBY1 was added
gene: CBY1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CBY1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CBY1 were set to 33131181; 25103236; 25220153
Phenotypes for gene: CBY1 were set to intellectual disability; cerebellar ataxia; molar tooth sign; polydactyly; Joubert syndrome
Review for gene: CBY1 was set to GREEN
Added comment: Three cases in two unrelated consanguineous families with homozygous loss of function variants. Multiple null model organisms recapitulate the human phenotype: Null mouse model had cystic kidneys, a phenotype common to ciliopathies. Reducing Cby levels in Xenopus laevis model reduced the density of multiciliated cells, the number of basal bodies per multiciliated cell, and the numbers of neural tube primary cilia; it also led to abnormal development of the neural crest, central nervous system, and pronephros. Depletion of cby1 in zebrafish results in ciliopathy‐related phenotypes.
Sources: Literature
Mendeliome v0.6096 TMEM251 Bryony Thompson Gene: tmem251 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6096 TMEM251 Bryony Thompson Classified gene: TMEM251 as Amber List (moderate evidence)
Mendeliome v0.6096 TMEM251 Bryony Thompson Gene: tmem251 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.6095 TMEM251 Bryony Thompson gene: TMEM251 was added
gene: TMEM251 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TMEM251 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMEM251 were set to 33252156
Phenotypes for gene: TMEM251 were set to Dysostosis multiplex‐like skeletal dysplasia; severe short stature
Review for gene: TMEM251 was set to AMBER
Added comment: Two unrelated consanguineous families with homozygous variants (c.133C>T; p.Arg45Trp and c.215dupA; p.Tyr72Ter), with co-segregation data in one family. Preliminary in vitro functional assays conducted - Tmem251 knockdown by small interfering RNA induced dedifferentiation of rat primary chondrocytes.
Sources: Literature
Mendeliome v0.6027 CYLD Zornitza Stark reviewed gene: CYLD: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Frontotemporal dementia and/or amytrophic lateral sclerosis 8, MIM# 619132; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6022 MRPS22 Zornitza Stark Phenotypes for gene: MRPS22 were changed from to Combined oxidative phosphorylation deficiency 5 MIM#611719; Ovarian dysgenesis 7 MIM#618117
Mendeliome v0.6019 MRPS22 Elena Savva reviewed gene: MRPS22: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 29566152; Phenotypes: Combined oxidative phosphorylation deficiency 5 MIM#611719, Ovarian dysgenesis 7 MIM#618117; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5915 DPH2 Seb Lunke Gene: dph2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5915 DPH2 Seb Lunke Classified gene: DPH2 as Amber List (moderate evidence)
Mendeliome v0.5915 DPH2 Seb Lunke Gene: dph2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5914 LSM11 Ee Ming Wong gene: LSM11 was added
gene: LSM11 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LSM11 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LSM11 were set to PMID: 33230297
Phenotypes for gene: LSM11 were set to type I interferonopathy Aicardi–Goutières syndrome
Review for gene: LSM11 was set to AMBER
gene: LSM11 was marked as current diagnostic
Added comment: - Two affected siblings from a consanguineous family carrying a homozygous variant in LSM11
- Compared to control fibroblasts, patient fibroblasts were enriched for misprocessed forms of
replication-dependent histone (RDH) mRNAs
- Knockdown of LSM11 in THP-1 cells results in an increase in misprocessed RDH mRNA and
interferon signaling
Sources: Literature
Mendeliome v0.5914 DPH2 Paul De Fazio gene: DPH2 was added
gene: DPH2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DPH2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DPH2 were set to 32576952; 27421267
Phenotypes for gene: DPH2 were set to Diphthamide-deficiency syndrome
Review for gene: DPH2 was set to AMBER
gene: DPH2 was marked as current diagnostic
Added comment: One family reported (PMID:32576952) with biallelic (one missense, one nonsense) variants in DPH2, with phenotype similar to DPH1 deficiency.

Another family was previously reported with biallelic nonsense variants (PMID:27421267) with a comparable phenotype, this family also has biallelic variants in KALRN and the authors thought those variants more likely causative.

In vitro functional assays support reduced diphthamide synthesis activity for the variants identified in PMID:32576952.
Sources: Literature
Mendeliome v0.5908 CPA6 Zornitza Stark Gene: cpa6 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5905 CPA6 Zornitza Stark Classified gene: CPA6 as Amber List (moderate evidence)
Mendeliome v0.5905 CPA6 Zornitza Stark Gene: cpa6 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5904 CPA6 Zornitza Stark edited their review of gene: CPA6: Added comment: Homozygous p.A270V variant reported in four siblings with Febrile seizures, familial, 11 (MIM 614418)(PMID:21922598), some functional data. Present in gnomad as hets but no homs. Also note one of the heterozygous individuals initially reported was subsequently found to have a second missense variant, PMID 23105115.

Disputed association between mono allelic variants and disease: variants reported have high frequency in gnomad, not in keeping with Mendelian disorder.; Changed rating: AMBER; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5831 IKZF5 Zornitza Stark Phenotypes for gene: IKZF5 were changed from Thrombocytopaenia to Thrombocytopaenia 7, MIM#619130
Mendeliome v0.5830 IKZF5 Zornitza Stark edited their review of gene: IKZF5: Changed phenotypes: Thrombocytopaenia 7, MIM#619130
Mendeliome v0.5816 SMOC1 Zornitza Stark Phenotypes for gene: SMOC1 were changed from to Microphthalmia with limb anomalies, MIM# 206920
Mendeliome v0.5813 SMOC1 Zornitza Stark reviewed gene: SMOC1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21194678, 21194680, 30445150; Phenotypes: Microphthalmia with limb anomalies, MIM# 206920; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5800 LOXL3 Zornitza Stark Gene: loxl3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5800 LOXL3 Zornitza Stark Classified gene: LOXL3 as Amber List (moderate evidence)
Mendeliome v0.5800 LOXL3 Zornitza Stark Gene: loxl3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5799 LOXL3 Zornitza Stark gene: LOXL3 was added
gene: LOXL3 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: LOXL3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LOXL3 were set to 30362103; 25663169
Phenotypes for gene: LOXL3 were set to Stickler syndrome
Review for gene: LOXL3 was set to AMBER
Added comment: Two unrelated families reported with homozygous missense variants, mouse model supports gene-disease association.
Sources: Expert Review
Mendeliome v0.5653 SHMT2 Zornitza Stark Phenotypes for gene: SHMT2 were changed from Congenital microcephaly; Infantile axial hypotonia; Spastic paraparesis; Global developmental delay; Intellectual disability; Abnormality of the corpus callosum; Abnormal cortical gyration; Hypertrophic cardiomyopathy; Abnormality of the face; Proximal placement of thumb; 2-3 toe syndactyly to Neurodevelopmental disorder with cardiomyopathy, spasticity, and brain abnormalities (NEDCASB), MIM#619121; Congenital microcephaly; Infantile axial hypotonia; Spastic paraparesis; Global developmental delay; Intellectual disability; Abnormality of the corpus callosum; Abnormal cortical gyration; Hypertrophic cardiomyopathy; Abnormality of the face; Proximal placement of thumb; 2-3 toe syndactyly
Mendeliome v0.5652 SHMT2 Zornitza Stark edited their review of gene: SHMT2: Changed phenotypes: Neurodevelopmental disorder with cardiomyopathy, spasticity, and brain abnormalities (NEDCASB), MIM#619121, Congenital microcephaly, Infantile axial hypotonia, Spastic paraparesis, Global developmental delay, Intellectual disability, Abnormality of the corpus callosum, Abnormal cortical gyration, Hypertrophic cardiomyopathy, Abnormality of the face, Proximal placement of thumb, 2-3 toe syndactyly
Mendeliome v0.5649 PANX1 Zornitza Stark Gene: panx1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5649 PANX1 Zornitza Stark Classified gene: PANX1 as Amber List (moderate evidence)
Mendeliome v0.5649 PANX1 Zornitza Stark Gene: panx1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5648 PANX1 Zornitza Stark gene: PANX1 was added
gene: PANX1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: PANX1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PANX1 were set to 30918116; 32838805
Phenotypes for gene: PANX1 were set to Oocyte maturation defect 7, MIM# 618550
Review for gene: PANX1 was set to AMBER
Added comment: Two unrelated families, some functional data. Clinical presentation is with infertility.
Sources: Expert list
Mendeliome v0.5647 NANOS3 Bryony Thompson Gene: nanos3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5647 NANOS3 Bryony Thompson Classified gene: NANOS3 as Amber List (moderate evidence)
Mendeliome v0.5647 NANOS3 Bryony Thompson Gene: nanos3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5646 NANOS3 Bryony Thompson gene: NANOS3 was added
gene: NANOS3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NANOS3 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: NANOS3 were set to 25054146; 24091668
Phenotypes for gene: NANOS3 were set to Primary ovarian insufficiency
Review for gene: NANOS3 was set to AMBER
Added comment: A homozygous missense (p.Glu120Lys) was identified in two Brazillian sisters with primary amenorrhea, and supporting in vitro functional assays. A heterozygous missense (p.Arg153Trp) was identified in a Chinese woman with POI, with supporting in vitro functional assays. Also, supporting null mouse model.
Sources: Literature
Mendeliome v0.5645 MSH5 Bryony Thompson Gene: msh5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5645 MSH5 Bryony Thompson Classified gene: MSH5 as Amber List (moderate evidence)
Mendeliome v0.5645 MSH5 Bryony Thompson Gene: msh5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5644 MSH5 Bryony Thompson gene: MSH5 was added
gene: MSH5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MSH5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MSH5 were set to 28175301; 9916805; 24970489
Phenotypes for gene: MSH5 were set to Premature ovarian failure 13 MIM#617442
Review for gene: MSH5 was set to AMBER
Added comment: A homozygous missense mutation (p.D487Y) in two sisters with POI. Also, homologous mutation in mice results in atrophic ovaries without oocytes, and in vitro functional study revealed that mutant MSH5 impaired DNA homologous recombination repair. Null mouse model is viable, but sterile. A case with congenital adrenal hyperplasia, ovarian failure and Ehlers-Danlos syndrome had a de novo t(6;14)(p21;q32) translocation, including CYP21A2,TNXB and MSH5.
Sources: Literature
Mendeliome v0.5638 EIF4ENIF1 Bryony Thompson Gene: eif4enif1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5637 EIF4ENIF1 Bryony Thompson Classified gene: EIF4ENIF1 as Amber List (moderate evidence)
Mendeliome v0.5637 EIF4ENIF1 Bryony Thompson Gene: eif4enif1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5636 EIF4ENIF1 Bryony Thompson gene: EIF4ENIF1 was added
gene: EIF4ENIF1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EIF4ENIF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: EIF4ENIF1 were set to 31810472; 23902945; 33095795
Phenotypes for gene: EIF4ENIF1 were set to Primary ovarian insufficiency
Review for gene: EIF4ENIF1 was set to AMBER
Added comment: 3 families: A missense (p.Q842P) segregated between a mother and daughter with diminished ovarian reserve (DOR) and premature ovarian insufficiency (POI). A nonsense variant (p.Ser429Ter) segregated in 7 affected women over 3 consecutive generations with early menopause at approximately age 30 years. A missense (p.Lys669Arg) was identified in a Brazilian case with POI.
Sources: Literature
Mendeliome v0.5635 POF1B Zornitza Stark Gene: pof1b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5632 POF1B Zornitza Stark Classified gene: POF1B as Amber List (moderate evidence)
Mendeliome v0.5632 POF1B Zornitza Stark Gene: pof1b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5631 POF1B Zornitza Stark reviewed gene: POF1B: Rating: AMBER; Mode of pathogenicity: None; Publications: 16773570, 25676666; Phenotypes: Premature ovarian failure 2B, MIM# 300604; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.5630 CCDC141 Bryony Thompson Gene: ccdc141 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5629 CCDC141 Bryony Thompson Classified gene: CCDC141 as Amber List (moderate evidence)
Mendeliome v0.5629 CCDC141 Bryony Thompson Gene: ccdc141 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5628 CCDC141 Bryony Thompson gene: CCDC141 was added
gene: CCDC141 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CCDC141 was set to Unknown
Publications for gene: CCDC141 were set to 27014940; 28324054; 25192046
Phenotypes for gene: CCDC141 were set to Anosmic hypogonadotropic hypogonadism
Review for gene: CCDC141 was set to AMBER
Added comment: A consanguineous family had a homozygous nonsense variant, but also had a homozygous missense in FEZF1. 3 other families reported with heterozygous variants, but other variants in other genes present. In an olfactory mouse model, Ccdc141 is expressed in GnRH neurons and olfactory fibers and that knockdown of Ccdc141 reduces GnRH neuronal migration.
Sources: Literature
Mendeliome v0.5609 CDC40 Zornitza Stark gene: CDC40 was added
gene: CDC40 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CDC40 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CDC40 were set to 33220177
Phenotypes for gene: CDC40 were set to Pontocerebellar hypoplasia; microcephaly; seizures
Review for gene: CDC40 was set to RED
Added comment: Single individual reported with bi-allelic variants in the gene and PCH, microcephaly, hypotonia, seizures, severe DD/ID, thrombocytopaenia, anaemia. Interaction with PPIL1 and mouse model support gene-disease association. Gene referred to as PRP17 in paper.
Sources: Literature
Mendeliome v0.5606 FRA12A Bryony Thompson Classified STR: FRA12A as Amber List (moderate evidence)
Mendeliome v0.5606 FRA12A Bryony Thompson Str: fra12a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5605 FRA12A Bryony Thompson STR: FRA12A was added
STR: FRA12A was added to Mendeliome. Sources: Other
5'UTR tags were added to STR: FRA12A.
Mode of inheritance for STR: FRA12A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: FRA12A were set to 17236128
Phenotypes for STR: FRA12A were set to Mental retardation, FRA12A type MIM#136630
Review for STR: FRA12A was set to AMBER
Added comment: NM_173602.2:c.-137CGG[X]
All individuals expressing FRA12A had CGG-repeat expansion. The length of the expanded allele in 3 unaffected FRA12A carriers was 650–850 bp. In the two affected patients from 2 families with FRA12A, the length of the expanded allele was ∼1,050-1,150 bp.
70 controls used to determine the "normal" repeat range.
Sources: Other
Mendeliome v0.5601 CANVAS_ACAGG Bryony Thompson Str: canvas_acagg has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5601 CANVAS_ACAGG Bryony Thompson Classified STR: CANVAS_ACAGG as Amber List (moderate evidence)
Mendeliome v0.5601 CANVAS_ACAGG Bryony Thompson Str: canvas_acagg has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5600 CANVAS_ACAGG Bryony Thompson STR: CANVAS_ACAGG was added
STR: CANVAS_ACAGG was added to Mendeliome. Sources: Literature
Mode of inheritance for STR: CANVAS_ACAGG was set to BIALLELIC, autosomal or pseudoautosomal
Publications for STR: CANVAS_ACAGG were set to 33103729
Phenotypes for STR: CANVAS_ACAGG were set to Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome; fasciculations; elevated serum creatine kinase levels; denervation
Review for STR: CANVAS_ACAGG was set to AMBER
Added comment: A novel RFC1 repeat expansion motif, (ACAGG)exp, identified in three affected individuals from 2 families in an Asian-Pacific cohort for CANVAS. Southern blot was used to identify the repeat was ~1000kb in one of the cases, equivalent to ~1000 repeats.
Sources: Literature
Mendeliome v0.5589 RAP1A Zornitza Stark Gene: rap1a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5586 RAP1A Zornitza Stark Classified gene: RAP1A as Amber List (moderate evidence)
Mendeliome v0.5586 RAP1A Zornitza Stark Gene: rap1a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5585 RAP1A Zornitza Stark reviewed gene: RAP1A: Rating: AMBER; Mode of pathogenicity: None; Publications: 26280580; Phenotypes: Kabuki syndrome; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5583 RAP1B Zornitza Stark Gene: rap1b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5583 RAP1B Zornitza Stark Phenotypes for gene: RAP1B were changed from to RAP1B‐associated syndrome; intellectual disability; microcephaly; thrombocytopaenia
Mendeliome v0.5580 RAP1B Zornitza Stark Classified gene: RAP1B as Amber List (moderate evidence)
Mendeliome v0.5580 RAP1B Zornitza Stark Gene: rap1b has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5579 RAP1B Zornitza Stark reviewed gene: RAP1B: Rating: AMBER; Mode of pathogenicity: None; Publications: 32627184; Phenotypes: RAP1B‐associated syndrome, intellectual disability, microcephaly, thrombocytopaenia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5556 RRP7A Zornitza Stark Gene: rrp7a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5556 RRP7A Zornitza Stark Classified gene: RRP7A as Amber List (moderate evidence)
Mendeliome v0.5556 RRP7A Zornitza Stark Gene: rrp7a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5555 RRP7A Zornitza Stark gene: RRP7A was added
gene: RRP7A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RRP7A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RRP7A were set to 33199730
Phenotypes for gene: RRP7A were set to Microcephaly
Review for gene: RRP7A was set to AMBER
Added comment: 10 affected individuals from a single large consanguineous family where bi-allelic variant segregated with severe microcephaly (-6-8SD), variable ID. Supportive functional data from mouse and zebrafish.
Sources: Literature
Mendeliome v0.5548 MYLPF Zornitza Stark edited their review of gene: MYLPF: Changed rating: AMBER; Changed phenotypes: Distal arthrogryposis type 1C (DA1C), MIM#619110; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.5548 HHAT Zornitza Stark Gene: hhat has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5548 HHAT Zornitza Stark Classified gene: HHAT as Amber List (moderate evidence)
Mendeliome v0.5548 HHAT Zornitza Stark Gene: hhat has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5547 HHAT Zornitza Stark gene: HHAT was added
gene: HHAT was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: HHAT was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HHAT were set to 24784881; 30912300
Phenotypes for gene: HHAT were set to Nivelon-Nivelon-Mabille syndrome 600092
Review for gene: HHAT was set to AMBER
Added comment: Two unrelated families reported. Clinical features include progressive microcephaly, cerebellar vermis hypoplasia, and skeletal dysplasia. Variable features include infantile-onset seizures, dwarfism, generalized chondrodysplasia, and micromelia.
Sources: Expert list
Mendeliome v0.5516 FKBP8 Zornitza Stark Gene: fkbp8 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5516 FKBP8 Zornitza Stark Classified gene: FKBP8 as Amber List (moderate evidence)
Mendeliome v0.5516 FKBP8 Zornitza Stark Gene: fkbp8 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5515 NPPA Zornitza Stark Classified gene: NPPA as Amber List (moderate evidence)
Mendeliome v0.5515 NPPA Zornitza Stark Gene: nppa has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5511 NPPA Zornitza Stark reviewed gene: NPPA: Rating: AMBER; Mode of pathogenicity: None; Publications: 18614783, 20064500, 31034774, 31077706; Phenotypes: Atrial fibrillation, familial, 6, (MIM#612201); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5507 FKBP8 Eleanor Williams gene: FKBP8 was added
gene: FKBP8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FKBP8 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: FKBP8 were set to 32969478
Phenotypes for gene: FKBP8 were set to spina bifida HP:0002414
Review for gene: FKBP8 was set to AMBER
Added comment: Not associated with a phenotype in OMIM.

PMID: 32969478 - Tian et al 2020 - performed Sanger sequencing of FKBP8 on DNA samples from 472 spina bifida (SB) affected fetuses and 565 unaffected controls. 5 different rare heterozygous variants (MAF ≤ 0.001) were identified among the SB patients, while no deleterious rare variants were identified in the controls. 4 of the variants are missense, the other is a stop-gain. 2 cases were in white-Hispanic patients while the other 3 were non-white Hispanic. Functional studies showed that p.Glu140* affected FKBP8 localization to the mitochondria and impaired its interaction with BCL2 ultimately leading to an increase in cellular apoptosis. p.Ser3Leu, p.Lys315Asn and p.Ala292Ser variants decreased FKBP8 protein level. Gene expression was studied in mouse Fkbp8-/- embryos and found to be abnormal. Previous mouse models have shown neural tube defects.

Sufficient cases to rate green, but only the FKBP8 gene looked at so perhaps some caution required while further evidence is gathered.
Sources: Literature
Mendeliome v0.5503 COX16 Bryony Thompson Gene: cox16 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5503 COX16 Bryony Thompson Classified gene: COX16 as Amber List (moderate evidence)
Mendeliome v0.5503 COX16 Bryony Thompson Gene: cox16 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5502 COX16 Bryony Thompson gene: COX16 was added
gene: COX16 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: COX16 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COX16 were set to 33169484
Phenotypes for gene: COX16 were set to Hypertrophic cardiomyopathy; encephalopathy; severe fatal lactic acidosis
Review for gene: COX16 was set to AMBER
Added comment: 2 unrelated patients with the same homozygous (non-consanguineous) nonsense variant c.244C>T (p.Arg82*), and isolated complex IV deficiency present in both patient fibroblasts/skeletal muscle biopsy. COX16 is involved in the biogenesis of complex IV, the terminal complex of the mitochondrial respiratory chain (RC)
Sources: Literature
Mendeliome v0.5500 THBD Bryony Thompson reviewed gene: THBD: Rating: GREEN; Mode of pathogenicity: None; Publications: 32634856, 25564403, 32935436, 25049278, 27436851, 28267383, 10627464; Phenotypes: Thrombomodulin‐associated coagulopathy; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5499 DPM3 Zornitza Stark Phenotypes for gene: DPM3 were changed from to Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 15 , MIM#612937; Muscular dystrophy-dystroglycanopathy (congenital with impaired intellectual development), type B, 15 618992
Mendeliome v0.5496 DPM3 Zornitza Stark reviewed gene: DPM3: Rating: GREEN; Mode of pathogenicity: None; Publications: 31266720, 28803818, 19576565, 31266720, 31469168; Phenotypes: Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 15 , MIM#612937, Muscular dystrophy-dystroglycanopathy (congenital with impaired intellectual development), type B, 15 618992; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5470 TLE6 Zornitza Stark gene: TLE6 was added
gene: TLE6 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: TLE6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TLE6 were set to 26537248; 31897846
Phenotypes for gene: TLE6 were set to Preimplantation embryonic lethality, MIM# 616814
Review for gene: TLE6 was set to GREEN
Added comment: At least 5 individuals reported with bi-allelic variants and early embryonic lethality.
Sources: Expert Review
Mendeliome v0.5463 SSR3 Zornitza Stark Gene: ssr3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5463 SSR3 Zornitza Stark Classified gene: SSR3 as Amber List (moderate evidence)
Mendeliome v0.5463 SSR3 Zornitza Stark Gene: ssr3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5462 SSR3 Zornitza Stark gene: SSR3 was added
gene: SSR3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SSR3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SSR3 were set to 30945312
Phenotypes for gene: SSR3 were set to Congenital disorder of glycosylation
Review for gene: SSR3 was set to AMBER
Added comment: Single individual reported with an unsolved type I CDG, intellectual disability, homozygous LOF variant in SSR3, supportive functional evidence.
Sources: Literature
Mendeliome v0.5461 LCP2 Zornitza Stark gene: LCP2 was added
gene: LCP2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LCP2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LCP2 were set to 33231617
Phenotypes for gene: LCP2 were set to Severe combined immunodeficiency
Review for gene: LCP2 was set to RED
Added comment: Infant with bi-allelic variants in this gene and early-onset life-threatening infections, combined T and B cell immunodeficiency, severe neutrophil defects, and impaired platelet aggregation.
Sources: Literature
Mendeliome v0.5449 ALG8 Zornitza Stark changed review comment from: Review of 15 reported individuals in PMID: 26066342: multiple prenatal abnormalities were present in 6/12 patients. In 13/15, there were symptoms at birth, 9/15 died within 12 months. Birth weight was appropriate in 11/12, only one was small for gestational age. Prematurity was reported in 7/12. Hydrops fetalis was noticed in 3, edemas in 11/13; gastrointestinal symptoms in 9/14; structural brain pathology, psychomental retardation, seizures, ataxia in 12/13, muscle hypotonia in 13/14. Common dysmorphic signs were: low set ears, macroglossia, hypertelorism, pes equinovarus, campto- and brachydactyly (13/15). In 10/11, there was coagulopathy, in 8/11 elevated transaminases; thrombocytopenia was present in 9/9. Eye involvement was reported in 9/14. CDG typical skin involvement was reported in 8/13.; to: Bi-allelic variants and CDG: Review of 15 reported individuals in PMID: 26066342. Multiple prenatal abnormalities were present in 6/12 patients. In 13/15, there were symptoms at birth, 9/15 died within 12 months. Birth weight was appropriate in 11/12, only one was small for gestational age. Prematurity was reported in 7/12. Hydrops fetalis was noticed in 3, edemas in 11/13; gastrointestinal symptoms in 9/14; structural brain pathology, psychomental retardation, seizures, ataxia in 12/13, muscle hypotonia in 13/14. Common dysmorphic signs were: low set ears, macroglossia, hypertelorism, pes equinovarus, campto- and brachydactyly (13/15). In 10/11, there was coagulopathy, in 8/11 elevated transaminases; thrombocytopenia was present in 9/9. Eye involvement was reported in 9/14. CDG typical skin involvement was reported in 8/13.
Mendeliome v0.5426 TCHH Zornitza Stark Phenotypes for gene: TCHH were changed from to Uncombable hair syndrome 3 MIM#617252
Mendeliome v0.5422 TCHH Naomi Baker reviewed gene: TCHH: Rating: RED; Mode of pathogenicity: None; Publications: PMID: 27866708; Phenotypes: Uncombable hair syndrome 3 MIM#617252; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5409 MYL9 Zornitza Stark Gene: myl9 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5409 MYL9 Zornitza Stark Classified gene: MYL9 as Amber List (moderate evidence)
Mendeliome v0.5409 MYL9 Zornitza Stark Gene: myl9 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5408 MYL9 Zornitza Stark gene: MYL9 was added
gene: MYL9 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MYL9 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MYL9 were set to 29453416; 33031641
Phenotypes for gene: MYL9 were set to Megacystis-microcolon-intestinal hypoperistalsis syndrome
Review for gene: MYL9 was set to AMBER
Added comment: Two unrelated families reported.
Sources: Literature
Mendeliome v0.5389 DZIP1 Zornitza Stark Gene: dzip1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5388 DZIP1 Zornitza Stark Classified gene: DZIP1 as Amber List (moderate evidence)
Mendeliome v0.5388 DZIP1 Zornitza Stark Gene: dzip1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5387 DZIP1 Zornitza Stark gene: DZIP1 was added
gene: DZIP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DZIP1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DZIP1 were set to 31118289
Phenotypes for gene: DZIP1 were set to Mitral valve prolapse
Review for gene: DZIP1 was set to AMBER
Added comment: One large 4-generation family reported, where missense variant segregated with disease. Two additional individuals identified from a cohort. All variants present at low frequency in population databases. Mouse model recapitulated phenotype.
Sources: Literature
Mendeliome v0.5381 LRIF1 Bryony Thompson Classified gene: LRIF1 as Amber List (moderate evidence)
Mendeliome v0.5381 LRIF1 Bryony Thompson Gene: lrif1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5380 LRIF1 Bryony Thompson gene: LRIF1 was added
gene: LRIF1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LRIF1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LRIF1 were set to 32467133
Phenotypes for gene: LRIF1 were set to Facioscapulohumeral muscular dystrophy
Review for gene: LRIF1 was set to AMBER
Added comment: A single consanguineous case with a homozygous truncating variant. DZ4Z hypomethylation and increased DUX expression was present in patient cells. siRNA-mediated depletion of LRIF1L in immortalized myoblasts derepressed the DUX4 locus.
Sources: Literature
Mendeliome v0.5334 CNP Zornitza Stark reviewed gene: CNP: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Leukodystrophy, hypomyelinating, 20, MIM# 619071; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5317 ZFHX4 Bryony Thompson Gene: zfhx4 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5316 ZFHX4 Bryony Thompson Classified gene: ZFHX4 as Amber List (moderate evidence)
Mendeliome v0.5316 ZFHX4 Bryony Thompson Gene: zfhx4 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5315 ZFHX4 Bryony Thompson edited their review of gene: ZFHX4: Changed rating: AMBER
Mendeliome v0.5314 UPF1 Bryony Thompson Gene: upf1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5314 UPF1 Bryony Thompson Classified gene: UPF1 as Amber List (moderate evidence)
Mendeliome v0.5314 UPF1 Bryony Thompson Gene: upf1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5313 UPF1 Bryony Thompson gene: UPF1 was added
gene: UPF1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UPF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: UPF1 were set to 33057194
Phenotypes for gene: UPF1 were set to Developmental disorders
Review for gene: UPF1 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 16 de novo variants (1 frameshift, 11 missense, 4 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5312 U2AF2 Bryony Thompson Classified gene: U2AF2 as Amber List (moderate evidence)
Mendeliome v0.5312 U2AF2 Bryony Thompson Gene: u2af2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5311 U2AF2 Bryony Thompson gene: U2AF2 was added
gene: U2AF2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: U2AF2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: U2AF2 were set to 33057194
Phenotypes for gene: U2AF2 were set to Developmental disorders
Review for gene: U2AF2 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 10 de novo variants (1 in-frame, 8 missense, 1 synoymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5309 TCF7L2 Bryony Thompson Gene: tcf7l2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5306 TCF7L2 Bryony Thompson Classified gene: TCF7L2 as Amber List (moderate evidence)
Mendeliome v0.5306 TCF7L2 Bryony Thompson Gene: tcf7l2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5305 TCF7L2 Bryony Thompson reviewed gene: TCF7L2: Rating: AMBER; Mode of pathogenicity: None; Publications: 33057194; Phenotypes: Developmental disorders; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5305 SRRM2 Bryony Thompson Gene: srrm2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5305 SRRM2 Bryony Thompson Classified gene: SRRM2 as Amber List (moderate evidence)
Mendeliome v0.5305 SRRM2 Bryony Thompson Gene: srrm2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5304 SRRM2 Bryony Thompson gene: SRRM2 was added
gene: SRRM2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SRRM2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SRRM2 were set to 33057194
Phenotypes for gene: SRRM2 were set to Developmental disorders
Review for gene: SRRM2 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 28 de novo variants (11 frameshift, 7 missense, 1 splice acceptor, 5 stopgain, 4 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5303 SPEN Bryony Thompson Gene: spen has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5303 SPEN Bryony Thompson Classified gene: SPEN as Amber List (moderate evidence)
Mendeliome v0.5303 SPEN Bryony Thompson Gene: spen has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5302 SPEN Bryony Thompson gene: SPEN was added
gene: SPEN was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SPEN was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SPEN were set to 33057194
Phenotypes for gene: SPEN were set to Developmental disorders
Review for gene: SPEN was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 25 de novo variants (6 frameshift, 1 in-frame, 7 missense, 8 stopgain, 3 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5301 SATB1 Bryony Thompson Gene: satb1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5301 SATB1 Bryony Thompson Classified gene: SATB1 as Amber List (moderate evidence)
Mendeliome v0.5301 SATB1 Bryony Thompson Gene: satb1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5300 SATB1 Bryony Thompson gene: SATB1 was added
gene: SATB1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SATB1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SATB1 were set to 33057194
Phenotypes for gene: SATB1 were set to Developmental disorders
Review for gene: SATB1 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 12 de novo (2 frameshift, 7 missense, 1 stopgain, 2 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5299 RAB14 Bryony Thompson Gene: rab14 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5299 RAB14 Bryony Thompson Classified gene: RAB14 as Amber List (moderate evidence)
Mendeliome v0.5299 RAB14 Bryony Thompson Gene: rab14 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5298 RAB14 Bryony Thompson gene: RAB14 was added
gene: RAB14 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RAB14 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RAB14 were set to 33057194
Phenotypes for gene: RAB14 were set to Developmental disorders
Review for gene: RAB14 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 8 de novo variants (1 in-frame, 7 missense) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5297 PSMC5 Bryony Thompson Gene: psmc5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5297 PSMC5 Bryony Thompson Classified gene: PSMC5 as Amber List (moderate evidence)
Mendeliome v0.5297 PSMC5 Bryony Thompson Gene: psmc5 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5296 PSMC5 Bryony Thompson gene: PSMC5 was added
gene: PSMC5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PSMC5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PSMC5 were set to 33057194
Phenotypes for gene: PSMC5 were set to Developmental disorders
Review for gene: PSMC5 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 10 de novo variants (1 in-frame, 9 missense) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5292 MSL2 Bryony Thompson Gene: msl2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5292 MSL2 Bryony Thompson Classified gene: MSL2 as Amber List (moderate evidence)
Mendeliome v0.5292 MSL2 Bryony Thompson Gene: msl2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5290 MSL2 Bryony Thompson gene: MSL2 was added
gene: MSL2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MSL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MSL2 were set to 31332282; 33057194
Phenotypes for gene: MSL2 were set to Developmental disorders; autism
Review for gene: MSL2 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 13 de novo variants (9 frameshift, 4 missense) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
PMID: 31332282 - candidate gene in a single autism study, with recurrent de novo variants in a potential oligogenic model
Sources: Literature
Mendeliome v0.5289 MMGT1 Bryony Thompson Classified gene: MMGT1 as Amber List (moderate evidence)
Mendeliome v0.5289 MMGT1 Bryony Thompson Gene: mmgt1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5288 MMGT1 Bryony Thompson gene: MMGT1 was added
gene: MMGT1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MMGT1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MMGT1 were set to 33057194
Phenotypes for gene: MMGT1 were set to Developmental disorders
Review for gene: MMGT1 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 3 de novo missense identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5280 HNRNPD Bryony Thompson Gene: hnrnpd has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5280 HNRNPD Bryony Thompson Classified gene: HNRNPD as Amber List (moderate evidence)
Mendeliome v0.5280 HNRNPD Bryony Thompson Gene: hnrnpd has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5279 HNRNPD Bryony Thompson gene: HNRNPD was added
gene: HNRNPD was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HNRNPD was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: HNRNPD were set to 33057194
Phenotypes for gene: HNRNPD were set to Developmental disorders
Review for gene: HNRNPD was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 8 de novo variants (5 frameshift, 1 missense, 1 splice acceptor, 1 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5278 H3F3A Bryony Thompson reviewed gene: H3F3A: Rating: AMBER; Mode of pathogenicity: None; Publications: 33057194, 31942419; Phenotypes: Developmental disorders, intellectual disability, microcephaly, severe developmental delay; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5272 PRKG2 Arina Puzriakova gene: PRKG2 was added
gene: PRKG2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRKG2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PRKG2 were set to 33106379
Phenotypes for gene: PRKG2 were set to Acromesomelic dysplasia
Review for gene: PRKG2 was set to GREEN
Added comment: - PMID: 33106379 (2020) - Distinct homozygous variants in PRKG2 identified in two unrelated individuals, both with a skeletal dysplasia associated with severe short stature due to acromesomelic limb shortening, brachydactyly, mild to moderate platyspondyly and progressively increasing metaphyseal alterations of the long bones.

Functional studies showed both variants result in NMD and disrupt the downstream MAPK signalling pathway in response to FGF2. The role of cGKII, encoded by PRKG2, in skeletal growth has been established in several animal models (references provided in paper).
Sources: Literature
Mendeliome v0.5267 DHX32 Zornitza Stark Gene: dhx32 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5267 DHX32 Zornitza Stark Classified gene: DHX32 as Amber List (moderate evidence)
Mendeliome v0.5267 DHX32 Zornitza Stark Gene: dhx32 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5261 RHOB Zornitza Stark Gene: rhob has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5260 RHOB Zornitza Stark Classified gene: RHOB as Amber List (moderate evidence)
Mendeliome v0.5260 RHOB Zornitza Stark Gene: rhob has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5258 DHX32 Dean Phelan gene: DHX32 was added
gene: DHX32 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DHX32 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DHX32 were set to PMID: 32989326
Phenotypes for gene: DHX32 were set to Intellectual disability, spastic diplegia, dystonia, brain abnormalities
Review for gene: DHX32 was set to AMBER
Added comment: PMID: 32989326 - Large cohort study of cerebral palsy cases identified two de novo variants in two unrelated patients with intellectual disability, one with spastic diplegia, and the other characterised as generalised dystonia. Brain abnormalities were identified also.
Sources: Literature
Mendeliome v0.5255 FBXO31 Zornitza Stark Classified gene: FBXO31 as Amber List (moderate evidence)
Mendeliome v0.5255 FBXO31 Zornitza Stark Gene: fbxo31 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5253 FBXO31 Kristin Rigbye reviewed gene: FBXO31: Rating: AMBER; Mode of pathogenicity: Other; Publications: PMID: 32989326; Phenotypes: Cerebral palsy; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.5251 RHOB Crystle Lee gene: RHOB was added
gene: RHOB was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: RHOB was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: RHOB were set to 32989326
Phenotypes for gene: RHOB were set to Cerebral Palsy (PMID:32989326)
Mode of pathogenicity for gene: RHOB was set to Other
Review for gene: RHOB was set to AMBER
Added comment: Candidate disease-causing gene for CP. Recurrent de novo missense variant reported in 2 unrelated families with supporting functional studies.
Sources: Expert list
Mendeliome v0.5244 ITPR3 Zornitza Stark Gene: itpr3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5244 ITPR3 Zornitza Stark Classified gene: ITPR3 as Amber List (moderate evidence)
Mendeliome v0.5244 ITPR3 Zornitza Stark Gene: itpr3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5243 ITPR3 Zornitza Stark gene: ITPR3 was added
gene: ITPR3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ITPR3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ITPR3 were set to 32949214
Phenotypes for gene: ITPR3 were set to Charcot-Marie-Tooth disease
Review for gene: ITPR3 was set to AMBER
Added comment: Two unrelated families reported: variant segregated in four affected individuals in one family and was de novo in the second family where there was a single affected person. Some evidence for dominant-negative effect.
Sources: Literature
Mendeliome v0.5239 KIRREL1 Zornitza Stark Gene: kirrel1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5239 KIRREL1 Zornitza Stark Classified gene: KIRREL1 as Amber List (moderate evidence)
Mendeliome v0.5239 KIRREL1 Zornitza Stark Gene: kirrel1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5238 KIRREL1 Zornitza Stark gene: KIRREL1 was added
gene: KIRREL1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KIRREL1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: KIRREL1 were set to 31472902
Phenotypes for gene: KIRREL1 were set to Steroid-resistant nephrotic syndrome
Review for gene: KIRREL1 was set to AMBER
Added comment: Two unrelated families reported with bi-allelic variants and limited functional data.
Sources: Literature
Mendeliome v0.5237 GFRA1 Zornitza Stark Gene: gfra1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5237 GFRA1 Zornitza Stark Classified gene: GFRA1 as Amber List (moderate evidence)
Mendeliome v0.5237 GFRA1 Zornitza Stark Gene: gfra1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5236 GFRA1 Zornitza Stark gene: GFRA1 was added
gene: GFRA1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GFRA1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GFRA1 were set to 33020172
Phenotypes for gene: GFRA1 were set to Renal agenesis
Review for gene: GFRA1 was set to AMBER
Added comment: Two unrelated families reported with bi-allelic LOF variants identified in individuals with bilateral renal agenesis. GFRA1 gene encodes a receptor on the Wolffian duct that regulates ureteric bud outgrowth in the development of a functional renal system.
Sources: Literature
Mendeliome v0.5235 GNB2 Bryony Thompson reviewed gene: GNB2: Rating: AMBER; Mode of pathogenicity: None; Publications: 33057194; Phenotypes: Developmental disorder, sinus node dysfunction and atrioventricular block; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5235 GIGYF1 Bryony Thompson Gene: gigyf1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5235 GIGYF1 Bryony Thompson Classified gene: GIGYF1 as Amber List (moderate evidence)
Mendeliome v0.5235 GIGYF1 Bryony Thompson Gene: gigyf1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5234 GIGYF1 Bryony Thompson gene: GIGYF1 was added
gene: GIGYF1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GIGYF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GIGYF1 were set to 33057194
Phenotypes for gene: GIGYF1 were set to Developmental disorder
Review for gene: GIGYF1 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 14 de novo variants (4 frameshift, 5 missense, 1 splice donor, 3 stopgain, 1 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5233 FBXW7 Bryony Thompson Gene: fbxw7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5233 FBXW7 Bryony Thompson Classified gene: FBXW7 as Amber List (moderate evidence)
Mendeliome v0.5233 FBXW7 Bryony Thompson Gene: fbxw7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5232 FBXW7 Bryony Thompson gene: FBXW7 was added
gene: FBXW7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FBXW7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FBXW7 were set to 33057194
Phenotypes for gene: FBXW7 were set to Developmental disorder
Review for gene: FBXW7 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio developmental disorder study. 12 de novo missense and 1 de novo synonymous variant identified in ~10,000 cases with developmental disorders (no other phenotype info provided)
Sources: Literature
Mendeliome v0.5229 PRKAR1B Konstantinos Varvagiannis gene: PRKAR1B was added
gene: PRKAR1B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRKAR1B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PRKAR1B were set to https://doi.org/10.1101/2020.09.10.20190314; 25414040
Phenotypes for gene: PRKAR1B were set to Global developmental delay; Intellectual disability; Autism; Attention deficit hyperactivity disorder; Aggressive behavior; Abnormality of movement; Upslanted palpebral fissure
Penetrance for gene: PRKAR1B were set to unknown
Review for gene: PRKAR1B was set to AMBER
Added comment: Please consider inclusion of this gene with amber rating pending publication of the preprint and/or additional evidence.

Marbach et al. (2020 - medRxiv : https://doi.org/10.1101/2020.09.10.20190314 - last author : C. Schaaf) report 6 unrelated individuals with heterozygous missense PRKAR1B variants.

All presented formal ASD diagnosis (6/6), global developmental delay (6/6) and intellectual disability (all - formal evaluations were lacking though). Additional features included neurologic anomalies (movement disorders : dyspraxia, apraxia, clumsiness in all, with tremor/dystonia or involuntary movements as single occurrences). Three displayed high pain tolerance. Regression in speech was a feature in two. Additional behavior anomalies included ADHD (4-5/6) or aggression (3/6). There was no consistent pattern of malformations, physical anomalies or facial features (with the exception of uplsanted palpebral fissures reported in 4).

3 different missense variants were identified (NM_00116470:c.1003C>T - p.Arg335Trp, c.586G>A - p.Glu196Lys, c.500_501delAAinsTT - p.Gln167Leu) with Arg355Trp being a recurrent one within this cohort (4/6 subjects). A possible splicing effect may apply for the MNV. All variants are absent from gnomAD and the SNVs had CADD scores > 24.

In all cases were parental samples were available (5/6), the variant had occurred as a de novo event.

Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes. As the authors comment, the RIβ subunit is primarily expressed in brain with higher expression in cortex and hypothalamus.

The functional consequences of the variants at cellular level were not studied.

Previous studies have demonstrated that downregulation of RIβ in murine hippocampal cultures, reduced phosphorylation of CREB, a transcription factor involved in long-term memory formation. The authors speculate that a similar effect on cAMP/PKA/CREB cascade may mediate the cognitive effects in humans. RIβ deficient mice also display diminished nociceptive pain, similar to the human phenotype. [Several refs provided].

The authors cite the study by Kaplanis et al (2020 - PMID: 33057194), where in a large sample of 31,058 trio exomes of children with developmental disorders, PRKAR1B was among the genes with significant enrichment for de novo missense variants. [The gene has a pLI score of 0.18 in gnomAD / o/e = 0.26 - so pLoF variants may not be deleterious].

Please note that a specific PRKAR1B variant (NM_002735.2:c.149T>G - p.Leu50Arg) has been previous reported to segregate with a late-onset neurodegenerative disorder characterized by dementia and/or parkinsonism within a large pedigree with 12 affected individuals [Wong et al 2014 - PMID: 25414040].
Sources: Literature
Mendeliome v0.5222 MPP5 Konstantinos Varvagiannis gene: MPP5 was added
gene: MPP5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MPP5 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: MPP5 were set to 33073849
Phenotypes for gene: MPP5 were set to Global developmental delay; Intellectual disability; Delayed speech and language development; Developmental regression; Behavioral abnormality
Penetrance for gene: MPP5 were set to unknown
Review for gene: MPP5 was set to GREEN
Added comment: Sterling et al (2020 - PMID: 33073849) provide information on the phenotype of 3 individuals with de novo MPP5 variants.

Common features included global developmental delay, intellectual disability (3/3 - severe in 2/3), speech delay/regression (the latter in at least 2) and behavioral abnormalities. Variable other features were reported, among others microcephaly (1/3), abnormal vision (1/3 : CVI, retinal dystrophy, nystagmus), brain MRI abnormalities (2/3), late-onset seizures (1/3). These subjects displayed variable and non-specific dysmorphic features.

All were investigated by exome sequencing (previous investigations not mentioned).

One subject was found to harbor a de novo mosaic (5/25 reads) stopgain variant, further confirmed by Sanger sequencing [NM_022474.4:c.1555C>T - p.(Arg519Ter). The specific variant is reported once in gnomAD (1/251338). Two de novo missense variants were identified in the remaining individuals [c.1289A>G - p.Glu430Gly / c.974A>C - p.His325Pro). All variants had in silico predictions in favor of a deleterious effect (CADD score >24).

The authors comment that MPP5 encodes an apical complex protein with asymmetric localization to the apical side of polarized cells. It is expressed in brain, peripheral nervous system and other tissues. MPP5 is a member of the membrane-associated guanylate kinase family of proteins (MAGUK p55 subfamily), determining cell polarity at tight junctions.

Previous animal models suggest that complete Mpp5(Pals1) KO in mice leads to near absence of cerebral cortical neurons. Htz KO display reduction in size of cerebral cortex and hippocampus. The gene is expressed in proliferating cell populations of cerebellum and important for establishment cerebellar architecture. Conditional KO of Mpp5(Pals1) in retinal progenitor cells mimics the retinal pathology observed in LCA. [Several refs. provided]

The authors studied a heterozygous CNS-specific Mpp5 KO mouse model. These mice presented microcephaly, decreased cerebellar volume and cortical thickness, decreased ependymal cells and Mpp5 at the apical surface of cortical vertrical zone. The proportion of cortical cells undergoing apoptotic cell death was increased. Mice displayed behavioral abnormalities (hyperactivity) and visual deficits, with ERG traces further suggesting retinal blindness.

Overall the mouse model was thought to recapitulate the behavioral abnormalities observed in affected subjects as well as individual rare features such as microcephaly and abnormal vision.

Haploinsufficiency (rather than a dominant negative effect) is favored as the underlying disease mechanism. This is also in line with a dose dependent effect observed in mice.
Sources: Literature
Mendeliome v0.5213 DDX23 Bryony Thompson Classified gene: DDX23 as Amber List (moderate evidence)
Mendeliome v0.5213 DDX23 Bryony Thompson Gene: ddx23 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5212 DDX23 Bryony Thompson gene: DDX23 was added
gene: DDX23 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DDX23 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DDX23 were set to 33057194
Phenotypes for gene: DDX23 were set to Developmental disorder
Review for gene: DDX23 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio developmental disorder study. 6 de novo missense identified in ~10,000 cases with developmental disorders (no other phenotype info provided)
Sources: Literature
Mendeliome v0.5211 ATP6V0A1 Bryony Thompson Classified gene: ATP6V0A1 as Amber List (moderate evidence)
Mendeliome v0.5211 ATP6V0A1 Bryony Thompson Gene: atp6v0a1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5210 ATP6V0A1 Bryony Thompson gene: ATP6V0A1 was added
gene: ATP6V0A1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATP6V0A1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ATP6V0A1 were set to 30842224; 33057194
Phenotypes for gene: ATP6V0A1 were set to Developmental disorder; Rett syndrome-like
Review for gene: ATP6V0A1 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio developmental disorder study. 11 de novo missense identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
PMID: 30842224 - identified a de novo missense variant in a single individual with atypical Rett syndrome phenotype
Sources: Literature
Mendeliome v0.5209 ARHGAP35 Bryony Thompson Gene: arhgap35 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5209 ARHGAP35 Bryony Thompson Classified gene: ARHGAP35 as Amber List (moderate evidence)
Mendeliome v0.5209 ARHGAP35 Bryony Thompson Gene: arhgap35 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5208 ARHGAP35 Bryony Thompson gene: ARHGAP35 was added
gene: ARHGAP35 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ARHGAP35 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ARHGAP35 were set to 33057194
Phenotypes for gene: ARHGAP35 were set to Developmental disorder
Review for gene: ARHGAP35 was set to AMBER
Added comment: Has been identified as a gene with significant de novo enrichment in a large trio developmental disorder study. 16 de novo variants (3 frameshift, 2 in-frame, 10 missense, 1 stopgain) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5204 ASCL1 Zornitza Stark Gene: ascl1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5201 ASCL1 Zornitza Stark Classified gene: ASCL1 as Amber List (moderate evidence)
Mendeliome v0.5201 ASCL1 Zornitza Stark Gene: ascl1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5200 ASCL1 Zornitza Stark reviewed gene: ASCL1: Rating: AMBER; Mode of pathogenicity: None; Publications: 14532329; Phenotypes: Central hypoventilation syndrome, congenital, MIM# 209880; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5174 ISPD Elena Savva reviewed gene: ISPD: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 28688748, 30060766, 22522420; Phenotypes: Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 7 614643, Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 7 616052; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5168 SLC35A3 Zornitza Stark edited their review of gene: SLC35A3: Added comment: Third unrelated family reported in PMID 28777481 with prenatally diagnosed anomalous vertebrae, including butterfly, and hemivertebrae throughout the spine, as well as cleft palate, micrognathia, patent foramen ovale, patent ductus arteriosus, posterior embryotoxon, short limbs, camptodactyly, talipes valgus, rocker bottom feet, and facial dysmorphism including proptosis, nevus flammeus, and a cupped left ear. Unclear if this is a distinct phenotype (note Holstein cows with variants in this gene have a skeletal phenotype) or part of a spectrum for a CDG. However, abnormal protein glycosylation, consistent with a defective Golgi UDP-GlcNAc transporter demonstrated, so overall, promoted to Green for CDG.; Changed rating: GREEN; Changed publications: 28777481, 28328131, 24031089; Changed phenotypes: Arthrogryposis, mental retardation, and seizures OMIM #615553, Skeletal dysplasia, Congenital disorder of glycosylation; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5163 COL25A1 Zornitza Stark Gene: col25a1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5160 COL25A1 Zornitza Stark Classified gene: COL25A1 as Amber List (moderate evidence)
Mendeliome v0.5160 COL25A1 Zornitza Stark Gene: col25a1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5159 COL25A1 Zornitza Stark reviewed gene: COL25A1: Rating: AMBER; Mode of pathogenicity: None; Publications: 25500261, 26486031; Phenotypes: Fibrosis of extraocular muscles, congenital, 5, MIM# 616219; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5140 CTNNA3 Bryony Thompson Gene: ctnna3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5140 CTNNA3 Bryony Thompson Classified gene: CTNNA3 as Amber List (moderate evidence)
Mendeliome v0.5140 CTNNA3 Bryony Thompson Gene: ctnna3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5139 CTNNA3 Bryony Thompson gene: CTNNA3 was added
gene: CTNNA3 was added to Mendeliome. Sources: ClinGen
Mode of inheritance for gene: CTNNA3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CTNNA3 were set to 23136403; 21254927; 22421363; 30415094; 31539150
Phenotypes for gene: CTNNA3 were set to Arrhythmogenic right ventricular cardiomyopathy; Arrhythmogenic right ventricular dysplasia, familial, 13 MIM#615616
Review for gene: CTNNA3 was set to AMBER
Added comment: Gene is classified as Limited by the ClinGen ARVC GCEP (Classification - 08/06/2019). PMID: 23136403 - an assumed de novo missense (V94D) was identified in an Italian proband with arrhythmogenic right ventricular dysplasia. An inframe deletion (Leu765del) was identified in a proband with arrhythmogenic right ventricular dysplasia, and was also present in the proband's asymptomatic father and paternal aunt, who had mild right ventricular dilation on echocardiography and increased trabeculations in the right ventricular apex on MRI, respectively, as well as in the aunt's asymptomatic son. There was supporting in vitro functional assay evidence for both variants. PMID: 21254927 - a missense variant was found in one of 55 Danish ARVD patients, but was found 37 times in 276,338 (1 homozygous) reference alleles in gnomAD making it less likely as a causal variant. PMID: 22421363 - null mice exhibit progressive dilated cardiomyopathy, gap junction remodelling, and increased sensitivity to ventricular arrhythmia following acute ischaemia, but not spontaneous ARVC. Additional publications identified - PMID: 30415094 - a VUS identified in a sudden unexpected death case with slight LV hypertrophy. PMID: 31539150 - 2 VUS and a nonsense variant identified in 3 probands with atrial fibrillation, with the nonsense variant segregating in an affected first-degree relative.
Sources: ClinGen
Mendeliome v0.5122 COX4I1 Zornitza Stark Gene: cox4i1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5122 COX4I1 Zornitza Stark Classified gene: COX4I1 as Amber List (moderate evidence)
Mendeliome v0.5122 COX4I1 Zornitza Stark Gene: cox4i1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5121 COX4I1 Zornitza Stark gene: COX4I1 was added
gene: COX4I1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: COX4I1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COX4I1 were set to 28766551; 22592081; 31290619
Phenotypes for gene: COX4I1 were set to Mitochondrial complex IV deficiency, nuclear type 16, MIM#619060
Review for gene: COX4I1 was set to AMBER
Added comment: Two unrelated families reported.

Two more variants reported in PMID: 22592081: one is non-coding and the other rare missense, appear to have been identified in separate individuals, i.e. heterozygous in each individual.
Sources: Expert list
Mendeliome v0.5102 PRKACB Konstantinos Varvagiannis gene: PRKACB was added
gene: PRKACB was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRKACB was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PRKACB were set to 33058759
Phenotypes for gene: PRKACB were set to Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth; Intellectual disability
Penetrance for gene: PRKACB were set to unknown
Mode of pathogenicity for gene: PRKACB was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: PRKACB was set to GREEN
Added comment: Palencia-Campos et al (2020 - PMID: 33058759) report on the phenotype of 3 individuals heterozygous for PRKACA and 4 individuals heterozygous for PRKACB pathogenic variants.

The most characteristic features in all individuals with PRKACA/PRKACB mutation, included postaxial polydactyly of hands (6/7 bilateral, 1/7 unilateral) and feet (4/7 bilateral, 1/7 unilateral), brachydactyly and congenital heart defects (CHD 5/7) namely a common atrium or AVSD. Two individuals with PRKACA variant who did not have CHD had offspring with the same variant and an AVSD.

Other variably occurring features included short stature, limbs, narrow chest, abnormal teeth, oral frenula, nail dysplasia. One individual with PRKACB variant presented tumors.

Intellectual disability was reported in 2/4 individuals with PRKACB variant (1/4: mild, 1/4: severe). The 3 individuals with PRKACA variant did not present ID.

As the phenotype was overall suggestive of Ellis-van Creveld syndrome (or the allelic Weyers acrofacial dysostosis), although these diagnoses were ruled out following analysis of EVC and EVC2 genes.

WES was carried out in all.

PRKACA : A single heterozygous missense variant was identified in 3 individuals from 3 families (NM_002730.4:c.409G>A / p.Gly137Arg) with 1 of the probands harboring the variant in mosaic state (28% of reads) and having 2 similarly affected offspring. The variant was de novo in one individual and inherited in a third one having a similarly affected fetus (narrow thorax, postaxial polyd, AVSD).

PRKACB : 4 different variants were identified (NM_002731.3: p.His88Arg/Asn, p.Gly235Arg, c.161C>T - p.Ser54Leu). One of the individuals was mosaic for the latter variant, while in all other cases the variant had occurred de novo.

Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes.

The authors provide evidence that the variants confer increased sensitivity of PKA holoenzymes to activation by cAMP (compared to wt).

By performing ectopic expression of wt or mt PRKACA/B (variants studied : PRKACA p.Gly137Arg / PRKACB p.Gly235Arg) in NIH 3T3 fibroblasts, the authors demonstrate that inhibition of hedgehog signaling likely underlyies the developmental defects observed in affected individuals.

As for PRKACA, the authors cite another study where a 31-month old female with EvC syndrome diagnosis was found to harbor the aforementioned variant (NM_001304349.1:c.637G>A:p.Gly213Arg corresponding to NM_002730.4:c.409G>A / p.Gly137Arg) as a de novo event. Without additional evidence at the time, the variant was considered to be a candidate for this subject's phenotype (Monies et al 2019 – PMID: 31130284).
Sources: Literature
Mendeliome v0.5102 PRKACA Konstantinos Varvagiannis gene: PRKACA was added
gene: PRKACA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRKACA was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PRKACA were set to 33058759; 31130284
Phenotypes for gene: PRKACA were set to Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth; Intellectual disability
Penetrance for gene: PRKACA were set to unknown
Mode of pathogenicity for gene: PRKACA was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: PRKACA was set to GREEN
Added comment: Palencia-Campos et al (2020 - PMID: 33058759) report on the phenotype of 3 individuals heterozygous for PRKACA and 4 individuals heterozygous for PRKACB pathogenic variants.

The most characteristic features in all individuals with PRKACA/PRKACB mutation, included postaxial polydactyly of hands (6/7 bilateral, 1/7 unilateral) and feet (4/7 bilateral, 1/7 unilateral), brachydactyly and congenital heart defects (CHD 5/7) namely a common atrium or AVSD. Two individuals with PRKACA variant who did not have CHD had offspring with the same variant and an AVSD.

Other variably occurring features included short stature, limbs, narrow chest, abnormal teeth, oral frenula, nail dysplasia. One individual with PRKACB variant presented tumors.

Intellectual disability was reported in 2/4 individuals with PRKACB variant (1/4: mild, 1/4: severe). The 3 individuals with PRKACA variant did not present ID.

As the phenotype was overall suggestive of Ellis-van Creveld syndrome (or the allelic Weyers acrofacial dysostosis), although these diagnoses were ruled out following analysis of EVC and EVC2 genes.

WES was carried out in all.

PRKACA : A single heterozygous missense variant was identified in 3 individuals from 3 families (NM_002730.4:c.409G>A / p.Gly137Arg) with 1 of the probands harboring the variant in mosaic state (28% of reads) and having 2 similarly affected offspring. The variant was de novo in one individual and inherited in a third one having a similarly affected fetus (narrow thorax, postaxial polyd, AVSD).

PRKACB : 4 different variants were identified (NM_002731.3: p.His88Arg/Asn, p.Gly235Arg, c.161C>T - p.Ser54Leu). One of the individuals was mosaic for the latter variant, while in all other cases the variant had occurred de novo.

Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes.

The authors provide evidence that the variants confer increased sensitivity of PKA holoenzymes to activation by cAMP (compared to wt).

By performing ectopic expression of wt or mt PRKACA/B (variants studied : PRKACA p.Gly137Arg / PRKACB p.Gly235Arg) in NIH 3T3 fibroblasts, the authors demonstrate that inhibition of hedgehog signaling likely underlyies the developmental defects observed in affected individuals.

As for PRKACA, the authors cite another study where a 31-month old female with EvC syndrome diagnosis was found to harbor the aforementioned variant (NM_001304349.1:c.637G>A:p.Gly213Arg corresponding to NM_002730.4:c.409G>A / p.Gly137Arg) as a de novo event. Without additional evidence at the time, the variant was considered to be a candidate for this subject's phenotype (Monies et al 2019 – PMID: 31130284).
Sources: Literature
Mendeliome v0.5096 GFPT1 Zornitza Stark Phenotypes for gene: GFPT1 were changed from to Myasthenia, congenital, 12, with tubular aggregates, 610542; Limb-girdle congenital myasthenic syndrome; Leukoencephalopathy
Mendeliome v0.5093 GFPT1 Zornitza Stark reviewed gene: GFPT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21310273, 30635494; Phenotypes: Myasthenia, congenital, 12, with tubular aggregates, 610542, Limb-girdle congenital myasthenic syndrome, Leukoencephalopathy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5079 ALG2 Zornitza Stark Gene: alg2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5076 ALG2 Zornitza Stark Classified gene: ALG2 as Amber List (moderate evidence)
Mendeliome v0.5076 ALG2 Zornitza Stark Gene: alg2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.5075 ALG2 Zornitza Stark reviewed gene: ALG2: Rating: AMBER; Mode of pathogenicity: None; Publications: 23404334, 24461433, 12684507; Phenotypes: Myasthenic syndrome, congenital, 14, with tubular aggregates, MIM# 616228, Congenital disorder of glycosylation, type Ii, MIM# 607906; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5069 PTCD3 Zornitza Stark Phenotypes for gene: PTCD3 were changed from Intellectual disability; optic atrophy; Leigh-like syndrome to Combined oxidative phosphorylation deficiency-51, MIM#619057; Intellectual disability; optic atrophy; Leigh-like syndrome
Mendeliome v0.5068 PTCD3 Zornitza Stark edited their review of gene: PTCD3: Changed phenotypes: Combined oxidative phosphorylation deficiency-51, MIM#619057, Intellectual disability, optic atrophy, Leigh-like syndrome
Mendeliome v0.4998 CSNK1G1 Zornitza Stark gene: CSNK1G1 was added
gene: CSNK1G1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CSNK1G1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CSNK1G1 were set to 33009664
Phenotypes for gene: CSNK1G1 were set to Global developmental delay; Intellectual disability; Autism; Seizures
Review for gene: CSNK1G1 was set to GREEN
Added comment: Borderline Green/Amber rating.

Gold et al (2020 - PMID: 33009664) report 5 individuals with CSNK1G1 variants, including updated information on a previously reported subject (Martin et al 2014 - PMID: 24463883).

Features included DD (5/5) with associated expressive language delay, ASD (in at least 3/5), seizures (2/5), dysmorphic facial features (4/5 arched eyebrows, 3/5 prominent central incisors, 2/5 epicanthus) and limb anomalies (2/5 - proximally placed thumb, 5th f. clinodactyly, asymmetric overgrowth - the other individual had tapering fingers). GI problems were observed in 4/5. Two individuals had macrocephaly and one had microcephaly. There was no formal developmental assessment although ID might be implied in at least 3 individuals (p1: 20y - single words/regression in walking following a seizure episode, p2: 8y - first words at 5y, assistance to feed, dress and bathe, ASD, p4: 13y - regression, assistance to feed and dress).

CSNK1G1 encodes the gamma-1 isoform of casein kinase 1, a protein involved in growth and cell morphogenesis. The gene has ubiquitous expression, incl. brain. As commented, in brain it regulates phosphorylation of NMDA receptors, playing a role in synaptic transmission (4 articles cited).

One individual had a 1.2 kb deletion spanning exon 3 of CSNK1G1 [chr15:64550952-64552120 - GRCh37]. Parental samples were unavailable for this individual. Four individuals were found to harbor de novo CSNK1G1 variants [NM_022048.3: c.688C>T - p.(Arg230Trp) dn | c.1255C>T - p.(Gln419*) dn | c.1214+5G>A dn with in silico predictions in favor of splice disruption | c.419C>T - p.(Thr140Met) dn].

Arg230Trp is however present once in gnomAD. The stopgain variant is located in the last exon and predicted to skip NMD.

There were no variant studies performed.

The Drosophila gish gene encodes a CK1γ homolog with preferential expression in the mushroom body. Heterozygous and homozygous mutants exhibit impairment in memory retention, more severe in homozygous flies. gish was also identified as a seizure modifier in a fly epilepsy model (heterozygous para mt flies).
Sources: Literature
Mendeliome v0.4930 WDPCP Zornitza Stark Gene: wdpcp has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4927 WDPCP Zornitza Stark Classified gene: WDPCP as Amber List (moderate evidence)
Mendeliome v0.4927 WDPCP Zornitza Stark Gene: wdpcp has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4926 WDPCP Zornitza Stark reviewed gene: WDPCP: Rating: AMBER; Mode of pathogenicity: None; Publications: 20671153, 25427950; Phenotypes: Bardet-Biedl syndrome 15, MIM# 615992, OFD; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4907 SEMA4A Zornitza Stark Gene: sema4a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4904 SEMA4A Zornitza Stark Classified gene: SEMA4A as Amber List (moderate evidence)
Mendeliome v0.4904 SEMA4A Zornitza Stark Gene: sema4a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4903 SEMA4A Zornitza Stark reviewed gene: SEMA4A: Rating: AMBER; Mode of pathogenicity: None; Publications: 16199541, 28805479, 23360997, 15277503; Phenotypes: Cone-rod dystrophy 10, 610283, Retinitis pigmentosa 35, 610282; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4903 JPH2 Zornitza Stark Gene: jph2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4900 JPH2 Zornitza Stark Classified gene: JPH2 as Amber List (moderate evidence)
Mendeliome v0.4900 JPH2 Zornitza Stark Gene: jph2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4899 JPH2 Zornitza Stark reviewed gene: JPH2: Rating: AMBER; Mode of pathogenicity: None; Publications: 30681346, 17509612, 23973696, 26869393, 28393127, 30235249, 31227780; Phenotypes: Cardiomyopathy, hypertrophic, MIM#613873, dilated cardiomyopathy; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.4894 CEP112 Zornitza Stark Gene: cep112 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4893 CEP112 Zornitza Stark reviewed gene: CEP112: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Spermatogenic failure 44, MIM#619044; Mode of inheritance: None
Mendeliome v0.4892 SVIL Zornitza Stark edited their review of gene: SVIL: Changed rating: AMBER; Changed phenotypes: Myofibrillar myopathy, MIM#619040
Mendeliome v0.4878 MAG Zornitza Stark changed review comment from: Spastic paraplegia-75 is an autosomal recessive, slowly progressive neurodegenerative disorder characterized by onset of spastic paraplegia and cognitive impairment in childhood. Eight unrelated families reported.; to: Spastic paraplegia-75 is an autosomal recessive, slowly progressive neurodegenerative disorder characterized by onset of spastic paraplegia and cognitive impairment in childhood. Eight unrelated families reported with variable combinations of psychomotor delay, ataxia, eye movement abnormalities, spasticity, dystonia, and neuropathic symptoms.
Mendeliome v0.4875 ITFG2 Zornitza Stark Gene: itfg2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4875 ITFG2 Zornitza Stark Classified gene: ITFG2 as Amber List (moderate evidence)
Mendeliome v0.4875 ITFG2 Zornitza Stark Gene: itfg2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4874 ITFG2 Zornitza Stark gene: ITFG2 was added
gene: ITFG2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ITFG2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ITFG2 were set to 28397838; https://doi.org/10.1038/s41525-020-00150-z
Phenotypes for gene: ITFG2 were set to Neurodevelopmental abnormality; Intellectual disability; Developmental regression; Ataxia
Review for gene: ITFG2 was set to AMBER
Added comment: ITFG2 was suggested to be a candidate gene for autosomal recessive ID in the study by Harripaul et al (2018 - PMID: 28397838). The authors performed microarray and exome sequencing in 192 consanguineous families and identified a homozygous ITGF2 stopgain variant (NM_018463.3:c.472G>T / p.Glu158*) along with 3 additional variants segregating with ID within an investigated family (PK51). Cheema et al (2020 - https://doi.org/10.1038/s41525-020-00150-z) report briefly on a male, born to consanguineous parents presenting with NDD, seizures, regression and ataxia. There was a similarly affected female sibling. Evaluation of ROH revealed a homozygous ITFG2 nonsense variant [NM_018463.3:c.361C>T / p.(Gln121*)]. Families in this study were investigated by trio WES or WGS. Evaluation of data of the same lab revealed 3 additional unrelated subjects with overlapping phenotypes, notably NDD and ataxia. These individuals were - each - homozygous for pLoF variants [NM_018463.3:c.848-1G>A; NM_018463.3:c.704dupC, p.(Ala236fs), NM_018463.3:c.1000_1001delAT, p.(Ile334fs)]. As discussed in OMIM, ITFG2 encodes a subunit of the KICSTOR protein complex, having a role in regulating nutrient sensing by MTOR complex-1 (Wolfson et al 2017 - PMID : 28199306).

Rated Amber as Cheema et al report on diagnostic outcomes and multiple candidate genes as part of a heterogenous cohort and details are therefore limited.
Sources: Literature
Mendeliome v0.4872 SHMT2 Zornitza Stark gene: SHMT2 was added
gene: SHMT2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SHMT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SHMT2 were set to 33015733
Phenotypes for gene: SHMT2 were set to Congenital microcephaly; Infantile axial hypotonia; Spastic paraparesis; Global developmental delay; Intellectual disability; Abnormality of the corpus callosum; Abnormal cortical gyration; Hypertrophic cardiomyopathy; Abnormality of the face; Proximal placement of thumb; 2-3 toe syndactyly
Review for gene: SHMT2 was set to GREEN
Added comment: García‑Cazorla et al. (2020 - PMID: 33015733) report 5 individuals (from 4 families) with a novel brain and heart developmental syndrome caused by biallelic SHMT2 pathogenic variants.

All affected subjects presented similar phenotype incl. microcephaly at birth (5/5 with OFC < -2 SD though in 2/5 cases N OFC was observed later), DD and ID (1/5 mild-moderate, 1/5 moderate, 3/5 severe), motor dysfunction in the form of spastic (5/5) paraparesis, ataxia/dysmetria (3/4), intention tremor (in 3/?) and/or peripheral neuropathy (2 sibs). They exhibited corpus callosum hypoplasia (5/5) and perisylvian microgyria-like pattern (4/5). Cardiac problems were reported in all, with hypertrophic cardiomyopathy in 4/5 (from 3 families) and atrial-SD in the 5th individual (1/5). Common dysmorphic features incl. long palpebral/fissures, eversion of lateral third of lower eylids, arched eyebrows, long eyelashes, thin upper lip, short Vth finger, fetal pads, mild 2-3 toe syndactyly, proximally placed thumbs.

Biallelic variants were identified following exome sequencing in all (other investigations not mentioned). Identified variants were in all cases missense SNVs or in-frame del, which together with evidence from population databases and mouse model might suggest a hypomorphic effect of variants and intolerance/embryonic lethality for homozygous LoF ones.

SHMT2 encodes the mitohondrial form of serine hydroxymethyltransferase. The enzyme transfers one-carbon units from serine to tetrahydrofolate (THF) and generates glycine and 5,10,methylene-THF.

Mitochondrial defect was suggested by presence of ragged red fibers in myocardial biopsy of one patient. Quadriceps and myocardial biopsies of the same individual were overall suggestive of myopathic changes.

While plasma metabolites were within N range and SHMT2 protein levels not significantly altered in patient fibroblasts, the authors provide evidence for impaired enzymatic function eg. presence of the SHMT2 substrate (THF) in patient but not control (mitochondria-enriched) fibroblasts , decrease in glycine/serine ratios, impared folate metabolism. Patient fibroblasts displayed impaired oxidative capacity (reduced ATP levels in a medium without glucose, diminished oxygen consumption rates). Mitochondrial membrane potential and ROS levels were also suggestive of redox malfunction.

Shmt2 ko in mice was previously shown to be embryonically lethal attributed to severe mitochondrial respiration defects, although there was no observed brain metabolic defect.

The authors performed Shmt2 knockdown in motoneurons in Drosophila, demonstrating neuromuscular junction (# of satellite boutons) and motility defects (climbing distance/velocity).
Sources: Literature
Mendeliome v0.4871 DHX38 Zornitza Stark Gene: dhx38 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4868 DHX38 Zornitza Stark Classified gene: DHX38 as Amber List (moderate evidence)
Mendeliome v0.4868 DHX38 Zornitza Stark Gene: dhx38 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4867 DHX38 Zornitza Stark reviewed gene: DHX38: Rating: AMBER; Mode of pathogenicity: None; Publications: 24737827, 30208423; Phenotypes: Retinitis pigmentosa 84, MIM# 618220; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4862 VPS41 Zornitza Stark gene: VPS41 was added
gene: VPS41 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: VPS41 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: VPS41 were set to 32808683
Phenotypes for gene: VPS41 were set to Dystonia; intellectual disability
Review for gene: VPS41 was set to RED
Added comment: Single individual reported with homozygous canonical splice site variant resulting in exon 7 skipping, and global developmental delay and generalized dystonia. He attained a few words and voluntary limb movements but never sat unsupported. He had pale optic discs and an axonal neuropathy. From 6 years of age, his condition began to deteriorate, with reduced motor abilities and alertness. An MRI of the brain showed atrophy of the superior cerebellar vermis and slimming of the posterior limb of the corpus callosum. VPS41 is component of the HOPS complex and other genes in the complex have been implicated in movement disorders.
Sources: Literature
Mendeliome v0.4860 VPS16 Zornitza Stark gene: VPS16 was added
gene: VPS16 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: VPS16 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: VPS16 were set to 32808683
Phenotypes for gene: VPS16 were set to Dystonia
Added comment: 18 individuals reported with high-impact variants in VPS16 and a progressive early onset dystonia (median age 12 years, range 3–50 years), with prominent oromandibular, bulbar, cervical, and upper limb involvement. Progressive generalization ensued, although most remained ambulant, and only a minority (16%) lost the ability to walk in adulthood. Additional clinical features of mild to moderate intellectual disability and neuropsychiatric symptoms were present in approximately one‐third. In 4 individuals, magnetic resonance imaging (MRI) showed bilateral and symmetrical hypointensity of the globi pallidi and sometimes also the midbrain and dentate nuclei, suggestive of iron deposition. Mild generalized cerebral atrophy was also apparent in 4 individuals.
Sources: Literature
Mendeliome v0.4853 CAPN3 Zornitza Stark Phenotypes for gene: CAPN3 were changed from to Muscular dystrophy, limb-girdle, autosomal dominant 4, MIM# 618129; Muscular dystrophy, limb-girdle, autosomal recessive 1, MIM# 253600
Mendeliome v0.4850 CAPN3 Zornitza Stark reviewed gene: CAPN3: Rating: GREEN; Mode of pathogenicity: None; Publications: 31937337, 28881388, 32342993, 32557990; Phenotypes: Muscular dystrophy, limb-girdle, autosomal dominant 4, MIM# 618129, Muscular dystrophy, limb-girdle, autosomal recessive 1, MIM# 253600; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.4830 NEK9 Zornitza Stark Classified gene: NEK9 as Amber List (moderate evidence)
Mendeliome v0.4830 NEK9 Zornitza Stark Gene: nek9 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4829 NEK9 Zornitza Stark edited their review of gene: NEK9: Changed rating: AMBER
Mendeliome v0.4829 NEK9 Zornitza Stark edited their review of gene: NEK9: Added comment: Another Saudi family described with which 2 sisters and a female cousin who had a similar disorder characterised by arthrogryposis apparent since early childhood, avascular necrosis of the hip (Perthes disease), and upward gaze palsy. Homozygous missense variant segregated with the phenotype. Given the small number of reports, it is unclear whether this represents a distinct association is part of a spectrum with includes the more severe phenotype described in the Irish traveller families.; Changed publications: 26908619, 21271645; Changed phenotypes: Lethal congenital contracture syndrome 10, MIM# 617022, Arthrogryposis, Perthes disease, and upward gaze palsy, MIM# 614262, Skeletal dysplasia
Mendeliome v0.4822 AGAP1 Zornitza Stark Gene: agap1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4822 AGAP1 Zornitza Stark Classified gene: AGAP1 as Amber List (moderate evidence)
Mendeliome v0.4822 AGAP1 Zornitza Stark Gene: agap1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4821 AGAP1 Zornitza Stark gene: AGAP1 was added
gene: AGAP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: AGAP1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: AGAP1 were set to 31700678; 25666757; 30472483
Phenotypes for gene: AGAP1 were set to Cerebral palsy
Review for gene: AGAP1 was set to AMBER
Added comment: Two individuals reported with de novo variants in this gene and a CP phenotype. Rare variants over-represented in a case-control study. Supportive zebrafish model. Another individual with a deletion (+1 other gene) reported with ID and autism.
Sources: Literature
Mendeliome v0.4807 ACER3 Zornitza Stark Gene: acer3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4804 ACER3 Zornitza Stark Classified gene: ACER3 as Amber List (moderate evidence)
Mendeliome v0.4804 ACER3 Zornitza Stark Gene: acer3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4803 ACER3 Zornitza Stark reviewed gene: ACER3: Rating: AMBER; Mode of pathogenicity: None; Publications: 32816236, 26792856; Phenotypes: Leukodystrphy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4802 TRPV1 Bryony Thompson Classified gene: TRPV1 as Amber List (moderate evidence)
Mendeliome v0.4802 TRPV1 Bryony Thompson Gene: trpv1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4798 NUAK2 Zornitza Stark reviewed gene: NUAK2: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: ; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4789 THOC1 Melanie Marty changed review comment from: Missense variant identified and segregated with adult-onset hearing loss in 9 affected family members. 12 unaffected individuals also tested.
Functional studies showed THOC1 was expressed in mouse and zebrafish hair cells. Furthermore, thoc1 deficiency caused the reduction of hair cell numbers in zebrafish and in mouse it induced hair cell apoptosis.
Sources: Literature; to: Missense variant identified and segregated with adult-onset hearing loss in 9 affected family members. 12 unaffected individuals also tested.
Functional studies showed THOC1 was expressed in mouse and zebrafish hair cells. Furthermore, thoc1 deficiency caused the reduction of hair cell numbers in zebrafish and the hypomorphic thoc1 in mouse induced hair cell apoptosis.
Sources: Literature
Mendeliome v0.4788 THOC1 Zornitza Stark Gene: thoc1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4788 THOC1 Zornitza Stark Classified gene: THOC1 as Amber List (moderate evidence)
Mendeliome v0.4788 THOC1 Zornitza Stark Gene: thoc1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4786 THOC1 Melanie Marty changed review comment from: Missense variant identified and segregated with adult-onset hearing loss in 9 affected family members. 12 unaffected individuals also tested.
Functional studies showed THOC1 was expressed in mouse and zebrafish hair cells. Furthermore, thoc1 deficiency caused the reduction of hair cell numbers in zebrafish and the induced hair cell apoptosis.
Sources: Literature; to: Missense variant identified and segregated with adult-onset hearing loss in 9 affected family members. 12 unaffected individuals also tested.
Functional studies showed THOC1 was expressed in mouse and zebrafish hair cells. Furthermore, thoc1 deficiency caused the reduction of hair cell numbers in zebrafish and in mouse it induced hair cell apoptosis.
Sources: Literature
Mendeliome v0.4786 AP1S1 Ee Ming Wong reviewed gene: AP1S1: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 32306098; Phenotypes: non-syndromic congenital intestinal failure; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.4786 NUAK2 Seb Lunke Classified gene: NUAK2 as Amber List (moderate evidence)
Mendeliome v0.4786 NUAK2 Seb Lunke Gene: nuak2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4785 RNPC3 Zornitza Stark Gene: rnpc3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4785 RNPC3 Zornitza Stark Classified gene: RNPC3 as Amber List (moderate evidence)
Mendeliome v0.4785 RNPC3 Zornitza Stark Gene: rnpc3 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4784 RNPC3 Zornitza Stark gene: RNPC3 was added
gene: RNPC3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RNPC3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RNPC3 were set to 29866761; 32462814
Phenotypes for gene: RNPC3 were set to Growth hormone deficiency
Review for gene: RNPC3 was set to AMBER
Added comment: Two families reported. PMID 29866761: isolated growth deficiency and pituitary hypoplasia. PMID 32462814: growth hormone deficiency, central congenital hypothyroidism, congenital cataract, developmental delay/intellectual deficiency and delayed puberty. Full spectrum of phenotype unclear at present.
Sources: Literature
Mendeliome v0.4783 THOC1 Melanie Marty changed review comment from: Missense variant identified and segregated with adulthood-onset hearing loss in 9 affected family members. 12 unaffected individuals also tested.
Functional studies showed THOC1 was expressed in mouse and zebrafish hair cells. Furthermore, thoc1 deficiency caused the reduction of hair cell numbers in zebrafish and the induced hair cell apoptosis.
Sources: Literature; to: Missense variant identified and segregated with adult-onset hearing loss in 9 affected family members. 12 unaffected individuals also tested.
Functional studies showed THOC1 was expressed in mouse and zebrafish hair cells. Furthermore, thoc1 deficiency caused the reduction of hair cell numbers in zebrafish and the induced hair cell apoptosis.
Sources: Literature
Mendeliome v0.4783 PRICKLE3 Teresa Zhao gene: PRICKLE3 was added
gene: PRICKLE3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRICKLE3 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: PRICKLE3 were set to 32516135
Phenotypes for gene: PRICKLE3 were set to Leber’s hereditary optic neuropathy MIM#535000
Review for gene: PRICKLE3 was set to AMBER
Added comment: Reported as X-linked LHON modifier (c.157C>T, p.Arg53Trp) in PRICKLE3 in 3 Chinese families. All affected individuals carried both ND4 11778G>A and p.Arg53Trp mutations, while subjects bearing only a single mutation exhibited normal vision.

Defective assembly, stability, and function of ATP synthase observed using Lymphoblastoid cell lines from one of the families.

This finding indicated that the p.Arg53Trp mutation acted in synergy with the m.11778G>A mutation and deteriorated mitochondrial dysfunctions necessary for the expression of LHON.

Prickle3-deficient mice exhibited pronounced ATPase deficiencies.
Sources: Literature
Mendeliome v0.4783 NUAK2 Seb Lunke gene: NUAK2 was added
gene: NUAK2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NUAK2 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: NUAK2 were set to 32845958
Phenotypes for gene: NUAK2 were set to ANENCEPHALY (OMIM#206500)
Review for gene: NUAK2 was set to AMBER
Added comment: Novel gene described in single consanguineous family with three FDIU and extensive anencephaly. Hom inframe del affecting functional kinase domain, parents confirmed carriers. Good functional data showing loss of enzyme function and mouse model with 40% anencephaly after knock-out.
Sources: Literature
Mendeliome v0.4782 THOC1 Melanie Marty gene: THOC1 was added
gene: THOC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: THOC1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: THOC1 were set to 32776944
Phenotypes for gene: THOC1 were set to Nonsyndromic hearing loss
Review for gene: THOC1 was set to AMBER
Added comment: Missense variant identified and segregated with adulthood-onset hearing loss in 9 affected family members. 12 unaffected individuals also tested.
Functional studies showed THOC1 was expressed in mouse and zebrafish hair cells. Furthermore, thoc1 deficiency caused the reduction of hair cell numbers in zebrafish and the induced hair cell apoptosis.
Sources: Literature
Mendeliome v0.4782 MBTPS1 Zornitza Stark Marked gene: MBTPS1 as ready
Mendeliome v0.4782 MBTPS1 Zornitza Stark Gene: mbtps1 has been classified as Green List (High Evidence).
Mendeliome v0.4782 MBTPS1 Zornitza Stark Classified gene: MBTPS1 as Green List (high evidence)
Mendeliome v0.4782 MBTPS1 Zornitza Stark Gene: mbtps1 has been classified as Green List (High Evidence).
Mendeliome v0.4781 MBTPS1 Zornitza Stark gene: MBTPS1 was added
gene: MBTPS1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MBTPS1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MBTPS1 were set to 32857899; 32420688; 30046013
Phenotypes for gene: MBTPS1 were set to Skeletal dysplasia
Review for gene: MBTPS1 was set to GREEN
Added comment: Three unrelated individuals reported with bi-allelic variants in this gene and a skeletal dysplasia, one described with SRS-like features. Elevated blood lysosomal enzymes are also a feature.
Sources: Literature
Mendeliome v0.4743 PRKD1 Zornitza Stark changed review comment from: PMID: 32817298 (2020) - Two additional unrelated cases with de novo variants, c.1774G>C and c.1808G>A, and telangiectasia, ectodermal dysplasia, brachydactyly and congenital heart disease. Functional analysis using in vitro kinase assays with recombinant proteins showed that the c.1808G>A, p.(Arg603His) variant represents a gain-of-function mutation encoding an enzyme with a constitutive, lipid-independent catalytic activity. The c.1774G>C, p.(Gly592Arg) variant in contrast shows a defect in substrate phosphorylation representing a loss-of-function mutation.

c.1774G>C, p.(Gly592Arg) is recurrent, reported in 3/5 individuals.; to: PMID: 27479907 (2016): three individuals reported, two with the c.1774G>A variant and one with the c.896T>G variant. All had congenital heart disease, two had some developmental delay, and two had variable features of ectodermal dysplasia, including sparse hair, dry skin, thin skin, fragile nails, premature loss of primary teeth, and small widely spaced teeth; the third individuals had a 'disorganized eyebrow.'

PMID: 32817298 (2020) - Two additional unrelated cases with de novo variants, c.1774G>C and c.1808G>A, and telangiectasia, ectodermal dysplasia, brachydactyly and congenital heart disease. Functional analysis using in vitro kinase assays with recombinant proteins showed that the c.1808G>A, p.(Arg603His) variant represents a gain-of-function mutation encoding an enzyme with a constitutive, lipid-independent catalytic activity. The c.1774G>C, p.(Gly592Arg) variant in contrast shows a defect in substrate phosphorylation representing a loss-of-function mutation.

c.1774G>C, p.(Gly592Arg) is recurrent, reported in 3/5 individuals.
Mendeliome v0.4742 SCN1A Arina Puzriakova reviewed gene: SCN1A: Rating: AMBER; Mode of pathogenicity: None; Publications: 32928894; Phenotypes: Arthrogryposis multiplex congenita; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.4725 IGSF10 Bryony Thompson Gene: igsf10 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4725 IGSF10 Bryony Thompson Classified gene: IGSF10 as Amber List (moderate evidence)
Mendeliome v0.4725 IGSF10 Bryony Thompson Gene: igsf10 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4724 IGSF10 Bryony Thompson gene: IGSF10 was added
gene: IGSF10 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: IGSF10 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: IGSF10 were set to 27137492; 31042289
Phenotypes for gene: IGSF10 were set to delayed puberty; hypogonadotropic hypogonadism; primary ovary insufficiency
Review for gene: IGSF10 was set to AMBER
Added comment: PMID: 27137492 - 4 Finnish families segregating p.Glu161Lys, but Finnish MAF in ExAC is 2%. Another six additional families with a possible missense, but variants are seen in ExAC suggesting incomplete penetrance. Supporting in vitro functional assays and zebrafish model. PMID: 31042289 - 2 unrelated consanguineous families with homozygous variants and family with a heterozygous frameshift and apparent incomplete penetrance.
Sources: Literature
Mendeliome v0.4717 PFN1 Melanie Marty reviewed gene: PFN1: Rating: AMBER; Mode of pathogenicity: None; Publications: 32392277, 31991009, 31346562, 32589291, 22801503; Phenotypes: Paget’s disease of bone; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4693 MYH9 Zornitza Stark Phenotypes for gene: MYH9 were changed from to Deafness, autosomal dominant 17, MIM# 603622; Macrothrombocytopenia and granulocyte inclusions with or without nephritis or sensorineural hearing loss, MIM# 155100; MYH9-related disorders
Mendeliome v0.4690 MYH9 Zornitza Stark reviewed gene: MYH9: Rating: GREEN; Mode of pathogenicity: None; Publications: 9390828, 24890873, 17146397, 25505834, 16630581, 16162639, 23976996, 21908426; Phenotypes: Deafness, autosomal dominant 17, MIM# 603622, Macrothrombocytopenia and granulocyte inclusions with or without nephritis or sensorineural hearing loss, MIM# 155100, MYH9-related disorders; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4687 RPL9 Zornitza Stark Added comment: Comment when marking as ready: Second individual reported with same c.-2+1G>C variant in the 5′UTR of RPL9, deleterious effect demonstrated, functional data, upgrade to Amber.
Mendeliome v0.4687 RPL9 Zornitza Stark Gene: rpl9 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4686 RPL9 Zornitza Stark Classified gene: RPL9 as Amber List (moderate evidence)
Mendeliome v0.4686 RPL9 Zornitza Stark Gene: rpl9 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4685 RPL9 Arina Puzriakova changed review comment from: PMID: 31799629 (2020) - One individual diagnosed with Diamond Blackfan anaemia carrying a de novo variant (c.-2+1G>C) in the 5′UTR of RPL9, predicted to affect the donor splice site of exon 1. Functional studies showed the variant impairs processing of pre-rRNA during ribosome biogenesis, stabilises TP53 and impairs the proliferation and differentiation of erythroid cells. Zebrafish models of RPL9 LoF recapitulate the anaemia phenotype.; to: PMID: 31799629 (2020) - Female infant diagnosed with Diamond-Blackfan anaemia carrying a de novo variant (c.-2+1G>C) in the 5′UTR of RPL9, predicted to affect the donor splice site of exon 1. Phenotypic overlap can be seen with the previously reported case with the same variant, including colitis, thumb anomaly, and microcephaly. Functional studies showed the variant impairs processing of pre-rRNA during ribosome biogenesis, stabilises TP53 and impairs the proliferation and differentiation of erythroid cells. Zebrafish models of RPL9 LoF recapitulate the anaemia phenotype.
Mendeliome v0.4685 RPL9 Arina Puzriakova reviewed gene: RPL9: Rating: AMBER; Mode of pathogenicity: None; Publications: 31799629; Phenotypes: Diamond Blackfan anaemia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.4668 BLOC1S5 Zornitza Stark gene: BLOC1S5 was added
gene: BLOC1S5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: BLOC1S5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BLOC1S5 were set to 32565547
Phenotypes for gene: BLOC1S5 were set to Hermansky–Pudlak syndrome
Review for gene: BLOC1S5 was set to GREEN
Added comment: 2 unrelated patients with mild oculocutaneous albinism, moderate bleeding diathesis, platelet aggregation deficit, and a dramatically decreased number of platelet dense granules, all signs compatible with HPS. Identified distinct homozygous variants in the BLOC1S5 gene (patient 1: deletion of exons 3 and 4, patient 2: 1-bp deletion in exon 4). Parental segregation confirmatory in patient 1, quantitative PCR analysis confirmatory in patient 2). Functional tests performed on platelets of one patient displayed an absence of the obligate multisubunit complex BLOC-1, showing that the variant disrupts BLOC1S5 function and impairs BLOC-1 assembly. Expression of the patient-derived BLOC1S5 deletion in nonpigmented murine Bloc1s5-/- melan-mu melanocytes failed to rescue pigmentation, the assembly of a functional BLOC-1 complex, and melanosome cargo trafficking, unlike the wild-type allele. Pathogenic variants in the genes encoding three other BLOC-1 subunits (DTNBP1, BLOC1S3, and BLOC1S6) underlie HPS types 7, 8, and 9 respectively.
Sources: Literature
Mendeliome v0.4625 MIEF2 Zornitza Stark Phenotypes for gene: MIEF2 were changed from Progressive muscle weakness; Exercise intolerance; Ragged red and COX negative fibres; Complex I and IV deficiency to Combined oxidative phosphorylation deficiency 49, MIM# 619024; Progressive muscle weakness; Exercise intolerance; Ragged red and COX negative fibres; Complex I and IV deficiency
Mendeliome v0.4624 MRPS25 Zornitza Stark Phenotypes for gene: MRPS25 were changed from Dyskinetic cerebral palsy; Mitochondrial myopathy; Partial agenesis of the corpus callosum to Combined oxidative phosphorylation deficiency 50, MIM# 619025; Dyskinetic cerebral palsy; Mitochondrial myopathy; Partial agenesis of the corpus callosum
Mendeliome v0.4623 MRPS25 Zornitza Stark edited their review of gene: MRPS25: Changed phenotypes: Combined oxidative phosphorylation deficiency 50, MIM# 619025, Dyskinetic cerebral palsy, Mitochondrial myopathy, Partial agenesis of the corpus callosum
Mendeliome v0.4623 MIEF2 Zornitza Stark edited their review of gene: MIEF2: Changed phenotypes: Combined oxidative phosphorylation deficiency 49, MIM# 619024, Progressive muscle weakness, Exercise intolerance, Ragged red and COX negative fibres, Complex I and IV deficiency
Mendeliome v0.4578 TREM2 Zornitza Stark Phenotypes for gene: TREM2 were changed from to Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy 2, MIM# 618193
Mendeliome v0.4575 TREM2 Zornitza Stark reviewed gene: TREM2: Rating: GREEN; Mode of pathogenicity: None; Publications: 12080485, 15883308; Phenotypes: Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy 2, MIM# 618193; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4569 RPS20 Bryony Thompson Gene: rps20 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4569 RPS20 Bryony Thompson Classified gene: RPS20 as Amber List (moderate evidence)
Mendeliome v0.4569 RPS20 Bryony Thompson Gene: rps20 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4568 RPS20 Bryony Thompson gene: RPS20 was added
gene: RPS20 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RPS20 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RPS20 were set to 32790018
Phenotypes for gene: RPS20 were set to Diamond Blackfan anaemia
Mode of pathogenicity for gene: RPS20 was set to Other
Review for gene: RPS20 was set to AMBER
Added comment: Two unrelated cases where a de novo variant involving Ile84 (Ile84Ser and Ile84Asn), and reduce the RPS20 protein level in patient cells. Yeast models with mutation of the cognate residue resulted in defects in growth, ribosome biogenesis, and polysome formation. Loss of function may not be the mechanism of disease, because loss of function variants appear to be exclusively associated with familial colorectal cancer without the DBA phenotype.
Sources: Literature
Mendeliome v0.4542 TCF12 Arina Puzriakova reviewed gene: TCF12: Rating: AMBER; Mode of pathogenicity: None; Publications: 32620954; Phenotypes: Kallmann syndrome; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.4528 NSUN3 Zornitza Stark Phenotypes for gene: NSUN3 were changed from combined mitochondrial respiratory chain complex deficiency to Combined oxidative phosphorylation deficiency 48, MIM# 619012
Mendeliome v0.4526 NSUN3 Zornitza Stark edited their review of gene: NSUN3: Added comment: Second family reported with early-onset mitochondrial encephalomyopathy and seizures.; Changed publications: 27356879, 32488845; Changed phenotypes: Combined oxidative phosphorylation deficiency 48, MIM# 619012
Mendeliome v0.4520 SLC12A2 Zornitza Stark edited their review of gene: SLC12A2: Added comment: Monoallelic :
DD/ID was a feature in >= 6 individuals with monoallelic de novo SLC12A2. An individual with an exon 22 truncating variant was reported to have normal milestones and cognitive function. Exon 21 variants have been described in individuals with rather isolated hearing impairment (possibly some associated motor delay, but normal cognition). Hearing impairment was also reported in 2/6 patients with variants in other exons (1 missense / 1 frameshift).

Biallelic :
DD/ID was reported in at least 3 individuals in literature. Hearing impairment has been reported on 2 occasions (although this was not probably evaluated in all subjects).

---

Monoallelic SLC12A2 mutations :

► Individuals with de novo mutations and developmental disorder were first identified by the DDD study (2017 - PMID: 28135719). 5 of them have been reported in detail by McNeill et al (below).

► McNeill et al (2020 - PMID: 32658972) report on 6 individuals with neurodevelopmental disorder due to de novo SLC12A2 mutation. All presented DD or ID ranging from mild to severe. ASD was reported in 3/6. Sensorineural hearing loss was a feature in 2/6 with the remaining having normal formal evaluations. Brain, cardiac and/or additional malformations were reported in a single individual. Following non-diagnostic prior work-up (CMA, FMR1 or other investigations) trio exome sequencing revealed missense (4/6) or truncating variants (2/6).

Three additional individuals (incl. a father and his son) with missense variants in exon 21 (NM_001046.3 / p.Glu979Lys and p.Glu980Lys) presented with bilateral sensorineural hearing loss. Speech and/or motor delay reported in these cases were attributed to the hearing impairment/vestibular arreflexia (cognitive abilities not tested).

SLC12A2 encodes sodium-potassium-chloride transporter 1 (also NKCC1).

The GTEx project has identified 8 isoforms. In brain both exon 21-containing/deleted isoforms are expressed (cited Morita et al 2014 - PMID: 24695712). As the authors discuss, RNA-seq of the developing mouse cochlea suggests that the exon 21 containing isoform is the single transcript expressed. Evidence from RNA-seq data (BrainSpan project) and literature suggests that the significant amounts of exon 21 lacking isoforms in fetal brain compensate for the deleterious effects of exon 21 variants and explain the lack of NDD in relevant patients.

Slc12a2 (NKCC1) null mouse model has demonstrated that the transporter plays a role in accumulation of the potassium rich endolymph in the inner ear, with NKCC1 absence causing sensorineural deafness and imbalance. Slc12a2 display cochlear malformations, loss of hair cells and hearing impairment (cited Delpire et al 1999 - PMID: 10369265). The brain phenotype has not been studied extensively, although loss of Slc12a2 has been shown to inhibit neurogenesis (cited: Magalhães and Rivera et al. - PMID: 27582690).

Slc12a2 null zebrafish display a collapse of the otic vesicle and reduced endolymph (Abbas and Whitfield, 2009 - PMID: 19633174) relevant to the human hearing disorder.

In vitro assessment of NKCC1 ion transporter function in Xenopus laevis, supported the deleterious effect of the identified variants (significant reduction in K+ influx). Using available single cell RNA-seq data the authors further demonstrated that SLC12A2 expressing cells display transcriptomic profiles reflective of active neurogenesis.

► Delpire et al (2016 - PMID: 27900370 - not reviewed in detail) described a 13 y.o. girl harboring a de novo 11-bp deletion in SLC12A2 exon 22. This individual reached developmental milestones on time and had a NORMAL cognitive function. Hearing was seemingly normal. Features included orthostatic intolerance, respiratory weakness, multiple endocrine abnormalities, pancreatic insufficiency and multiorgan failure incl. gut and bladder. Exome in the proband, parents and 3 unaffected sibs suggested SLC12A2 as the only candidate for her phenotype. Functional analyses in Xenopus laevis oocytes suggested that a non functional transporter was expressed and trafficked to the membrane as the wt. Detection of the truncated protein at higher molecular sizes suggested either enhanced dimerization or misfolded aggregate. There was no dominant-negative effect of mutant NKCC1. In patient fibroblasts a reduced total and NKCC1-mediated K+ influx.

► Mutai et al (2020 - PMID: 32294086) report on several individuals from 4 families, harboring variants within exon 21 or - in one case - at it's 3' splice-site (leading to skipping oe this exon at the mRNA level). All subjects were investigated for severe/profound hearing loss (in line with the role of exon 21-included isoforms in cochlea. The variant segregated with hearing impairment in 3 generations of a family while in all other subjects the variant had occured as de novo event. Despite motor delays (e.g. the subject from fam2 could not hold head or sit at the age of 10m / the proband in Fam3 was able to hold his head and walk at 6 and 20 m respectively) behavior and cognition were commented to be within normal range.


-----

Biallelic SLC12A2 mutations:

► Anazi et al (2017 - PMID: 29288388) briefly reported on a 3 y.o. boy (17DG0776) with central hypotonia, neonatal respiratory distress, failure to thrive, global DD and microcephaly and a skeletal survey suggestive of osteopenia. After non-diagnostic prior investigations (CMA revealing a 1p duplication classified as VUS, extensive metabolic workup), WES revealed a homozygous SLC12A2 splicing variant [NM_001046.2:c.2617-2A>G].

► Macnamara et al (2019 - PMID: 30740830) described a 5.5 y.o. male with sensorineural hearing loss, profound delays in all developmental areas among several other features (choanal atresia, failure to thrive, respiratory problems, absent sweat and tear production or salivation, GI abnormalities). Genetic testing for several disorders considered (cystic fibrosis, spinal muscular atrophy, sequencing and del/dup analysis of mtDNA) was normal. CMA revealed paternal uniparental isodisomy for chr. 5 and WGS a homozygous 22kb deletion in SLC12A2. This was followed by confirmation of homozygosity in the proband, heterozygosity of the unaffected father, delineation of breakpoints (chr5:127441491-127471419). mRNA studies in patient fibroblasts confirmed deletion of ex2-7, splicing of ex1 directly to ex8 and introduction of a premature stop codon in ex9. qRT-PCR confirmed that mRNA is likely subjected to NMD (expression ~80% of control). Western blot confirmed absence of the protein in the patient's fibroblasts. Again mouse models are thought to recapitulate the hearing defect but also the deficient saliva production (cited Evans et al 2000 - PMID: 10831596). Again the authors speculate a role of SLC12A2 in brain development based on evidence from murine models (migration, dendritic growth, increse in neuron density through regulation of GABAergic signalling (Young et al 2012 - PMID: 23015452). Hypotheses are also made on a regulatory relationship between NKCC1 and CFTR based on mRNA data from the ko mouse model.

► Stödberg et al (2020 - PMID: 32754646) reported 2 sibs with a complex neurodevelopmental disorder due to compound heterozygosity for a frameshift SLC12A2 variant and a splicing one (NM_001046:c.1431delT and c.2006-1G>A). Both presented hypotonia, neonatal S. aureus parotitis and respiratory problems (incl. apneas). While the older sib died at the age of 22 days, the younger one had persistent respiratory issues incl. a dry respiratory mucosa motivating metabolic, immunology investigations and testing for CF. She displayed microcephaly (OFC -2.5 SD, H was also -3.5SD), severe intellectual disability. MRI was suggestive of white matter and basal ganglia abnormalities. Other features incl. hearing impairment, and lack of tears,saliva and sweat, constipation and intestinal malrotation. There was facial dysmorphism. The variants were the only retained following WGS of the 2 affected sisters, parents and an unaffected brother. The splicing variant was shown to result in skipping of exon 13, while the indel in NMD. Again the authors discuss that the deficient saliva production, impaired hearing and GI problems are recapitulated in the mouse model (several refs provided).; Changed rating: GREEN; Changed publications: 28135719, 32658972, 27900370, 32294086, 29288388, 30740830, 32754646; Changed phenotypes: Kilquist syndrome, deafness, intellectual disability, dysmorphic features, absent salivation, ectodermal dysplasia, constipation, intestinal malrotation, multiple congenital anomalies; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.4520 VPS37A Zornitza Stark Gene: vps37a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4517 VPS37A Zornitza Stark Classified gene: VPS37A as Amber List (moderate evidence)
Mendeliome v0.4517 VPS37A Zornitza Stark Gene: vps37a has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4516 VPS37A Zornitza Stark reviewed gene: VPS37A: Rating: AMBER; Mode of pathogenicity: None; Publications: 22717650; Phenotypes: Spastic paraplegia 53, autosomal recessive, MIM# 614898; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4496 FNIP1 Arina Puzriakova gene: FNIP1 was added
gene: FNIP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FNIP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FNIP1 were set to 32181500; 32905580
Phenotypes for gene: FNIP1 were set to Hypertrophic Cardiomyopathy; Primary Immunodeficiency; Agammaglobulinemia; Neutropenia
Review for gene: FNIP1 was set to GREEN
Added comment: - PMID: 32181500 (2020) - Three patients from two independent consanguineous families with homozygous variants (c.3353G>A, p.Ser1118Asn and c.1289delA, p.His430Profs7*) in the FNIP1 gene. Both variants segregated with the disease phenotype in each family. Clinically, patients presented with combined immunodeficiency, cardiac findings (hypertrophic cardiomyopathy, Wolff‐Parkinson‐White syndrome), and myopathy of skeletal muscles with motor DD. Authors note phenotypic overlap with the murine model of FNIP1 deficiency, but no functional analyses of the variants or patient cells were performed.

- PMID: 32905580 (2020) - Three cases from unrelated families, all harbouring novel biallelic variants in FNIP1. Clinical manifestations in all patients include hypertrophic cardiomyopathy, severe and/or recurrent infections, absent circulating B-cells, and agammaglobulinemia; as well as either severe or intermittent neutropenia in two cases. Functional studies showed impairment of B-cell metabolism, including disruptions to mitochondrial numbers/activity and the PI3K/AKT pathway.
Sources: Literature
Mendeliome v0.4482 MAPK8 Zornitza Stark reviewed gene: MAPK8: Rating: AMBER; Mode of pathogenicity: None; Publications: 31784499; Phenotypes: Chronic mucocutaneous candidiasis, Connective tissue disorders; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4482 MAPK8 Zornitza Stark Gene: mapk8 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4482 MAPK8 Zornitza Stark Classified gene: MAPK8 as Amber List (moderate evidence)
Mendeliome v0.4482 MAPK8 Zornitza Stark Gene: mapk8 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4481 CTNNBL1 Zornitza Stark Gene: ctnnbl1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4481 CTNNBL1 Zornitza Stark Classified gene: CTNNBL1 as Amber List (moderate evidence)
Mendeliome v0.4481 CTNNBL1 Zornitza Stark Gene: ctnnbl1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4473 TAF2 Zornitza Stark edited their review of gene: TAF2: Added comment: Evidence for gene-disease association is limited. Families reported as part of large cohorts with limited phenotypic data, and variants are homozygous missense without functional validation. Borderline Amber/Green.; Changed publications: 21937992, 22633631, 26350204, 24084144
Mendeliome v0.4457 PRIMPOL Zornitza Stark Gene: primpol has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4454 PRIMPOL Zornitza Stark Classified gene: PRIMPOL as Amber List (moderate evidence)
Mendeliome v0.4454 PRIMPOL Zornitza Stark Gene: primpol has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4453 PRIMPOL Zornitza Stark reviewed gene: PRIMPOL: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Myopia 22, autosomal dominant, MIM# 615420; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4449 XRCC2 Zornitza Stark Gene: xrcc2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4446 XRCC2 Zornitza Stark Classified gene: XRCC2 as Amber List (moderate evidence)
Mendeliome v0.4446 XRCC2 Zornitza Stark Gene: xrcc2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4445 XRCC2 Zornitza Stark reviewed gene: XRCC2: Rating: AMBER; Mode of pathogenicity: None; Publications: 27208205, 22232082, 11118202; Phenotypes: Fanconi anemia, complementation group U, MIM# 617247; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4441 SRP72 Zornitza Stark Gene: srp72 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4438 SRP72 Zornitza Stark Classified gene: SRP72 as Amber List (moderate evidence)
Mendeliome v0.4438 SRP72 Zornitza Stark Gene: srp72 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4437 SRP72 Zornitza Stark reviewed gene: SRP72: Rating: AMBER; Mode of pathogenicity: None; Publications: 22541560, 31254415; Phenotypes: Bone marrow failure syndrome 1, MIM# 614675; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4420 RPL31 Zornitza Stark Gene: rpl31 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4417 RPL31 Zornitza Stark Classified gene: RPL31 as Amber List (moderate evidence)
Mendeliome v0.4417 RPL31 Zornitza Stark Gene: rpl31 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4416 RPL31 Zornitza Stark reviewed gene: RPL31: Rating: AMBER; Mode of pathogenicity: None; Publications: 25042156, 25424902; Phenotypes: Diamond Blackfan anaemia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4406 HOXA11 Zornitza Stark Gene: hoxa11 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4406 HOXA11 Zornitza Stark Phenotypes for gene: HOXA11 were changed from to Radioulnar synostosis with amegakaryocytic thrombocytopenia 1, MIM# 605432
Mendeliome v0.4403 HOXA11 Zornitza Stark Classified gene: HOXA11 as Amber List (moderate evidence)
Mendeliome v0.4403 HOXA11 Zornitza Stark Gene: hoxa11 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4402 HOXA11 Zornitza Stark reviewed gene: HOXA11: Rating: AMBER; Mode of pathogenicity: None; Publications: 11101832, 16765069; Phenotypes: Radioulnar synostosis with amegakaryocytic thrombocytopenia 1, MIM# 605432; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4327 CSNK1D Zornitza Stark Gene: csnk1d has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4324 CSNK1D Zornitza Stark Classified gene: CSNK1D as Amber List (moderate evidence)
Mendeliome v0.4324 CSNK1D Zornitza Stark Gene: csnk1d has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4323 CSNK1D Zornitza Stark reviewed gene: CSNK1D: Rating: AMBER; Mode of pathogenicity: None; Publications: 15800623, 23636092; Phenotypes: Advanced sleep-phase syndrome, familial, 2, MIM# 615224; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4289 HSP90B2P Bryony Thompson changed review comment from: Cannot find any link to any disease at all. This is a pseudogene. It may have been included because its previous gene symbol is TRAP1; to: Cannot find any link to any disease at all. There is no OMIM entry for this pseudogene. It may have been included because its previous gene symbol is TRAP1.
Mendeliome v0.4258 DNAJC7 Seb Lunke Gene: dnajc7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4258 DNAJC7 Seb Lunke Classified gene: DNAJC7 as Amber List (moderate evidence)
Mendeliome v0.4258 DNAJC7 Seb Lunke Gene: dnajc7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4257 DNAJC7 Seb Lunke gene: DNAJC7 was added
gene: DNAJC7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DNAJC7 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: DNAJC7 were set to 31768050
Phenotypes for gene: DNAJC7 were set to amyotrophic lateral sclerosis
Review for gene: DNAJC7 was set to AMBER
Added comment: Two cohort studies in ALS patients identified 11 and 1 patient, respectively, with variants in DNAJC7. Seven of these are putative PTVs. However gene described as risk factor, unclear why.

DOI: https://doi.org/10.1212/NXG.0000000000000503
Sources: Literature
Mendeliome v0.4256 SVIL Melanie Marty edited their review of gene: SVIL: Added comment: Four patients from two unrelated consanguineous families with a childhood/adolescence onset of a myopathy associated with homozygous loss-of-function mutations in SVIL. Wide neck, anteverted shoulders and prominent trapezius muscles together with variable contractures were characteristic features. Functional studies on muscle biopsies showed complete loss protein in muscle fibres by western blot.; Changed rating: AMBER
Mendeliome v0.4252 SVIL Zornitza Stark Gene: svil has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4252 SVIL Zornitza Stark Classified gene: SVIL as Amber List (moderate evidence)
Mendeliome v0.4252 SVIL Zornitza Stark Gene: svil has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4250 CFAP57 Zornitza Stark reviewed gene: CFAP57: Rating: AMBER; Mode of pathogenicity: None; Publications: 21574244, 32764743; Phenotypes: Van der Woude Syndrome, Primary ciliary dyskinesia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4250 HSPA9 Zornitza Stark reviewed gene: HSPA9: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Anemia, sideroblastic, 4, MIM# 182170; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4250 CFAP58 Crystle Lee gene: CFAP58 was added
gene: CFAP58 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: CFAP58 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CFAP58 were set to 32791035
Phenotypes for gene: CFAP58 were set to Multiple morphological abnormalities of the sperm flagella (MMAF) (PMID: 32791035)
Review for gene: CFAP58 was set to AMBER
Added comment: 5 unrelated males reported with biallelic loss of function variants. Knockout mice were infertile (Abstract only)
Sources: Expert Review
Mendeliome v0.4246 PDE10A Zornitza Stark Phenotypes for gene: PDE10A were changed from to Dyskinesia, limb and orofacial, infantile-onset, MIM#616921; Striatal degeneration, autosomal dominant, MIM# 616922
Mendeliome v0.4243 PDE10A Zornitza Stark reviewed gene: PDE10A: Rating: GREEN; Mode of pathogenicity: None; Publications: 27058446, 27058447; Phenotypes: Dyskinesia, limb and orofacial, infantile-onset, MIM#616921, Striatal degeneration, autosomal dominant, MIM# 616922; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.4242 MYSM1 Zornitza Stark changed review comment from: early-onset anaemia, leukopaenia, and decreased B cells, may have thrombocytopaenia or variable additional non-haematologic features, such as facial dysmorphism, skeletal anomalies, and mild developmental delay
Sources: Expert list; to: Early-onset anaemia, leukopaenia, and decreased B cells, may have thrombocytopaenia or variable additional non-haematologic features, such as facial dysmorphism, skeletal anomalies, and mild developmental delay. At least 4 unrelated families reported.
Sources: Expert list
Mendeliome v0.4230 MCM10 Zornitza Stark gene: MCM10 was added
gene: MCM10 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MCM10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MCM10 were set to 32865517
Phenotypes for gene: MCM10 were set to Susceptibility to CMV
Review for gene: MCM10 was set to RED
Added comment: Compound heterozygous variants in minichromosomal maintenance complex member 10 (MCM10) reported as a cause of NK-cell deficiency in a child with fatal susceptibility to CMV.
Sources: Literature
Mendeliome v0.4143 TRAPPC2L Zornitza Stark Gene: trappc2l has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4143 TRAPPC2L Zornitza Stark Classified gene: TRAPPC2L as Amber List (moderate evidence)
Mendeliome v0.4143 TRAPPC2L Zornitza Stark Gene: trappc2l has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4138 DPP6 Zornitza Stark Gene: dpp6 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4135 DPP6 Zornitza Stark Classified gene: DPP6 as Amber List (moderate evidence)
Mendeliome v0.4135 DPP6 Zornitza Stark Gene: dpp6 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4134 DPP6 Zornitza Stark reviewed gene: DPP6: Rating: AMBER; Mode of pathogenicity: None; Publications: 23832105; Phenotypes: Mental retardation, autosomal dominant 33 (MIM#616311); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4134 TRAPPC2L Arina Puzriakova changed review comment from: Gene is associated with Encephalopathy, progressive, early-onset, with episodic rhabdomyolysis in OMIM, but not in G2P.

PMID: 30120216 (2018) - Two unrelated probands with an identical homozygous missense (c.109G>T, p.Asp37Tyr) variant in TRAPPC2L. Both individuals presented neurodevelopmental delay, febrile illness-induced encephalopathy, and episodic rhabdomyolysis, followed by developmental arrest, seizures and tetraplegia. The variant segregated with the phenotype in each family, and haplotype analysis suggested a founder effect.

The mutant protein was expressed in patient fibroblasts, but displayed membrane trafficking delays. Studies in yeast showed that the variant impaired interaction with TRAPPC10, and increased levels of the active RAB11.


PMID: 32843486 (2020) - In an Ashkenazi Jewish family with three affected sibs with GDD/ID, WGS revealed a segregating homozygous missense variant (c.5G>C, p.Ala2Gly) in the TRAPPC2L gene. No seizures, brain MRI abnormalities, or illness provoked regression were documented in this family.

Comparable to the previous study, the variant resulted in delayed ER-to-Golgi trafficking and elevated levels of active RAB11. Studies using yeast and in vitro binding, showed that the variant disrupted interaction with another core TRAPP protein, TRAPPC6a.
Sources: Literature; to: Total of three families, but two share a founder variant, and there are some disparities between the clinical presentations reported in the two publications. Rating Amber as additional cases required to delineate the genotype-phenotype relationship.

PMID: 30120216 (2018) - Two unrelated probands with an identical homozygous missense (c.109G>T, p.Asp37Tyr) variant in TRAPPC2L. Both individuals presented neurodevelopmental delay, febrile illness-induced encephalopathy, and episodic rhabdomyolysis, followed by developmental arrest, seizures and tetraplegia. The variant segregated with the phenotype in each family, and haplotype analysis suggested a founder effect.

The mutant protein was expressed in patient fibroblasts, but displayed membrane trafficking delays. Studies in yeast showed that the variant impaired interaction with TRAPPC10, and increased levels of the active RAB11.


PMID: 32843486 (2020) - In an Ashkenazi Jewish family with three affected sibs with GDD/ID, WGS revealed a segregating homozygous missense variant (c.5G>C, p.Ala2Gly) in the TRAPPC2L gene. No seizures, brain MRI abnormalities, or illness provoked regression were documented in this family.

Comparable to the previous study, the variant resulted in delayed ER-to-Golgi trafficking and elevated levels of active RAB11. Studies using yeast and in vitro binding, showed that the variant disrupted interaction with another core TRAPP protein, TRAPPC6a.

Sources: Literature
Mendeliome v0.4134 TRAPPC2L Arina Puzriakova gene: TRAPPC2L was added
gene: TRAPPC2L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TRAPPC2L was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TRAPPC2L were set to 30120216; 32843486
Phenotypes for gene: TRAPPC2L were set to Encephalopathy, progressive, early-onset, with episodic rhabdomyolysis, 618331
Review for gene: TRAPPC2L was set to AMBER
Added comment: Gene is associated with Encephalopathy, progressive, early-onset, with episodic rhabdomyolysis in OMIM, but not in G2P.

PMID: 30120216 (2018) - Two unrelated probands with an identical homozygous missense (c.109G>T, p.Asp37Tyr) variant in TRAPPC2L. Both individuals presented neurodevelopmental delay, febrile illness-induced encephalopathy, and episodic rhabdomyolysis, followed by developmental arrest, seizures and tetraplegia. The variant segregated with the phenotype in each family, and haplotype analysis suggested a founder effect.

The mutant protein was expressed in patient fibroblasts, but displayed membrane trafficking delays. Studies in yeast showed that the variant impaired interaction with TRAPPC10, and increased levels of the active RAB11.


PMID: 32843486 (2020) - In an Ashkenazi Jewish family with three affected sibs with GDD/ID, WGS revealed a segregating homozygous missense variant (c.5G>C, p.Ala2Gly) in the TRAPPC2L gene. No seizures, brain MRI abnormalities, or illness provoked regression were documented in this family.

Comparable to the previous study, the variant resulted in delayed ER-to-Golgi trafficking and elevated levels of active RAB11. Studies using yeast and in vitro binding, showed that the variant disrupted interaction with another core TRAPP protein, TRAPPC6a.
Sources: Literature
Mendeliome v0.4134 DPP6 Ain Roesley reviewed gene: DPP6: Rating: AMBER; Mode of pathogenicity: None; Publications: 23832105; Phenotypes: Mental retardation, autosomal dominant 33 (MIM#616311); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.4131 TRIT1 Zornitza Stark Phenotypes for gene: TRIT1 were changed from to Combined oxidative phosphorylation deficiency 35, MIM#617873
Mendeliome v0.4128 TRIT1 Zornitza Stark reviewed gene: TRIT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 32088416, 24901367, 28185376, 30977854; Phenotypes: Combined oxidative phosphorylation deficiency 35, MIM#617873; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4128 CRIPT Zornitza Stark Gene: cript has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4128 CRIPT Zornitza Stark Classified gene: CRIPT as Amber List (moderate evidence)
Mendeliome v0.4128 CRIPT Zornitza Stark Gene: cript has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4125 CRIPT Ain Roesley gene: CRIPT was added
gene: CRIPT was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CRIPT was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CRIPT were set to 24389050; 27250922
Phenotypes for gene: CRIPT were set to Short stature with microcephaly and distinctive facies (MIM#615789)
Penetrance for gene: CRIPT were set to unknown
Review for gene: CRIPT was set to AMBER
Added comment: PMID: 24389050
- 2 unrelated probands homozygous for PTVs. However 1 was deceased and DNA was unavailable therefore parents were sequenced

PMID: 27250922
- 1x proband
- het for a missense which was maternally inherited. Because the father was negative for SNVs, they did CMA and found a small heterozygous deletion 1.6kb in size encompassing exon 1 of CRIPT. This deletion was paternally inherited

*did not find new reports since
Sources: Literature
Mendeliome v0.4125 DIAPH1 Zornitza Stark Phenotypes for gene: DIAPH1 were changed from to Deafness; thrombocytopenia 124900; Seizures; cortical blindness; microcephaly 616632
Mendeliome v0.4121 UFC1 Paul De Fazio gene: UFC1 was added
gene: UFC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UFC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UFC1 were set to 29868776; 30552426
Phenotypes for gene: UFC1 were set to Neurodevelopmental disorder with spasticity and poor growth (MIM#618076)
Review for gene: UFC1 was set to GREEN
gene: UFC1 was marked as current diagnostic
Added comment: PMID 29868776: 8 affected individuals from 4 families reported. 7 were described to be postnatally microcephalic (at or below 3rd percentile). One was -5.1SD and one was -3.6SD. SD values for the others weren't provided.

The following head circumference measurements were provided for 6 of the affecteds:

51cm at 16yo; 50cm at 19yo; 42.5cm at 12mo, 45cm at 28mo, 45.2cm at 7yo; 45cm at 4yo.

3 of the families were consanguineous Saudi families with the same homozygous missense variant.

In vitro functional expression studies showed that both mutations caused impaired thioester binding with UFM1. Patient cells also showed decreased UFC1 intermediate formation with UFM1. The decrease in function was consistent with a hypomorphic allele, and the authors suggested that complete loss of function would be embryonic lethal.

PMID 30552426: 1 more individual with epileptic encephalopathy reported with a different homozygous missense variant in UFC1. The patient had microcephaly <3rd percentile.
Sources: Literature
Mendeliome v0.4114 DIAPH1 Dean Phelan reviewed gene: DIAPH1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 24781755, 26463574, 24781755, 27808407, 28003573, 28815995; Phenotypes: Deafness, thrombocytopenia, Seizures, cortical blindness, microcephaly; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.4108 RIPOR2 Zornitza Stark Gene: ripor2 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4098 TRPM7 Zornitza Stark Classified gene: TRPM7 as Amber List (moderate evidence)
Mendeliome v0.4098 TRPM7 Zornitza Stark Gene: trpm7 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4097 TRPM7 Zornitza Stark edited their review of gene: TRPM7: Added comment: Ion channel expressed in the nervous and cardiac systems. The variant associated with ALS/dementia in the Guam population, p.Thr1482Ile is present in >23,000 hets in gnomad, which is out of keeping for a rare Mendelian disorder. Note recent publication associating missense variants with cardiac arrhythmia and stillbirth, with some functional data provided to substantiate effect of variant on protein function but not necessarily establish gene-disease association.; Changed rating: AMBER; Changed publications: 32503408, 31423533; Changed phenotypes: {Amyotrophic lateral sclerosis-parkinsonism/dementia complex, susceptibility to}, MIM# 105500, Cardiac arrhythmia, stillbirth; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4091 CTNND1 Eleanor Williams changed review comment from: PMID: 32196547 - Alharatani et al 2020 - report an expanded phenotype for CTNND1 patients. They report 13 individuals from nine families with novel protein-truncating variants in CTNND1 identified by WES. The mutations were not previously described in blepharocheilodontic (BCD), orofacial cleft cases nor in gnomAD. 8 patients had de novo variants, 2 inherited from affected parents, 2 participants inherited a variant from a parent with a mild phenotype. Additional phenotypic features seen include mild limb phenotypes (9/13), cardiovascular anomalies (6/13) and Developmental delay and other neurodevelopmental problems (8/13).; to: PMID: 32196547 - Alharatani et al 2020 - report an expanded phenotype for CTNND1 patients. They report 13 individuals from nine families with novel protein-truncating variants in CTNND1 identified by WES. The mutations were not previously described in blepharocheilodontic (BCD), orofacial cleft cases nor in gnomAD. 8 patients had de novo variants, 2 inherited from affected parents, 2 participants inherited a variant from a parent with a mild phenotype. 8/13 patients showed cleft palate Additional phenotypic features seen include mild limb phenotypes (9/13), cardiovascular anomalies (6/13) and Developmental delay and other neurodevelopmental problems (8/13).
Mendeliome v0.4091 RIPOR2 Arina Puzriakova reviewed gene: RIPOR2: Rating: AMBER; Mode of pathogenicity: None; Publications: 32631815; Phenotypes: Sensorineural hearing loss; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, paternally imprinted (maternal allele expressed)
Mendeliome v0.4091 NOTCH3 Eleanor Williams gene: NOTCH3 was added
gene: NOTCH3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NOTCH3 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: NOTCH3 were set to 31960911
Phenotypes for gene: NOTCH3 were set to CADASIL
Review for gene: NOTCH3 was set to AMBER
Added comment: PMID: 31960911 - Gravesteijn et al 2020 - describe a family with a unique cysteine-altering NOTCH3 variant in exon 9 in 5 individuals, which is predicted to cause natural exon 9 skipping. This mimics the therapeutic NOTCH3 cysteine correction approach and allows the effect of cysteine corrective exon skipping on NOTCH3 protein aggregation and disease severity in humans to be studied. In this family the CADASIL phenotype was mild.

Note this gene is rated green on the Neurodegenerative disorders - adult onset panel in the Genomics England instance of PanelApp https://panelapp.genomicsengland.co.uk/panels/474/gene/NOTCH3/
Sources: Literature
Mendeliome v0.4091 TRPM7 Eleanor Williams reviewed gene: TRPM7: Rating: AMBER; Mode of pathogenicity: None; Publications: 31423533, 29874177; Phenotypes: still birth, cardiac development; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.4059 COL11A1 Elena Savva reviewed gene: COL11A1: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID 25073711, 30245514, 32427345, 27081569, 21035103; Phenotypes: Fibrochondrogenesis 1 (MIM#228520), Marshall syndrome (MIM#154780), Stickler syndrome, type II (MIM#604841), {Lumbar disc herniation, susceptibility to}, (MIM#603932), ?Deafness, autosomal dominant 37, (MIM#618533); Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.4052 LINGO1 Zornitza Stark Gene: lingo1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4049 LINGO1 Zornitza Stark Classified gene: LINGO1 as Amber List (moderate evidence)
Mendeliome v0.4049 LINGO1 Zornitza Stark Gene: lingo1 has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4048 LINGO1 Zornitza Stark reviewed gene: LINGO1: Rating: AMBER; Mode of pathogenicity: None; Publications: 31668702; Phenotypes: Mental retardation, autosomal recessive 64, MIM# 618103; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4006 AASS Zornitza Stark Gene: aass has been classified as Amber List (Moderate Evidence).
Mendeliome v0.4003 AASS Zornitza Stark Classified gene: AASS as Amber List (moderate evidence)
Mendeliome v0.4003 AASS Zornitza Stark Gene: aass has been classified as Amber List (Moderate Evidence).