Date | Panel | Item | Activity | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mendeliome v1.1894 | ABCA1 | Katrina Bell Mode of inheritance for gene: ABCA1 was changed from BOTH monoallelic and biallelic, autosomal or pseudoautosomal to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1840 | PRRX1 |
Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2. > PMID: 7758948 generated a loss-of-function mutation in the mouse Pmx1 gene. Mice homozygous for the mutant allele died soon after birth and exhibited defects of skeletogenesis, which involved the loss or malformation of craniofacial, limb, and vertebral skeletal structures. ; to: Craniosynostosis (MONDO:0015469), PRRX1-related > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) Agnathia-otocephaly complex, MIM# 202650 >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2. > PMID: 7758948 generated a loss-of-function mutation in the mouse Pmx1 gene. Mice homozygous for the mutant allele died soon after birth and exhibited defects of skeletogenesis, which involved the loss or malformation of craniofacial, limb, and vertebral skeletal structures. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1840 | PRRX1 |
Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2.; to: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2. > PMID: 7758948 generated a loss-of-function mutation in the mouse Pmx1 gene. Mice homozygous for the mutant allele died soon after birth and exhibited defects of skeletogenesis, which involved the loss or malformation of craniofacial, limb, and vertebral skeletal structures. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1839 | AFF2 | Zornitza Stark Mode of inheritance for gene: AFF2 was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1838 | AFF2 | Zornitza Stark edited their review of gene: AFF2: Changed phenotypes: Intellectual disability, X-linked, FRAXE type 309548; Changed mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1820 | CYLC1 |
Zornitza Stark gene: CYLC1 was added gene: CYLC1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CYLC1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Phenotypes for gene: CYLC1 were set to Spermatogenic failure, X-linked, 8, MIM# 301119 Review for gene: CYLC1 was set to GREEN Added comment: 19 individuals and a mouse model reported. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1808 | KCND1 |
Ain Roesley gene: KCND1 was added gene: KCND1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: KCND1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: KCND1 were set to 38772379 Phenotypes for gene: KCND1 were set to neurodevelopmental disorder MONDO:0700092, KCND1-related Review for gene: KCND1 was set to GREEN gene: KCND1 was marked as current diagnostic Added comment: 18 males from 17 families 2x de novo missense + 3x maternal NMDs + 12x maternal missense Some functional studies were done 14x ID 4x delayed motor dev 7x muscular hypotonia 6x epilepsy Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1797 | CCIN | Zornitza Stark Phenotypes for gene: CCIN were changed from male infertility with teratozoospermia due to single gene mutation, MONDO:0018394 to Spermatogenic failure 91, MIM# 620838 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1790 | ZNF41 |
Zornitza Stark gene: ZNF41 was added gene: ZNF41 was added to Mendeliome. Sources: Expert Review disputed tags were added to gene: ZNF41. Mode of inheritance for gene: ZNF41 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: ZNF41 were set to 14628291; 23871722 Phenotypes for gene: ZNF41 were set to non-syndromic X-linked intellectual disability MONDO:0019181 Review for gene: ZNF41 was set to RED Added comment: DISPUTED by ClinGen. Shoichet et al. (2003) described a female patient with severe nonsyndromic mental retardation and a de novo balanced translocation t(X;7)(p11.3;q11.21) in whom they cloned the DNA fragment that contained the X chromosomal and the autosomal breakpoint. In silico sequence analysis demonstrated that the ZNF41 gene was disrupted. Expression studies indicated that ZNF41 transcripts were absent in the patient cell line, suggesting that the mental disorder in this patient resulted from loss of functional ZNF41. Screening of patients with mental retardation led to the identification of 2 other ZNF41 mutations that were not found in healthy control individuals. Based on their finding of the mutations in ZNF41 identified by Shoichet et al. (2003) in a total of 7 males in the NHLBI Exome Variant Server, and the additional finding of truncating ZNF41 variants in 1 male and 1 female in that database, Piton et al. (2013) classified the involvement of ZNF41 in mental retardation as highly questionable. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1787 | AGTR2 |
Zornitza Stark gene: AGTR2 was added gene: AGTR2 was added to Mendeliome. Sources: Expert Review disputed tags were added to gene: AGTR2. Mode of inheritance for gene: AGTR2 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Phenotypes for gene: AGTR2 were set to X-linked complex neurodevelopmental disorder MONDO:0100148 Review for gene: AGTR2 was set to RED Added comment: Variants in AGTR2 have been reported in individuals presenting various neurodevelopmental phenotypes, including intellectual disability, autistic features, epileptic seizures, speech delay, restlessness, and hyperactivity, as early as 2002. Per criteria outlined by the ClinGen Lumping and Splitting Working Group, we found no difference in molecular mechanism, inheritance pattern, or phenotypic variability. Therefore, for the purposes of this curation, all of these features have been lumped into one disease entity, X-linked complex neurodevelopmental disorder. Although eight unique variants, including missense and truncating, have been reported in affected humans, the majority (six) have been ruled out from disease-causality based on high frequency in control populations (Piton et al., PMID 23871722), occurrence in unaffected males (Erdmann et al., PMID 14722754), non-segregation within a family (Bienvenu et al., PMID 12746399), and lack of enrichment in patients in a case-control study (Huang et al., PMID 16283672). Given that the two remaining variants are missense with no supporting functional evidence, and AGTR2 was the only gene sequenced in each case, the ClinGen Intellectual Disability and Autism Working Group recommended awarding 0 points for these variants. There are two AGTR2 mouse models which collectively show altered neuronal spine morphology, spatial memory impairment, delayed learning, and reduced exploratory behavior (PMIDs 18335189 and 7477267). Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1758 | PKHD1L1 |
Sangavi Sivagnanasundram gene: PKHD1L1 was added gene: PKHD1L1 was added to Mendeliome. Sources: Other Mode of inheritance for gene: PKHD1L1 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: PKHD1L1 were set to non syndromic hearing loss (MONDO:0020678) Review for gene: PKHD1L1 was set to GREEN Added comment: At least 4 individuals from unrelated families with sensorineural hearing loss (SNHL) (2 of the reported probands were from consanguineous parents). The individuals are either homozygous or compound heterozygous for mutations in PKHD1L1 (missense, frameshift and nonsense mutations have been reported). In vitro functional assessment as well as a mini-gene assay of Gly605Arg was conducted. The mini-gene assay on Gly605Arg showed that exon skipping occurs resulting in an in-frame deletion of 48 aa. Both studies didn't use a positive control however loss of function or disruption to protein stability is the speculated mechanism of disease. Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1727 | SRPK3 |
Zornitza Stark gene: SRPK3 was added gene: SRPK3 was added to Mendeliome. Sources: Literature digenic tags were added to gene: SRPK3. Mode of inheritance for gene: SRPK3 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: SRPK3 were set to 38429495 Phenotypes for gene: SRPK3 were set to Myopathy, MONDO:0005336, digenic SRPK3- and TTN-related Review for gene: SRPK3 was set to GREEN Added comment: 33 individuals reported with SRPK3 variants but myopathy only occurred when TTN variant also present (most truncating). Zebrafish model supports digenic model of inheritance. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1695 | FAM58A | Zornitza Stark Mode of inheritance for gene: FAM58A was changed from Other to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1694 | FAM58A | Zornitza Stark reviewed gene: FAM58A: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: ; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1660 | TRPV5 |
Sangavi Sivagnanasundram changed review comment from: Not a well-established gene-disease association. Has only been reported in one consanguineous family. PMID: 38528055 3 individuals from the same family affected with hypercalciuria. Biallelic Met598Val variant was identified in the proband and his two affect sibs Functional assay using WT and mutant plasmid vectors were transfected into HEK293T cells. The assay showed that the mutant vector had a non-functional TRPV5 channel as compared to the WT however no positive control was used. Sources: Other; to: Not a well-established gene-disease association. Has only been reported in one consanguineous family. PMID: 38528055 3 individuals from the same family affected with hypercalciuria. Biallelic Met598Val variant was identified in the proband and his two affect sibs Functional assay using WT and mutant plasmid vectors were transfected into HEK293T cells. The assay showed that the mutant vector had a non-functional TRPV5 channel as compared to the WT however no positive control was used. PMID: 14679186 TRPV5 knockout mice model was used to assess whether the abolishment of TRPV5 led to a disruption in Ca2+ handling. The effects of the disruption in Ca2+ handling resulted in bone abnormalities in the mice and is likely the cause of idiopathic hypercalciuria. Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1648 | CEP295 |
Chirag Patel gene: CEP295 was added gene: CEP295 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CEP295 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CEP295 were set to PMID: 38154379 Phenotypes for gene: CEP295 were set to Seckel syndrome 11, OMIM # 620767 Review for gene: CEP295 was set to GREEN gene: CEP295 was marked as current diagnostic Added comment: 4 children from 2 unrelated families with Seckel-like syndrome - severe primary microcephaly, short stature, developmental delay, intellectual disability, facial deformities, and abnormalities of fingers and toes. WES identified biallelic pathogenic variants in CEP295 gene (p(Q544∗) and p(R1520∗); p(R55Efs∗49) and p(P562L)). Patient-derived fibroblasts and CEP295-depleted U2OS and RPE1 cells were used to clarify the underlying mechanisms. Depletion of CEP295 resulted in a decrease in the numbers of centrioles and centrosomes and triggered p53-dependent G1 cell cycle arrest. Loss of CEP295 caused extensive primary ciliary defects in both patient-derived fibroblasts and RPE1 cells. The results from complementary experiments revealed that the wild-type CEP295, but not the mutant protein, can correct the developmental defects of the centrosome/centriole and cilia in the patient-derived skin fibroblasts. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1634 | TRPV5 |
Sangavi Sivagnanasundram gene: TRPV5 was added gene: TRPV5 was added to Mendeliome. Sources: Other Mode of inheritance for gene: TRPV5 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TRPV5 were set to PMID: 38528055 Phenotypes for gene: TRPV5 were set to TRPV5-related hypercalciuria (MONDO:0009550) Review for gene: TRPV5 was set to RED Added comment: Not a well-established gene-disease association. Has only been reported in one consanguineous family. PMID: 38528055 3 individuals from the same family affected with hypercalciuria. Biallelic Met598Val variant was identified in the proband and his two affect sibs Functional assay using WT and mutant plasmid vectors were transfected into HEK293T cells. The assay showed that the mutant vector had a non-functional TRPV5 channel as compared to the WT however no positive control was used. Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1633 | USP14 |
Zornitza Stark gene: USP14 was added gene: USP14 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: USP14 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: USP14 were set to 38469793; 35066879 Phenotypes for gene: USP14 were set to Syndromic disease MONDO:0002254, USP14-related Review for gene: USP14 was set to GREEN Added comment: PMID 35066879: 3 fetuses from 2 different branches of a consanguineous family, presenting with distal arthrogryposis, underdevelopment of the corpus callosum, and dysmorphic facial features. Exome sequencing identified a biallelic 4-bp deletion (c.233_236delTTCC; p.Leu78Glnfs*11) in USP14, and sequencing of family members showed segregation with the phenotype. Ubiquitin-specific protease 14 (USP14) encodes a major proteasome-associated deubiquitinating enzyme with an established dual role as an inhibitor and an activator of proteolysis, maintaining protein homeostasis. Usp14-deficient mice show a phenotype similar to lethal human multiple congenital contractures phenotypes, with callosal anomalies, muscle wasting, and early lethality, attributed to neuromuscular junction defects due to decreased monomeric ubiquitin pool. RT-qPCR experiment in an unaffected heterozygote revealed that mutant USP14 was expressed, indicating that abnormal transcript escapes nonsense-mediated mRNA decay. PMID 38469793: biallelic USP14 variants in four individuals from three unrelated families: one fetus, a newborn with a syndromic NDD, and two siblings affected by a progressive neurological disease. Specifically, the two siblings from the latter family carried two compound heterozygous variants c.8T>C p.(Leu3Pro) and c.988C>T p.(Arg330*), while the fetus had a homozygous frameshift c.899_902del p.(Lys300Serfs*24) variant and the newborn patient harbored a homozygous frameshift c.233_236del p.(Leu78Glnfs*11) variant. The fetus and the newborn had extensive brain malformations. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1630 | PRDX1 |
Bryony Thompson gene: PRDX1 was added gene: PRDX1 was added to Mendeliome. Sources: Literature digenic tags were added to gene: PRDX1. Mode of inheritance for gene: PRDX1 was set to Other Publications for gene: PRDX1 were set to 29302025; 35190856 Phenotypes for gene: PRDX1 were set to methylmalonic aciduria and homocystinuria type cblC MONDO:0010184 Mode of pathogenicity for gene: PRDX1 was set to Other Review for gene: PRDX1 was set to GREEN Added comment: Only variants affecting the canonical splice acceptor site of intron 5 (e.g. c.515-1G-T, c.515-2A-T) that cause skipping of exon 6 and the polyA termination signal of PRDX1 produce an MMACHC epimutation. The resulting read-through transcript extends through the adjacent MMACHC locus in the antisense orientation. These PRDX1 exon 6 acceptor splice site variants cause disease through digenic inheritance with a pathogenic MMACHC on the other allele. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1613 | ZRSR2 |
Zornitza Stark gene: ZRSR2 was added gene: ZRSR2 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: ZRSR2 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: ZRSR2 were set to 38158857 Phenotypes for gene: ZRSR2 were set to Orofacialdigital syndrome MONDO:0015375, ZRSR2-related Review for gene: ZRSR2 was set to GREEN Added comment: Oral-facial-digital (OFD) syndrome with brain anomalies ranging from alobar holoprosencephaly to pituitary anomalies. Six unrelated families with two truncating variants and functional studies: - p.(Gly404GlufsTer23): detected in one family with 2x affected males - p.(Arg403GlyfsTer24): 5 unrelated families, both de novo and inherited Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1584 | SNUPN |
Suliman Khan gene: SNUPN was added gene: SNUPN was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SNUPN was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SNUPN were set to PMID: 38413582; PMID: 38366623 Phenotypes for gene: SNUPN were set to autosomal recessive limb-girdle muscular dystrophy MONDO:0015152 Review for gene: SNUPN was set to GREEN Added comment: PMID: 38413582: reported 18 children from 15 unrelated families with muscular phenotypes, including proximal upper limb weakness, distal upper and lower limb weakness, and myopathy (EMG) with elevated serum creatinine kinase level. Exome sequencing revealed nine hypomorphic biallelic variants in the SNUPN gene, predominantly clustered in the last coding exon. Functional studies showed that mutant SPN1 failed to oligomerize leading to cytoplasmic aggregation in patients’ primary fibroblasts. PMID: 38366623: reported five individuals from two unrelated families with limb-girdle muscular dystrophy. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1576 | ZFX |
Zornitza Stark gene: ZFX was added gene: ZFX was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ZFX was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: ZFX were set to 26350204; 26740508; 38325380 Phenotypes for gene: ZFX were set to Neurodevelopmental disorder, MONDO:0700092, ZFX-related Review for gene: ZFX was set to GREEN Added comment: A single ZFX variant has been associated with a neurodevelopmental disorder, that has a Rett syndrome-like phenotype disorder, in a 14 year old male. The ZFX variant was allelic with another X-linked variant in SHROOM4. These variants were inherited from the mother, who had random X inactivation pattern (PMID: 26740508). PMID: 38325380 reports 11 ZFX variants in 18 subjects from 16 unrelated families (14 males and 4 females) with an X-linked neurodevelopmental disorder with recurrent facial gestalt. Seven variants were truncating and the remaining were missense variants within the Zinc finger array. In the pedigree of family 6 (figure 3, PMID: 38325380), it was apparent that there were female carriers of the ZFX variant (GRCh38 chrX: 24229396A>G, c.2438A>G, p.Tyr774Cys) with hyperparathyroidism and two affected males and one affected female, with the neurodevelopmental disorder. It appeared that skewed X-inactivation in the female carriers was responsible for the different phenotypic features. The association between ZFX variants and a novel neurodevelopmental disorder, was further supported by functional studies showing altered transcriptional activity in missense variants and altered behavior in a zebrafish loss-of-function model. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1569 | RFX6 | Bryony Thompson Mode of inheritance for gene: RFX6 was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1563 | ACO2 | Zornitza Stark Mode of inheritance for gene: ACO2 was changed from BIALLELIC, autosomal or pseudoautosomal to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1555 | ACO2 | Rylee Peters reviewed gene: ACO2: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 34056600; Phenotypes: Optic atrophy 9, MIM# 616289; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1511 | CCDC88C | Rylee Peters reviewed gene: CCDC88C: Rating: AMBER; Mode of pathogenicity: None; Publications: 38173219; Phenotypes: monogenic epilepsy MONDO:0015653, CCDC88C-related; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1510 | RHOXF1 |
Chris Ciotta gene: RHOXF1 was added gene: RHOXF1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RHOXF1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: RHOXF1 were set to PMID: 38258527 Phenotypes for gene: RHOXF1 were set to Spermatogenic failure, MONDO:0004983, RHOXF1-related Review for gene: RHOXF1 was set to AMBER Added comment: In a cohort of 1,201 men from China with oligozoospermia and azoospermia, hemizygous RHOXF1 variants were identified in 4 unrelated individuals. Three of these variants were missense variants (V130M, A91V & A156V), all were absent from gnomAD (including version 4) and had deleterious in silicos. The one other variant was a nonsense variant (R160X) which is predicted to escape NMD and truncate the protein. This is seen in gnomAD version 4 in 1 heterozygote female, and absent in other versions. In vitro functional evidence for these variants was provided, the V130M, A156V and R160X mutants demonstrated impaired protein localisation with an increase in the protein in the cytoplasm and impaired nuclear entry, the A91V mutant protein did not share these localisation defects. Further, The V130M mutant protein decreased DMRT1 promotor activity, DMRT1 is considered essential for testicular development and spermatogenesis. However, the R160X variant demonstrated increased activation, three times higher than WT. The two other missense variants had no effect. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1507 | MEI4 |
Lisa Norbart gene: MEI4 was added gene: MEI4 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MEI4 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal Publications for gene: MEI4 were set to 38252283 Phenotypes for gene: MEI4 were set to Infertility disorder, MONDO:0005047, MEI4-related Review for gene: MEI4 was set to GREEN Added comment: PMID: 38252283 - 5x compound heterozygous missense variants and 1x homozygous missense variant seen in five individuals across 4 unrelated families affected with female infertility characterised by preimplantation embryonic arrest. Includes one family with two affected sisters with the same compound heterozygous variants. 2/4 families showed inheritance, parental data not available for other two families. Homozygous variant in the consanguineous family appears with a more severe phenotype. In vitro evidence shows variants reduced the interactions between MEI4 and DNA, but no effects on protein levels. In vivo knock-out mouse model showed female mice were infertile, characterised by developmental defects during oogenesis. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1506 | WDR44 |
Andrew Fennell gene: WDR44 was added gene: WDR44 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: WDR44 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: WDR44 were set to PMID: 38191484 Phenotypes for gene: WDR44 were set to Ciliopathy, MONDO:0005308, WDR44-related Review for gene: WDR44 was set to GREEN Added comment: 11 male patients with 6 missense and 1 nonsense variant in WDR44 displaying a wide range of cognitive impairment and variable congenital anomalies associated with primary cilium dysfunction. All patients had learning difficulties with 8 labelled as intellectually disabled (mild-moderate). Other clinical features included anomalies of craniofacial, musculoskeletal, brain, renal and cardiac development. WDR44 is a negative regulator of ciliogenesis. Increased binding is hypothesised to underlie the pathogenicity of WDR44 variants identified in this cohort. Functional data supported impaired ciliogenesis initiation in patient fibroblasts and a zebrafish model. A zebrafish model recapitulated the human phenotype when morphants expressed WDR44 L668S, D669N, S764F, G782C, H839R, and R733* variants. Of note, D648G or N840S did not recapitulate the phenotype in the zebrafish model. The studies supported a GoF mechanism, but the authors could not rule out that LoF of WDR44 contributes to the ciliopathy-like phenotype observed, because protein expression data was only available for a limited number of patients. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1488 | RNF213 | Zornitza Stark Mode of inheritance for gene: RNF213 was changed from BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1463 | SPIN4 | Zornitza Stark Mode of inheritance for gene: SPIN4 was changed from X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1457 | SPIN4 |
Belinda Chong gene: SPIN4 was added gene: SPIN4 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SPIN4 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: SPIN4 were set to 36927955 Phenotypes for gene: SPIN4 were set to Lui-Jee-Baron syndrome MIM#301114 Review for gene: SPIN4 was set to AMBER Added comment: PMID 36927955 * Single family, hemizygous frameshift variant (NM_001012968.3, c.312_313AGdel) identified in a male individual with generalized overgrowth of prenatal onset, variant also present in the mother and grandmother (both had adult heights 2 SDS greater than their midparental heights). * In vitro shows loss of function and mice studies recapitulated the human phenotype with generalized overgrowth, including increased longitudinal bone growth. Sources: Literature Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1409 | SV2A | Zornitza Stark reviewed gene: SV2A: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, SV2A-related; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1405 | SV2A |
Karina Sandoval gene: SV2A was added gene: SV2A was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SV2A was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal Publications for gene: SV2A were set to PMID: 37985816 Phenotypes for gene: SV2A were set to Epilepsy, MONDO:0005027 Review for gene: SV2A was set to GREEN Added comment: Monoallelic variants cause epilepsy. Biallelic variant in this 5yo (Hom p.Arg383Gln) reported to cause severe phenotype of drug-resistant epileptic encephalopathy with microcephaly, DD, movement disorder and growth retardation. Consanguineous. This paper references 5 other families with both AR & AD Family #1 – p.Arg383Gln, AR, 2 affected in family, parents healthy carriers Family #2 – p.Arg570Cys, AD, 2 affected, inherited from affected mother Family #3 – p.Gly660Arg, AD, de novo Family #4 – p.Gly660Arg, AD, segregated in 11 family members Family #5 (this study) – p.Arg289Ter, AR, parents and 2 sibs asymptomatic carriers Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1397 | GRIA3 | Zornitza Stark Mode of inheritance for gene: GRIA3 was changed from X-LINKED: hemizygous mutation in males, biallelic mutations in females to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1396 | GRIA3 | Zornitza Stark edited their review of gene: GRIA3: Added comment: New manuscript describing ~40 individuals with variants in GRIA3, including affected females. Some variants demonstrated to be LoF and others GoF. LoF variants generally caused a milder phenotype.; Changed publications: 32977175, 17989220, 38038360; Changed mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1355 | MCTS1 |
Zornitza Stark gene: MCTS1 was added gene: MCTS1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MCTS1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: MCTS1 were set to 37875108 Phenotypes for gene: MCTS1 were set to Inherited susceptibility to mycobacterial diseases, MONDO:0019146, MCTS1-related Review for gene: MCTS1 was set to GREEN Added comment: 6 male subjects from 5 kindreds with LOF MCTS-1 variants with MSMD. Extensive ex-vivo functional validation and mouse model. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1335 | AGPAT3 |
Ee Ming Wong gene: AGPAT3 was added gene: AGPAT3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: AGPAT3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: AGPAT3 were set to 37821758 Phenotypes for gene: AGPAT3 were set to Neurodevelopmental disorder (MONDO#0700092), AGPAT3-related Review for gene: AGPAT3 was set to GREEN gene: AGPAT3 was marked as current diagnostic Added comment: - Single consanguineous family with four individuals with severe intellectual disability and retinitis pigmentosa - All affected individuals were homozygous for a nonsense variant in AGPAT3, healthy unaffected individuals who were tested were heterozygous for the variant - Overexpression of mutant transcript revealed absence of AGPAT3 protein compared to WT transcript via Western blot analysis - KO AGPAT3 mouse demonstrated impaired neuronal migration Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1330 | LRRC23 |
Belinda Chong gene: LRRC23 was added gene: LRRC23 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: LRRC23 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: LRRC23 were set to 37804054 Phenotypes for gene: LRRC23 were set to Non-syndromic male infertility due to sperm motility disorder MONDO:0017173 Review for gene: LRRC23 was set to RED Added comment: PMID 37804054: A homozygous nonsense mutation in LRRC23 (c.376C>T: p. Arg126X) in an infertile AZS patient whose parents were consanguineous. We verified the adversity of this novel mutation because of its ability to disrupt LRRC23 synthesis and impair RSs integrity. Furthermore, we demonstrated an interaction between LRRC23 and RSPH3 in vitro, indicating that LCCR23 is associated with RS in humans. Meanwhile, the LRRC23-mutant patient had a good prognosis following intracytoplasmic sperm injection. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1330 | MME | Bryony Thompson Mode of inheritance for gene: MME was changed from BOTH monoallelic and biallelic, autosomal or pseudoautosomal to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1326 | HMBS | Zornitza Stark Mode of inheritance for gene: HMBS was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1325 | HMBS | Zornitza Stark edited their review of gene: HMBS: Added comment: Rare families with bi-allelic disease reported.; Changed mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1324 | SAT1 | Chirag Patel reviewed gene: SAT1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 35977808; Phenotypes: Systemic lupus erythematosus, MONDO:0007915, SAT1-related; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1264 | PLS3 | Zornitza Stark Mode of inheritance for gene: PLS3 was changed from X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1263 | PLS3 | Zornitza Stark edited their review of gene: PLS3: Added comment: PMID 37751738: 8 unrelated families with affected males with an X-linked condition characterised by diaphragm defects, variable anterior body-wall anomalies, and/or facial dysmorphism. All were missense variants. A mouse knock in model of a variant identified in one of the CDH-affected families, c.1497G>C (p.Trp499Cys), shows partial perinatal lethality and recapitulates the key findings of the human phenotype, including diaphragm and abdominal-wall defects. Gain-of-function is a suggested mechanism.; Changed publications: 32655496, 25209159, 29736964, 29884797, 28777485, 24088043, 37751738; Changed phenotypes: Bone mineral density QTL18, osteoporosis - MIM#300910, congenital diaphragmatic hernia MONDO:0005711, PLS3-related; Changed mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1254 | CFAP20 |
Sarah Pantaleo gene: CFAP20 was added gene: CFAP20 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CFAP20 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CFAP20 were set to PMID:36329026 Phenotypes for gene: CFAP20 were set to Retinitis pigmentosa (MONDO:0019200) Review for gene: CFAP20 was set to GREEN Added comment: CFAP20 is a ciliopathy candidate. Demonstrate in zebrafish that cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development. Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy (retinitis pigments). Hence, CFAP20 functions within a structural./functional hub centred on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associaetd domains or macromolecular complexes. Describe 8 individuals from 4 independent families with damaging biallelic variants (homozygous or compound heterozygous) in CFAP20 that segregate with retinal dystrophy. All variants cluster to one side of the protein, with two of the residues directly contacting alpha-tubullin. Family 1 - consanguineous set of 3 siblings from Sudan, homozygous for CFAP20 c.305G>A; p.Arg102His (they also had a homozygous variant in DYNC1LI2 however CFAP20 was considered the better candidate. Family 2 - 3 siblings from Spain, 2 with retinal dystrophy, 1 genetically tested and has c.337C>T; p.(Arg113Trp) and c.397delC; p.(Gln133Serfs*5) Family 3 - single affected family member compound het for c.164+1G>A and c.457A>G; p.(Arg153Gly). Family 4 - 3 affected siblings with generalised retinopathy and variable neurological deficits with c.164+1G>A and c.257G>A; p.(Tyr86Cys) For all families, no individuals had signs of polycystic kidney disease; however, not all individuals had kidney imaging. Visual defecit phenotype presented between adolescence and adulthood (17-56 years old). Used HEK293T cell expression studies to demonstrate a statistically significant decline of mutated CFAP20 protein levels (with the exception of p.Arg102His). To test the specific variants, they used the C.elegans orthologues. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1251 | GPRASP1 |
Paul De Fazio gene: GPRASP1 was added gene: GPRASP1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GPRASP1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: GPRASP1 were set to 37787182 Phenotypes for gene: GPRASP1 were set to Arteriovenous hemangioma/malformation, GPRASP1-related, MONDO:0001256 Penetrance for gene: GPRASP1 were set to unknown Review for gene: GPRASP1 was set to AMBER gene: GPRASP1 was marked as current diagnostic Added comment: Two hemizygous germline missense variants, p.Arg1167Trp and p.Trp553Cys, were identified in three male patients presenting with spinal AVM, Cobb syndrome, or scalp AVM. The variants were inherited from unaffected heterozygous mothers. Note that p.Arg1167Trp has hemizygous (>70) and homozygous individuals reported in gnomAD. The variants were found to result in LoF in endothelial cells. Endothelial Gprasp1 knockout mice suffered a high probability of cerebral hemorrhage, AVMs, and exhibited vascular anomalies in multiple organs. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1245 | KIF4A | Lucy Spencer reviewed gene: KIF4A: Rating: AMBER; Mode of pathogenicity: None; Publications: 31616463; Phenotypes: Taurodontism, microdontia, and dens invaginatus (MIM#313490); Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1229 | CASP4 |
Zornitza Stark gene: CASP4 was added gene: CASP4 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: CASP4 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CASP4 were set to 37647624 Phenotypes for gene: CASP4 were set to Hereditary susceptibility to infection, MONDO:0015979, CASP4-related; Susceptibility to meliodiosis Review for gene: CASP4 was set to RED Added comment: Single patient with severe disease secondary to B. pseudomallei requiring ECMO. Adjunctive IFN-γ administration as replacement for its failed induction by IL-18 promptly led to clearance of B. pseudomallei and subsequent weaning of support. Novel homozygous missense mutation in CASP4, at exon 7 c.1030C > T. Peripheral blood mononuclear cells (PBMC) of the patient and her parents showed reduced IFN-γ production, notably to IL-12 stimulation, and decreased IL-18 in response to LPS and increased IL-1B. Cloned cells show impacts on CASP4 activation and pyroptosis. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1226 | IL36RN | Zornitza Stark edited their review of gene: IL36RN: Added comment: Monoallelic disease: Multiple patients with systemic inflammation with monoallelic variants in IL36RN suggesting a gene dosage effect whereby GPP onset is significantly delayed in subjects with monoallelic mutations but still at high risk of systemic inflammation.; Changed publications: 21848462, 21839423, 22903787, 23648549, 25458002; Changed phenotypes: Psoriasis 14, pustular, MIM# 614204, Autoinflammatory syndrome, MONDO:0019751, IL36RN-related; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1163 | GJA4 |
Zornitza Stark gene: GJA4 was added gene: GJA4 was added to Mendeliome. Sources: Expert Review somatic tags were added to gene: GJA4. Mode of inheritance for gene: GJA4 was set to Other Publications for gene: GJA4 were set to 33912852 Phenotypes for gene: GJA4 were set to Cavernous hemangioma, MONDO:0003155, GJA4-related Review for gene: GJA4 was set to GREEN Added comment: Recurrent somatic GJA4 c.121G>T (p.Gly41Cys) mutation as a driver of hepatic (n=12) and cutaneous (n=3) vascular malformations. Induced changes in cell morphology and activated serum/glucocorticoid-regulated kinase 1 (SGK1), a serine/threonine kinase known to regulate cell proliferation and apoptosis, via non-canonical activation, in lentiviral transduction of primary human endothelial cells. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1156 | APOO |
Zornitza Stark edited their review of gene: APOO: Added comment: PMID: 37649161 1 family, 2 individuals (male & female) with same NMD variant c.532G>T (p.E178*), maternally inherited (mother unaffected). Both died before 18 months of age with partial agenesis of the corpus callosum, bilateral congenital cataract, hypothyroidism, and severe immune deficiencies. Other phenotypes included partial syndactyly of the 2nd and 3rd toes, wrinkled palm, and sole skin. Functional studies included site directed mutagenesis. This mutation resulted in a highly unstable and degradation prone MIC26 protein, yet the remaining minute amounts of mutant MIC26 correctly localized to mitochondria and interacted physically with other MICOS subunits. MIC26 KO cells expressing MIC26 harboring the respective APOO/MIC26 mutation showed mitochondria with perturbed cristae architecture and fragmented morphology resembling MIC26 KO cells.; Changed publications: 37649161; Changed phenotypes: Mitochondrial disease, MONDO:0044970, APOO-related, Developmental delay, Lactic acidosis, Muscle weakness, Hypotonia, Repetitive infections, Cognitive impairment, Autistic behaviour |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1148 | PPP1R3F |
Andrew Fennell gene: PPP1R3F was added gene: PPP1R3F was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PPP1R3F was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: PPP1R3F were set to 37531237 Phenotypes for gene: PPP1R3F were set to Neurodevelopmental Disorder, MONDO:0700092,PPP1R3F-related Review for gene: PPP1R3F was set to GREEN Added comment: Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1140 | SOX11 | Zornitza Stark edited their review of gene: SOX11: Added comment: Over 40 additional individuals reported, e.g. PMID 35341651. The phenotype that has emerged over time is distinct from patients with mutations in ARID1B (614556) and Coffin-Siris syndrome-1 (135900). Patients with IDDMOH tend to be microcephalic and have ocular motor apraxia, abnormal eye morphology, or hypogonadotropic hypogonadism.; Changed publications: 29459093, 24886874, 33086258, 33785884, 35642566, 35341651 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1116 | DDRGK1 |
Ain Roesley gene: DDRGK1 was added gene: DDRGK1 was added to Mendeliome. Sources: Literature founder tags were added to gene: DDRGK1. Mode of inheritance for gene: DDRGK1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: DDRGK1 were set to 28263186; 35377455; 35670300; 36243336 Phenotypes for gene: DDRGK1 were set to Spondyloepimetaphyseal dysplasia, Shohat type (MIM#602557) Review for gene: DDRGK1 was set to GREEN gene: DDRGK1 was marked as current diagnostic Added comment: RNA and protein studies performed for the splice variant. These two variants likely represents founder variants PMID:28263186 reported six individuals from three different families of Iraqi Jewish descent (three patients from family 1 and one individual each from families 2-4) identified with homozygous c.408+1G>A donor splice site loss-of-function mutation in DDRGK1 and presented with Shohat-type spondyloepimetaphyseal dysplasia (SEMD). It is a skeletal dysplasia that affects cartilage development. PMID: 35670300 reported two unrelated cases of Moroccan descent identified with homozygous missense variant c.406G>A and presented with SEMD. PMID:36243336 reported an Omani female patient identified with the same homozygous variant as the Iraqi cases and was reported with SEMD. In addition, studies on both zebrafish and mouse models confirms the physiological role of DDRGK1 in the development and maintenance of the growth plate cartilage and deficiency of DDRGK1 recapitulate the clinical phenotype of short stature and joint abnormalities observed in patients with Shohat type SEMD (PMID:28263186; PMID:35377455). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1095 | DPP9 |
Zornitza Stark edited their review of gene: DPP9: Added comment: Amber for mono-allelic association: de novo monoallelic dominant-negative mutation in DPP9 (c.755G>C, R252P) presenting with HLH at ~2m. Functional data supporting dominant negative mechanism.; Changed publications: 36112693, 37544411; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1071 | TBC1D31 |
Lilian Downie gene: TBC1D31 was added gene: TBC1D31 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TBC1D31 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TBC1D31 were set to PMID: 37468454 Phenotypes for gene: TBC1D31 were set to congenital anomaly of kidney and urinary tract MONDO:0019719 Review for gene: TBC1D31 was set to RED Added comment: Single paper with homozygous mutations in 3 sibs with CAKUT from consanguineous family Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1052 | TEP1 |
Zornitza Stark gene: TEP1 was added gene: TEP1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TEP1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: TEP1 were set to 34543729 Phenotypes for gene: TEP1 were set to Cerebral palsy, MONDO:0006497, TEP1-related Review for gene: TEP1 was set to AMBER Added comment: Wang et al. screened a large cohort of more than 600 CP patients from China and found several variants in TEP1, 11 of which were LoF, while no LoF variant was found in the control cohort. These children all had spastic CP. Among these 11 children, 6 children had birth asphyxia and neonatal encephalopathy. Compared to the total group with birth asphyxia (71/667), 6 patients with TEP1 LOF mutations had a significantly greater risk of birth asphyxia. They confirmed TEP1 as a risk factor for CP by cytological and animal models. Uncertain if these are risk alleles vs indicative of a monogenic disorder. Note LoF variants in gnomad. As this was a cohort study, inheritance of these variants is unknown. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.997 | PMVK |
Zornitza Stark changed review comment from: Association with auto inflammatory syndrome: Five-year-old girl with recurring hyperinflammatory episodes initially presenting at 9mo with fever, arthritis, aphthous stomatitis and maculopapular rash with homozygous variant in PMVK p.Val131Ala (NM_006556.4: c.392T>C) with clinical overlap with MVK deficiency. Supportive functional data. Second patient, 6yo boy with compound heterozygous c.329G >A (p. Arg110Gln) and c.316G >A (p. Val106Met) mutations in trans configuration with similar phenotype.; to: Association with auto inflammatory syndrome: Five-year-old girl with recurring hyperinflammatory episodes initially presenting at 9mo with fever, arthritis, aphthous stomatitis and maculopapular rash with homozygous variant in PMVK p.Val131Ala (NM_006556.4: c.392T>C) with clinical overlap with MVK deficiency. Supportive functional data. Second patient, 6yo boy with compound heterozygous c.329G >A (p. Arg110Gln) and c.316G >A (p. Val106Met) mutations in trans configuration with similar phenotype. Amber for bi-allelic disease association. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.997 | PMVK |
Zornitza Stark edited their review of gene: PMVK: Added comment: Association with auto inflammatory syndrome: Five-year-old girl with recurring hyperinflammatory episodes initially presenting at 9mo with fever, arthritis, aphthous stomatitis and maculopapular rash with homozygous variant in PMVK p.Val131Ala (NM_006556.4: c.392T>C) with clinical overlap with MVK deficiency. Supportive functional data. Second patient, 6yo boy with compound heterozygous c.329G >A (p. Arg110Gln) and c.316G >A (p. Val106Met) mutations in trans configuration with similar phenotype.; Changed publications: 26202976, 37364720, 36410683; Changed phenotypes: Porokeratosis 1, multiple types, MIM# 175800, Autoinflammatory syndrome, MONDO:0019751, PMVK-related; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.996 | RIPK3 |
Zornitza Stark gene: RIPK3 was added gene: RIPK3 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: RIPK3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: RIPK3 were set to 37083451 Phenotypes for gene: RIPK3 were set to Hereditary susceptibility to infections, MONDO:0015979, RIPK3-related; Recurrent HSV encephalitis Review for gene: RIPK3 was set to AMBER Added comment: Single female patient with independent episodes of HSE at 6 and 17 months of age and with autoimmune encephalitis 1 month after the second episode of HSE with two heterozygous mutations of RIPK3 predicted to be loss of function (pLOF): p. Arg422* (c.1264 C > T, MAF 0.001568, CADD 35) and p. Pro493fs9* (c.1475 C > CC, MAF 0.002611, CADD 24.2). Extensive supportive functional data including RIPK3 knockout human pluripotent stem cell–derived cortical neurons. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.991 | CYHR1 |
Chirag Patel gene: CYHR1 was added gene: CYHR1 was added to Mendeliome. Sources: Other Mode of inheritance for gene: CYHR1 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: CYHR1 were set to Neurodevelopmental disorder and microcephaly Review for gene: CYHR1 was set to AMBER Added comment: ESHG 2023: 5 individuals from 3 families with biallelic LOF variants in CYHR1 (aka ZTRAF1). Presentation with microcephaly, hypotonia, DD, and ID. Expression studies showed mislocalisation of CYHR1. Mutant fibroblasts showed increased lysosomal markers and upregulated lysosomal proteins, leading to impaired autophagy. Zebrafish KO however did not show a phenotype. Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.972 | COL4A6 | Ain Roesley reviewed gene: COL4A6: Rating: AMBER; Mode of pathogenicity: None; Publications: 33840813; Phenotypes: Deafness, X-linked 6 MIM#300914; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.972 | C1GALT1C1 | Zornitza Stark reviewed gene: C1GALT1C1: Rating: AMBER; Mode of pathogenicity: None; Publications: 37216524; Phenotypes: Haemolytic uraemic syndrome, atypical, 8, with rhizomelic short stature, MIM# 301110; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.971 | ZMYM3 | Zornitza Stark reviewed gene: ZMYM3: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual developmental disorder, X-linked 112, MIM# 301111; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.958 | DCAF13 |
Michelle Torres gene: DCAF13 was added gene: DCAF13 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: DCAF13 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: DCAF13 were set to 36797467 Phenotypes for gene: DCAF13 were set to Neuromuscular disease (MONDO#0019056), DCAF13-related Review for gene: DCAF13 was set to RED Added comment: One consanguineous family, 4x individuals homozygous NM_015420.7(DCAF13)c.907 G > A; p.(Asp303Asn) (3x via WES and 1x via Sanger) with a neuromuscular disorder characterized by a waddling gait, limb deformities, muscular weakness and facial palsy. In silicos analysis of mutant DCAF13 suggests that the amino acid change is deleterious and affects a ß-hairpin turn, within a WD40 domain of the protein which may decrease protein stability. Functional studies were not performed. Previously, a heterozygous variant in DCAF13 with or without a heterozygous missense variant in CCN3, was suggested to cause inherited cortical myoclonic tremor with epilepsy. In addition, a heterozygous DCAF13 variant has been associated with autism spectrum disorder. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.956 | MIR204 |
Chern Lim gene: MIR204 was added gene: MIR204 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MIR204 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: MIR204 were set to 26056285; 37321975 Phenotypes for gene: MIR204 were set to Retinal dystrophy and iris coloboma with or without cataract (MIM#616722) Mode of pathogenicity for gene: MIR204 was set to Other Review for gene: MIR204 was set to GREEN gene: MIR204 was marked as current diagnostic Added comment: PMID: 26056285 - Bilateral coloboma and rod-cone dystrophy with or without cataract in nine individuals of a five-generation family. - Heterozygous n.37C>T segregates with the disease in all affected individuals. - Functional analysis including transcriptome analysis showed this variant resulted in significant alterations of miR-204 targeting capabilities. In vivo injection, in medaka fish (Oryzias latipes), of the mutated miR-204 caused a phenotype consistent with that observed in the family. - Authors suggested gain of function is the likely disease mechanism. PMID: 37321975 - Four members of a three-generation family with early-onset chorioretinal dystrophy, heterozygous for n.37C>T. - Additionally, four family members were shown to be affected by albinism resulting from biallelic pathogenic OCA2 variants. - Haplotype analysis excluded relatedness with the family reported in PMID: 26056285. - In silico analysis of the MIR204 n.37C>T variant reveals profound changes to its target mRNAs and suggests a gain-of-function mechanism of miR 204 variant. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.953 | CD2AP | Bryony Thompson Mode of inheritance for gene: CD2AP was changed from BIALLELIC, autosomal or pseudoautosomal to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.946 | ZC4H2 | Achchuthan Shanmugasundram edited their review of gene: ZC4H2: Changed mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.944 | STAG2 | Achchuthan Shanmugasundram reviewed gene: STAG2: Rating: GREEN; Mode of pathogenicity: None; Publications: 28296084, 29263825, 30158690, 31334757, 33014403, 37010288; Phenotypes: Holoprosencephaly 13, X-linked, OMIM:301043, Mullegama-Klein-Martinez syndrome, OMIM:301022; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.906 | NSUN6 |
Michelle Torres gene: NSUN6 was added gene: NSUN6 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NSUN6 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NSUN6 were set to 37226891 Phenotypes for gene: NSUN6 were set to neurodevelopmental disorder MONDO:0700092, NSUN6-related Review for gene: NSUN6 was set to AMBER Added comment: Three unrelated consanguineous families with developmental delay, intellectual disability, motor delay, and behavioral anomalies. WES detected homozygous variants: - p.(Leu9Glufs*3): even though authors say is is predicted to cause NMD, it actually is NMD escape. No further studies were performed. A deceased affected sibling and parents were NOT tested. - p.(Asp323Asn): Shown to result in a misfolded protein. Methylation assay showed mutant could not catalyze m5C deposition in transcribed tRNACys and tRNAThr substrates in vitro. One of the parents and both unaffected siblings were shown to be carriers. - p.(Glu441Profs*15): truncation (full protein is 470aa) which would result in loss of residues involved in recognition and methylation. Shown to result in a misfolded protein. Parents were shown carriers. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.869 | SLITRK2 | Zornitza Stark reviewed gene: SLITRK2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual developmental disorder, X-linked 111, MIM# 301107; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.848 | NAF1 |
Bryony Thompson gene: NAF1 was added gene: NAF1 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: NAF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: NAF1 were set to 27510903 Phenotypes for gene: NAF1 were set to Pulmonary fibrosis and/or bone marrow failure, telomere-related MONDO:0000148 Review for gene: NAF1 was set to GREEN Added comment: At least 3 probands/families with telomere-related pulmonary fibrosis and a supporting mouse model PMID: 27510903 - 5 individuals from 2 unrelated families with pulmonary fibrosis-emphysema and extrapulmonary manifestations including myelodysplastic syndrome and liver disease, with LoF variants. Truncated NAF1 was detected in cells derived from patients, and, in cells in which a frameshift mutation was introduced by genome editing telomerase RNA levels were reduced. Shortened telomere length also segregated with the variants. A Naf1+/- mouse model had reduced telomerase RNA levels ClinVar - 1 nonsense and 2 splice site variants (ID: 2443185, 1338525, 2443184) called LP by the Genetic Services Laboratory, University of Chicago but no clinical details were provided - SCV002547372.1 - Garcia Pulmonary Genetics Research Laboratory, Columbia University Irving Medical Center - at least one individual with pulmonary fibrosis and leukocyte telomere length (by qPCR) less than 10th percentile age-adjusted Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.839 | CBX1 |
Daniel Flanagan gene: CBX1 was added gene: CBX1 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: CBX1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CBX1 were set to PMID: 37087635 Phenotypes for gene: CBX1 were set to Neurodevelopmental disorder (MONDO#0700092), CBX1-related Review for gene: CBX1 was set to GREEN Added comment: Three different de novo missense variants identified in three unrelated individuals with developmental delay, hypotonia, autistic features, and variable dysmorphic features such as broad forehead and head circumference above average. Mutant mice displayed increased latency-to-peak response, suggesting the possibility of synaptic delay or myelination deficits. Functional studies confirmed the reduction of mutant HP1β binding to heterochromatin. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.819 | INTS11 |
Achchuthan Shanmugasundram gene: INTS11 was added gene: INTS11 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: INTS11 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: INTS11 were set to 37054711 Review for gene: INTS11 was set to GREEN Added comment: Comment on gene rating: This gene should be rated GREEN in Intellectual disability panel as it has 10 unrelated cases and functional evidence in support of this association. PMID:37054711 reported ten unrelated families with biallelic variants in INTS11 gene and they present with intellectual disability, global developmental and language delay, impaired motor development, and brain atrophy. Functional studies in Drosophila showed that dIntS11 (fly ortholog of INTS11) is essential and expressed in the central nervous systems in a subset of neurons and most glia in larval and adult stages. In addition, genes with two variants (p.Arg17Leu and p.His414Tyr) fail to rescue the lethality of null mutants in the Drosophila model, indicating that they are strong loss-of-function variants. The other five variants (p.Gly55Ser, p.Leu138Phe, p.Lys396Glu, p.Val517Met and p.Ile553Glu) rescue lethality but cause a shortened lifespan and bang sensitivity and affect locomotor activity, indicating that they are partial loss-of-function variants. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.807 | TSPAN7 | Ain Roesley reviewed gene: TSPAN7: Rating: AMBER; Mode of pathogenicity: None; Publications: 26350204, 36625203; Phenotypes: Intellectual developmental disorder, X-linked 58, MIM #300210, MONDO:0010266; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.782 | BIN1 | Bryony Thompson Mode of inheritance for gene: BIN1 was changed from BIALLELIC, autosomal or pseudoautosomal to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.776 | CEP162 |
Paul De Fazio gene: CEP162 was added gene: CEP162 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CEP162 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CEP162 were set to 36862503 Phenotypes for gene: CEP162 were set to Retinitis pigmentosa MONDO:0019200, CEP162-related Penetrance for gene: CEP162 were set to unknown Review for gene: CEP162 was set to AMBER gene: CEP162 was marked as current diagnostic Added comment: 2 patients from reportedly unrelated consanguineous Moroccan families with the same homozygous frameshift variant reported with late-onset retinal degeneration. Patient 1 was diagnosed with RP at age 60, patient 2 at age 69. Both reported loss of visual acuity in the years prior. Immunoblotting of cell lysates from patient fibroblasts showed that some mutant transcript escaped NMD. Functional testing showed that the truncated protein could bind microtubules but was unable to associate with centrioles or its interaction partner CEP290. Patient fibroblasts were shown to have delayed ciliation. Mutant protein was unable to rescue loss of cilia in CEP162 knockdown mice supporting that the mutant protein does not retain any ciliary function, however additional data supported that the truncated protein was able to bind microtubules and function normally during neuroretinal development. The authors suggest this likely underlies the late-onset RP in both patients. Rated Amber because only a single variant has been reported in patients who may or may not be related (same ethnic background). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.774 | DOCK11 |
Lucy Spencer gene: DOCK11 was added gene: DOCK11 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: DOCK11 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: DOCK11 were set to 36952639 Phenotypes for gene: DOCK11 were set to autoimmune disease MONDO:0007179, DOCK11-related Review for gene: DOCK11 was set to GREEN Added comment: 8 male patients from 7 unrelated families all with hemizygous DOCK11 missense variants. 6 mothers were tested and found to carry the same missense. Early onset autoimmuniy with cytopenia, systemic lupus erythematosus, and skin and digestive manifestations. Patients platelets had abnormal morphology and spreading as well as impaired CDC42 activity. In vitro activated T cells and B lymphoblastoid cell lines (B-LCL) of patients exhibited aberrant protrusions and abnormal migration speed in confined channels concomitant with altered actin polymerization during migration. A DOCK11 knock-down recapitulated these abnormal cellular phenotypes in monocytes-derived dendritic cells (MDDC) and primary activated T cells from healthy controls. 6 of the variants are either absent or have only 1 het in gnomad v2, but one of them has 2 hemis and 1 het. The patient with this variant R1885C does seem to be more mild. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.769 | MB |
Elena Savva gene: MB was added gene: MB was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MB was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: MB were set to 35527200; 30918256 Phenotypes for gene: MB were set to Myopathy, sarcoplasmic body MIM#620286 Mode of pathogenicity for gene: MB was set to Other Review for gene: MB was set to GREEN Added comment: PMID: 30918256: - Recurrent c.292C>T (p.His98Tyr) in fourteen members of six European families with AD progressive myopathy. - Mutant myoglobin has altered O2 binding, exhibits a faster heme dissociation rate and has a lower reduction potential compared to wild-type myoglobin. - GOF hypothesised - 2/3 of myoglobin knockout mice die in utero, 1/3 live to adulthood with little sign of functional effects, likely due to multiple compensatory mechanisms. PMID: 35527200: - single adult patient with myoglobinopathy - same recurring p.His98Tyr variant Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.765 | NPPA |
Chern Lim changed review comment from: PMID: 36303204: - 1x Brugada patient with heterozygous R107X (NMD-predicted, 5 hets in gnomADv3), regarded as ACMG-LP. PMID: 19646991: - NPPA S64R missense in one fam with familial AF, heterozygous in two affected family members but was absent in unaffected family members and their controls. This variant has 195 hets in gnomADv3. PMID: 23275345: - Segregation of the homozygous p.R150Q mutation of the NPPA gene with the phenotype in the 6 families with autosomal recessive AD cardiomyopathy (ADCM). This variant has no homozygotes in gnomAD. ClinGen gene curation: for autosomal recessive DCM - No Known Disease Relationship (09/04/2020).; to: PMID: 36303204: - 1x Brugada patient with heterozygous R107X (NMD-predicted, 5 hets in gnomADv3), regarded as ACMG-LP. PMID: 19646991: - NPPA S64R missense in one fam with familial AF, heterozygous in two affected family members but was absent in unaffected family members and their controls. This variant has >200 hets in gnomADv3. PMID: 23275345: - Segregation of the homozygous p.R150Q mutation of the NPPA gene with the phenotype in the 6 families with autosomal recessive AD cardiomyopathy (ADCM). This variant has no homozygotes in gnomAD. ClinGen gene curation: for autosomal recessive DCM - No Known Disease Relationship (09/04/2020). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.763 | PPCDC |
Bryony Thompson gene: PPCDC was added gene: PPCDC was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PPCDC was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PPCDC were set to 36564894 Phenotypes for gene: PPCDC were set to dilated cardiomyopathy MONDO:0005021 Review for gene: PPCDC was set to RED Added comment: Single family reported with two siblings with a fatal cardiac phenotype including dilated cardiomyopathy with biallelic variants p.Thr53Pro and p.Ala95Val. Patient-derived fibroblasts showed an absence of PPCDC protein, and nearly 50% reductions in CoA levels. The cells showed clear energy deficiency problems, with defects in mitochondrial respiration, and mostly glycolytic ATP synthesis. Functional studies performed in yeast suggest these mutations to be functionally relevant. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.757 | RNF212B |
Sangavi Sivagnanasundram gene: RNF212B was added gene: RNF212B was added to Mendeliome. Sources: Other Mode of inheritance for gene: RNF212B was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: RNF212B were set to https://doi.org/10.1016/j.xhgg.2023.100189 Phenotypes for gene: RNF212B were set to Infertility disorder, MONDO:0005047 Review for gene: RNF212B was set to AMBER Added comment: Homozygous nonsense mutation (R150X) causative of oligoasthenotheratozoospermia (OAT) identified in three unrelated individuals (two of Jewish decent from the same consanguineous family). Drosophila ZIP3/RNF212 related gene paralogs (vilya, narya, nenya) showed loss of function in the RNF212B protein and promoted formation of DNA double-stand breaks. The mutant was shown to result in a reduction in fertility in the Drosophila paralogs. Note: RNF212B is reported to be exclusively expressed in the testes only compared to RNF212 which is reported in both the testes and ovaries. Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.735 | IRS4 |
Zornitza Stark gene: IRS4 was added gene: IRS4 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: IRS4 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: IRS4 were set to 30061370 Phenotypes for gene: IRS4 were set to Hypothyroidism, congenital, nongoitrous, 9, MIM# 301035 Review for gene: IRS4 was set to GREEN Added comment: Nongoitrous congenital hypothyroidism-9 (CHNG9) is characterized by a small thyroid gland with low free T4 (FT4) levels and inappropriately normal levels of thyroid-stimulating hormone (TSH). Five unrelated families reported. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.711 | OXR1 |
Achchuthan Shanmugasundram changed review comment from: Comment on gene rating: This gene should be rated AMBER as there is one case and supportive functional data to associate OXR1 with hearing loss. A four years old girl was identified with a novel homozygous missense variant (c.233A > G, p.Lys78Arg) in OXR1 gene and was reported with sensorineural hearing loss. Functional studies in zebrafish model showed that the ortholog orx1b gene is expressed in the statoacoustic ganglion (SAG, a sensory ganglion of ear) and posterior lateral line ganglion (pLL). In addition, knockdown of oxr1b resulted in a significant developmental defect of SAG and pLL and this phenotype was rescued by co-injection of wild-type human OXR1 mRNAs, but not mutant OXR1 (c.233A > G) mRNAs.; to: Comment on gene rating: This gene should be rated AMBER as there is one case and supportive functional data to associate OXR1 with hearing loss. A four years old girl was identified with a novel homozygous missense variant (c.233A > G, p.Lys78Arg) in OXR1 gene and was reported with sensorineural hearing loss. Functional studies in zebrafish model showed that the ortholog orx1b gene is expressed in the statoacoustic ganglion (SAG, a sensory ganglion of ear) and posterior lateral line ganglion (pLL). In addition, knockdown of oxr1b resulted in a significant developmental defect of SAG and pLL and this phenotype was rescued by co-injection of wild-type human OXR1 mRNAs, but not mutant OXR1 (c.233A > G) mRNAs. This gene has not yet been associated with hearing loss either in OMIM or in Gene2Phenotype. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.697 | SLC25A36 |
Krithika Murali gene: SLC25A36 was added gene: SLC25A36 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SLC25A36 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SLC25A36 were set to 34971397; 34576089; 31036718 Phenotypes for gene: SLC25A36 were set to Hyperinsulinemic hypoglycemia, familial, 8 - MIM#620211 Review for gene: SLC25A36 was set to GREEN Added comment: Solute carrier family 25 members 33 (SLC25A33) and 36 (SLC25A36) are the only known mitochondrial pyrimidine nucleotide carriers in humans PMID: 34971397 Sharoor et al 2022 report 2 siblings with hyperinsulinism, hypoglycemia and hyperammonemia from early infancy with homozygous SLC25A36 c.284 + 3 A > T variant identified through WES. Functional studies support LoF. PMID: 34576089 report a 12-year-old patient with hypothyroidism, hyperinsulinism, hyperammonemia, chronical obstipation, short stature, along with language and general developmental delay. WES identified SLC25A36 gene homozygous c.803dupT, p.Ser269llefs*35 variant. Functional analysis of mutant SLC25A36 protein in proteoliposomes showed a virtually abolished transport activity. Immunoblotting results suggest that the mutant SLC25A36 protein in the patient undergoes fast degradation. Supplementation with uridine lead to some improvement in clinical course. PMID: 31036718 deficiencies in SLC25A36 in mouse embryonic stem cells have been associated with mtDNA depletion as well as mitochondrial dysfunction Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.690 | LGR4 | Elena Savva Mode of inheritance for gene: LGR4 was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.688 | USMG5 |
Bryony Thompson gene: USMG5 was added gene: USMG5 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: USMG5 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: USMG5 were set to 29917077; 30240627 Phenotypes for gene: USMG5 were set to Mitochondrial complex V (ATP synthase) deficiency, nuclear type 6 MIM#618683 Review for gene: USMG5 was set to AMBER Added comment: A homozygous splice site mutation in 4 patients from 3 unrelated families of Ashkenazi Jewish descent. Experimental analyses demonstrated that the splice variant leads to loss of protein expression and haplotype analysis suggested a founder effect. In situ cryo-ET analysis of the mitochondria of a homozygous affected case showed profound disturbances of mitochondrial crista ultrastructure. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.684 | NLGN4X | Elena Savva reviewed gene: NLGN4X: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 36747195; Phenotypes: Intellectual developmental disorder, X-linked MIM#300495; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.665 | WNT11 |
Achchuthan Shanmugasundram gene: WNT11 was added gene: WNT11 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: WNT11 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: WNT11 were set to 34875064 Phenotypes for gene: WNT11 were set to osteoporosis, MONDO:0005298; osteoarthritis, MONDO:0005178; recurrent fractures Review for gene: WNT11 was set to GREEN Added comment: Comment on gene classification: The rating of this gene can be added as green as this gene has been implicated in early-onset osteoporosis from three unrelated cases and was supported by evidence from functional studies. All three patients harboured heterozygous variants in WNT11 gene. Three unrelated cases are reported in PMID: 34875064. A four year-old boy harbouring de novo heterozygous loss-of-function variant c.677_678dupGG (p.Leu227Glyfs*22) was reported with low BMD, osteopenia and several fractures. A 51 year-old woman and her 69 year-old mother were identified with a heterozygous missense variant c.217G>A (p.Ala73Thr). The woman was reported with bone fragility, several fractures, osteoarthritis and osteoporosis, while her mother also had several osteoporotic fractures. A 61 year-old woman that was reported with lumbar spine osteoarthritis had several fractures since 55 years of age was identified with a heterozygous missense variant c.865G>A (p.Val289Met). This was also supported by results from functional studies, where cell lines with the loss-of-function variant generated by CRISPR-Cas9 showed reduced cell proliferation and osteoblast differentiation in comparison to wild-type. The expression of genes in the Wnt canonical and non-canonical pathways was inhibited in these mutant cells. This gene has not yet been reported with any phenotypes either in OMIM or in G2P. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.648 | SPTSSA |
Seb Lunke gene: SPTSSA was added gene: SPTSSA was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SPTSSA was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: SPTSSA were set to 36718090 Phenotypes for gene: SPTSSA were set to complex hereditary spastic paraplegia, MONDO:0015150 Review for gene: SPTSSA was set to AMBER Added comment: Three unrelated individuals with common neurological features of developmental delay, progressive motor impairment, progressive lower extremity spasticity, and epileptiform activity or seizures. Other additional features varied. Two of the individuals had the same de-novo missense, Thr51Ile, while the third was homozygous for a late truncating variant, Gln58AlafsTer10. The patient with the hom variant was described as less severe. Functional studies in fibroblasts showed dysregulation of the sphingolipid (SL) synthesis pathway, showing that both variants impair ORMDL regulation of the pathway leading to various levels of increased SL. Over expression of human SPTSSA was shown to lead to motor development in flies, rescued by expression of ORMDL for WT SPTSSA but not mutant SPTSSA. The de-novo missense were shown to impact regulation more than the hom truncation, while the truncated region was shown to previously to be important for ORMDL regulation. Mice with a hom KO of the functional equivalent sptssb had early onset ataxia and died prematurely, with evidence of axonic degeneration. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.635 | MIR145 |
Lucy Spencer gene: MIR145 was added gene: MIR145 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MIR145 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: MIR145 were set to 36649075 Phenotypes for gene: MIR145 were set to multisystemic smooth muscle dysfunction syndrome (MONDO:0013452), MIR145-related Review for gene: MIR145 was set to RED Added comment: PMID: 36649075- a patient whose fetal ultrasound revealed polyhydramnios, enlarged abdomenand bladder, and prune belly syndrome. During infancy/childhood profound gastrointestinal dysmotility, cerebrovascular disease, and multiple strokes. Described as a multisystemic smooth muscle dysfunction syndrome. Patient was found to have a de novo SNP in MIR145 NR_029686.1:n.18C>A. The MIR145transcript is processed into two microRNAs, with the variant position at nucleotide 3 of miR-145-5p. Transfection of an siRNA against mutant miR145-5p induced a notable decrease in the expression of several cytoskeletal proteins including transgelin, calponin, and importantly, smooth muscle actin. Hybridization analysis and miR RNA-seq demonstrated a decrease in expression of miR145-5p in the presence of mutant miR145-5p. RNA-seq showed that the differentially expressed genes were substantially different between patient and control fibroblasts. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.630 | TRU-TCA1-1 |
Paul De Fazio gene: TRU-TCA1-1 was added gene: TRU-TCA1-1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TRU-TCA1-1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TRU-TCA1-1 were set to 26854926; 34956927 Phenotypes for gene: TRU-TCA1-1 were set to Hyperthyroidism MONDO:0004425 Review for gene: TRU-TCA1-1 was set to AMBER gene: TRU-TCA1-1 was marked as current diagnostic Added comment: PMID 26854926: male 8 year old proband investigated for abdominal pain, fatigue, muscle weakness, and thyroid dysfunction (raised T4, normal T3, raised reverse T3) suggestive of impaired deiodinase activity in combination with low plasma selenium levels. Homozygosity mapping led to identification of a a single nucleotide change, C65G, in TRU-TCA1-1, a tRNA in the selenocysteine incorporation pathway. This mutation resulted in reduction in expression of stress-related selenoproteins. A methylribosylation defect at uridine 34 of mutant tRNA observed in patient cells was restored by cellular complementation with normal tRNA. PMID 34956927: a 10 year old originally investigated for Hashimoto's disease was found to be homozygous for the same C65G variant identified in the previous paper, inherited from the father in what was concluded to be paternal isodisomy. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.628 | CCDC84 |
Lucy Spencer gene: CCDC84 was added gene: CCDC84 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CCDC84 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CCDC84 were set to 34009673 Phenotypes for gene: CCDC84 were set to Mosaic variegated aneuploidy syndrome 4 (MIM#620153) Review for gene: CCDC84 was set to AMBER Added comment: PMID: 34009673- patients with constitutional mosaic aneuploidy were found to have biallelic mutations in CENATAC(CCDC84). 2 adult siblings with mosaic aneuploidies, microcephaly, dev delay, and maculopathy. Both chet for a missense and a splice site deletion- but the paper days these both result in the creation of a novel splice site that leads to frameshifts and loss of the c-terminal 64 amino acids. Gene is shown to be part of a spliceosome. CENATAC depletion or expression of disease mutants resulted in retention of introns in ~100 genes enriched for nucleocytoplasmic transport and cell cycle regulation, and caused chromosome segregation errors. Functional analysis in CENATAC-depleted HeLa cells demonstrated chromosome congression defects and subsequent mitotic arrest, which could be fully rescued by wildtype but not mutant CENATAC. Expression of the MVA-associated mutants exacerbated the phenotype, suggesting that the mutant proteins dominantly repress the function of any residual wildtype protein. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.626 | THBS1 |
Zornitza Stark gene: THBS1 was added gene: THBS1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: THBS1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: THBS1 were set to 36453543 Phenotypes for gene: THBS1 were set to Congenital glaucoma MONDO:0020366, THBS1-related Review for gene: THBS1 was set to GREEN Added comment: Missense alleles altering p.Arg1034, a highly evolutionarily conserved amino acid, in 3 unrelated and ethnically diverse families affected by congenital glaucoma. Thbs1R1034C-mutant mice had elevated intraocular pressure (IOP), reduced ocular fluid outflow, and retinal ganglion cell loss. Histology revealed an abundant, abnormal extracellular accumulation of THBS1 with abnormal morphology of juxtacanalicular trabecular meshwork (TM), an ocular tissue critical for aqueous fluid outflow. Functional characterization showed that the THBS1 missense alleles found in affected individuals destabilized the THBS1 C-terminus, causing protein misfolding and extracellular aggregation. Analysis using a range of amino acid substitutions at position R1034 showed that the extent of aggregation was correlated with the change in protein-folding free energy caused by variations in amino acid structure. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.614 | TCEAL1 | Zornitza Stark reviewed gene: TCEAL1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with gait disturbance, dysmorphic facies and behavioral abnormalities, X-linked, MIM# 301094; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.601 | TRPC5 |
Hazel Phillimore gene: TRPC5 was added gene: TRPC5 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TRPC5 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: TRPC5 were set to PMID: 36323681; 24817631; 23033978; 33504798; 28191890 Phenotypes for gene: TRPC5 were set to Intellectual disability; autistic spectrum disorder Review for gene: TRPC5 was set to AMBER Added comment: PMID: 36323681; Leitão E. et al. (2022) Nat Commun.13(1):6570: Missense variant NM_012471.2:c.523C>T, p.(Arg175Cys in three brothers with intellectual disability (ID) and autistic spectrum disorder (ASD), inherited from an asymptomatic mother and absent in the maternal grandparents. Whole cell patch clamp studies of HEK293 created by site-directed mutagenesis showed increased current of this calcium channel (constitutively opened). (This variant is absent in gnomAD v2.1.1). Also, the nonsense variant, c.965G> A, p.(Trp322*) was found in a high functioning ASD male (maternally inherited), NMD-predicted. Other papers and TRPC5 variants that were cited to associate this gene with X-linked ID and/or ASD include: PMID: 24817631; Mignon-Ravix, C. et al. (2014) Am. J.Med. Genet. A 164A: 1991–1997: A hemizygous 47-kb deletion in Xq23 including exon 1 of the TRPC5 gene. He had macrocephaly, delayed psychomotor development, speech delay, behavioural problems, and autistic features. Maternally inherited, and a family history compatible with X-linked inheritance (i.e., maternal great uncle was also affected, although not tested). In addition, PMID: 36323681; Leitão E. et al. (2022) cites papers with the variants p.(Pro667Thr), p.(Arg71Gln) and p.(Trp225*). NB. p.(Pro667Thr) is absent in gnomAD (v2.1.1), p.(Arg71Gln) is also absent (the alternative variant p.(Arg71Trp) is present once as heterozygous only). p.(Trp225*) is absent, and it should be noted that PTCs / LoF variants are very rare (pLI = 1). However, looking further into the three references, the evidence is not as clear or as accurate as was stated. The missense variant c.1999C>A, p.(Pro667Thr), was stated as de novo, but was actually maternally inherited but was still considered a candidate for severe intellectual disability (shown in the Appendix, Patient 93, with severe speech delay, autism spectrum disorder and Gilles de la Tourette). This patient also has a de novo MTF1 variant. Reference: PMID: 23033978; de Ligt, J. et al. (2012) N. Engl. J. Med. 367: 1921–1929). Missense variant (de novo): c.212G>A, p.(Arg71Gln), was found as part of the Deciphering Developmental Disorders (DDD) study and is shown in individual 164 in Supplementary Table 2 of PMID: 33504798; Martin, HC. et al. (2021) Nat. Commun.12: 627. Also displayed in DECIPHER (DDD research variant) with several phenotype traits, but ID and ASD are not specifically mentioned. Nonsense variant: c.674G>A. p.(Trp225*) was stated as de novo but was inherited (reference PMID: 28191890; Kosmicki, JA. et al. (2017) Nat. Genet. 49: 504–510. Supplement Table 7). This was a study of severe intellectual delay, developmental delay / autism. (NB. The de novo p.(Arg71Gln) variant from the DDD study is also listed (subject DDD 342 in Supplement 4 / Table 2). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.583 | CDK16 | Alison Yeung reviewed gene: CDK16: Rating: GREEN; Mode of pathogenicity: None; Publications: 36323681, 31981491, 25644381; Phenotypes: Neurodevelopmental disorder (MONDO#0700092) CDK16-related; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.582 | CCIN | Seb Lunke Phenotypes for gene: CCIN were changed from Teratozoospermia to male infertility with teratozoospermia due to single gene mutation, MONDO:0018394 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.580 | CCIN |
Chern Lim gene: CCIN was added gene: CCIN was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CCIN was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CCIN were set to 36546111; 36527329 Phenotypes for gene: CCIN were set to Teratozoospermia Review for gene: CCIN was set to GREEN gene: CCIN was marked as current diagnostic Added comment: Two papers with three unrelated patients with teratozoospermia: PMID: 36546111 - Two families reported: One with homozygous missense (fam is consanguineous) and another with compound heterozygous missense + nonsense variants, patients suffering from teratozoospermia. - Homozygous CcinH42L/H42L and compound heterozygous CcinR432W/C447* knock-in mice generated. Spermatozoa from homozygous male mice exhibited abnormalities of sperm head shape revealed by Diff-Quick staining. When mated with WT mice, both homozygous CcinH42L/H42L and compound heterozygous CcinR432W/C447* male mice were infertile, whereas the mutant female mice could generate offspring and displayed no defects in fertility. PMID: 36527329 - One consanguineous family reported: homozygous missense, with asthenoteratozoospermia. - Transfected HEK cells showed reduced CCIN protein level. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.578 | ZMYM3 | Zornitza Stark Mode of inheritance for gene: ZMYM3 was changed from X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.572 | ZMYM3 |
Belinda Chong gene: ZMYM3 was added gene: ZMYM3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ZMYM3 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: ZMYM3 were set to 36586412; 24721225 Phenotypes for gene: ZMYM3 were set to Neurodevelopmental disorders (NDDs) Review for gene: ZMYM3 was set to GREEN Added comment: PMID: 36586412 Using the MatchMaker Exchange - Described 27 individuals with rare, variation in the ZMYM3. Most individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) with de novo variants. Overlapping features included developmental delay, intellectual disability, behavioural abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441 (R441W), a site at which variation has been previously seen in NDD-affected siblings (24721225), and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T). ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.554 | SETD2 |
Zornitza Stark edited their review of gene: SETD2: Added comment: PMID 32710489: 12 unrelated patients, ranging from 1 month to 12 years of age, with a multisystemic neurodevelopmental disorder associated with a specific de novo heterozygous mutation in the SETD2 gene (R1740W). Key clinical features: severely impaired global development apparent from infancy, feeding difficulties with failure to thrive, small head circumference, and dysmorphic facial features. Affected individuals have impaired intellectual development and hypotonia; they do not achieve walking or meaningful speech. Other neurologic findings may include seizures, hearing loss, ophthalmologic defects, and brain imaging abnormalities. There is variable involvement of other organ systems, including skeletal, genitourinary, cardiac, and possibly endocrine. Further 3 unrelated patients identified with mild to moderately impaired intellectual development associated with a specific de novo heterozygous mutation in the SETD2 gene (R1740Q). These are distinct clinically from Luscan-Lumish syndrome, which is characterised by overgrowth.; Changed publications: 29681085, 32710489; Changed phenotypes: Luscan-Lumish syndrome, MIM#616831, Rabin-Pappas syndrome,MIM# 620155, Intellectual developmental disorder, autosomal dominant 70, MIM# 620157 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.545 | IDS | Zornitza Stark Mode of inheritance for gene: IDS was changed from BIALLELIC, autosomal or pseudoautosomal to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.544 | IDS | Zornitza Stark edited their review of gene: IDS: Changed mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.541 | TNNC2 |
Zornitza Stark gene: TNNC2 was added gene: TNNC2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TNNC2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: TNNC2 were set to 33755597 Phenotypes for gene: TNNC2 were set to Congenital myopathy, MONDO:0019952, TNNC2-related Review for gene: TNNC2 was set to GREEN Added comment: Two families reported: Family 1: 4 individuals, three generations; missense variant p.(Asp34Tyr) Family 2: de novo variant, missense p.(Met79Ile) Physiological studies in myofibers isolated from patients’ biopsies revealed a markedly reduced force response of the sarcomeres to [Ca2+]. This pathomechanism was further confirmed in experiments in which contractile dysfunction was evoked by replacing TnC in myofibers from healthy control subjects with recombinant, mutant TnC. Conversely, the contractile dysfunction of myofibers from patients was repaired by replacing endogenous, mutant TnC with recombinant, wild-type TnC. Borderline Green: sufficient segregation in Fam 1 plus de novo status in Fam 2, plus functional data. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.532 | NLGN4X | Krithika Murali reviewed gene: NLGN4X: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID:26350204, PMID:14963808, PMID:12669065, PMID:23352163, PMID:28263302, PMID:16648374; Phenotypes: Intellectual developmental disorder, X-linked - MIM#300495; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.507 | GABRA3 |
Sarah Pantaleo gene: GABRA3 was added gene: GABRA3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GABRA3 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: GABRA3 were set to PMID: 29053855 Phenotypes for gene: GABRA3 were set to Epilepsy, intellectual disability, dysmorphic features, Penetrance for gene: GABRA3 were set to Incomplete Review for gene: GABRA3 was set to GREEN Added comment: Six variants in GABRA3 encoding the alpha3-subunit of the GABA(A) receptor. Five missense variants and one micro duplication were detected in four families and two sporadic cases presenting with a range of epileptic seizure types, a varying degree of intellectual disability and developmental delay, sometimes with dysmorphic features or nystagmus. The variants co-segregated mostly but not completely with the phenotype in the families, indicating in some cases incomplete penetrance, involvement of other genes, or presence of phenocopies. Overall, males were more severely affected and there were three asymptomatic female mutation carriers compared to only one male without a clinical phenotype. Mechanism suggested - three detected missense variants are localised in the extracellular GABA-binding NH2-terminus, one in the M2-M3 linker and one in the M4 transmembrane segment of the alpha3-subunit. Functional studies in Xenopus leaves oocytes revealed a variable but significant reduction of GABA-evoked anion currents for all mutants compared to wild-type receptors. The degree of current reduction correlated partially with the phenotype. Results reveal that rare loss-of-function variants in GABRA3 increase the risk for a varying combination of epilepsy, intellectual disability/developmental delay and dysmorphic features, presenting in some pedigrees with an X-linked inheritance pattern. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.504 | SHROOM4 | Alison Yeung reviewed gene: SHROOM4: Rating: GREEN; Mode of pathogenicity: None; Publications: 36379543, 35663265; Phenotypes: Congenital anomaly of the kidney and urinary tracy (CAKUT), SHROOM4-related, MONDO:0019719, epilepsy, idiopathic generalised, SHROOM4-related, MONDO:0005579; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.504 | TCEAL1 |
Melanie Marty gene: TCEAL1 was added gene: TCEAL1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TCEAL1 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: TCEAL1 were set to PMID: 36368327 Phenotypes for gene: TCEAL1 were set to hypotonia, abnormal gait, developmental delay, intellectual disability, autism, dysmorphic facial features. Review for gene: TCEAL1 was set to GREEN Added comment: 7 individuals (males and females) with de novo variants involving TCEAL1. Individuals had hypotonia, abnormal gait, developmental delay/intellectual disability especially affecting expressive language, autistic-like behavior, and mildly dysmorphic facial features. Additional features included strabismus, refractive errors, variable nystagmus, gastroesophageal reflux, constipation, dysmotility, recurrent infections, seizures, and structural brain anomalies. 1 additional male individual with a maternally inherited missense variant (unaffected mother), which was considered a VUS. This individual had hypertonia and spasticity without syndromic features. 4 PTCs, 2 CNVs, 2 missense reported. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.459 | RPS6KB1 |
Arina Puzriakova gene: RPS6KB1 was added gene: RPS6KB1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RPS6KB1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: RPS6KB1 were set to 34916228 Phenotypes for gene: RPS6KB1 were set to Hypertrophic cardiomyopathy Review for gene: RPS6KB1 was set to GREEN Added comment: Jain et al. 2022 (PMID: 34916228) reported on two unrelated HCM families with the same heterozygous missense RPS6KB1 variant (p.G47W), and subsequently three further unrelated probands with HCM harbouring distinct heterozygous variants (p.Q49K, p.Y62H, respectively). Variants segregated with disease, were predicted pathogenic by silico analyses and were ultrarare or absent in population databases. Functional studies in the HL-1 (mouse cardiomyocytes) cells showed that the patient-specific RPS6KB1 mutant significantly increased cell size and activated rpS6 and ERK1/2 signalling cascades. The relationship between RPS6KB1 and cardiac hypertrophy has also been explored in feline and mice models (PMID: 15226426; 17976640) Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.417 | EMILIN1 | Zornitza Stark reviewed gene: EMILIN1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Neuronopathy, distal hereditary motor, type X, MIM# 620080; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.361 | SARS |
Ee Ming Wong edited their review of gene: SARS: Added comment: -Two missense variants within the aminoacylation domain identified in 16 affected individuals from 3 distinct CMT families -Mutant SerRS proteins exhibited reduced aminoacylation activity and abnormal SerRS dimerization, which suggests the impairment of total protein synthesis and induction of eIF2α phosphorylation; Changed rating: GREEN; Changed publications: 36088542; Changed phenotypes: Genetic peripheral neuropathy MONDO#0020127, SARS1-related |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.343 | MUT | Zornitza Stark Tag new gene name tag was added to gene: MUT. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.343 | MUT | Zornitza Stark Tag treatable tag was added to gene: MUT. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.338 | AVPR2 | Zornitza Stark reviewed gene: AVPR2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Diabetes insipidus, nephrogenic 304800, Nephrogenic syndrome of inappropriate antidiuresis 300539; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.302 | COX11 |
Zornitza Stark gene: COX11 was added gene: COX11 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: COX11 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: COX11 were set to 36030551 Phenotypes for gene: COX11 were set to Mitochondrial disease (MONDO:0044970), COX11-related Review for gene: COX11 was set to GREEN Added comment: PMID: 36030551 - Biallelic variants in COX11 associated with infantile-onset mitochondrial encephalopathies in two unrelated consanguineous families, one with homozygous missense variant, another with homozygous frameshift variant. - Functional studies supported pathogenicity of the missense variant, and showed that mutant COX11 fibroblasts had decreased ATP levels which could be rescued by CoQ10. - RNA studies suggested the mutant transcript with p.(Val12Glyfs*21) is not degraded by nonsense mediated decay. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.297 | SAT1 | Zornitza Stark Mode of inheritance for gene: SAT1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.286 | CBLB |
Alison Yeung gene: CBLB was added gene: CBLB was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CBLB was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CBLB were set to 36006710 Phenotypes for gene: CBLB were set to Autoimmune disease, MONDO:0007179 Review for gene: CBLB was set to GREEN Added comment: Distinct homozygous mutations in CBLB were identified in three unrelated children with early onset autoimmunity. Mice homozygous for the CBL-B p.H257L mutation, which corresponds to the patient's p.H285L mutation, had T and B cell hyper-proliferation in response to antigen receptor cross-linking. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.283 | MET |
Zornitza Stark changed review comment from: PMID 30777867: Four-generation Chinese arthrogryposis pedigree with only upper limb involvement. MET c.3701A>G p.Y1234C segregated as heterozygous in 11 affected family members and was absent from 12 unaffected family members. Variant is absent from gnomad. Functional studies showed this variant caused failure of phosphorylation and loss of tyrosine kinase activity of MET receptor. A mouse model was also created with this variant, mutated mice were found to be smaller than WT mice and had reduced myofibres. These mouse models also had defective migration of muscle progenitor cells and impaired proliferation of secondary myoblasts. Phenotypes in this family included camptodactyly, absent flexion crease, and limited forearm supination.; to: PMID 30777867: Four-generation Chinese arthrogryposis pedigree with only upper limb involvement. MET c.3701A>G p.Y1234C segregated as heterozygous in 11 affected family members and was absent from 12 unaffected family members. Variant is absent from gnomad. Functional studies showed this variant caused failure of phosphorylation and loss of tyrosine kinase activity of MET receptor. A mouse model was also created with this variant, mutated mice were found to be smaller than WT mice and had reduced myofibres. These mouse models also had defective migration of muscle progenitor cells and impaired proliferation of secondary myoblasts. Phenotypes in this family included camptodactyly, absent flexion crease, and limited forearm supination. AMBER for this association |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.283 | MET |
Zornitza Stark edited their review of gene: MET: Added comment: PMID 30777867: Four-generation Chinese arthrogryposis pedigree with only upper limb involvement. MET c.3701A>G p.Y1234C segregated as heterozygous in 11 affected family members and was absent from 12 unaffected family members. Variant is absent from gnomad. Functional studies showed this variant caused failure of phosphorylation and loss of tyrosine kinase activity of MET receptor. A mouse model was also created with this variant, mutated mice were found to be smaller than WT mice and had reduced myofibres. These mouse models also had defective migration of muscle progenitor cells and impaired proliferation of secondary myoblasts. Phenotypes in this family included camptodactyly, absent flexion crease, and limited forearm supination.; Changed publications: 30777867 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.276 | SAT1 | Ee Ming Wong reviewed gene: SAT1: Rating: AMBER; Mode of pathogenicity: None; Publications: 35977808; Phenotypes: Systemic lupus erythematosus, MONDO:0007915, SAT1-related; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.257 | KIF5B |
Chirag Patel gene: KIF5B was added gene: KIF5B was added to Mendeliome. Sources: Literature Mode of inheritance for gene: KIF5B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: KIF5B were set to PMID: 35342932 Phenotypes for gene: KIF5B were set to Kyphomelic dysplasia, no OMIM # Review for gene: KIF5B was set to GREEN Added comment: 4 individuals with Kyphomelic dysplasia (severe bowing of the limbs, sharp angulation of the femora and humeri, short stature, narrow thorax, distinctive facial features, and neonatal respiratory distress. WES found de novo heterozygous missense variants in KIF5B encoding kinesin-1 heavy chain. All variants involved conserved amino acids in or close to the ATPase activity-related motifs in the catalytic motor domain of the KIF5B protein. No functional studies of variants. Previously 2 animal model experiments showed that loss of function of KIF5B can cause kyphomelic dysplasia. First, chondrocyte-specific knockout of Kif5b in mice was shown to produce a disorganized growth plate, leading to bone deformity. Second, double mutants disrupting the two zebrafish kif5b caused abnormal skeletal morphogenesis and the curvature of Meckel's and ceratohyal cartilages. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.252 | FOCAD |
Zornitza Stark gene: FOCAD was added gene: FOCAD was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: FOCAD was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: FOCAD were set to 35864190 Phenotypes for gene: FOCAD were set to Liver disease, severe congenital, MIM# 619991 Review for gene: FOCAD was set to GREEN Added comment: Moreno Traspas et al 2022 reported 14 children from ten unrelated families with syndromic form of pediatric liver cirrhosis. Genome/exome sequencing analysis reveled biallelic variants in the FOCAD gene. Most of the mutations were nonsense, frameshift, or splice site alterations, predicted to result in a loss of function, but there were also 3 missense variants at highly conserved residues. Western blot analysis of dermal fibroblasts derived from 2 patients showed near absent FOCAD expression in cellular extracts. There were also decreased levels of the SKIC2 protein, suggesting that FOCAD may contribute to the stability of RNA helicase (OMIM: 619991). Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.228 | NOX1 |
Zornitza Stark gene: NOX1 was added gene: NOX1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NOX1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: NOX1 were set to 29091079; 32064493 Phenotypes for gene: NOX1 were set to Inflammatory bowel disease, MONDO:0005265, NOX1-related Review for gene: NOX1 was set to AMBER Added comment: 8 IBD patients with early onset of IBD with progressive and severe colonic disease, refractory to conventional therapy and functional studies suggesting variant-dependent loss of NOX1-mediated superoxide generation. However, high frequency of nonsynonymous mutations in NOX1 suggests that NOX1 is not a highly penetrant Mendelian disorder and that other genetic modifiers or environmental factors may contribute to disease pathogenesis. The variant reported in PMID 32064493 is present in 6 hets in gnomad. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.208 | SLITRK2 |
Paul De Fazio gene: SLITRK2 was added gene: SLITRK2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SLITRK2 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: SLITRK2 were set to 35840571 Phenotypes for gene: SLITRK2 were set to Neurodevelopmental disorder, SLITRK2-related MONDO:0700092 Review for gene: SLITRK2 was set to GREEN gene: SLITRK2 was marked as current diagnostic Added comment: 6 missense variants and 1 nonsense variant (NOT NMD-predicted, single-exon gene) reported in 7 males and 1 female with neurodevelopmental disorders. Phenotypes included dev delay, mild to severe ID, delayed or absent speech, seizures and brain MRI anomalies (in some patients). The nonsense variant was identified in two affected brothers but not in the mother, suggesting it was de novo in the maternal germline. The variant in the one affected female was de novo. All other variants in hemizygous males were inherited from an unaffected mother. In one case, the variant was also identified in the unaffected grandmother. Functional studies showed some but not all variants displayed impaired membrane transport and impaired excitatory synapse-promoting effects. Conditional knockout mice exhibited impaired long-term memory and abnormal gait. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.173 | PMM2 |
Zornitza Stark edited their review of gene: PMM2: Added comment: Association with HIPKD: Cabezas et al (2017) reported co-occurrence of hyperinsulinaemic hypoglycaemia and polycystic kidney disease (HIPKD in 17 children from 11 unrelated families. Patients presented with hyperinsulinaemic hypoglycaemia in infancy and enlarged kidneys with multiple kidney cysts. Some progressed to ESKD and some had liver cysts. Whole-genome linkage analysis in 5 informative families identified a single significant locus on chromosome 16p13.2. Sequencing of the coding regions of all linked genes failed to identify biallelic mutations. Instead, they found in all patients a promoter mutation (c.-167G>T) in PMM2, either homozygous or in trans with PMM2 coding mutations. They found deglycosylation in cultured pancreatic β cells altered insulin secretion. In vitro, the PMM2 promoter mutation associated with decreased transcriptional activity in patient kidney cells and impaired binding of the transcription factor ZNF143. In silico analysis suggested an important role of ZNF143 for the formation of a chromatin loop including PMM2. They proposed that the PMM2 promoter mutation alters tissue-specific chromatin loop formation, with consequent organ-specific deficiency of PMM2 leading to the restricted phenotype of HIPKD. None of the patients exhibited the typical clinical or diagnostic features of CDG1A. Serum transferrin glycosylation was normal in 11 patients who had assessment.; Changed publications: 28108845, 28373276, 32595772; Changed phenotypes: Congenital disorder of glycosylation, type Ia (MIM#212065), Hyperinsulinaemic Hypoglycaemia and Polycystic Kidney Disease (HIPKD), MONDO:0020642, PMM2-related |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.127 | WNK3 | Zornitza Stark reviewed gene: WNK3: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: ; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.126 | WNK3 |
Lucy Spencer gene: WNK3 was added gene: WNK3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: WNK3 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: WNK3 were set to 35678782 Phenotypes for gene: WNK3 were set to Neurodevelopmental disorder, WNK3-related (MONDO#0700092) Added comment: 6 maternally inherited hemizygous variants, 3 missense, 2 canonical splice, and a nonsense. Seen in 14 individuals from 6 families, all 14 are male who inherited hemizygous variants from their unaffected heterozygous mothers. The variants cosegregated with disease in 3 families with multiple affected individuals. All 14 patients have ID, 11 have speech delay, 10 have facial abnormalities, 5 have seizures, 6 with microcephaly and 7 with anomalies in brain imaging. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.105 | COPG1 |
Zornitza Stark gene: COPG1 was added gene: COPG1 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: COPG1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: COPG1 were set to 33529166 Phenotypes for gene: COPG1 were set to Combined immunodeficiency MONDO:0015131, COPG1-related Review for gene: COPG1 was set to RED Added comment: Five Omani siblings, born to consanguineous parents, homozygous missense. Homozygous Copg1K652E mice had increased ER stress in activated T and B cells, poor antibody responses, and normal numbers of T cells that proliferated normally, but underwent increased apoptosis upon activation. Exposure of the mutants to pet store mice caused weight loss, lymphopenia, and defective T cell proliferation that recapitulated the findings in the patients. The ER stress-relieving agent tauroursodeoxycholic acid corrected the immune defects of the mutants and reversed the phenotype they acquired following exposure to pet store mice. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.65 | RBFOX2 |
Chern Lim changed review comment from: - PMID: 26785492: Analysed CHD (1213 congenital heart disease trios) and control (autism spectrum disorder) trios for de novo mutations. Found RBFOX2 gene had significantly more damaging de novo variants than expected: 3 de novo LoF variants (eg. nonsense, frameshift, or canonical splice disruptions). All 3 probands have hypoplastic left heart syndrome (HLHS). No further patient-specific clinical or variant info were available. Same cohort later included in PMID: 32368696, listed 4 de novo variants in this gene, in patients with left ventricular outflow tract obstruction (LVOTO) or conotruncal defects (CTDs). - PMID: 27670201: RNA expression study showed the silenced allele harbours a nonsense RBFOX2 variant (Arg287*), CHD patient heart tissue sample, same patient published in PMID: 26785492. - PMID: 27485310: Functional studies using heart tissue sample from HLHS patient with NM_001031695.2:c.859C>T p.(Arg287*) showed subcellular mislocalisation, impacting its nuclear function in RNA splicing. - PMID: 25205790: De novo 111.3kb del chr22:36038076-36149338 (hg19) which includes APOL5,APOL6,RBFOX2, in a patient with HLHS. - PMID: 35137168: Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS.; to: - PMID: 26785492: Analysed CHD (1213 congenital heart disease trios) and control (autism spectrum disorder) trios for de novo mutations. Found RBFOX2 gene had significantly more damaging de novo variants than expected: 3 de novo LoF variants (1x nonsense, 1x frameshift, 1x canonical splice variants). All 3 probands have hypoplastic left heart syndrome (HLHS) and no extra-cardiac features. Same cohort later included in PMID: 32368696, listed one additional de novo variant in this gene (missense variant) in a patient with conotruncal defects (CTDs). - PMID: 27670201: RNA expression study showed the silenced allele harbours a nonsense RBFOX2 variant (Arg287*), CHD patient heart tissue sample, same patient published in PMID: 26785492. - PMID: 27485310: Functional studies using heart tissue sample from HLHS patient with NM_001031695.2:c.859C>T p.(Arg287*) showed subcellular mislocalisation, impacting its nuclear function in RNA splicing. - PMID: 25205790: De novo 111.3kb del chr22:36038076-36149338 (hg19) which includes APOL5,APOL6,RBFOX2, in a patient with HLHS. - PMID: 35137168: Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.28 | SPTAN1 | Zornitza Stark edited their review of gene: SPTAN1: Added comment: Leveille et al (2019) - 2 patients with HSP with biallelic missense SPTAN1 variants Previously described zebrafish, mouse, and rat animal models of SPTAN1 deficiency, all consistently showing axonal degeneration, fitting the pathological features of HSP in humans. Xie et al (2022) - 1 patient with complicated HSP and homozygous SPTAN1 mutation. Healthy parents and sister all carried the heterozygous mutation. Van de Vondel et al (2022) - 22 patients from 14 families with five novel heterozygous SPTAN1 variants. Presentations ranged from cerebellar ataxia, intellectual disability, epilepsy, and spastic paraplegia. A recurrent missense mutation (p.Arg19Trp) in 15 patients with spastic paraplegia. Through protein modeling they showed that mutated amino acids are located at crucial interlinking positions, interconnecting the three-helix bundle of a spectrin repeat.; Changed publications: 20493457, 22258530, 32811770, 35150594, 34526651, 31515523; Changed phenotypes: Developmental and epileptic encephalopathy 5, MIM# 613477, Hereditary spastic paraplegia MONDO:0019064, SPTAN1-related; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.3 | RDH11 | Zornitza Stark edited their review of gene: RDH11: Added comment: 2nd case reported: 1 Chinese patient with retinitis pigmentosa, juvenile cataracts, intellectual disability, and myopathy. Trio-based WES and whole genomic CNV detection found compound heterozygous variants in RDH11 (p.Leu313Pro and c.75-3C>A) with biparental inheritance. Variant c.75-3C>A was confirmed to be a splice-site mutation by cDNA sequencing. It caused exon 2 skipping, resulting in a frameshift mutation and premature translation termination (p.Lys26Serfs*38). They found mislocalization of RDH11 protein in muscle cells of the patient by using immunofluorescence staining. Retinol dehydrogenase 11 (RDH11) is an 11-cis-retinol dehydrogenase that has a well-characterized, albeit auxiliary role in the retinoid cycle. Diseases caused by mutations in the RDH11 gene are very rare, and only one affected family with eye and intelligence involvement has been reported.; Changed rating: AMBER; Changed publications: 24916380, 15634683, 30731079, 18326732, 34988992 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14651 | LRP2 |
Chirag Patel commented on gene: LRP2: Donnai-Barrow syndrome (DBS) was first described as a distinct disorder characterized by diaphragmatic hernia, exomphalos, absent corpus callosum, myopia, agenesis of the corpus callosum and proteinuria, and sensorineural deafness. Kantarci et al. (2007) identified biallelic LRP2 mutations in 6 families with Donnai-Barrow syndrome and one family with facio-oculo-acoustico-renal syndrome. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14650 | ADD1 |
Chirag Patel gene: ADD1 was added gene: ADD1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ADD1 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal Publications for gene: ADD1 were set to PMID: 34906466 Phenotypes for gene: ADD1 were set to Intellectual disability, corpus callosum dysgenesis, and ventriculomegaly; no OMIM # Review for gene: ADD1 was set to GREEN Added comment: 4 unrelated individuals affected by ID and/or complete or partial agenesis of corpus callosum, and enlarged lateral ventricles. WES found loss-of-function variants - 1 recessive missense variant and 3 de novo variants. The recessive variant is associated with ACC and enlarged lateral ventricles, and the de novo variants were associated with complete or partial agenesis of corpus callosum, mild ID and attention deficit. Human variants impair ADD1 protein expression and/or dimerization with ADD2. Add1 knockout mice recapitulate corpus callosum dysgenesis and ventriculomegaly phenotypes. Three adducin genes (ADD1, ADD2, and ADD3) encode cytoskeleton proteins that are critical for osmotic rigidity and cell shape. ADD1, ADD2, and ADD3 form heterodimers (ADD1/ADD2, ADD1/ADD3), which further form heterotetramers. Adducins interconnect spectrin and actin filaments to form polygonal scaffolds beneath the cell membranes and form ring-like structures in neuronal axons. Adducins regulate mouse neural development, but their function in the human brain is unknown Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14647 | GJA5 |
Chirag Patel commented on gene: GJA5: Gollob et al. (2006) presented evidence that tissue-specific mutations in the GJA5 gene may predispose the atria to fibrillation. They identified a heterozygous missense mutation in blood and cardiac tissue in patient with AF. They also found 3 heterozygous missense mutations in cardiac tissue only in 3 other patients, indicating a somatic source of the genetic defects Yang et al. (2010) identified a heterozygous nonsense mutationin a 64-year-old female patient who was diagnosed with paroxysmal AF at 32 years of age. The mutation was detected in 6 additional affected family members, but was not found in 6 unaffected family members or in 200 ethnically matched controls. Yang et al. (2010) identified 3 heterozygous missense mutations in 3 probands with AF. The mutations segregated with disease in all 3 families and were not found in 200 ethnically matched controls. Sun et al. (2013) identified a heterozygous missense mutation in a 42-year-old woman who had been diagnosed with AF at age 40 years. The mutation was also detected in her father, who had been diagnosed with lone AF at 41 years of age, but it was not found in unaffected family members, in 200 controls, or in the dbSNP database. Functional analysis demonstrated that the I75F mutant is unable to form functional gap junction channels and also impairs coupling when expressed with wildtype CX40 or CX43. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14632 | GK | Zornitza Stark Mode of inheritance for gene: GK was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14593 | GPC4 | Zornitza Stark Mode of inheritance for gene: GPC4 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14531 | ATP6AP2 | Elena Savva Mode of inheritance for gene: ATP6AP2 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14530 | ATP6AP2 | Elena Savva reviewed gene: ATP6AP2: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 23595882; Phenotypes: ?Parkinsonism with spasticity, X-linked MIM#300911, Congenital disorder of glycosylation, type IIr MIM#301045, Intellectual developmental disorder, X-linked, syndromic, Hedera type MIM#300423; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14457 | MECP2 | Zornitza Stark Mode of inheritance for gene: MECP2 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14456 | MECP2 | Zornitza Stark reviewed gene: MECP2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Rett syndrome, MIM# 312750, Intellectual developmental disorder, X-linked, syndromic 13, MIM# 300055, Encephalopathy, neonatal severe, MIM# 300673; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14411 | MAGT1 | Zornitza Stark Mode of inheritance for gene: MAGT1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14410 | MAGT1 | Zornitza Stark reviewed gene: MAGT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 31036665, 31714901; Phenotypes: Congenital disorder of glycosylation, type Icc (MIM# 301031), Immunodeficiency, X-linked, with magnesium defect, Epstein-Barr virus infection and neoplasia (MIM# 300853); Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14405 | OPHN1 | Zornitza Stark Mode of inheritance for gene: OPHN1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14387 | REEP1 | Zornitza Stark Mode of inheritance for gene: REEP1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14379 | RBFOX2 |
Chern Lim edited their review of gene: RBFOX2: Added comment: - PMID: 26785492: Analysed CHD (1213 congenital heart disease trios) and control (autism spectrum disorder) trios for de novo mutations. Found RBFOX2 gene had significantly more damaging de novo variants than expected: 3 de novo LoF variants (eg. nonsense, frameshift, or canonical splice disruptions). All 3 probands have hypoplastic left heart syndrome (HLHS). No further patient-specific clinical or variant info were available. Same cohort later included in PMID: 32368696, listed 4 de novo variants in this gene, in patients with left ventricular outflow tract obstruction (LVOTO) or conotruncal defects (CTDs). - PMID: 27670201: RNA expression study showed the silenced allele harbours a nonsense RBFOX2 variant (Arg287*), CHD patient heart tissue sample, same patient published in PMID: 26785492. - PMID: 27485310: Functional studies using heart tissue sample from HLHS patient with NM_001031695.2:c.859C>T p.(Arg287*) showed subcellular mislocalisation, impacting its nuclear function in RNA splicing. - PMID: 25205790: De novo 111.3kb del chr22:36038076-36149338 (hg19) which includes APOL5,APOL6,RBFOX2, in a patient with HLHS. - PMID: 35137168: Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS.; Changed publications: PMID: 26785492, 27670201, 27485310, 25205790, 35137168, 26785492 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14366 | RP2 | Zornitza Stark Mode of inheritance for gene: RP2 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14345 | RBFOX2 |
Chern Lim gene: RBFOX2 was added gene: RBFOX2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RBFOX2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: RBFOX2 were set to PMID: 26785492; 27670201; 27485310; 25205790; 35137168 Phenotypes for gene: RBFOX2 were set to Hypoplastic left heart syndrome (HLHS) Review for gene: RBFOX2 was set to AMBER gene: RBFOX2 was marked as current diagnostic Added comment: - PMID: 26785492: Analysed CHD (1213 congenital heart disease trios) and control (autism spectrum disorder) trios for de novo mutations. Found RBFOX2 gene had significantly more damaging de novo variants than expected: 3 de novo LoF variants (eg. nonsense, frameshift, or canonical splice disruptions). All 3 probands have hypoplastic left heart syndrome (HLHS). No further patient-specific clinical or variant info were available. - PMID: 27670201: RNA expression study showed the silenced allele harbours a nonsense RBFOX2 variant (Arg287*), CHD patient heart tissue sample, same patient published in PMID: 26785492. - PMID: 27485310: Functional studies using heart tissue sample from HLHS patient with NM_001031695.2:c.859C>T p.(Arg287*) showed subcellular mislocalisation, impacting its nuclear function in RNA splicing. - PMID: 25205790: De novo 111.3kb del chr22:36038076-36149338 (hg19) which includes APOL5,APOL6,RBFOX2, in a patient with HLHS. - PMID: 35137168: Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14329 | UROD | Zornitza Stark Mode of inheritance for gene: UROD was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14326 | MAGED2 | Zornitza Stark Mode of inheritance for gene: MAGED2 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14325 | MAGED2 | Zornitza Stark reviewed gene: MAGED2: Rating: GREEN; Mode of pathogenicity: None; Publications: 27120771; Phenotypes: Bartter syndrome, type 5, antenatal, transient, MIM# 300971; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14300 | MTM1 | Zornitza Stark Mode of inheritance for gene: MTM1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14299 | MTM1 | Zornitza Stark reviewed gene: MTM1: Rating: GREEN; Mode of pathogenicity: None; Publications: 10790201; Phenotypes: Myopathy, centronuclear, X-linked, MIM# 310400; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14291 | DSCAM |
Krithika Murali edited their review of gene: DSCAM: Added comment: No OMIM gene disease association. Variants predominantly identified from large cohort studies with limited phenotypic information. Associations with ID, ASD, Hirschsprung disease reported. One homozygous splice site variant reported with no parental phenotypes provided. PMID 34253863 Lim et al 2021 - 12 yo proband with severe autism spectrum disorder diagnosed age 3, de novo heterozygous c.2051 del p.(L684X) variant identified (absent from gnomAD). Skin fibroblast human iPSC cells generated from proband and healthy controls. Forebrain-like induced neuronal cells showed reduced mRNA expression for NMDA-R subunits. PMID 28600779 Monies et al 2017 - Homozygous splice site variant identified in proband from consanguineous Saudi family. Proband had growth restriction, microcephaly, developmental delay. Parental phenotype not provided. PMID 30095639 and PMID 23671607 - report association between DSCAM polymorphisms and Hirschsprung disease in Chinese and European populations. PMID 27824329 Wang et al 2016 - 2 denovo mutations in mixed ID/ASD cohort of 1,045; including comparison of previously published cases 6 LOF out of 4,998 cases. PMID 28191889 2 denovo LOF in 13,407 mixed ID/ASD cases plus 4 previosly published cases our ot 6158; conclude denovo LOF enriched in cases vs controls PMID 21904980; mouse model – het LOF mice show hydrocephalus, decreased motor function and impaired motor learning ability, Evidence for missense lacking currently; Changed publications: 34253863, 32807774, 28600779, 21904980, 28191889, 27824329, 30095639, 23671607 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14288 | MUT | Zornitza Stark Marked gene: MUT as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14288 | MUT | Zornitza Stark Gene: mut has been classified as Green List (High Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14288 | MUT | Zornitza Stark Phenotypes for gene: MUT were changed from to Methylmalonic aciduria, mut(0) type, MIM# 251000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14287 | MUT | Zornitza Stark Publications for gene: MUT were set to | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14286 | MUT | Zornitza Stark Mode of inheritance for gene: MUT was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14285 | MUT | Zornitza Stark reviewed gene: MUT: Rating: GREEN; Mode of pathogenicity: None; Publications: 1977311, 11528502, 12948746; Phenotypes: Methylmalonic aciduria, mut(0) type, MIM# 251000; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14182 | TLR7 | Zornitza Stark Mode of inheritance for gene: TLR7 was changed from X-LINKED: hemizygous mutation in males, biallelic mutations in females to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14181 | TLR7 |
Zornitza Stark edited their review of gene: TLR7: Added comment: SLE XLD: only affected females reported; 4 individuals from three unrelated families. Mouse model.; Changed publications: 32706371, 35477763; Changed phenotypes: Immunodeficiency 74, COVID19-related, X-linked, MIM# 301051, Systemic lupus erythematosus 17, MIM# 301080; Changed mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14153 | FOXN1 | Bryony Thompson Mode of inheritance for gene: FOXN1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14152 | FOXN1 | Bryony Thompson reviewed gene: FOXN1: Rating: GREEN; Mode of pathogenicity: None; Publications: 10206641, 20978268, 20978268, 28636882, 31566583, 31447097; Phenotypes: T-cell immunodeficiency, congenital alopecia, and nail dystrophy MONDO:0011132; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14097 | SH2D1A | Zornitza Stark Mode of inheritance for gene: SH2D1A was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14096 | SH2D1A | Zornitza Stark reviewed gene: SH2D1A: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Lymphoproliferative syndrome, X-linked, 1, MIM# 308240; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14091 | FMR1 | Bryony Thompson Mode of inheritance for gene: FMR1 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14090 | FMR1 | Bryony Thompson reviewed gene: FMR1: Rating: GREEN; Mode of pathogenicity: None; Publications: 8156595, 28176767, 29178241; Phenotypes: Fragile X syndrome MONDO:0010383; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14076 | FLG | Bryony Thompson Mode of inheritance for gene: FLG was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14072 | FLG | Bryony Thompson reviewed gene: FLG: Rating: GREEN; Mode of pathogenicity: None; Publications: 16444271, 19349982, 34608691; Phenotypes: Ichthyosis vulgaris MONDO:0024304; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14065 | GSN | Zornitza Stark Mode of inheritance for gene: GSN was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14064 | GSN | Zornitza Stark reviewed gene: GSN: Rating: GREEN; Mode of pathogenicity: None; Publications: 2176164; Phenotypes: Amyloidosis, Finnish type, MIM# 105120; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14042 | FHL1 | Bryony Thompson Mode of inheritance for gene: FHL1 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14039 | FHL1 | Bryony Thompson reviewed gene: FHL1: Rating: GREEN; Mode of pathogenicity: None; Publications: 19716112, 20186852, 20301609, 18179901, 25274776, 34366191, 18274675, 19181672; Phenotypes: Reducing body myopathy MONDO:0019948, X-linked Emery-Dreifuss muscular dystrophy MONDO:0010680; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14025 | FGG | Bryony Thompson Mode of inheritance for gene: FGG was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14024 | FGG | Bryony Thompson reviewed gene: FGG: Rating: GREEN; Mode of pathogenicity: None; Publications: 2713997, 11001902, 11001903, 9746756, 23560673, 28992465, 10980108, 15304068; Phenotypes: congenital fibrinogen deficiency MONDO:0018060; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13991 | RP2 | Belinda Chong reviewed gene: RP2: Rating: GREEN; Mode of pathogenicity: None; Publications: 9697692, 10053026, 10942419, 11462235, 12417528, 8225316, 26143542; Phenotypes: Retinitis pigmentosa 2 MIM#312600; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13957 | DNA2 | Ain Roesley Mode of inheritance for gene: DNA2 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13956 | DNA2 | Ain Roesley reviewed gene: DNA2: Rating: GREEN; Mode of pathogenicity: None; Publications: 24389050, 31045292, 23352259, 25635128, 28554558; Phenotypes: Seckel syndrome 8, MIM#615807, Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 6 MIM#615156; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13953 | DMD | Ain Roesley Mode of inheritance for gene: DMD was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13952 | DMD | Ain Roesley reviewed gene: DMD: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301298; Phenotypes: Becker muscular dystrophy MIM@300376 XLR, Cardiomyopathy, dilated, 3B MIM#302045 XL, Duchenne muscular dystrophy MIM#310200; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13947 | LPL | Alison Yeung Mode of inheritance for gene: LPL was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13946 | LPL | Alison Yeung reviewed gene: LPL: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Combined hyperlipidemia, familial, MIM# 144250, Lipoprotein lipase deficiency, MIM# 238600; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13889 | AR | Elena Savva Mode of inheritance for gene: AR was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13888 | AR | Elena Savva reviewed gene: AR: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 22334387; Phenotypes: Hypospadias 1, X-linked MIM#30063, Androgen insensitivity MIM#300068, Androgen insensitivity, partial, with or without breast cancer MIM#312300, Spinal and bulbar muscular atrophy of Kennedy MIM#313200; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13810 | SLC12A5 | Zornitza Stark Mode of inheritance for gene: SLC12A5 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13792 | CD164 |
Alison Yeung gene: CD164 was added gene: CD164 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CD164 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CD164 were set to 26197441; 35254497; 26197441 Phenotypes for gene: CD164 were set to Deafness, autosomal dominant 66, MIM# 616969 Review for gene: CD164 was set to GREEN Added comment: p.(Arg192Ter), a truncating variant that results in loss of 6 amino acids, was detected in two families (one Polish and one Korean) with hearing loss. Four affected (heterozygous) and two unaffected (neg) were tested, however 14 members had been diagnosed with HL in a large multi generational family (gene panel 237 genes). The second family (WES) had two affected heterozygous and no unaffected were tested. This same variant had previously been reported in a Danish family (12 affected heterozygous and 13 unaffected negative, but one younger member unaffected are heterozygous) with hearing loss (PMID: 26197441), for which functional studies in HEK cells demonstrated that the truncated protein was almost completely retained on the plasma cell membrane in contrast to the wild-type protein, which targeted primarily to the endo-lysosomal compartments. The YHTL motif, deleted by the c.574C>T nonsense mutation, is a canonical sorting motif known to be recognized by specific adaptor proteins in the cytosol, leading to subcellular trafficking of the transmembrane protein to endosomes and lysosomes. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13713 | SLC12A5 | Samantha Ayres reviewed gene: SLC12A5: Rating: GREEN; Mode of pathogenicity: None; Publications: 26333769, 27436767, 24928908, 30763027, 24668262; Phenotypes: Developmental and epileptic encephalopathy 34, MIM# 616645, {Epilepsy, idiopathic generalized, susceptibility to, 14}, MIM# 616685; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13706 | HOXD13 | Zornitza Stark Mode of inheritance for gene: HOXD13 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13705 | HOXD13 | Zornitza Stark reviewed gene: HOXD13: Rating: GREEN; Mode of pathogenicity: None; Publications: 34777468, 32509852; Phenotypes: Brachydactyly, type E 113300 Brachydactyly, type D, MIM# 113200, Syndactyly, type V, MIM# 186300, Synpolydactyly 1, MIM# 186000, Brachydactyly-syndactyly syndrome, MIM# 610713; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13683 | DUSP6 |
Krithika Murali changed review comment from: PMID: 23643382 Miraoui et al 2013 - - candidate gene study for genes in the FGFR1 pathway that may be associated with CHH, either as causative genes or disease modifiers. A cohort of 386 CHH individuals and 155 unaffected controls of European descent. A number of affected individuals included in this cohort already had known causative variants in CHH-associated genes. The coding exons and proximal introns (≥15 bp from splice sites) of FGF17, FGF18, IL17RD, DUSP6, SPRY2, SPRY4, and FLRT3 were amplified by PCR and determined by direct sequencing. Summary of DUSP6 variants identified in this study c.229 T>A p.(Phe77Ile) - absent gnomAD v2 and v3 c.545C>T p.(Ser182Phe) - 203 hets gnomad v2, 137 hets and 1 hom - v3 - identified in conjunction with FGFR1 variant in this individual c.566A>G p.Asn189Ser - v2 57 hets, v3 29 hets (another individual identified with this variant and an SPRY4 variant) c.1037C>T p.Thr346Met - 81 hets v2, 27 hets and 1 hom v3 (identified in conjunction with SPRY4 variant No segregation information provided. PMID: 23643382 - Dusp6 null mouse model reportedly has craniofacial defects and hearing defects, but no mention of hypogonadotropic hypogonadism. In 5 unrelated individuals with congenital hypogonadotropic hypogonadism 4 heterozygous missense were identified. In 3 of the probands, the DUSP6 mutation was accompanied by a heterozygous missense mutation in another HH-associated gene. 3 of the 4 variants have subpopulation allele frequencies in gnomAD v2.1 that are higher than expected for a dominant condition: p.Thr346Met (AJ AF 0.002797), p.Ser182Phe (NFE AF 0.001396), p.Asn189Ser (NFE AF 0.0003641). No functional assays were conducted. PMID: 32389901 - 6 unrelated male Chinese Kallman syndrome cases with 4 DUSP6 missense variants. 2 of 4 variants have East Asian allele frequencies in gnomAD v2.1 that are higher than expected for a dominant condition: p.Pro188Leu (EAS AF 0.001203), p.Arg83Gln (EAS AF 0.001129). No functional assays conducted.; to: PMID: 23643382 Miraoui et al 2013 - - candidate gene study for genes in the FGFR1 pathway that may be associated with CHH, either as causative genes or disease modifiers. A cohort of 386 CHH individuals and 155 unaffected controls of European descent. A number of affected individuals included in this cohort already had known causative variants in CHH-associated genes. The coding exons and proximal introns (≥15 bp from splice sites) of FGF17, FGF18, IL17RD, DUSP6, SPRY2, SPRY4, and FLRT3 were amplified by PCR and determined by direct sequencing. Summary of DUSP6 variants identified in this study c.229 T>A p.(Phe77Ile) - absent gnomAD v2 and v3 c.545C>T p.(Ser182Phe) - 203 hets gnomad v2, 137 hets and 1 hom - v3 - identified in conjunction with FGFR1 variant in this individual c.566A>G p.Asn189Ser - v2 57 hets, v3 29 hets (another individual identified with this variant and an SPRY4 variant) c.1037C>T p.Thr346Met - 81 hets v2, 27 hets and 1 hom v3 (identified in conjunction with SPRY4 variant No segregation information provided. Dusp6 null mouse model reportedly has craniofacial defects and hearing defects, but no mention of hypogonadotropic hypogonadism. PMID: 32389901 - 6 unrelated male Chinese Kallman syndrome cases with 4 DUSP6 missense variants. 2 of 4 variants have East Asian allele frequencies in gnomAD v2.1 that are higher than expected for a dominant condition: p.Pro188Leu (EAS AF 0.001203), p.Arg83Gln (EAS AF 0.001129). No functional assays conducted. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13683 | DUSP6 |
Krithika Murali changed review comment from: 1 study cited by OMIM (Miraoui et al 2013) - heterozygous variants in 5 unrelated individuals with congenital hypogonadotrophic hypogonadism (CHH). 4/5 variants highly prevalent in healthy population and/or in conjunction with variants in other genes either known to be associated with CHH or possibly associated. No additional studies published since this paper. PMID: 23643382 Miraoui et al 2013 - - candidate gene study for genes in the FGFR1 pathway that may be associated with CHH, either as causative genes or disease modifiers. A cohort of 386 CHH individuals and 155 unaffected controls of European descent. A number of affected individuals included in this cohort already had known causative variants in CHH-associated genes. The coding exons and proximal introns (≥15 bp from splice sites) of FGF17, FGF18, IL17RD, DUSP6, SPRY2, SPRY4, and FLRT3 were amplified by PCR and determined by direct sequencing. Summary of DUSP6 variants identified in this study c.229 T>A p.(Phe77Ile) - absent gnomAD v2 and v3 c.545C>T p.(Ser182Phe) - 203 hets gnomad v2, 137 hets and 1 hom - v3 - identified in conjunction with FGFR1 variant in this individual c.566A>G p.Asn189Ser - v2 57 hets, v3 29 hets (another individual identified with this variant and an SPRY4 variant) c.1037C>T p.Thr346Met - 81 hets v2, 27 hets and 1 hom v3 (identified in conjunction with SPRY4 variant No segregation information provided.; to: PMID: 23643382 Miraoui et al 2013 - - candidate gene study for genes in the FGFR1 pathway that may be associated with CHH, either as causative genes or disease modifiers. A cohort of 386 CHH individuals and 155 unaffected controls of European descent. A number of affected individuals included in this cohort already had known causative variants in CHH-associated genes. The coding exons and proximal introns (≥15 bp from splice sites) of FGF17, FGF18, IL17RD, DUSP6, SPRY2, SPRY4, and FLRT3 were amplified by PCR and determined by direct sequencing. Summary of DUSP6 variants identified in this study c.229 T>A p.(Phe77Ile) - absent gnomAD v2 and v3 c.545C>T p.(Ser182Phe) - 203 hets gnomad v2, 137 hets and 1 hom - v3 - identified in conjunction with FGFR1 variant in this individual c.566A>G p.Asn189Ser - v2 57 hets, v3 29 hets (another individual identified with this variant and an SPRY4 variant) c.1037C>T p.Thr346Met - 81 hets v2, 27 hets and 1 hom v3 (identified in conjunction with SPRY4 variant No segregation information provided. PMID: 23643382 - Dusp6 null mouse model reportedly has craniofacial defects and hearing defects, but no mention of hypogonadotropic hypogonadism. In 5 unrelated individuals with congenital hypogonadotropic hypogonadism 4 heterozygous missense were identified. In 3 of the probands, the DUSP6 mutation was accompanied by a heterozygous missense mutation in another HH-associated gene. 3 of the 4 variants have subpopulation allele frequencies in gnomAD v2.1 that are higher than expected for a dominant condition: p.Thr346Met (AJ AF 0.002797), p.Ser182Phe (NFE AF 0.001396), p.Asn189Ser (NFE AF 0.0003641). No functional assays were conducted. PMID: 32389901 - 6 unrelated male Chinese Kallman syndrome cases with 4 DUSP6 missense variants. 2 of 4 variants have East Asian allele frequencies in gnomAD v2.1 that are higher than expected for a dominant condition: p.Pro188Leu (EAS AF 0.001203), p.Arg83Gln (EAS AF 0.001129). No functional assays conducted. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13674 | COL6A3 | Ain Roesley Mode of inheritance for gene: COL6A3 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13673 | COL6A3 | Ain Roesley reviewed gene: COL6A3: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301676; Phenotypes: Bethlem myopathy 1 MIM#158810, Dystonia 27 MIM#616411, Ullrich congenital muscular dystrophy 1 MIM#254090; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13672 | COL6A2 | Ain Roesley Mode of inheritance for gene: COL6A2 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13671 | COL6A2 | Ain Roesley reviewed gene: COL6A2: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301676; Phenotypes: Bethlem myopathy 1 MIM#158810, Ullrich congenital muscular dystrophy 1 MIM#254090; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13670 | COL6A1 | Ain Roesley edited their review of gene: COL6A1: Changed publications: 20301676, 25535305, 15955946, 23738969, 29277723, 24443028; Changed mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13670 | COL6A1 | Ain Roesley Mode of inheritance for gene: COL6A1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13669 | COL6A1 |
Ain Roesley changed review comment from: Well established association Both loss-of-function and dominant negative mechanism has been reported for this gene. Mutations result in a spectrum of disease, ranging from the milder Bethlem myopathy (monoallelic) to the more severe Ullrich congenital muscular dystrophy (biallelic) (PMID: 29277723; 24443028). Sources: Literature; to: Well established association Genereviews PMID:20301676 AD variants typically occur near the N terminal of the triple helical (TH) domain, which contains a critical region of 10 to 15 Gly-X-Y triplets; in-frame exon-skipping variants and glycine substitutions in this region tend to result in more severe phenotypes AR variants are usually nonsense or fs, or biallelic variants located near the C-terminal end of the TH domain, where they will be excluded from assembly |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13667 | COL4A4 | Ain Roesley Mode of inheritance for gene: COL4A4 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13666 | COL4A4 | Ain Roesley reviewed gene: COL4A4: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301386; Phenotypes: Alport syndrome 2, autosomal recessive MIM#203780, Hematuria, familial benign MIM#141200; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13613 | RRAS |
Belinda Chong changed review comment from: Catts et al (2021) identified a 7-year-old boy with a history of craniosynostosis, congenital heart defect, and mild dysmorphic features who was incidentally found to have pediatric MDS with monosomy 7 in the context of previously unrecognized germline RRAS mutation. A heterozygous c.116_118dup (NM_006270.5) variant resulting in p.G39dup was identified and excluded in an unaffected sibling, and both parents. Two individuals reported. One de novo variant, the inheritance of the other variant uncertain. Some supportive functional data. Rated as LIMITED by ClinGen (reviewed 27/04/2018).; to: Catts et al (2021) identified a 7-year-old boy with a history of craniosynostosis, congenital heart defect, and mild dysmorphic features who was incidentally found to have pediatric MDS with monosomy 7 in the context of previously unrecognized germline RRAS mutation. A heterozygous c.116_118dup (NM_006270.5) variant resulting in p.G39dup was identified and excluded in an unaffected sibling, and both parents. Two individuals reported. One de novo variant, the inheritance of the other variant uncertain. Some supportive functional data. Rated as LIMITED by ClinGen (reviewed 27/04/2018). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13594 | HEPACAM | Zornitza Stark Mode of inheritance for gene: HEPACAM was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13593 | HEPACAM | Zornitza Stark reviewed gene: HEPACAM: Rating: GREEN; Mode of pathogenicity: None; Publications: 21419380, 21419380; Phenotypes: Megalencephalic leukoencephalopathy with subcortical cysts 2A, MIM# 613925, Megalencephalic leukoencephalopathy with subcortical cysts 2B, remitting, with or without mental retardation, MIM# 613926; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13569 | HCCS | Zornitza Stark Mode of inheritance for gene: HCCS was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13568 | HCCS | Zornitza Stark reviewed gene: HCCS: Rating: GREEN; Mode of pathogenicity: None; Publications: 17033964, 30068298, 24735900; Phenotypes: Linear skin defects with multiple congenital anomalies 1, MIM# 309801; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13537 | BTK | Zornitza Stark Mode of inheritance for gene: BTK was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13536 | BTK | Zornitza Stark reviewed gene: BTK: Rating: GREEN; Mode of pathogenicity: None; Publications: 8013627, 7849697; Phenotypes: Agammaglobulinaemia, X-linked 1, MIM# 300755, Isolated growth hormone deficiency, type III, with agammaglobulinaemia, MIM# 307200; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13469 | AP1S2 | Zornitza Stark reviewed gene: AP1S2: Rating: GREEN; Mode of pathogenicity: None; Publications: 17186471, 17617514, 19377476, 30714330, 23756445; Phenotypes: Pettigrew syndrome, MIM# 304340; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13439 | APOA5 | Elena Savva Mode of inheritance for gene: APOA5 was changed from MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13433 | AP1S2 | Elena Savva Mode of inheritance for gene: AP1S2 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13399 | PHKA2 | Zornitza Stark Mode of inheritance for gene: PHKA2 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13398 | PHKA2 | Zornitza Stark edited their review of gene: PHKA2: Changed mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13383 | CNNM2 | Ain Roesley Mode of inheritance for gene: CNNM2 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13382 | CNNM2 | Ain Roesley reviewed gene: CNNM2: Rating: GREEN; Mode of pathogenicity: None; Publications: 34604137, 35170241; Phenotypes: Hypomagnesemia 6, renal MIM#613882, Hypomagnesemia, seizures, and mental retardation MIM#616418; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13299 | CHM | Ain Roesley Mode of inheritance for gene: CHM was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13298 | CHM | Ain Roesley reviewed gene: CHM: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301511; Phenotypes: Choroideremia MIM#303100; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13297 | PDGFRA |
Krithika Murali changed review comment from: ?Suitability for Incidentalome versus Mendeliome based on adult age of diagnosis in reported cases. --- Six unrelated families reported with heterozygous germline variants associated with familial GIST and/or inflammatory fibroid polyps - IFP (benign lesions caused by excessive tissue proliferation and inflammatory cell infiltration into the lumen of the GI tract). Note that reported individuals diagnosed as adults. One individual reported with diagnosis of gastric mass/polyps age 22 (in 1977) raising the possibility of pre-symptomatic disease onset in adolescence. Green PanelApp England in the following panels: tumour predisposition - childhood onset; inherited predisposition to GIST; sarcoma cancer susceptibility. --- PMID 34107389 Hodan et al 2021 - report a 35 yo F with jejunal IFP and a heterozygous germline missense PDGFRA variant (c.1664A>G p.Y555C) . The variant segregated with 3 relatives with confirmed IFPs. Two obligate carriers were reported to have had a similar phenotype while at least one obligate male carrier had no reported history of IFPs. This variant was also reported in an unrelated family with multiple IFPs in 2006. PMID 29486293 Manley et al 2018 - proband is a 50 yo M with multiple ileal intusussceptions and IFPs and GIST. Heterozygous D846V germline variant identified. Variant identified in daughter and 2 siblings. Coarser face, coarser skin, broader hands and feet, unexplained premature loss of teeth requiring dentures in their 40s described in relatives with the variant, no polyps or tumour identified in screened family members. Pdgfra +/K mutant mice recapitulated the human phenotype. Mice with the constitutively activated mutant PDGFRA shown to have diffuse expansion of the gastrointestinal submucosa, which exhibits an increased number of spindled fibroblast-like cells and marked collagen deposition. Mutant mice also develop intestinal polyps morphologically similar to IFPs. The Pdgfra +/K mice also exhibit thickened skin due to excess collagen deposition within the dermis and subcutaneous tissues. PMID 25975287 Ricci et al 2015 - report a family with het germline P653L PDGFRA missense variant. The proband was a 67 yo M with multiple intra-abdominal GIST and gastric/colonic inflammatory fibroid polyps. Multiple adult relatives (youngest age 31) were diagnosed with IFPs/fibrous tumours with the variant segregating with disease. PMID: 18670346 Carney et al 2008 and PMID: 17566086 Pasini et al 2007 - heterozygous germline PDGFRA mutation (V561D) in an individual with GIST and multiple polyps, diagnosed initially aged 22 with multiple GIST/polyps. No other relatives available for genotyping and no other significant family history reported. PMID: 17087943 de Raedt et al 2006 - heterozygous PDGFRA(Y555C) variant reported in a family with multiple relatives affected by IFP, including one death from secondary bowel obstruction age 35. PMID: 14699510 Chompret et al 2004 - Heterozygous c.2675G>T D846Y germline variant detected in a French family with 5 relatives developing adult-onset GIST, variant segregated with disease. -- Gain of function somatic variants associated with sporadic GIST. Somatic chromosomal rearrangements resulting in PDGFRA and FIP1L1 gene fusion associated with idiopathic hypereosinophilic syndrome.; to: Six unrelated families reported with heterozygous germline variants associated with familial GIST and/or inflammatory fibroid polyps - IFP (benign lesions caused by excessive tissue proliferation and inflammatory cell infiltration into the lumen of the GI tract). Note that reported individuals diagnosed as adults. One individual reported with diagnosis of gastric mass/polyps age 22 (in 1977) raising the possibility of pre-symptomatic disease onset in adolescence. Green PanelApp England in the following panels: tumour predisposition - childhood onset; inherited predisposition to GIST; sarcoma cancer susceptibility. --- PMID 34107389 Hodan et al 2021 - report a 35 yo F with jejunal IFP and a heterozygous germline missense PDGFRA variant (c.1664A>G p.Y555C) . The variant segregated with 3 relatives with confirmed IFPs. Two obligate carriers were reported to have had a similar phenotype while at least one obligate male carrier had no reported history of IFPs. This variant was also reported in an unrelated family with multiple IFPs in 2006. PMID 29486293 Manley et al 2018 - proband is a 50 yo M with multiple ileal intusussceptions and IFPs and GIST. Heterozygous D846V germline variant identified. Variant identified in daughter and 2 siblings. Coarser face, coarser skin, broader hands and feet, unexplained premature loss of teeth requiring dentures in their 40s described in relatives with the variant, no polyps or tumour identified in screened family members. Pdgfra +/K mutant mice recapitulated the human phenotype. Mice with the constitutively activated mutant PDGFRA shown to have diffuse expansion of the gastrointestinal submucosa, which exhibits an increased number of spindled fibroblast-like cells and marked collagen deposition. Mutant mice also develop intestinal polyps morphologically similar to IFPs. The Pdgfra +/K mice also exhibit thickened skin due to excess collagen deposition within the dermis and subcutaneous tissues. PMID 25975287 Ricci et al 2015 - report a family with het germline P653L PDGFRA missense variant. The proband was a 67 yo M with multiple intra-abdominal GIST and gastric/colonic inflammatory fibroid polyps. Multiple adult relatives (youngest age 31) were diagnosed with IFPs/fibrous tumours with the variant segregating with disease. PMID: 18670346 Carney et al 2008 and PMID: 17566086 Pasini et al 2007 - heterozygous germline PDGFRA mutation (V561D) in an individual with GIST and multiple polyps, diagnosed initially aged 22 with multiple GIST/polyps. No other relatives available for genotyping and no other significant family history reported. PMID: 17087943 de Raedt et al 2006 - heterozygous PDGFRA(Y555C) variant reported in a family with multiple relatives affected by IFP, including one death from secondary bowel obstruction age 35. PMID: 14699510 Chompret et al 2004 - Heterozygous c.2675G>T D846Y germline variant detected in a French family with 5 relatives developing adult-onset GIST, variant segregated with disease. -- Gain of function somatic variants associated with sporadic GIST. Somatic chromosomal rearrangements resulting in PDGFRA and FIP1L1 gene fusion associated with idiopathic hypereosinophilic syndrome. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13293 | CFP | Ain Roesley Mode of inheritance for gene: CFP was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13292 | CFP | Ain Roesley reviewed gene: CFP: Rating: GREEN; Mode of pathogenicity: None; Publications: 8871668, 10909851, 22229731, 9476131, 10698340, 10540191, 16511390, 19328743; Phenotypes: Properdin deficiency, X-linked MIM#312060; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13290 | CFI | Ain Roesley Mode of inheritance for gene: CFI was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13289 | CFI | Ain Roesley reviewed gene: CFI: Rating: GREEN; Mode of pathogenicity: None; Publications: 29292855, 28942469, 27091480, 20301541; Phenotypes: Complement factor I deficiency MIM#610984, {Hemolytic uremic syndrome, atypical, susceptibility to, 3} MIM#612923; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13263 | RSPH4A |
Belinda Chong changed review comment from: Radial spokes are regularly spaced along cilia, sperm, and flagella axonemes and have a multisubunit 'stalk' and 'head' that form a signal transduction scaffold between the central microtubule pair and dynein arms. RSPH4A is predicted to be a component of the radial spoke head based on homology with proteins in the biflagellate alga Chlamydomonas reinhardtii and other ciliates (Castleman et al., 2009; PMID19200523) 9 families with primary ciliary dyskinesia without situs inversus (Kott et al. 2013 (PMID:23993197), Castleman et al., 2009 (PMID19200523) and Daniels et al. 2013; (PMID:23798057)): - In affected members of 4 Pakistani families with CILD11, Castleman et al. (2009) identified a homozygous mutation in the RSPH4A gene. - In affected members of a family of northern European descent with CILD11, Castleman et al. (2009) identified compound heterozygosity for 2 mutations in the RSPH4A gene - Kott et al. (2013) identified pathogenic mutations in the RSPH4A gene in 7 (14%) of 48 families with a specific CILD. Common founder mutation: - Daniels et al. (2013) identified a common founder mutation in the RSPH4A gene in 9 patients with CILD11, all of whom had Puerto Rican ancestry. Multiple individuals in ClinVar with primary ciliary dyskinesia; to: Radial spokes are regularly spaced along cilia, sperm, and flagella axonemes and have a multisubunit 'stalk' and 'head' that form a signal transduction scaffold between the central microtubule pair and dynein arms. RSPH4A is predicted to be a component of the radial spoke head based on homology with proteins in the biflagellate alga Chlamydomonas reinhardtii and other ciliates (Castleman et al., 2009; PMID19200523) 9 families with primary ciliary dyskinesia without situs inversus (Kott et al. 2013 (PMID:23993197), Castleman et al., 2009 (PMID19200523) and Daniels et al. 2013; (PMID:23798057)): - In affected members of 4 Pakistani families with CILD11, Castleman et al. (2009) identified a homozygous mutation in the RSPH4A gene. - In affected members of a family of northern European descent with CILD11, Castleman et al. (2009) identified compound heterozygosity for 2 mutations in the RSPH4A gene - Kott et al. (2013) identified pathogenic mutations in the RSPH4A gene in 7 (14%) of 48 families with a specific CILD. Common founder mutation: - Daniels et al. (2013) identified a common founder mutation in the RSPH4A gene in 9 patients with CILD11, all of whom had Puerto Rican ancestry. Multiple individuals in ClinVar with primary ciliary dyskinesia PMID: 25789548; Frommer 2015: 8 PCD families reported, only 4 different variants identified. Functional studies performed. PMID: 22448264; Ziętkiewicz 2012: 4 additional families/variants reported. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13254 | PMFBP1 | Zornitza Stark Phenotypes for gene: PMFBP1 were changed from to Male infertility with teratozoospermia due to single gene mutation, MONDO:0018394 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13251 | PMFBP1 | Zornitza Stark reviewed gene: PMFBP1: Rating: GREEN; Mode of pathogenicity: None; Publications: 33484382, 33452591, 32285443; Phenotypes: Male infertility with teratozoospermia due to single gene mutation, MONDO:0018394; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13201 | PDHA1 | Zornitza Stark Mode of inheritance for gene: PDHA1 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13200 | FAS | Zornitza Stark edited their review of gene: FAS: Changed phenotypes: autoimmune lymphoproliferative syndrome MONDO:0017979; Changed mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13158 | DNAJB11 | Elena Savva reviewed gene: DNAJB11: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 34177435, 29706351, 29777155, 33129895; Phenotypes: Polycystic kidney disease 6 with or without polycystic liver disease, MIM#618061, Ivermark II syndrome, Prenatal Polycystic Kidney Disease; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13141 | FGF10 | Bryony Thompson Phenotypes for gene: FGF10 were changed from to congenital alveolar dysplasia due to FGF10 MONDO:0100090; acinar dysplasia caused by mutation in FGF10 MONDO:0600017 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13138 | FGF10 | Bryony Thompson reviewed gene: FGF10: Rating: GREEN; Mode of pathogenicity: None; Publications: 9916808, 15654336, 16501574, 16630169, 17213838, 33967277, 30639323; Phenotypes: congenital alveolar dysplasia due to FGF10 MONDO:0100090, acinar dysplasia caused by mutation in FGF10 MONDO:0600017; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13119 | GLRA2 |
Zornitza Stark gene: GLRA2 was added gene: GLRA2 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: GLRA2 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: GLRA2 were set to 26370147; 20479760; 35294868 Phenotypes for gene: GLRA2 were set to Intellectual developmental disorder, X-linked, syndromic, Pilorge type, MIM# 301076 Review for gene: GLRA2 was set to GREEN Added comment: More than 10 unrelated families reported. Both males and females affected, though some mothers are asymptomatic or mild. Zebrafish model. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13112 | PDHA1 | Krithika Murali reviewed gene: PDHA1: Rating: GREEN; Mode of pathogenicity: None; Publications: 8504309; Phenotypes: Pyruvate dehydrogenase E1-alpha deficiency - MIM#312170; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13110 | FAS | Bryony Thompson Mode of inheritance for gene: FAS was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13109 | FAS | Bryony Thompson reviewed gene: FAS: Rating: ; Mode of pathogenicity: None; Publications: 7540117, 7539157, 15459302, 33995372, 34171534; Phenotypes: autoimmune lymphoproliferative syndrome MONDO:0017979; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13061 | SH2D1A | Samantha Ayres reviewed gene: SH2D1A: Rating: ; Mode of pathogenicity: None; Publications: 6306053, 9771704, 11049992, 20301580; Phenotypes: Lymphoproliferative syndrome, X-linked, 1, MIM# 308240; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13059 | CFH | Ain Roesley Mode of inheritance for gene: CFH was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13058 | CFH | Ain Roesley reviewed gene: CFH: Rating: GREEN; Mode of pathogenicity: None; Publications: 27572114, 25814826, 20301541, 9312129, 10803850, 29888403, 30905644; Phenotypes: Basal laminar drusen MIM#126700, Complement factor H deficiency MIM#609814, {Hemolytic uremic syndrome, atypical, susceptibility to, 1} MIMI#235400; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12932 | GCNA | Zornitza Stark reviewed gene: GCNA: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Spermatogenic failure, X-linked, 4, MIM# 301077; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12849 | CD46 | Ain Roesley Mode of inheritance for gene: CD46 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12848 | CD46 | Ain Roesley reviewed gene: CD46: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301541, 26054645, 26826462; Phenotypes: {Hemolytic uremic syndrome, atypical, susceptibility to, 2} MIM#612922; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12838 | CCR2 | Ain Roesley changed review comment from: Currently no mendelian gene-disease association; to: Vall64Ile has been associated with reduction in the progression to AIDS. Mutant results in normal expression levels of the CCR2 receptor and has no effect on the incidence of HIV infection. However, in contrast to normal CCR2 peptides, the mutant protein preferentially dimerizes with the CXCR4 polypeptide, isolating it in the endoplasmic reticulum. It is also thought that the inhibitory effect is dependent on the stages of HIV-1 infection and interactions with other genetic variants. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12813 | TRAPPC2 | Zornitza Stark Mode of inheritance for gene: TRAPPC2 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12812 | TRAPPC2 | Zornitza Stark reviewed gene: TRAPPC2: Rating: GREEN; Mode of pathogenicity: None; Publications: 10431248, 14755465, 33726005, 20301324, 32953644; Phenotypes: Spondyloepiphyseal dysplasia tarda, MIM# 313400; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12738 | PIGA | Zornitza Stark changed review comment from: PIGA 34875027: variants in PIGA causing a neurodevelopment disorder and a juvenile form of hereditary hemochromatosis reported in > three unrelated patients. All patients had increased serum iron, ferritin and transferrin saturation levels, high ALP and low hepcidin. All patients had generalised seizures and intellectual disability. A subpopulation of patient blood cells showed a slight reduction of GPI-anchored proteins, suggesting that the mutations were hypomorphic and retained some residual activity. CRISPR/Cas12a-mediated knockdown of PIGA in Hep3B liver cells eliminated the cell surface expression of GPI-anchored proteins CD59 and hemojuvelin (HJV; 608374), as well as caused decreased expression of hepcidin (606464) compared to controls. These hypomorphic alleles could explain the milder neurologic phenotype, which allowed for sufficiently long survival for the iron overload phenotype to manifest.; to: PMID 34875027: variants in PIGA causing a neurodevelopment disorder and a juvenile form of hereditary hemochromatosis reported in > three unrelated patients. All patients had increased serum iron, ferritin and transferrin saturation levels, high ALP and low hepcidin. All patients had generalised seizures and intellectual disability. A subpopulation of patient blood cells showed a slight reduction of GPI-anchored proteins, suggesting that the mutations were hypomorphic and retained some residual activity. CRISPR/Cas12a-mediated knockdown of PIGA in Hep3B liver cells eliminated the cell surface expression of GPI-anchored proteins CD59 and hemojuvelin (HJV; 608374), as well as caused decreased expression of hepcidin (606464) compared to controls. These hypomorphic alleles could explain the milder neurologic phenotype, which allowed for sufficiently long survival for the iron overload phenotype to manifest. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12737 | PIGA | Zornitza Stark edited their review of gene: PIGA: Added comment: PIGA 34875027: variants in PIGA causing a neurodevelopment disorder and a juvenile form of hereditary hemochromatosis reported in > three unrelated patients. All patients had increased serum iron, ferritin and transferrin saturation levels, high ALP and low hepcidin. All patients had generalised seizures and intellectual disability. A subpopulation of patient blood cells showed a slight reduction of GPI-anchored proteins, suggesting that the mutations were hypomorphic and retained some residual activity. CRISPR/Cas12a-mediated knockdown of PIGA in Hep3B liver cells eliminated the cell surface expression of GPI-anchored proteins CD59 and hemojuvelin (HJV; 608374), as well as caused decreased expression of hepcidin (606464) compared to controls. These hypomorphic alleles could explain the milder neurologic phenotype, which allowed for sufficiently long survival for the iron overload phenotype to manifest.; Changed publications: 22305531, 24357517, 24706016, 26545172, 33333793, 32694024, 34875027; Changed phenotypes: Multiple congenital anomalies-hypotonia-seizures syndrome 2, MIM# 300868, MONDO:0010466, Neurodevelopmental disorder with epilepsy and haemochromatosis, MIM# 301072 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12731 | CACNA2D1 |
Michelle Torres gene: CACNA2D1 was added gene: CACNA2D1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CACNA2D1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CACNA2D1 were set to 35293990 Phenotypes for gene: CACNA2D1 were set to developmental and epileptic encephalopathy disorder MONDO:0100062 CACNA2D1-related Review for gene: CACNA2D1 was set to GREEN Added comment: PMID 35293990: WES of 2x unrelated individuals with early-onset developmental epileptic encephalopathy, microcephaly, severe hypotonia, absent speech, spasticity, choreiform movements, orofacial dyskinesia, and 2 cortical visual impairment, corpus callosum hypoplasia and progressive volume loss. Patient 2 also had a tiny patent foramen ovale. Patient 1 is homozygous for p.(Ser275Asnfs*13). mRNA and protein expression were reduced to ~10% of WT in fibroblasts Patient 2 is cHet for p.(Leu9Alafs*5) and p.(Gly209Asp). mRNA expression in patients fibroblasts was similar to controls, and protein expression reduced to 31-38%. Functional of the p.(Gly209Asp) showed impaired localization and mutagenesis showed complete loss of channel function. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12720 | FUZ | Anna Ritchie changed review comment from: Novel missense p.(Arg284Pro) mutation in FUZ identified in twins presenting with craniosynostosis. Loss of Fuz resulted in increased mineralisation in both in vitro embryonic primary osteoblast cultures and in fibroblasts undergoing an osteogenic challenge. No previous reports have implicated changes in human FUZ in craniosynostosis. However, variations in FUZ have been found in patients with neural tube defects.; to: Novel missense p.(Arg284Pro) mutation in FUZ identified in twins presenting with craniosynostosis. Loss of Fuz resulted in increased mineralisation in both in vitro embryonic primary osteoblast cultures and in fibroblasts undergoing an osteogenic challenge. No previous reports have implicated changes in human FUZ in craniosynostosis. However, variations in FUZ have been found in patients with neural tube defects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12714 | TNNI1 |
Krithika Murali gene: TNNI1 was added gene: TNNI1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TNNI1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: TNNI1 were set to 34934811 Phenotypes for gene: TNNI1 were set to arthrogryposis; joint contractures Review for gene: TNNI1 was set to AMBER Added comment: No OMIM gene disease association reported PMID 34934811 Nishimori et al report 2 individuals from a Japanese family with joint contractures, elevated CK and a novel heterozygous TNNI1 variant. The proband was born with clasped thumbs (gestational age not stated) requiring surgical correction at 5 months of age. At age 14 was diagnosed with contractures of the neck, trunk, hip and knee with elevated serum CK (1689 IU/L). No muscle weakness noted. Muscle biopsy showed moth-eaten appearance of type I fibres and electron microscopy showed type 1 fibre Z disk streaming. Trio exome sequencing identified a paternally heterozygous nonsense TNNI1 variant (c.523A>T p.K175*). The proband's father and paternal grandfather (not genotyped) also have a history of joint contractures with elevated CK. The affected amino acid residue is in the tropomyosin binding site near the C-terminus and is highly conserved. The variant is absent from gnomAD. rt-PCR products of mRNA from the patient's muscle biopsy showed presence of both mutated and normal transcripts. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12711 | MDFIC |
Belinda Chong gene: MDFIC was added gene: MDFIC was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MDFIC was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MDFIC were set to 35235341 Phenotypes for gene: MDFIC were set to Central conducting lymphatic anomaly with lymphedema Review for gene: MDFIC was set to GREEN Added comment: Central conducting lymphatic anomaly (CCLA), characterized by the dysfunction of core collecting lymphatic vessels including the thoracic duct and cisterna chyli, and presenting as chylothorax, pleural effusions, chylous ascites, and lymphedema, is a severe disorder often resulting in fetal or perinatal demise. Seven individuals with CCLA from six independent families. Clinical manifestations of affected fetuses and children included nonimmune hydrops fetalis (NIHF), pleural and pericardial effusions, and lymphedema. Generation of a mouse model of human MDFIC truncation variants revealed that homozygous mutant mice died perinatally exhibiting chylothorax. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12629 | SSR4 | Zornitza Stark Mode of inheritance for gene: SSR4 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12628 | SSR4 | Zornitza Stark reviewed gene: SSR4: Rating: GREEN; Mode of pathogenicity: None; Publications: 24218363, 26264460, 33300232; Phenotypes: Congenital disorder of glycosylation, type Iy, MIM# 300934; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12626 | SRY | Zornitza Stark Mode of inheritance for gene: SRY was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12625 | SRY | Zornitza Stark reviewed gene: SRY: Rating: GREEN; Mode of pathogenicity: None; Publications: 9143916, 15863672; Phenotypes: 46XX sex reversal 1, MIM# 400045, 46XY sex reversal 1 , MIM#400044; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12610 | SPG7 |
Zornitza Stark changed review comment from: SPG7 mutations most often lead to spastic paraparesis (HSP) and/or hereditary cerebellar ataxia (HCA), frequently with mixed phenotypes. Well established for bi-allelic variants. Enrichment of mono-allelic variants reported in a couple of cohorts, although a recent one suggests digenic inheritance.; to: SPG7 mutations most often lead to spastic paraparesis (HSP) and/or hereditary cerebellar ataxia (HCA), frequently with mixed phenotypes. Well established for bi-allelic variants. Enrichment of mono-allelic variants reported in a couple of cohorts, although a recent one suggests digenic inheritance. Association with OA: 7 families reported for AD OA, including 5 missense and 2 frameshift variants, PMID 32548275 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12569 | SERPINC1 | Zornitza Stark Mode of inheritance for gene: SERPINC1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12555 | ANK1 | Elena Savva Mode of inheritance for gene: ANK1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12525 | CAT | Ain Roesley Mode of inheritance for gene: CAT was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12524 | CAT | Ain Roesley reviewed gene: CAT: Rating: GREEN; Mode of pathogenicity: None; Publications: 24025477; Phenotypes: Acatalasemia MIM#614097, hypocatalasemia; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12521 | TSPAN7 | Zornitza Stark Mode of inheritance for gene: TSPAN7 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12519 | TSPAN7 | Zornitza Stark reviewed gene: TSPAN7: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual developmental disorder, X-linked 58, MIM #300210, MONDO:0010266; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12519 | ERLIN2 | Bryony Thompson Mode of inheritance for gene: ERLIN2 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12518 | ERLIN2 | Bryony Thompson reviewed gene: ERLIN2: Rating: GREEN; Mode of pathogenicity: None; Publications: 23109145, 21330303, 21796390, 29528531, 32094424, 34734492; Phenotypes: hereditary spastic paraplegia 18 MONDO:0012639; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12503 | SERPINC1 | Samantha Ayres reviewed gene: SERPINC1: Rating: GREEN; Mode of pathogenicity: None; Publications: 31359133, 30356112, 23910795, 28317092, 29747524, 11018075, 14590998; Phenotypes: hereditary antithrombin deficiency MONDO:0013144, Thrombophilia 7 due to antithrombin III deficiency, MIM#613118; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12502 | CASR | Ain Roesley Mode of inheritance for gene: CASR was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12501 | CASR | Ain Roesley reviewed gene: CASR: Rating: GREEN; Mode of pathogenicity: None; Publications: 7916660, 7726161, 8675635, 17698911, 22620673, 26646938, 22422767; Phenotypes: Hyperparathyroidism, neonatal MIM#239200, Hypocalcemia, autosomal dominant MIM#601198, Hypocalcemia autosomal dominant, with Bartter syndrome MIM#601198, hypercalcemia, type I MIM#145980; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12455 | SLC2A9 | Zornitza Stark Mode of inheritance for gene: SLC2A9 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12454 | SLC2A9 | Zornitza Stark reviewed gene: SLC2A9: Rating: GREEN; Mode of pathogenicity: None; Publications: 19026395, 19926891, 21810765, 25966807, 21256783; Phenotypes: Hypouricaemia, renal, 2, MIM# 612076; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12453 | EPOR | Bryony Thompson Phenotypes for gene: EPOR were changed from to primary familial polycythemia due to EPO receptor mutation MONDO:0007572 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12449 | EPOR | Bryony Thompson reviewed gene: EPOR: Rating: GREEN; Mode of pathogenicity: Other; Publications: 8506290, 11559951, 17488692, 18492694, 30507031; Phenotypes: primary familial polycythemia due to EPO receptor mutation MONDO:0007572; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12402 | TSPAN7 | Manny Jacobs reviewed gene: TSPAN7: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 10449641, 12070254, 10655063, 25081361; Phenotypes: Intellectual developmental disorder, X-linked 58, MIM #300210, MONDO:0010266; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12380 | SLC5A2 | Zornitza Stark Mode of inheritance for gene: SLC5A2 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12379 | SLC5A2 | Zornitza Stark reviewed gene: SLC5A2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Renal glucosuria, MIM# 233100; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12298 | TIA1 | Zornitza Stark Mode of inheritance for gene: TIA1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12295 | TIA1 | Zornitza Stark reviewed gene: TIA1: Rating: AMBER; Mode of pathogenicity: None; Publications: 29235362, 29886022, 29773329, 29699721, 29216908, 24659297, 29457785, 28817800, 23401021, 23401021; Phenotypes: Amyotrophic lateral sclerosis 26 with or without frontotemporal dementia, MIM# 619133, Welander distal myopathy (MIM#604454); Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12287 | RBMX |
Zornitza Stark gene: RBMX was added gene: RBMX was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: RBMX was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: RBMX were set to 25256757; 34260915 Phenotypes for gene: RBMX were set to Intellectual developmental disorder, syndromic 11, Shashi type, MIM#300238 Review for gene: RBMX was set to AMBER Added comment: Hemizygous truncating variant reported segregating in multiple affected individuals in a single family. Some supportive functional data. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12277 | THRB | Zornitza Stark Mode of inheritance for gene: THRB was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12276 | THRB | Zornitza Stark reviewed gene: THRB: Rating: GREEN; Mode of pathogenicity: None; Publications: 25135573, 31590893; Phenotypes: Thyroid hormone resistance, MIM# 188570, Thyroid hormone resistance, autosomal recessive, MIM# 274300, Thyroid hormone resistance, selective pituitary, MIM# 145650; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12259 | EDNRB | Bryony Thompson Mode of inheritance for gene: EDNRB was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12258 | EDNRB | Bryony Thompson reviewed gene: EDNRB: Rating: GREEN; Mode of pathogenicity: None; Publications: 28502583, 25852447, 21373256, 16237557, 11773966, 11891690, 8001158, 10528251, 10528251, 19764031, 28236341; Phenotypes: Waardenburg syndrome type 4A (MONDO:0010192); Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12256 | OTC | Zornitza Stark Mode of inheritance for gene: OTC was changed from X-LINKED: hemizygous mutation in males, biallelic mutations in females to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12254 | OTC | Zornitza Stark Mode of inheritance for gene: OTC was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12238 | OPN1MW | Zornitza Stark Mode of inheritance for gene: OPN1MW was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12232 | OPN1LW | Zornitza Stark Mode of inheritance for gene: OPN1LW was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12228 | SERPINA6 | Zornitza Stark Mode of inheritance for gene: SERPINA6 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12224 | OTC | Krithika Murali reviewed gene: OTC: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Ornithine transcarbamylase deficiency - MIM#311250; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12224 | OPN1MW | Krithika Murali reviewed gene: OPN1MW: Rating: AMBER; Mode of pathogenicity: None; Publications: 25168334, 32860923; Phenotypes: Blue cone monochromacy - MIM#303700, Colorblindness, deutan - MIM#303800; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12224 | OPN1LW | Krithika Murali reviewed gene: OPN1LW: Rating: AMBER; Mode of pathogenicity: None; Publications: 25168334, 32860923; Phenotypes: Blue cone monochromacy - MIM#303700, Colorblindness, protan - MIM#303900; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12224 | SERPINA6 | Samantha Ayres reviewed gene: SERPINA6: Rating: GREEN; Mode of pathogenicity: None; Publications: 11502797, 27214312, 21795453, 34308089, 22013108; Phenotypes: Corticosteroid-binding globulin deficiency, MIM#611489, Corticosteroid-binding globulin deficiency, MONDO#0012675; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12224 | SERPINA1 |
Samantha Ayres changed review comment from: Well established gene-disease relationship Rated as C by babyseq due to low penetrance in childhood. Can cause hepatic dysfunction in infancy. Identification would prevent further investigation and potentially lead to optimising respiratory health due to adult onset respiratory involvement.; to: Well established gene-disease relationship Rated as C by babyseq due to low penetrance in childhood. Can cause hepatic dysfunction in infancy. Identification would prevent further investigation and potentially lead to optimising respiratory health due to adult onset respiratory involvement. MUTATIONAL & CLINICAL SPECTRUM ZZ genotype: 2% have severe, neonatal/early-onset liver disease (potentially fatal/requiring liver transplantation), up to 6% have childhood onset liver disease. Also associated with adult-onset lung disease particularly emphysema (50%+ penetrance) - smoking is an important risk factor (close to 100% penetrance). TREATMENT There is no specific treatment for liver disease beyond transplant. There is treatment (AAT augmentation therapy) available to delay progression of lung disease phenotype. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12136 | CASK | Ain Roesley Mode of inheritance for gene: CASK was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12134 | CASK | Ain Roesley reviewed gene: CASK: Rating: GREEN; Mode of pathogenicity: None; Publications: 24278995; Phenotypes: FG syndrome 4 MIM#300422, Intellectual developmental disorder and microcephaly with pontine and cerebellar hypoplasia MIM#300749, Mental retardation, with or without nystagmus MIM#300422; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12110 | SEMA3A | Zornitza Stark Mode of inheritance for gene: SEMA3A was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12100 | CACNA1F | Ain Roesley Mode of inheritance for gene: CACNA1F was changed from X-LINKED: hemizygous mutation in males, biallelic mutations in females to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12099 | CACNA1F | Ain Roesley Mode of inheritance for gene: CACNA1F was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12097 | CACNA1F | Ain Roesley reviewed gene: CACNA1F: Rating: GREEN; Mode of pathogenicity: None; Publications: 17525176, 16505158, 23776498, 24124559, 26075273, 25999675; Phenotypes: Aland Island eye disease MIM#300600, Cone-rod dystrophy, X-linked, 3 MIM#300476, Night blindness, congenital stationary (incomplete), 2A, X-linked MIM#300071; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12066 | SEMA3A | Samantha Ayres reviewed gene: SEMA3A: Rating: GREEN; Mode of pathogenicity: None; Publications: 28075028, 33369061, 20301509, 21059704, 24124006, 22927827; Phenotypes: Hypogonadotropic hypogonadism 16 with or without anosmia - MIM#614897, congenital heart disease, short stature; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12007 | SMS | Zornitza Stark Mode of inheritance for gene: SMS was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12006 | SMS | Zornitza Stark reviewed gene: SMS: Rating: GREEN; Mode of pathogenicity: None; Publications: 30237987, 34177437, 32838743, 23805436; Phenotypes: Intellectual developmental disorder, X-linked syndromic, Snyder-Robinson type, MIM# 309583, Syndromic X-linked intellectual disability Snyder type, MONDO:0010664; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11942 | TAZ | Zornitza Stark Mode of inheritance for gene: TAZ was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11941 | TAZ | Zornitza Stark reviewed gene: TAZ: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Barth syndrome, MIM# 302060; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11902 | L1CAM | Zornitza Stark reviewed gene: L1CAM: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Hydrocephalus due to aqueductal stenosis, MIM# 307000, Corpus callosum, partial agenesis of, MIM# 304100; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11901 | L1CAM | Zornitza Stark Mode of inheritance for gene: L1CAM was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11885 | NONO | Zornitza Stark Mode of inheritance for gene: NONO was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11867 | LAS1L | Alison Yeung Mode of inheritance for gene: LAS1L was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11865 | LAS1L | Alison Yeung reviewed gene: LAS1L: Rating: GREEN; Mode of pathogenicity: None; Publications: 25644381, 34653234, 25644381; Phenotypes: Wilson-Turner syndrome, MIM# 309585; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11863 | L1CAM | Alison Yeung reviewed gene: L1CAM: Rating: GREEN; Mode of pathogenicity: None; Publications: 11438988, 7920660, 8401593, 19565280; Phenotypes: Hydrocephalus due to aqueductal stenosis, MIM# 307000, MASA syndrome, MIM# 303350; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11860 | NONO | Krithika Murali reviewed gene: NONO: Rating: GREEN; Mode of pathogenicity: None; Publications: 26571461, 27329731, 27550220; Phenotypes: Intellectual developmental disorder, X-linked syndromic 34 - MIM#300967; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11847 | STS | Zornitza Stark Mode of inheritance for gene: STS was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11837 | NLGN3 | Zornitza Stark Mode of inheritance for gene: NLGN3 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11826 | NHS | Zornitza Stark Mode of inheritance for gene: NHS was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11817 | NEXN | Zornitza Stark Mode of inheritance for gene: NEXN was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11792 | NLGN3 | Krithika Murali reviewed gene: NLGN3: Rating: ; Mode of pathogenicity: None; Publications: 28584888, 12669065, 25167861; Phenotypes: {Asperger syndrome susceptibility, X-linked 1} - MIM#300494, {Autism susceptibility, X-linked 1} - MIM#300425; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11792 | NHS | Krithika Murali reviewed gene: NHS: Rating: GREEN; Mode of pathogenicity: None; Publications: 31755796, 25266737; Phenotypes: Nance-Horan syndrome - MIM#302350, Cataract 40, X-linked - MIM#302200; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11792 | NEXN | Krithika Murali reviewed gene: NEXN: Rating: GREEN; Mode of pathogenicity: None; Publications: 33947203, 33949776, 35166435, 32058062; Phenotypes: Lethal fetal cardiomyopathy, Hydrops fetalis, Cardiomyopathy, dilated 1CC - MIM#613122; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11706 | WAS | Zornitza Stark Mode of inheritance for gene: WAS was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11705 | WAS | Zornitza Stark reviewed gene: WAS: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Wiskott-Aldrich syndrome, MIM# 301000, Thrombocytopaenia, X-linked, MIM# 313900, Neutropenia, severe congenital, X-linked , MIM#300299; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11705 | WAS | Abhijit Kulkarni reviewed gene: WAS: Rating: GREEN; Mode of pathogenicity: None; Publications: 30969660, 34307257, 20301357; Phenotypes: Congenital Neutropenia, Throbocytopenia, Immunodefeciency, Eczema; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11680 | USH2A |
Belinda Chong edited their review of gene: USH2A: Added comment: Well established gene-disease association - Usher syndrome, DEFINITIVE by ClinGen. PMID 20507924: Screened the long isoform of USH2A in 80 patients with nonsyndromic autosomal recessive RP and identified at least 1 deleterious mutation in 19% of cases. The authors stated that their findings supported USH2A as the most common known cause of RP in the United States. https://www.ncbi.nlm.nih.gov/books/NBK1341/, PMID 17296898, ClinVar Reports of cosegregation of Usher Syndrome and Retinitis Pigmentosa; Changed rating: GREEN; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11665 | UCP3 |
Belinda Chong changed review comment from: Inheritance: Autosomal dominant, autosomal recessive and multifactorial PMID: 21544083 Identified four novel mutations in the UCP3 gene (V56M, A111V, V192I and Q252X) in 200 children with severe, early-onset obesity (body mass index-standard deviation score >2.5; onset: <4 years) living in Southern Italy. Indicated that protein UCP3 affects long-chain fatty acid metabolism and can prevent cytosolic triglyceride storage. Also suggested that telmisartan, which increases fatty acid oxidation in rat skeletal muscle, also improves UCP3 wt and mutant protein activity, including the dominant-negative UCP3 mutants (V56M & Q252X). All variants are present in GnomAD there are 56 - V56M, 325 - A111V, 9 - V192I and 2 - A252X; to: Inheritance: Autosomal dominant, autosomal recessive and multifactorial PMID: 21544083 Identified four novel mutations in the UCP3 gene (V56M, A111V, V192I and Q252X) in 200 children with severe, early-onset obesity (body mass index-standard deviation score >2.5; onset: <4 years) living in Southern Italy. Indicated that protein UCP3 affects long-chain fatty acid metabolism and can prevent cytosolic triglyceride storage. Also suggested that telmisartan, which increases fatty acid oxidation in rat skeletal muscle, also improves UCP3 wt and mutant protein activity, including the dominant-negative UCP3 mutants (V56M & Q252X). Single pathogenic variant in ClinVar All variants are present in GnomAD there are 56 - V56M, 325 - A111V, 9 - V192I and 2 - A252X |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11665 | UROD | Belinda Chong reviewed gene: UROD: Rating: GREEN; Mode of pathogenicity: None; Publications: 23545314, 30514647, 9792863; Phenotypes: Porphyria cutanea tarda, Porphyria, hepatoerythropoietic (MIM#176100); Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11607 | SLC6A8 | Zornitza Stark Mode of inheritance for gene: SLC6A8 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11601 | VMA21 | Zornitza Stark Mode of inheritance for gene: VMA21 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11600 | VMA21 | Zornitza Stark reviewed gene: VMA21: Rating: GREEN; Mode of pathogenicity: None; Publications: 27916343, 25809233, 23315026; Phenotypes: Myopathy, X-linked, with excessive autophagy, MIM# 310440; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11551 | EDARADD | Bryony Thompson Mode of inheritance for gene: EDARADD was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11550 | EDARADD | Bryony Thompson reviewed gene: EDARADD: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301291, 34219261, 11780064, 26991760, 34573371, 20979233, 17354266, 26440664; Phenotypes: autosomal dominant hypohidrotic ectodermal dysplasia MONDO:0015884, autosomal recessive hypohidrotic ectodermal dysplasia MONDO:0016619; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11548 | EDAR | Bryony Thompson Mode of inheritance for gene: EDAR was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11547 | EDAR | Bryony Thompson reviewed gene: EDAR: Rating: GREEN; Mode of pathogenicity: None; Publications: 10431241, 20301291, 16435307, 20979233, 23401279, 18384562; Phenotypes: autosomal dominant hypohidrotic ectodermal dysplasia MONDO:0015884, autosomal recessive hypohidrotic ectodermal dysplasia MONDO:0016619; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11536 | IKBKG | Zornitza Stark Mode of inheritance for gene: IKBKG was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11535 | IKBKG | Zornitza Stark reviewed gene: IKBKG: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Ectodermal dysplasia and immunodeficiency 1, MIM# 300291, Immunodeficiency 33 , MIM#300636, Incontinentia pigmenti, MIM# 308300; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11361 | C1GALT1C1 | Ain Roesley Mode of inheritance for gene: C1GALT1C1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11360 | C1GALT1C1 | Ain Roesley reviewed gene: C1GALT1C1: Rating: GREEN; Mode of pathogenicity: None; Publications: 18537974, 16251947; Phenotypes: Tn polyagglutination syndrome, somatic MIM#300622; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11333 | KCNE5 | Zornitza Stark Mode of inheritance for gene: KCNE5 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11331 | KCNE5 | Zornitza Stark reviewed gene: KCNE5: Rating: RED; Mode of pathogenicity: None; Publications: 18313602, 16054468, 30289750; Phenotypes: Atrial fibrillation; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11308 | EDA | Bryony Thompson Mode of inheritance for gene: EDA was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11307 | EDA | Bryony Thompson reviewed gene: EDA: Rating: GREEN; Mode of pathogenicity: None; Publications: 27144394, 8696334, 9507389, 9683615, 18657636; Phenotypes: Ectodermal dysplasia 1, hypohidrotic, X-linked MIM#305100, Tooth agenesis, selective, X-linked 1 MIM#313500; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11163 | JAG1 |
Zornitza Stark changed review comment from: Two unrelated families reported with CMT type 2. Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Pre-existing rat model. Sources: Literature; to: Association with Alagille is very well established. Two unrelated families reported with CMT type 2. Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Pre-existing rat model. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11122 | XIAP | Zornitza Stark Mode of inheritance for gene: XIAP was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11121 | XIAP | Zornitza Stark reviewed gene: XIAP: Rating: GREEN; Mode of pathogenicity: None; Publications: 22228567, 25943627; Phenotypes: Lymphoproliferative syndrome, X-linked, 2, MIM# 300635; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11095 | NRCAM |
Ee Ming Wong gene: NRCAM was added gene: NRCAM was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NRCAM was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NRCAM were set to PMID: 35108495 Phenotypes for gene: NRCAM were set to neurodevelopmental disorder, MONDO:0700092 Penetrance for gene: NRCAM were set to unknown Review for gene: NRCAM was set to GREEN gene: NRCAM was marked as current diagnostic Added comment: -Ten individuals from 8 families with developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity. - Affected individuals are biallelic for missense and/or LoF variants which are mainly in the fibronectin type III (Fn-III) domain - Zebrafish mutants lacking the third Fn-III domain displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03) and a trend toward increased amounts of alpha-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11071 | CDX2 | Chirag Patel edited their review of gene: CDX2: Added comment: 9 families, with heterozygous variants identified with WES, presenting with congenital abnormalities affecting the development of the anus, the renal and urogenital system, the vertebrae and/or the limbs in varying sequences and severity (incl. sirenomelia and persistent cloaca). A recurrent pathogenic missense variant in the HOX domain of the protein p.(Arg237His) was found in 3 unrelated families. In the mouse cdx2 is essential for anteroposterior patterning of embryonal axis and morphogenesis of cloacal structures. Cdx2 heterozygous conditional mutant mice show a variable phenotype (including imperforate anus, sirenomelia, posterior vertebral truncations, and bladder anomalies).; Changed rating: GREEN; Changed publications: PMID: 29177441, 34671974; Changed phenotypes: Congenital abnormalities of anus, renal and urogenital system, vertebrae and/or the limbs; Set current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11040 | C17orf53 |
Zornitza Stark gene: C17orf53 was added gene: C17orf53 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: C17orf53 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: C17orf53 were set to 34707299; 31467087 Phenotypes for gene: C17orf53 were set to Primary ovarian insufficiency Review for gene: C17orf53 was set to AMBER Added comment: PMID: 34707299. Homozygous LOF variant in individual with primary ovarian insufficiency PMID: 31467087. Mice with targeted mutations in Hrob are infertile due to depletion of germ cells. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11012 | SERPINA7 | Zornitza Stark Mode of inheritance for gene: SERPINA7 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11004 | SERPINA7 | Paul De Fazio reviewed gene: SERPINA7: Rating: GREEN; Mode of pathogenicity: None; Publications: 34126618, 32266677, 17887925, 28553659, 29733970, 16947003; Phenotypes: Thyroxine-binding globulin QTL MIM#300932, Thyroxine-binding globulin deficiency; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10984 | TBX4 | Zornitza Stark Mode of inheritance for gene: TBX4 was changed from BOTH monoallelic and biallelic, autosomal or pseudoautosomal to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10983 | TBX4 | Zornitza Stark edited their review of gene: TBX4: Changed mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10970 | FTSJ1 | Zornitza Stark Mode of inheritance for gene: FTSJ1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10960 | SYP | Zornitza Stark Mode of inheritance for gene: SYP was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10954 | ZDHHC9 | Zornitza Stark Mode of inheritance for gene: ZDHHC9 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10953 | FTSJ1 | Ain Roesley reviewed gene: FTSJ1: Rating: GREEN; Mode of pathogenicity: None; Publications: 15342698, 18081026, 15162322, 26310293; Phenotypes: Intellectual developmental disorder, X-linked 9 MIM#309549; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10953 | ZDHHC9 | Ain Roesley reviewed gene: ZDHHC9: Rating: GREEN; Mode of pathogenicity: None; Publications: 26000327, 29681091; Phenotypes: Mental retardation, X-linked syndromic, Raymond typeMIM# 300799; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10944 | GSPT2 |
Zornitza Stark gene: GSPT2 was added gene: GSPT2 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: GSPT2 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: GSPT2 were set to 28414775 Phenotypes for gene: GSPT2 were set to Intellectual disability Review for gene: GSPT2 was set to RED Added comment: Gene is contained in multi-gene deletions linked to ID. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10936 | RAB39B | Zornitza Stark Mode of inheritance for gene: RAB39B was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10933 | PTCHD1 | Zornitza Stark Mode of inheritance for gene: PTCHD1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10927 | PLP1 | Zornitza Stark Mode of inheritance for gene: PLP1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10923 | RAB39B | Ain Roesley reviewed gene: RAB39B: Rating: GREEN; Mode of pathogenicity: None; Publications: 34761259, 20159109, 25434005, 27066548, 26399558, 27943471, 28851564, 28851564, 29152164, 33880059, 27448726, 32670181; Phenotypes: Intellectual developmental disorder, X-linked 72 MIM#300271, Waisman syndrome MIM#311510; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10923 | PTCHD1 | Ain Roesley reviewed gene: PTCHD1: Rating: GREEN; Mode of pathogenicity: None; Publications: 33856728, 25131214; Phenotypes: intellectual disability MIM#300830; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10923 | PPP3CA |
Chern Lim changed review comment from: PMID: 29432562: - Overexpression studies using yeast showed missense variants in the autoinhibitory domain resulted in gain of function, missense variants in the catalytic domain resulted in loss of function (however dom-neg has not been ruled out). - Loss-of-function and gain-of-function mutations of PPP3CA lead to early onset epileptic encephalopathy and multiple congenital abnormalities, respectively. PMID: 32593294: - Reported a patient with PTV in the C-term predicted to escape NMD, clinical features consistent with MIM#617711. - Summarised that missense variants in catalytic domain and those upstream of autoinhibitory domain, PTVs in C-term predicted to escape NMD: LoF, MIM#617711. Missense in autoinhibitory domain: GoF, MIM#618265.; to: PMID: 29432562: - Overexpression studies using yeast showed missense variants in the autoinhibitory domain resulted in gain of function, missense variants in the catalytic domain resulted in loss of function (however dom-neg has not been ruled out). - Loss-of-function and gain-of-function mutations of PPP3CA lead to early onset epileptic encephalopathy and multiple congenital abnormalities, respectively. PMID: 32593294: - Reported a patient with PTV in the C-term predicted to escape NMD, clinical features consistent with MIM#617711. - 15 variants have been reported. Summarised that missense variants in catalytic domain and those upstream of autoinhibitory domain, PTVs in C-term predicted to escape NMD: LoF, MIM#617711; missense in autoinhibitory domain: GoF, MIM#618265. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10923 | PLP1 | Ain Roesley reviewed gene: PLP1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301361; Phenotypes: Pelizaeus-Merzbacher disease MIM#312080, Spastic paraplegia 2, X-linked MIM#312920; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10915 | ABCB4 | Zornitza Stark Mode of inheritance for gene: ABCB4 was changed from BIALLELIC, autosomal or pseudoautosomal to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10913 | ABCB4 | Lucy Spencer reviewed gene: ABCB4: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 18482588, 28924228, 32376413; Phenotypes: Cholestasis, intrahepatic, of pregnancy, 3 (MIM#614972), Gallbladder disease 1 (MIM#600803); Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10849 | COL4A6 | Lucy Spencer reviewed gene: COL4A6: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 33840813; Phenotypes: Hearing loss; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10830 | NDUFA1 | Zornitza Stark Mode of inheritance for gene: NDUFA1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10812 | NDUFA1 | Ain Roesley reviewed gene: NDUFA1: Rating: GREEN; Mode of pathogenicity: None; Publications: 29506883, 19185523, 17262856, 21596602; Phenotypes: Mitochondrial complex I deficiency, nuclear type 12 MIM#301020; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10793 | CHP1 |
Zornitza Stark gene: CHP1 was added gene: CHP1 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: CHP1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CHP1 were set to 29379881; 32787936 Phenotypes for gene: CHP1 were set to Spastic ataxia 9, autosomal recessive, MIM #618438 Review for gene: CHP1 was set to GREEN Added comment: 2 different consanguineous families with 2 affected siblings with ataxia (1 paediatric onset, 1 adult onset). 3 of the patients had cerebellar atrophy. WES identified homozygous variants in CHP1 gene in both families (K19del and Arg91Cys), which segregated with the disorder in the family. Decreased CHP1 protein on IHC of cerebellar tissue in family with Arg91Cys variant. In vitro functional expression studies in HEK293 cells showed that the K19del mutation resulted in decreased protein expression, with normal levels of transcript, suggesting defects in protein stability. The mutant protein formed massive protein aggregates in transfected neuronal cell bodies and neurite-like projections, whereas the wildtype protein showed a more uniform distribution. The mutant protein altered CHP1 association into functional complexes and impaired membrane localization of the Na+/H+ transporter NHE1. The findings indicated that the CHP1 mutation likely causes ataxia in an NHE1-dependent manner, resembling the mechanism observed in the Chp1 vacillator mutant mouse. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10766 | GDI1 | Zornitza Stark Mode of inheritance for gene: GDI1 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10754 | GDI1 | Ain Roesley reviewed gene: GDI1: Rating: GREEN; Mode of pathogenicity: None; Publications: 28863211, 22002931, 9620768, 9668174; Phenotypes: Intellectual developmental disorder, X-linked 41 MIM#300849; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10752 | ANGPT2 | Zornitza Stark Mode of inheritance for gene: ANGPT2 was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10751 | ANGPT2 | Zornitza Stark edited their review of gene: ANGPT2: Added comment: Bi-allelic disease PMID 34876502: single family reported with four fetuses with hydrops fetalis homozygous for ANGPT2 NM_001147.2:c.557A>G. The consanguineous parents and surviving sibblings (a girl and a boy), were heterozygous for this variant. This variant is predicted to create a cryptic exonic splice site, resulting in a r.557_566del and nonsense-mediated mRNA decay. This prediction was supported by the lack of a transcript from this allele in the parents.; Changed publications: 32908006, 34876502; Changed phenotypes: Lymphatic malformation-10, MIM#619369, Primary lymphoedema, Hydrops; Changed mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10714 | MYPN | Zornitza Stark Mode of inheritance for gene: MYPN was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10693 | SYN1 | Zornitza Stark Mode of inheritance for gene: SYN1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10692 | SYN1 | Zornitza Stark reviewed gene: SYN1: Rating: GREEN; Mode of pathogenicity: None; Publications: 14985377, 21441247, 28973667, 21441247, 34243774; Phenotypes: Epilepsy, X-linked, with variable learning disabilities and behaviour disorders, MIM# 300491, Intellectual developmental disorder, X-linked 50, MIM# 300115; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10680 | OTUD6B | Zornitza Stark changed review comment from: IDDFSDA is a severe multisystem disorder characterized by global developmental delay, microcephaly, absent speech, hypotonia, growth retardation with prenatal onset, feeding difficulties, structural brain abnormalities, congenital malformations including congenital heart disease, and musculoskeletal features. In 2017, 12 patients from 6 unrelated families with IDDFSDA identified with 4 homozygous mutations in the OTUD6B gene (WES and Sanger, and segregated with the disorder in the families). Other cases reported since. Suitable for fetal anomalies panel.; to: IDDFSDA is a severe multisystem disorder characterized by global developmental delay, microcephaly, absent speech, hypotonia, growth retardation with prenatal onset, feeding difficulties, structural brain abnormalities, congenital malformations including congenital heart disease, and musculoskeletal features. In 2017, 12 patients from 6 unrelated families with IDDFSDA identified with 4 homozygous mutations in the OTUD6B gene (WES and Sanger, and segregated with the disorder in the families). Other cases reported since. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10641 | TBX22 | Zornitza Stark Mode of inheritance for gene: TBX22 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10640 | TBX22 | Zornitza Stark reviewed gene: TBX22: Rating: GREEN; Mode of pathogenicity: None; Publications: 11559848, 12374769, 14729838, 17868388, 22784330, 22784330; Phenotypes: Cleft palate with ankyloglossia, MIM# 303400, Abruzzo-Erickson syndrome, MIM# 302905; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10640 | MYPN | Ain Roesley reviewed gene: MYPN: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Nemaline myopathy 11, autosomal recessive MIM#617336 AR, cardiomyopathy MIM#615248 AD; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10633 | DLX5 |
Zornitza Stark changed review comment from: A homozygous missense mutation (Q178P) was identified in 2 affected sisters from a consanguineous Yemeni family with split-hand/foot malformation and hearing loss, who had no detectable chromosomal aberration, Shamseldin et al. (2012). A heterozygosity missense mutation (Q186H) was identified in a 31-year-old Chinese woman with SHFM, Wang et al. (2014). A heterozygosity nonsense mutationIn (E39X) was identified in the probands from 2 unrelated Polish families with isolated SHFM, Sowinska-Seidler et al. (2014). Animal model evidence - mouse; to: A homozygous missense mutation (Q178P) was identified in 2 affected sisters from a consanguineous Yemeni family with split-hand/foot malformation and hearing loss, who had no detectable chromosomal aberration, Shamseldin et al. (2012). A heterozygosity missense mutation (Q186H) was identified in a 31-year-old Chinese woman with SHFM, Wang et al. (2014). A heterozygosity nonsense mutationIn (E39X) was identified in the probands from 2 unrelated Polish families with isolated SHFM, Sowinska-Seidler et al. (2014). Animal model evidence - mouse Green for mono-allelic, Amber for bi-allelic. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10628 | GPC3 | Zornitza Stark Mode of inheritance for gene: GPC3 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10627 | GPC3 | Zornitza Stark reviewed gene: GPC3: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Simpson-Golabi-Behmel syndrome, type 1, MIM# 312870; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10609 | MAMLD1 | Zornitza Stark Mode of inheritance for gene: MAMLD1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10608 | MAMLD1 | Zornitza Stark reviewed gene: MAMLD1: Rating: GREEN; Mode of pathogenicity: None; Publications: 26815876, 31555317, 32690052; Phenotypes: Hypospadias 2 (MIM#300758); Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10591 | HNRNPH2 | Zornitza Stark Mode of inheritance for gene: HNRNPH2 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10573 | INPP5K |
Ain Roesley changed review comment from: At least 20 probands reported thus far. Noted that Val23Met is an Italian founder mutation and Ile50thr is a Paskitani/Bangladeshi founder; to: At least 20 probands reported thus far. Noted that Val23Met is an Italian founder mutation and Ile50thr is a Pakistani/Bangladeshi founder |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10573 | INPP5K |
Ain Roesley changed review comment from: At least 20 probands reported thus far. Noted that Val23Met is an Italian founder mutation; to: At least 20 probands reported thus far. Noted that Val23Met is an Italian founder mutation and Ile50thr is a Paskitani/Bangladeshi founder |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10570 | HNRNPH2 | Ain Roesley reviewed gene: HNRNPH2: Rating: GREEN; Mode of pathogenicity: None; Publications: 34907471, 33728377, 31670473, 31236915, 30887513; Phenotypes: Intellectual developmental disorder, X-linked, syndromic, Bain type MIM#300986; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10552 | NAA10 | Ain Roesley reviewed gene: NAA10: Rating: GREEN; Mode of pathogenicity: None; Publications: 34075687, 21700266; Phenotypes: Ogden syndrome MIM#300855; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10520 | PDK3 | Zornitza Stark Mode of inheritance for gene: PDK3 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10500 | DSG1 | Zornitza Stark Mode of inheritance for gene: DSG1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10481 | FREM1 | Zornitza Stark Mode of inheritance for gene: FREM1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10480 | FREM1 | Zornitza Stark reviewed gene: FREM1: Rating: GREEN; Mode of pathogenicity: None; Publications: 32016392, 21931569, 21507892, 19732862, 20301721, 28111185; Phenotypes: Manitoba oculotrichoanal syndrome 248450, Bifid nose with or without anorectal and renal anomalies, MIM# 608980, Trigonocephaly 2, MIM# 614485; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10473 | FOXP3 | Zornitza Stark Mode of inheritance for gene: FOXP3 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10472 | FOXP3 | Zornitza Stark reviewed gene: FOXP3: Rating: GREEN; Mode of pathogenicity: None; Publications: 11295725, 11137993, 33668198, 33614561, 33330291, 32234571; Phenotypes: Immunodysregulation, polyendocrinopathy, and enteropathy, X-linked, 304790; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10464 | GRM1 | Zornitza Stark Mode of inheritance for gene: GRM1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10449 | GRM1 | Ain Roesley reviewed gene: GRM1: Rating: GREEN; Mode of pathogenicity: None; Publications: 22901947, 26308914, 31319223; Phenotypes: Spinocerebellar ataxia 44 MIM#617691, Spinocerebellar ataxia, autosomal recessive 13 MIM#614831; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10448 | GPKOW |
Ain Roesley gene: GPKOW was added gene: GPKOW was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GPKOW was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: GPKOW were set to 28612833 Phenotypes for gene: GPKOW were set to male-lethal microcephaly with intrauterine growth restriction Penetrance for gene: GPKOW were set to unknown Review for gene: GPKOW was set to RED gene: GPKOW was marked as current diagnostic Added comment: - multi-generational family with 5 deceased males (only 1 genotyped) - X-exome sequencing identified NM_015698.4:c.331+5G>A, which segregated through the obligate carriers - RNA from female carriers confirmed splicing defects, which leads to NMD no additional reports since Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10405 | BRWD3 | Zornitza Stark Mode of inheritance for gene: BRWD3 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10404 | BRWD3 | Zornitza Stark reviewed gene: BRWD3: Rating: GREEN; Mode of pathogenicity: None; Publications: 17668385, 30628072, 24462886; Phenotypes: Intellectual developmental disorder, X-linked 93, MIM # 300659; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10389 | ATP8B1 | Zornitza Stark edited their review of gene: ATP8B1: Changed mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10389 | ATP8B1 | Zornitza Stark Mode of inheritance for gene: ATP8B1 was changed from BIALLELIC, autosomal or pseudoautosomal to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10383 | RNF213 | Zornitza Stark Mode of inheritance for gene: RNF213 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10369 | RNF213 | Ain Roesley reviewed gene: RNF213: Rating: GREEN; Mode of pathogenicity: None; Publications: 28635953; Phenotypes: usceptibility to Moyamoya disease 2, (MIM# 607151); Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10359 | CSTF2 |
Zornitza Stark gene: CSTF2 was added gene: CSTF2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CSTF2 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: CSTF2 were set to 32816001 Phenotypes for gene: CSTF2 were set to Intellectual disability Review for gene: CSTF2 was set to AMBER Added comment: Four individuals from a single family, spanning two generations, segregating a missense variant. Functional data, including a mouse model and a gene reporter assay. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10257 | MIB1 |
Chern Lim changed review comment from: Luxan 2013 (PMID: 23314057): - V943F, seg with LVNC in 1 fam, (gnomADv2: 43 hets). - R530X, seg with LVNC in 1 fam, (gv2: 13 hets). Li 2018 (PMID: 30322850): - in 4 CHD patients: p.Q237H (gv2v3 absent), p.W271G (gv2v3 absent), p.S520R (v2 5 hets) and p.T312Kfs*55 (NMD-pred, absent but many comparables in gnomAD). - HEK293T cells transfection studies showed: T312Kfs*55 and W271G strongly impaired MIB1 function on substrate ubiquitination, while Q237H and S520R had slight or no obvious changes. Interaction between MIB1 and JAG1 is severely interrupted by p.T312Kfs*55 and p.W271G, but not really in the other 2 missense. - Overexpression of wt or mutant in zebrafish all resulted in dysmorphic pheno, therefore not informative. DCM-association = none by Clingen (9/4/2020), ref Luxan 2013 and other pprs, and mentioned gnomAD had too many LoF variants. De Ligt 2012 (PMID: 23033978): de novo R174H (gnomADv2: 7 hets), indvl with severe ID who also has a de novo R47* in WAC (an AD ID gene with LoF established, variant is P in ClinVar), no other pt-specific pheno provided. Kaplanis 2021 (PMID: 33057194): Developmental disorders paper. - 2 missense variants, de novo: 18-19383967-G-A (p.Glu491Lys, gv2 1 het, gv3 absent, GeneDx), 18-19378124-C-T (Thr391Ile, gv2v3 absent, DDD, de novo, no mention of heart pheno). - Of 6 PTVs, 4 had at least 10 hets each in gnomADv2.; to: Luxan 2013 (PMID: 23314057): - V943F, seg with LVNC in 1 fam, (gnomADv2: 43 hets). - R530X, seg with LVNC in 1 fam, (gv2: 13 hets). Li 2018 (PMID: 30322850): - in 4 CHD patients: p.Q237H (gv2v3 absent), p.W271G (gv2v3 absent), p.S520R (v2 5 hets) and p.T312Kfs*55 (NMD-pred, absent but many comparables in gnomAD). - HEK293T cells transfection studies showed: T312Kfs*55 and W271G strongly impaired MIB1 function on substrate ubiquitination, while Q237H and S520R had slight or no obvious changes. Interaction between MIB1 and JAG1 is severely interrupted by p.T312Kfs*55 and p.W271G, but not really in the other 2 missense. - Overexpression of wt or mutant in zebrafish all resulted in dysmorphic pheno, therefore not informative. DCM-association = none by Clingen (9/4/2020), ref Luxan 2013 and other pprs, and mentioned gnomAD had too many LoF variants. De Ligt 2012 (PMID: 23033978): de novo R174H (gnomADv2: 7 hets), indvl with severe ID who also has a de novo R47* in WAC (an AD ID gene with LoF established, variant is P in ClinVar), no other pt-specific pheno provided. Kaplanis 2021 (PMID: 33057194): Developmental disorders paper. - 2 missense variants, de novo: 18-19383967-G-A (p.Glu491Lys, gv2 1 het, gv3 absent), 18-19378124-C-T (Thr391Ile, gv2v3 absent, DDD, de novo, no mention of heart pheno). - Of 6 PTVs, 4 had at least 10 hets each in gnomADv2. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10189 | CCDC22 | Zornitza Stark Mode of inheritance for gene: CCDC22 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10188 | CCDC22 | Zornitza Stark reviewed gene: CCDC22: Rating: GREEN; Mode of pathogenicity: None; Publications: 21826058, 24916641, 34020006, 33059814, 31971710; Phenotypes: Ritscher-Schinzel syndrome 2, MIM# 300963; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10175 | CAMK2A | Zornitza Stark Mode of inheritance for gene: CAMK2A was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10174 | CAMK2A | Zornitza Stark reviewed gene: CAMK2A: Rating: GREEN; Mode of pathogenicity: None; Publications: 32600977, 29784083, 29560374; Phenotypes: Mental retardation, autosomal recessive 63 MIM#618095, Mental retardation, autosomal dominant 53 MIM#617798; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10160 | EBP | Zornitza Stark Mode of inheritance for gene: EBP was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10159 | EBP | Zornitza Stark reviewed gene: EBP: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Chondrodysplasia punctata, X-linked dominant MIM#302960, Conradi-Hunermann syndrome, MEND syndrome, MIM#300960; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10100 | MSH5 |
Bryony Thompson changed review comment from: A homozygous missense mutation (p.D487Y) in two sisters with POI. Also, homologous mutation in mice results in atrophic ovaries without oocytes, and in vitro functional study revealed that mutant MSH5 impaired DNA homologous recombination repair. Null mouse model is viable, but sterile. A case with congenital adrenal hyperplasia, ovarian failure and Ehlers-Danlos syndrome had a de novo t(6;14)(p21;q32) translocation, including CYP21A2,TNXB and MSH5. Sources: Literature; to: 4 unrelated male azoospermia cases with 3 different homozygous frameshift/missense variants. A homozygous missense mutation (p.D487Y) in two sisters with POI. Also, homologous mutation in mice results in atrophic ovaries without oocytes, and in vitro functional study revealed that mutant MSH5 impaired DNA homologous recombination repair. Null mouse model is viable, but sterile. A case with congenital adrenal hyperplasia, ovarian failure and Ehlers-Danlos syndrome had a de novo t(6;14)(p21;q32) translocation, including CYP21A2,TNXB and MSH5. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10100 | MSH5 |
Bryony Thompson changed review comment from: A homozygous missense mutation (p.D487Y) in two sisters with POI. Also, homologous mutation in mice results in atrophic ovaries without oocytes, and in vitro functional study revealed that mutant MSH5 impaired DNA homologous recombination repair. Null mouse model is viable, but sterile. A case with congenital adrenal hyperplasia, ovarian failure and Ehlers-Danlos syndrome had a de novo t(6;14)(p21;q32) translocation, including CYP21A2,TNXB and MSH5. Sources: Literature; to: 4 unrelated male azoospermia cases with 3 different homozygous frameshift/missense variants. A homozygous missense mutation (p.D487Y) in two sisters with POI. Also, homologous mutation in mice results in atrophic ovaries without oocytes, and in vitro functional study revealed that mutant MSH5 impaired DNA homologous recombination repair. Null mouse model is viable, but sterile. A case with congenital adrenal hyperplasia, ovarian failure and Ehlers-Danlos syndrome had a de novo t(6;14)(p21;q32) translocation, including CYP21A2,TNXB and MSH5. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10041 | SMPX | Zornitza Stark edited their review of gene: SMPX: Added comment: PMID 33974137: Four different missense variants were identified in ten patients from nine families in five different countries. Haplotype analysis of patients with similar ancestry revealed two different founder mutations in Southern Europe and France, indicating that the prevalence in these populations may be higher. Clinical features: adult-onset, usually distal more than proximal limb muscle weakness, slowly progressing over decades with preserved walking. Lower limb muscle imaging showed a characteristic pattern of muscle involvement and fatty degeneration. Histopathological and electron microscopic analysis of patient muscle biopsies revealed myopathic findings with rimmed vacuoles and the presence of sarcoplasmic inclusions, some with amyloid-like characteristics. In silico predictions and subsequent cell culture studies showed that the missense mutations increase aggregation propensity of the SMPX protein. In cell culture studies, overexpressed SMPX localized to stress granules and slowed down their clearance.; Changed publications: 21549342, 21549336, 21893181, 22911656, 28542515, 33974137; Changed phenotypes: Deafness, X-linked 4, MIM# 300066, Distal myopathy, adult-onset | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10037 | CNKSR2 | Zornitza Stark Mode of inheritance for gene: CNKSR2 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10036 | CNKSR2 | Zornitza Stark reviewed gene: CNKSR2: Rating: GREEN; Mode of pathogenicity: None; Publications: 34266427; Phenotypes: Intellectual developmental disorder, X-linked, syndromic, Houge type, MIM# 301008; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10018 | OGDH |
Zornitza Stark gene: OGDH was added gene: OGDH was added to Mendeliome. Sources: Literature Mode of inheritance for gene: OGDH was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: OGDH were set to 32383294 Phenotypes for gene: OGDH were set to Developmental delay; ataxia; seizure; raised lactate Review for gene: OGDH was set to AMBER Added comment: Two siblings reported with homozygous missense variant in this gene and global developmental delay, elevated lactate, ataxia and seizure. Fibroblast analysis and modeling of the mutation in Drosophila were used to evaluate pathogenicity of the variant. Note previous report of an individual with developmental delay, hypotonia, and movement disorders and metabolic decompensation and biochemical evidence of OGDH deficiency but genetic testing not done. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10017 | FAAH2 |
Ain Roesley gene: FAAH2 was added gene: FAAH2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FAAH2 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: FAAH2 were set to PMID: 34645488 Penetrance for gene: FAAH2 were set to unknown Review for gene: FAAH2 was set to RED gene: FAAH2 was marked as current diagnostic Added comment: PMID: 34645488; - 1x nonsense variant inherited from normal mother - proband presented with a classical Zellweger syndrome phenotype including global developmental delay, seizure disorder, severe hypotonia, failure to thrive, adrenal insufficiency and elevated very long-chain fatty acids and liver enzymes - this variant has 2 hemizygotes in gnomAD PMID: 25885783; - 1x missense inherited from normal mother and absent in normal brother - presented with autistic features, anxiety, pseudoseizures, ataxia, supranuclear gaze palsy, and isolated learning disabilities - biochemical studies on patient fibroblasts confirmed a defect in FAAH2 activity resulting in altered levels of endocannabinoid metabolites. - BUT this variant has 30 hemizygotes in gnomoad Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9997 | PLS3 | Zornitza Stark Mode of inheritance for gene: PLS3 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9996 | PLS3 | Zornitza Stark reviewed gene: PLS3: Rating: GREEN; Mode of pathogenicity: None; Publications: 32655496, 25209159, 29736964, 29884797, 28777485, 24088043; Phenotypes: Bone mineral density QTL18, osteoporosis - MIM#300910; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9974 | EMD | Zornitza Stark Mode of inheritance for gene: EMD was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9970 | EMD | Belinda Chong reviewed gene: EMD: Rating: GREEN; Mode of pathogenicity: None; Publications: 21697856 31802929; Phenotypes: Emery-Dreifuss muscular dystrophy 1, X-linked MIM#310300; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9956 | AMMECR1 | Zornitza Stark Mode of inheritance for gene: AMMECR1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9955 | AMMECR1 | Zornitza Stark reviewed gene: AMMECR1: Rating: GREEN; Mode of pathogenicity: None; Publications: 27811305, 28089922, 29193635; Phenotypes: Midface hypoplasia, hearing impairment, elliptocytosis, and nephrocalcinosis, MIM# 300990; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9932 | BNC1 |
Bryony Thompson gene: BNC1 was added gene: BNC1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: BNC1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: BNC1 were set to 34794894; 30010909; 16624857; 32962729; 32894148; 30689869; 27301361 Phenotypes for gene: BNC1 were set to Premature ovarian failure 16 MIM#618723 Review for gene: BNC1 was set to GREEN Added comment: PMID: 30010909 - a heterozygous frameshift variant segregates with POF in 6 affected females in a Chinese family. A female mouse model of the human Bnc1 frameshift mutation exhibited infertility. PMID: 32962729 - 1 POF case with p.Asp575Val (which has 89 hets in gnomAD v2.1) and 1 POF case with biallelic missense variants (p.Asp568Val & p.Leu525Pro). SCV001364363.1 - 1 POF case submitted by Medical Cytogenetics and Molecular Genetics Laboratory,IRCCS Istituto Auxologico Italiano to ClinVar with NM_001717.4(BNC1):c.2273C>T (p.Thr758Ile) PMID: 32894148, 30689869, 27301361 - large CNVs involving BNC1 reported in POF cases PMID: 16624857 - knockdown of the gene in mouse oocytes lead to subfertility Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9889 | CUL4B | Zornitza Stark Mode of inheritance for gene: CUL4B was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9888 | CUL4B | Zornitza Stark reviewed gene: CUL4B: Rating: GREEN; Mode of pathogenicity: None; Publications: 17236139, 19377476; Phenotypes: Mental retardation, X-linked, syndromic 15 (Cabezas type), MIM# 300354; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9833 | MATN3 | Zornitza Stark Mode of inheritance for gene: MATN3 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9816 | MBTPS2 | Zornitza Stark Mode of inheritance for gene: MBTPS2 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9811 | IHH | Zornitza Stark Mode of inheritance for gene: IHH was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9802 | MID1 | Zornitza Stark Mode of inheritance for gene: MID1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9786 | COX7B | Zornitza Stark Mode of inheritance for gene: COX7B was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9785 | COX7B | Zornitza Stark reviewed gene: COX7B: Rating: GREEN; Mode of pathogenicity: None; Publications: 23122588; Phenotypes: Linear skin defects with multiple congenital anomalies 2, MIM#300887; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9785 | MATN3 | Daniel Flanagan reviewed gene: MATN3: Rating: GREEN; Mode of pathogenicity: None; Publications: 31724101, 32025536, 11968079, 14729835; Phenotypes: Spondyloepimetaphyseal dysplasia, Borochowitz-Cormier-Daire type (MIM#608728), Epiphyseal dysplasia, multiple, 5 (MIM#607078); Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9779 | MBTPS2 | Daniel Flanagan reviewed gene: MBTPS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 27380894, 19361614, 21426410; Phenotypes: Osteogenesis imperfecta, type XIX, (MIM301014), IFAP syndrome with or without BRESHECK syndrome (MIM#308205), Keratosis follicularis spinulosa decalvans, X-linked (MIM#308800), ?Olmsted syndrome, X-linked (MIM#300918); Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9779 | IHH | Ain Roesley reviewed gene: IHH: Rating: GREEN; Mode of pathogenicity: None; Publications: 34530144, 12632327, 32311039, 29155992; Phenotypes: Acrocapitofemoral dysplasia MIM#607778, Brachydactyly, type A1 MIM#112500; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9779 | MID1 | Daniel Flanagan reviewed gene: MID1: Rating: GREEN; Mode of pathogenicity: None; Publications: 1103076, 9354791; Phenotypes: Opitz GBBB syndrome, type I (MIM#300000); Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9776 | NEBL | Bryony Thompson Added comment: Comment on list classification: Limited gene-disease vailidity, Classification - 09/25/2020 by ClinGen Dilated Cardiomyopathy GCEP. Evidence Summary: NEBL was evaluated for autosomal dominant dilated cardiomyopathy (DCM). Human genetic evidence supporting this gene-disease relationship includes case-level data. Arimura and colleagues (2000, PMID: 11140941) analyzed 83 DCM patients and 311 healthy controls, identifying 4 missense variants of unknown significance (VUSs) in 4 DCM cases. High minor allele frequencies (MAFs) and lack of segregation excluded these variants as evidence. Purevjav and colleagues (2010, PMID: 20951326) investigated a total of 260 DCM patients and 300 unrelated ethnic matched controls by direct DNA sequencing. Authors identified 4 missense VUSs. One of these variants (Q128R) was downgraded in level of evidence due to the lack of segregation. The other 3 variants were not scored because of their MAF. Perrot and colleagues (2016, PMID: 27186169) investigated a total of 389 patients with DCM, HCM, or LVNC, 320 Caucasian sex-matched controls and 192 Caucasian sex-matched blood donors and identified 3 missense VUSs in 4 families. One of these variants was also carried by healthy relatives and therefore was excluded, however this may be explained by reduced penetrance. The 2 other variants lacked segregation as well and therefore were also excluded. In addition, this gene-disease association is supported by animal models. Mastronotaro and colleagues (2015, PMID: 25987543) created a NEBL knockout mice that exhibited normal cardiac function up to 9 months of age but after 2 weeks of transaortic constriction (TAC), these mice showed Z-line widening since the age of 5 months and upregulation of cardiac stress genes (basal and after TAC) However, absence of clinical DCM features in KO-NEBL mice as well as Western Blot analysis which contradicted previous findings by showing a similar protein expression between knockout and wild-type mice, excluding it as evidence. Purevjav and colleagues (2010, PMID: 20951326) generated a transgenic mouse overexpressing WT or mutant NEBL under the control of the α-MyHC promoter (4 variants were tested). Mice overexpressing p.K60N or p.Q128R variants died within 1 year because of severe heart enlargement and heart failure. Mice overexpressing p.G202R or p.A592E were born and developed normally but after 6 months displayed reduced stress tolerance, cardiac enlargement due to left ventricle dilation, myocyte disarray, and interstitial cell infiltration. In summary, there is limited evidence to support this gene-disease relationship. More evidence is needed to support the relationship of NEBL and autosomal dominant DCM. This classification was approved by the ClinGen Dilated Cardiomyopathy Working Group on October 11, 2019 (SOP Version 7). Gene Clinical Validity Standard Operating Procedures (SOP) - SOP7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9748 | IL1RAPL1 | Zornitza Stark Mode of inheritance for gene: IL1RAPL1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9737 | IL1RAPL1 | Ain Roesley reviewed gene: IL1RAPL1: Rating: GREEN; Mode of pathogenicity: None; Publications: 34452636, 27470653, 21484992, 18801879, 18801879; Phenotypes: Intellectual developmental disorder, X-linked 21 MIM#300143; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9691 | BRAT1 |
Zornitza Stark changed review comment from: At least 4 individuals reported from unrelated families and bi-allelic variants in this gene. Sources: Expert list; to: Biallelic mutations in the BRAT1 gene, encoding BRCA1-associated ATM activator 1, result in variable phenotypes, from rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL) to neurodevelopmental disorder and cerebellar atrophy with or without seizures (NEDCAS), without obvious genotype-phenotype associations. Multiple families reported with each. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9644 | DDX3X | Zornitza Stark Mode of inheritance for gene: DDX3X was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9643 | DDX3X | Zornitza Stark reviewed gene: DDX3X: Rating: GREEN; Mode of pathogenicity: None; Publications: 30266093, 26235985, 25533962, 33528536, 30936465, 31274575, 30817323; Phenotypes: Intellectual developmental disorder, X-linked, syndrome, Snijders Blok type MIM# 300958; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9623 | ANOS1 | Zornitza Stark Mode of inheritance for gene: ANOS1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9622 | ANOS1 | Zornitza Stark reviewed gene: ANOS1: Rating: GREEN; Mode of pathogenicity: None; Publications: 1594017, 8504298, 8989261; Phenotypes: Hypogonadotropic hypogonadism 1 with or without anosmia (Kallmann syndrome 1), MIM# 308700; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9594 | AMER1 | Zornitza Stark Mode of inheritance for gene: AMER1 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9593 | AMER1 | Zornitza Stark reviewed gene: AMER1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20209645, 19079258; Phenotypes: Osteopathia striata with cranial sclerosis, MIM# 300373; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9560 | PHF6 | Zornitza Stark Mode of inheritance for gene: PHF6 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9559 | PHF6 | Zornitza Stark reviewed gene: PHF6: Rating: GREEN; Mode of pathogenicity: None; Publications: 16912705; Phenotypes: Borjeson-Forssman-Lehmann syndrome, MIM# 301900; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9537 | BGN |
Krithika Murali gene: BGN was added gene: BGN was added to Mendeliome. Sources: Expert list,Literature Mode of inheritance for gene: BGN was set to Other Publications for gene: BGN were set to 27236923; 27632686 Phenotypes for gene: BGN were set to Meester-Loeys syndrome - #300989; Spondyloepimetaphyseal dysplasia, X-linked - #300106 Review for gene: BGN was set to GREEN Added comment: Well-established gene-disease associated with X-linked spondyloepimetaphyseal dysplasia (SEMD) and Meester-Loeys syndrome (connective tissue disorder with phenotypic features including aortic dissection, aortic aneurysym, dysmorphism, joint hypermobility and mild skeletal dysplasia - with juvenile-onset reported in males) SEMD - X-linked recessive inheritance Meester-Loeys syndrome - hemizygous males, monoallelic mutations may cause disease in females (may be less severe, later onset than males) Sources: Expert list, Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9494 | RDH12 | Zornitza Stark Mode of inheritance for gene: RDH12 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9493 | RDH12 | Zornitza Stark reviewed gene: RDH12: Rating: GREEN; Mode of pathogenicity: None; Publications: 16269441, 15322982, 15258582, 31505163; Phenotypes: Leber congenital amaurosis 13, MIM# 612712, Retinitis pigmentosa, autosomal dominant; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9485 | PRPH2 | Zornitza Stark Mode of inheritance for gene: PRPH2 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9484 | PRPH2 | Zornitza Stark reviewed gene: PRPH2: Rating: GREEN; Mode of pathogenicity: None; Publications: 32660024; Phenotypes: Leber congenital amaurosis 18, MIM#608133 Macular dystrophy, vitelliform, 3, MIM#608161 Retinitis pigmentosa 7 and digenic form, MIM#608133 Choroidal dystrophy, central areolar 2, MIM#613105 Macular dystrophy, patterned, 1, MIM#169150 Retinitis punctata albescens, MIM#136880; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9468 | NYX | Zornitza Stark Mode of inheritance for gene: NYX was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9467 | NYX | Zornitza Stark reviewed gene: NYX: Rating: GREEN; Mode of pathogenicity: None; Publications: 11062471, 11062472, 16670814, 23714322, 34064005, 34165036; Phenotypes: Night blindness, congenital stationary (complete), 1A, X-linked MIM#310500; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9444 | AIPL1 | Zornitza Stark Mode of inheritance for gene: AIPL1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9443 | AIPL1 | Zornitza Stark reviewed gene: AIPL1: Rating: GREEN; Mode of pathogenicity: None; Publications: 10615133; Phenotypes: Leber congenital amaurosis 4, 604393 Cone-rod dystrophy, 604393 Retinitis pigmentosa, juvenile, 604393; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9383 | KCNQ1OT1 |
Zornitza Stark gene: KCNQ1OT1 was added gene: KCNQ1OT1 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: KCNQ1OT1 was set to MONOALLELIC, autosomal or pseudoautosomal, maternally imprinted (paternal allele expressed) Publications for gene: KCNQ1OT1 were set to 22205991; 15372379; 23511928; 30794780; 29377879; 10220444; 32447323; 33177595; 29047350 Phenotypes for gene: KCNQ1OT1 were set to Beckwith-Wiedemann syndrome OMIM:130650; Russell-Silver Syndrome Review for gene: KCNQ1OT1 was set to AMBER Added comment: Limited evidence that isolated intragenic variation in KCNQ1OT1 is definitively associated with a phenotype. KCNQ1OT1 encodes the regulatory antisense non-coding RNA KCNQ1OT1 (KCNQ1 overlapping) and is located within the KCNQ1OT1:TSS DMR (imprinting control region 2; IC2) at 11p15.5. IC2 is located within KCNQ1 intron 10. KCNQ1OT1 is maternally imprinted and paternally expressed. On the paternal chromosome, KCNQ1OT1 is transcribed and represses in cis the flanking imprinted genes, including the growth inhibitor CDKN1C, which is normally transcribed from the maternal allele. In 50% of the BWS patients, loss of methylation (LOM) of IC2 leads to biallelic expression of KCNQ1OT1 and biallelic silencing of CDKN1C (PMID 30635621). Expression is increased in BWS due to IC2 epimutations or paternal UPD. Single nucleotide variants within KCNQ1OT1 have not been definitively associated with human disease. A heterozygous maternally inherited non-coding variant was identified in an individual with isolated omphalocele. This variant was shown to alter the methylation pattern of the imprinted allele (PMID 29047350). Eggerman et al (PMID 32447323) described a 132 base pair deletion within KCNQ1OT1 associated with growth retardation in the case of paternal but not maternal transmission. This intragenic deletion did not affect IC2 methylation. Microdeletions of IC2 involving KCNQ1OT1 on the paternal allele have been identified in a small number of patients with Russell-Silver syndrome. Similarly, microdeletions of IC2 involving KCNQ1OT1 on the maternal allele have been identified in a small number of patients with BWS. These deletions also variably involve KCNQ1 or CDKN1C. LoF in CDKN1C is a known cause of BWS. There is some evidence to suggest that disruption of KCNQ1 prevents maternal methylation at IC2 (PMID 30778172). Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9355 | SLC4A3 |
Daniel Flanagan gene: SLC4A3 was added gene: SLC4A3 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: SLC4A3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: SLC4A3 were set to PMID: 29167417; 34557911 Phenotypes for gene: SLC4A3 were set to Short QT syndrome Review for gene: SLC4A3 was set to AMBER Added comment: Moderate evidence for autosomal dominant short QT syndrome 1 by ClinGen /gene curation expert panel (PMID: 34557911). A single missense variant (absent gnomAD) identified in two SQTS families. In family 1, it segregated with SQTS (QTc<370ms) in 23 carriers, and 19 non-carriers had a QTc>370ms. In family 2, it segregated in 4 individuals. Experimental evidence from in vitro and zebrafish models suggests reduced membrane localization of the mutated protein leads to intracellular alkalinization and shortening of the cardiomyocyte action potential duration. ClinGen expert panel was divided between strong (4 votes) and moderate (5 votes). Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9351 | MARS | Zornitza Stark changed review comment from: Association with CMT: Two families reported. One mutation positive family member was asymptomatic. Second case is proband only testing with no segregation or functional data. Note one of the variants identified in dominant MARS1-associated neuropathy, p.Arg618Cys, has also been reported in AR MARS1-related pulmonary interstiatial/liver disease.; to: Association with CMT and mono-allelic variants: Two families reported. One mutation positive family member was asymptomatic. Second case is proband only testing with no segregation or functional data. Note one of the variants identified in dominant MARS1-associated neuropathy, p.Arg618Cys, has also been reported in AR MARS1-related pulmonary interstiatial/liver disease. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9351 | MARS | Zornitza Stark changed review comment from: Two families reported. One mutation positive family member was asymptomatic. Second case is proband only testing with no segregation or functional data. Note one of the variants identified in dominant MARS1-associated neuropathy, p.Arg618Cys, has also been reported in AR MARS1-related pulmonary interstiatial/liver disease.; to: Association with CMT: Two families reported. One mutation positive family member was asymptomatic. Second case is proband only testing with no segregation or functional data. Note one of the variants identified in dominant MARS1-associated neuropathy, p.Arg618Cys, has also been reported in AR MARS1-related pulmonary interstiatial/liver disease. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9334 | GDF11 | Zornitza Stark edited their review of gene: GDF11: Added comment: Ravenscroft et al. (2021) report additional 6 probands who presented with craniofacial (5/6), vertebral (5/6), neurological (6/6), visual (4/6), cardiac (3/6), auditory (3/6), and connective tissue abnormalities (3/6). They found de novo and inherited variants in GDF11. gdf11 mutant zebrafish showed craniofacial abnormalities and body segmentation defects that matched some patient phenotypes. Expression of the patients’ variants in the fly showed that one nonsense variant in GDF11 is a severe loss-of-function (LOF) allele whereas the missense variants are partial LOF variants.; Changed rating: GREEN; Changed publications: 31215115, 34113007 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9297 | WLS |
Teresa Zhao changed review comment from: - We identified homozygous mutations in 10 affected persons from 5 unrelated families. - Patients had multiorgan defects, including microcephal, facial dysmorphism, foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects. - The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis. Sources: Literature; to: - Homozygous mutations in 10 affected persons from 5 unrelated families. - Patients had multiorgan defects, including microcephal, facial dysmorphism, foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects. - The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9297 | WLS |
Teresa Zhao gene: WLS was added gene: WLS was added to Mendeliome. Sources: Literature Mode of inheritance for gene: WLS was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: WLS were set to PMID: 34587386 Phenotypes for gene: WLS were set to Syndromic structural birth defects Review for gene: WLS was set to GREEN Added comment: - We identified homozygous mutations in 10 affected persons from 5 unrelated families. - Patients had multiorgan defects, including microcephal, facial dysmorphism, foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects. - The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9274 | CDH15 |
Zornitza Stark commented on gene: CDH15: PMID: 19012874 - 4 unrelated patients with missense variants and mild-severe ID. Only two genes checked. All variants are common in gnomAD (>20 hets each) and classified as VUS or likely benign in ClinVar (paper is from 2008, pre-dates gnomAD). Functional studies were performed showing a LOF effect, where cell adhesion was reduced. However NMD PTCs are present in gnomAD (many >=6 hets each) PMID: 12052883 - null mouse model were viable, showed no gross developmental defects. In particular, the skeletal musculature appeared essentially normal. In the cerebellum of M-cadherin-lacking mutants, typical contactus adherens junctions were present and similar in size and numbers to the equivalent junctions in wild-type animals. However, the adhesion plaques in the cerebellum of these mutants appeared to contain elevated levels of N-cadherin compared to wild-type animals. PMID: 28422132 - reviewed microdeletions spanning multiple genes including CDH15, suggests it may contribute to a more severe neurological phenotype, with particular regard to brain malformations. PMID: 26506440 - speculates low penetrance for PTCs in this gene. Acknowledges variants in ExAC, describes them as benign Note no P/LP variants in ClinVar |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9246 | ROBO1 | Zornitza Stark Mode of inheritance for gene: ROBO1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9245 | ROBO1 | Zornitza Stark reviewed gene: ROBO1: Rating: GREEN; Mode of pathogenicity: None; Publications: 28592524, 30530901, 30692597, 33270637, 28402530; Phenotypes: Congenital heart disease, Pituitary anomalies; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9233 | ZC4H2 | Zornitza Stark Mode of inheritance for gene: ZC4H2 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9232 | ZC4H2 | Zornitza Stark reviewed gene: ZC4H2: Rating: GREEN; Mode of pathogenicity: None; Publications: 23623388, 34322088, 33949289, 31885220, 31206972; Phenotypes: Wieacker-Wolff syndrome, MIM# 314580; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9190 | BCAP31 | Zornitza Stark Mode of inheritance for gene: BCAP31 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9189 | BCAP31 | Zornitza Stark reviewed gene: BCAP31: Rating: GREEN; Mode of pathogenicity: None; Publications: 24011989, 31330203, 33603160; Phenotypes: Deafness, dystonia, and cerebral hypomyelination, MIM# 300475; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9170 | ERGIC1 |
Zornitza Stark gene: ERGIC1 was added gene: ERGIC1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ERGIC1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ERGIC1 were set to 28317099; 34037256 Phenotypes for gene: ERGIC1 were set to Arthrogryposis multiplex congenita 2, neurogenic type; OMIM # 208100 Review for gene: ERGIC1 was set to AMBER Added comment: Reinstein et al. (2018) used WES in a large consanguineous Israeli Arab kindred consisting of 16 patients affected with the neurogenic type of arthrogryposis multiplex congenita. They identified a homozygous missense (V98E) mutation in ERGIC1 gene, which segregated with the disorder in the kindred, and was not found in the ExAC database or in 212 ethnically matched controls. Functional studies of the variant and studies of patient cells were not performed. ERGIC1 encodes a cycling membrane protein which has a possible role in transport between endoplasmic reticulum and Golgi. Marconi et al (2021) used genome sequencing in a consanguineous family with 2 affected siblings presenting congenital arthrogryposis and some facial dysmorphism. They identified a homozygous 22.6 Kb deletion encompassing the promoter and first exon of ERGIC1. mRNA quantification showed the complete absence of ERGIC1 expression in the two affected siblings and a decrease in heterozygous parents. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9144 | STEAP3 |
Zornitza Stark changed review comment from: Single family reported. Three affected sibs, variant inherited from unaffected father. Some supportive functional evidence.; to: Single family reported. Three affected sibs, variant inherited from unaffected father. Some supportive functional evidence. Conflicting evidence (PMID 26675350): Large Chinese study (of normal and α-thalassemia subjects) investigated the prevalence of STEAP3 mutations in humans and their physiologic consequences. Discovered a relatively high prevalence of potentially harmful recessive alleles. However, whilst the identified STEAP3 mutations exhibited impaired ferrireductase activity in vitro, they had little or no effect on erythrocyte phenotypes |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9126 | FOXE3 | Zornitza Stark Mode of inheritance for gene: FOXE3 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9125 | FOXE3 | Eleanor Williams reviewed gene: FOXE3: Rating: GREEN; Mode of pathogenicity: None; Publications: 26854927, 27218149, 16826526, 19708017, 20140963, 20664696, 20361012, 24019743, 27669367, 29878917, 32436650, 34046667, 11159941, 19708017, 20806047, 21150893, 11980846, 34046667; Phenotypes: Anterior segment dysgenesis 2, multiple subtypes, MIM#610256, Cataract 34, multiple types, MIM#612968, Aortic aneurysm, familial thoracic 11, susceptibility to}, MIM#617349; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9089 | IFIH1 | Zornitza Stark Mode of inheritance for gene: IFIH1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9088 | IFIH1 | Sarah Pantaleo reviewed gene: IFIH1: Rating: GREEN; Mode of pathogenicity: None; Publications: 34185153; Phenotypes: Inflammatory Bowel Disease; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9061 | G6PD | Zornitza Stark Mode of inheritance for gene: G6PD was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9060 | G6PD | Zornitza Stark reviewed gene: G6PD: Rating: GREEN; Mode of pathogenicity: None; Publications: 18177777; Phenotypes: Haemolytic anemia, G6PD deficient (favism), MIM# 300908; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9032 | ALAS2 | Zornitza Stark Mode of inheritance for gene: ALAS2 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9031 | ALAS2 | Zornitza Stark reviewed gene: ALAS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 10029606, 7949148, 10029606, 25615817; Phenotypes: Anaemia, sideroblastic, 1, MIM# 300751, Protoporphyria, erythropoietic, X-linked, MIM# 300752; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9010 | RPS6KA3 | Zornitza Stark Mode of inheritance for gene: RPS6KA3 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9009 | RPS6KA3 | Zornitza Stark reviewed gene: RPS6KA3: Rating: GREEN; Mode of pathogenicity: None; Publications: 6879200; Phenotypes: Coffin-Lowry syndrome MIM# 303600, Intellectual disability, short stature, delayed bone age, hearing deficit, hypotonia, tapering fingers, abnormal facies (hypertelorism, anteverted nares, prominent frontal region); Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8972 | FAME1 |
Bryony Thompson STR: FAME1 was added STR: FAME1 was added to Mendeliome. Sources: Expert list Mode of inheritance for STR: FAME1 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal Publications for STR: FAME1 were set to 30194086; 29507423 Phenotypes for STR: FAME1 were set to Epilepsy, familial adult myoclonic, 1 MIM#601068 Review for STR: FAME1 was set to GREEN STR: FAME1 was marked as clinically relevant Added comment: NC_000008.10:g.119379055_119379157TGAAA[X]TAAAA[X] A heterozygous or homozygous 5-bp expanded TTTCA(n) insertion associated with an upstream 5-bp TTTTA(n) repeat expansion in a noncoding region within intron 4 of the SAMD12 gene, was identified in over 50 Chinese and Japanese families. 4 homozygous cases from 3 families had a more severe phenotype. The TTTTA repeat was present in controls, while the TTTCA was absent and only present in cases (100-3680 repeats reported). RNA toxicity is expected to be the mechanism of disease. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8895 | FGD1 | Zornitza Stark Mode of inheritance for gene: FGD1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8894 | FGD1 | Zornitza Stark reviewed gene: FGD1: Rating: GREEN; Mode of pathogenicity: None; Publications: 7954831, 20082460; Phenotypes: Aarskog-Scott syndrome, MIM # 305400, Mental retardation, X-linked syndromic 16, MIM# 305400; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8886 | SMC1A | Zornitza Stark reviewed gene: SMC1A: Rating: GREEN; Mode of pathogenicity: None; Publications: 29023665, 31409060, 31334757, 28166369; Phenotypes: Cornelia de Lange syndrome 2, MIM# 300590, Epileptic encephalopathy, early infantile, 85, with or without midline brain defects, MIM# 301044; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8861 | IGF2 |
Zornitza Stark changed review comment from: RSS phenotype.; to: Silver-Russell syndrome-3 (SRS3) is characterized by intrauterine growth retardation with relative macrocephaly, followed by feeding difficulties and postnatal growth restriction. Dysmorphic facial features include triangular face, prominent forehead, and low-set ears. Other variable features include limb defects, genitourinary and cardiovascular anomalies, hearing impairment, and developmental delay. Disruption of any gene in the HMGA2-PLAG1-IGF2 pathway results in a decrease in IGF2 expression and produces an SRS phenotype similar to that of patients carrying 11p15.5 epigenetic defects. Begemann et al. (2015) performed exome sequencing in 4 affected people with severe growth restriction in one family, and identified a heterozygous nonsense mutation in the IGF2 gene that segregated fully with the disorder. Affected individuals inherited the mutation from their healthy fathers, and it originated from the healthy paternal grandmother. Clinical features occurred only in those who inherited the variant allele through paternal transmission, consistent with maternal imprinting of IGF2. Many other cases reported since with de novo mutations in IGF2 present on the paternal allele. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8848 | TCN2 |
Zornitza Stark changed review comment from: Well established gene-disease association. 26 pathogenic TCN2 variants have been reported in over 40 individuals; multiple mouse models Homologous and Compound Heterozygous TCN2 variants (deletions or insertions, nonsense mutations, and point mutations) have been reported; deletions or insertions are the most common, causing frameshifts that result in protein truncation. Individuals usually present within the first year of life with failure to thrive, diarrhoea, anaemia, pallor and agammaglobulinaemia. Sources: Expert list; to: Well established gene-disease association. 26 pathogenic TCN2 variants have been reported in over 40 individuals; multiple mouse models Homozygous and Compound Heterozygous TCN2 variants (deletions or insertions, nonsense mutations, and point mutations) have been reported; deletions or insertions are the most common, causing frameshifts that result in protein truncation. Individuals usually present within the first year of life with failure to thrive, diarrhoea, anaemia, pallor and agammaglobulinaemia. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8847 | TCN2 |
Zornitza Stark changed review comment from: Well established gene-disease association. Sources: Expert list; to: Well established gene-disease association. 26 pathogenic TCN2 variants have been reported in over 40 individuals; multiple mouse models Homologous and Compound Heterozygous TCN2 variants (deletions or insertions, nonsense mutations, and point mutations) have been reported; deletions or insertions are the most common, causing frameshifts that result in protein truncation. Individuals usually present within the first year of life with failure to thrive, diarrhoea, anaemia, pallor and agammaglobulinaemia. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8835 | PGRMC1 | Bryony Thompson reviewed gene: PGRMC1: Rating: AMBER; Mode of pathogenicity: None; Publications: 33867527, 23783460; Phenotypes: Isolated paediatric cataract; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8834 | RNF220 |
Zornitza Stark gene: RNF220 was added gene: RNF220 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RNF220 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: RNF220 were set to 33964137; 10881263 Phenotypes for gene: RNF220 were set to Leukodystrophy; CNS hypomyelination; Ataxia; Intellectual disability; Sensorineural hearing impairment; Elevated hepatic transaminases; Hepatic fibrosis; Dilated cardiomyopathy; Spastic paraplegia; Dysarthria; Abnormality of the corpus callosum Review for gene: RNF220 was set to GREEN Added comment: Sferra et al (2021 - PMID: 33964137) provide extensive evidence that biallelic RNF220 mutations cause a disorder characterized by hypomyelinating leukodystrophy, ataxia (9/9 - onset 1-5y), borderline intellectual functioning (3/9) / intellectual disability (5/9 - in most cases mild), sensorineural deafness (9/9) with complete hearing loss in the first decade of life, hepatopathy (9/9) with associated periportal fibrosis, and dilated cardiomyopathy (9/9) which was fatal. Other neurologic manifestations apart from ataxia incl. hyperreflexia (8/8), spastic paraplegia (9/9), dysarthria (9/9), peripheral neuropathy (4/9), seizures in one case (1/9). Upon brain MRI there was thin corpus callosum (9/9) or cerebellar atrophy in some (2/9). The authors identified homozygosity for 2 recurrent missense RNF220 variants in affected members belonging to these 5 broad consanguineous pedigrees (7 families), namely NM_018150.4:c.1094G>A / p.Arg365Gly in 4 Roma families in the context of a shared haplotype (/founder effect) as well as c.1088G>A / p.Arg363Gly in a large pedigree from southern Italy initially reported by Leuzzi et al (2000 - PMID: 10881263). Extensive segregation analyses were carried out including several affected and unaffected members. RNF220 encodes ring finger protein 220, which functions as an E3 ubiquitin ligase. Previous studies have shown among others a role in modulation of Sonic hedgehog/GLI signaling and cerebellar development Evidence for the role of RNF220 included relevant expression, localization within the cell, interaction partners (lamin B1, 20S proteasome), similarities with other laminopathies in terms of phenotype, etc : *RNF220 has a relevant expression pattern in CNS (based on qRT-PCR analyses in human brain, cerebellum, cerebral cortex / mRNA levels in human fetal CNS with higher expression in cerebellum, spinal cord and cortex / previous GTEx data / protein levels in mouse CNS) *The protein displays nuclear localization based on iPSC cells differentiated to motor neurons (also supported by data from the Human Protein Atlas). Transfection of COS-1 cells demonstrated localization primarily to the nucleus (as also previously demonstrated in HEK293T cells) in vesicle like structures with ASF2/SF2 colocalization suggesting enrichment in nuclear speckles. There was also partial co-distribution with the 20S proteasome. R363Q and R365Q additionally coalesced in the cytoplasm forming protein aggregates/inclusions. *Immunofluorescence studies in patient fibroblasts also confirmed abnormal increase of the protein in the cytoplasm and increased fluorescence with the 20S proteasome. *Proteomic identification of RNF220-interacting proteins in transfected HEK293T cells demonstrated enrichment for all members of the lamin protein family (incl . lamin B1, AC, B2). *RNAi-mediated downregulation of RNF222 in Drosophila suggested altered subcellular localization and accumulation of the fly orthologue for human lamin B1. *Immunoprecipitation of lamin B1 from the nuclear matrix of cerebellar cells suggested significant interaction of endogenous lamin B1 with RNF220, while transfection studies in HEK293T cells for wt/mt suggested reduced binding to endogenous lamin B1 for RNF220 mt compared to wt (more prominent for R365Q). RNF220 mutants also reduced ubiquitination of nuclear lamin B1 compared to wt. *Patient fibroblasts immunostained with different nuclear envelope markers displayed abnormal nuclear shapes with multiple invaginations and lobulations, findings also observed in laminopathies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8829 | ARF3 |
Zornitza Stark gene: ARF3 was added gene: ARF3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ARF3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ARF3 were set to 34346499 Phenotypes for gene: ARF3 were set to Global developmental delay; Intellectual disability; Seizures; Morphological abnormality of the central nervous system Review for gene: ARF3 was set to AMBER Added comment: Sakamoto et al (2021 - PMID: 34346499) provide some evidence that monoallelic ARF3 pathogenic variants may be associated with a NDD with brain abnormality. Using trio exome sequencing, the authors identified 2 individuals with NDD harboring de novo ARF3 variants, namely: NM_001659.2:c.200A>T / p.Asp67Val and c.296G>T / p.Arg99Leu. Individual 1 (with Asp67Val / age : 4y10m), appeared to be more severelely affected with prenatal onset progressive microcephaly, severe global DD, epilepsy. Upon MRI there was cerebellar and brainstem atrophy. Individual 2 (Arg99Leu / 14y) had severe DD and ID (IQ of 23), epilepsy and upon MRI cerebellar hypoplasia. This subject did not exhibit microcephaly. Common facial features incl. broad nose, full cheeks, small philtrum, strabismus, thin upper lips and abnormal jaw. There was no evidence of systemic involvement in both. ARF3 encodes ADP-ribosylation factor 3. Adenosine diphosphate ribosylation factors (ARFs) are key proteins for regulation of cargo sorting at the Golgi network, with ARF3 mainly working at the trans-Golgi network. ARFs belong to the small GTP-binding protein (G protein) superfamily. ARF3 switches between an active GTP-bound form and an inactive GDP-bound form, regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) respectively. Members of the ARF superfamily regulate various aspects of membrane traffic, among others in neurons. There are 5 homologs of ARF families, divided in 3 classes. ARF3 and ARF1 belong to class I. Monoallelic ARF1 mutations are associated with Periventricular nodular heterotopia 8 (MIM 618185). In vivo, in vitro and in silico studies for the 2 variants suggest that both impair the Golgi transport system although each variant most likely exerts a different effect (gain-of-function for Arg99Leu vs loss-of-function/dominant-negative for Asp67Val). This was also reflected in somewhat different phenotype of the subjects with the respective variants. Common features included severe DD, epilepsy and brain abnormalities although Asp67Val was associated with diffuse brain atrophy as well as congenital microcephaly and Arg99Leu with cerebellar hypoplasia. Evidence to support the effect of each variant include: Arg99Leu: Had identical Golgi localization to that of wt Had increased binding activity with GGA1, a protein recruited by the GTP-bound active form of ARF3 to the TGN membrane (supporting GoF) In silico structural analysis suggested it may fail to stabilize the conformation of Asp26, resulting in impaired GTP hydrolysis (GoF). In transgenic fruit flies, evaluation of the ARF3 variant toxicity using the rough eye phenotype this variant was associated with increased severity of the r-e phenotype similar to a previously studied GoF variant (Gln71Leu) Asp67Val: Did not show a Golgi-like pattern of localization (similar to Thr31Asn a previously studied dominant-negative variant) Displayed decreased protein stability In silico structural analysis suggested that Asp67Val may lead to compromised binding of GTP or GDP (suggestive of LoF) In transgenic Drosophila eye-specific expression of Asp67Val (similar to Thr31Asn, a known dominant-negative variant) was lethal possibly due to high toxicity in very small amounts in tissues outside the eye. There is no associated phenotype in OMIM, G2P or SysID. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8807 | VPS50 |
Zornitza Stark gene: VPS50 was added gene: VPS50 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: VPS50 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: VPS50 were set to 34037727 Phenotypes for gene: VPS50 were set to Neonatal cholestatic liver disease; Failure to thrive; Profound global developmental delay; Postnatal microcephaly; Seizures; Abnormality of the corpus callosum Review for gene: VPS50 was set to AMBER Added comment: Schneeberger et al (2021 - PMID: 34037727) describe the phenotype of 2 unrelated individuals with biallelic VPS50 variants. Common features included transient neonatal cholestasis, failure to thrive, severe DD with failure to achieve milestones (last examination at 2y and 2y2m respectively), postnatal microcephaly, seizures (onset at 6m and 25m) and irritability. There was corpus callosum hypoplasia on brain imaging. Both individuals were homozygous for variants private to each family (no/not known consanguinity applying to each case). The first individual was homozygous for a splicing variant (NM_017667.4:c.1978-1G>T) and had a similarly unaffected sister deceased with no available DNA for testing. The other individual was homozygous for an in-frame deletion (c.1823_1825delCAA / p.(Thr608del)). VPS50 encodes a critical component of the endosome-associated recycling protein (EARP) complex, which functions in recycling endocytic vesicles back to the plasma membrane [OMIM based on Schindler et al]. The complex contains VPS50, VPS51, VPS52, VPS53, the three latter also being components of GARP (Golgi-associated-retrograde protein) complex. GARP contains VPS54 instead of VPS50 and is required for trafficking of proteins to the trans-golgi network. Thus VPS50 (also named syndetin) and VPS54 function in the EARP and GARP complexes, to define directional movement of their endocytic vesicles [OMIM based on Schindler et al]. The VPS50 subunit is required for recycling of the transferrin receptor. As discussed by Schneeberger et al (refs provided in text): - VPS50 has a high expression in mouse and human brain as well as throughout mouse brain development. - Mice deficient for Vps50 have not been reported. vps50 knockdown in zebrafish results in severe developmental defects of the body axis. Knockout mice for other proteins of the EARP/GARP complex (e.g. Vps52, 53 and 54) display embryonic lethality. Studies performed by Schneeberger et al included: - Transcript analysis for the 1st variant demonstrated skipping of ex21 (in patient derived fabriblasts) leading to an in frame deletion of 81 bp (r.1978_2058del) with predicted loss of 27 residues (p.Leu660_Leu686del). - Similar VPS50 mRNA levels but significant reduction of protein levels (~5% and ~8% of controls) were observed in fibroblasts from patients 1 and 2. Additionally, significant reductions in the amounts of VPS52 and VPS53 protein levels were observed despite mRNA levels similar to controls. Overall, this suggested drastic reduction of functional EARP complex levels. - Lysosomes appeared to have similar morphology, cellular distribution and likely unaffected function in patient fibroblasts. - Transferrin receptor recycling was shown to be delayed in patient fibroblasts suggestive of compromise of endocytic-recycling function. As the authors comment, the phenotype of both individuals with biallelic VPS50 variants overlaps with the corresponding phenotype reported in 15 subjects with biallelic VPS53 or VPS51 mutations notably, severe DD/ID, microcephaly and early onset epilepsy, CC anomalies. Overall, for this group, they propose the term "GARP and/or EARP deficiency disorders". There is no VPS50-associated phenotype in OMIM or G2P. SysID includes VPS50 among the ID candidate genes. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8803 | AMTN |
Zornitza Stark gene: AMTN was added gene: AMTN was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: AMTN was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: AMTN were set to 27412008; 25715379; 26620968 Phenotypes for gene: AMTN were set to Amelogenesis imperfecta, type IIIB Mode of pathogenicity for gene: AMTN was set to Other Review for gene: AMTN was set to RED Added comment: In a Costa Rican family segregating autosomal dominant hypomineralized amelogenesis imperfecta, Smith et al. (2016) identified a heterozygous deletion/insertion mutation in the amelotin gene that segregated with the phenotype in the family. The mutation was predicted to result in an in-frame deletion of 92 amino acids, shortening the protein from 209 to 117 amino acids. Mode of pathogenicity not established. Toxic gain of function proposed as Atmn KO and +/- mice did not recapitulate the human phenotype. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8789 | LAMB3 | Zornitza Stark Mode of inheritance for gene: LAMB3 was changed from BIALLELIC, autosomal or pseudoautosomal to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8788 | LAMB3 | Zornitza Stark edited their review of gene: LAMB3: Changed publications: 11023379, 7706760, 23958762, 7706760, 23632796, 26502894, 27220909, 25769099, 24494736; Changed phenotypes: Amelogenesis imperfecta, type IA, MIM# 104530, Epidermolysis bullosa, junctional, Herlitz type, MIM# 226700, Epidermolysis bullosa, junctional, non-Herlitz type, MIM# 226650; Changed mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8750 | AMELX | Zornitza Stark Mode of inheritance for gene: AMELX was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8749 | AMELX | Zornitza Stark reviewed gene: AMELX: Rating: GREEN; Mode of pathogenicity: None; Publications: 17189466, 22243263, 7599636, 23251683, 1483698 1916828, 9188994, 15111628, 11201048, 26502894, 7782077, 11922869, 28130977, 8406474, 11839357, 25117480, 19610109; Phenotypes: Amelogenesis imperfecta, type 1E, MIM# 301200; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8736 | PIDD1 |
Zornitza Stark gene: PIDD1 was added gene: PIDD1 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: PIDD1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PIDD1 were set to 28397838; 29302074; 33414379; 34163010 Phenotypes for gene: PIDD1 were set to Global developmental delay; Intellectual disability; Seizures; Autism; Behavioral abnormality; Psychosis; Pachygyria; Lissencephaly; Abnormality of the corpus callosum Review for gene: PIDD1 was set to GREEN Added comment: There is enough evidence to include this gene in the current panel with green rating. Biallelic PIDD1 pathogenic variants have been reported in 26 individuals (11 families) with DD (all), variable degrees of ID (mild to severe), behavioral (eg. aggression/self-mutilation in several, ADHD) and/or psychiatric abnormalities (ASD, psychosis in 5 belonging to 3 families), well-controlled epilepsy is some (9 subjects from 6 families) and MRI abnormalities notably abnormal gyration pattern (pachygyria with predominant anterior gradient) as well as corpus callosum anomalies (commonly thinning) in several. Dysmorphic features have been reported in almost all, although there has been no specific feature suggested. The first reports on the phenotype associated with biallelic PIDD1 mutations were made by Harripaul et al (2018 - PMID: 28397838) and Hu et al (2019 - PMID: 29302074) [both studies investigating large cohorts of individuals with ID from consanguineous families]. Sheikh et al (2021 - PMID: 33414379) provided details on the phenotype of 15 individuals from 5 families including those from the previous 2 reports and studied provided evidence on the role of PIDD1 and the effect of variants. Zaki et al (2021 - PMID: 34163010) reported 11 additional individuals from 6 consanguineous families, summarize the features of all subjects published in the literature and review the neuroradiological features of the disorder. PIDD1 encodes p53-induced death domain protein 1. The protein is part of the PIDDosome, a multiprotein complex also composed of the bipartite linker protein CRADD (also known as RAIDD) and the proform of caspase-2 and induces apoptosis in response to DNA damage. There are 5 potential PIDD1 mRNA transcript variants with NM_145886.4 corresponding to the longest. Similar to the protein encoded by CRADD, PIDD1 contains a death domain (DD - aa 774-893). Constitutive post-translational processing gives PIDD1-N, PIDD1-C the latter further processed into PIDD1-CC (by auto-cleavage). Serine residues at pos. 446 and 588 are involved in this autoprocessing generating PIDD1-C (aa 446-910) and PIDD1-CC (aa 774-893). The latter is needed for caspase-2 activation. Most (if not all) individuals belonged to consanguineous families of different origins and harbored pLoF or missense variants. Variants reported so far include : c.2587C>T; p.Gln863* / c.1909C>T ; p.Arg637* / c.2443C>T / p.Arg815Trp / c.2275-1G>A which upon trap assay was shown to lead to skipping of ex15 with direct splicing form exon14 to the terminal exon 16 (resulting to p.Arg759Glyfs*1 with exlcusion of the entire DD) / c.2584C>T; p.Arg862Trp / c.1340G>A; p.Trp447* / c.2116_2120del; p.Val706His*, c.1564_1565del; p.Gly602fs*26 Evidence so far provided includes: - Biallelic CRADD variants cause a NDD disorder and a highly similar gyration pattern. - Confirmation of splicing effect (eg. for c.2275-1G>A premature stop in position 760) or poor expression (NM_145886.3:c.2587C>T; p.Gln863*). Arg815Trp did not affect autoprocessing or protein stability. - Abnormal localization pattern, loss of interaction with CRADD and failure to activate caspase-2 (MDM2 cleavage assay) [p.Gln863* and Arg815Trp] - Available expression data from GTEx (PIDD1 having broad expression in multiple tissues, but higher in brain cerebellum) as well as BrainSpan and PsychEncode studies suggesting high coexpression of PIDD1, CRADD and CASP2 in many regions in the developing human brain. - Variants in other genes encoding proteins interacting with PIDD1 (MADD, FADD, DNAJ, etc) are associated with NDD. Pidd-1 ko mice (ex3-15 removal) lack however CNS-related phenotypes. These show decreased anxiety but no motor anomalies. This has also been the case with Cradd-/- mice displaying no significant CNS phenotypes without lamination defects. There is currently no associated phenotype in OMIM. PIDD1 is listed in the DD panel of G2P (PIDD1-related NDD / biallelic / loss of function / probable) . SysID includes PIDD1 among the current primary ID genes. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8688 | RBM10 | Zornitza Stark Mode of inheritance for gene: RBM10 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8687 | RBM10 | Zornitza Stark reviewed gene: RBM10: Rating: GREEN; Mode of pathogenicity: None; Publications: 20451169, 24259342, 30450804, 30189253, 33340101; Phenotypes: TARP syndrome, MIM# 311900; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8667 | SF3B2 |
Zornitza Stark gene: SF3B2 was added gene: SF3B2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SF3B2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: SF3B2 were set to 34344887 Phenotypes for gene: SF3B2 were set to Craniofacial microsomia Review for gene: SF3B2 was set to GREEN Added comment: Twenty individuals from seven families reported with de novo or transmitted haploinsufficient variants in SF3B2. Affected individuals had mandibular hypoplasia, microtia, facial and preauricular tags, epibulbar dermoids, lateral oral clefts in addition to skeletal and cardiac abnormalities. Targeted morpholino knockdown of SF3B2 in Xenopus resulted in disruption of cranial neural crest precursor formation and subsequent craniofacial cartilage defects, supporting a link between spliceosome mutations and impaired neural crest development in congenital craniofacial disease. The families were ascertained from a cohort and the authors suggest that haploinsufficient variants in SF3B2 are the most prevalent genetic cause of CFM, explaining ~3% of sporadic and ~25% of familial cases. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8621 | IL2RG | Zornitza Stark Mode of inheritance for gene: IL2RG was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8620 | IL2RG | Zornitza Stark reviewed gene: IL2RG: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301584, 8462096, 8401490, 7883965, 9399950; Phenotypes: Combined immunodeficiency, X-linked, moderate MIM# 312863, Severe combined immunodeficiency, X-linked MIM# 300400, recurrent viral/fungal/bacterial infections, Low T/NK cells, Low Ig levels, lymphocytopaenia, hypogammaglobulinaemia, failure to thrive, diarrhoea, Pneumonia, Thymic hypoplasia; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8606 | CLCN3 | Zornitza Stark Mode of inheritance for gene: CLCN3 was changed from BOTH monoallelic and biallelic, autosomal or pseudoautosomal to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8602 | ZDHHC15 | Daniel Flanagan reviewed gene: ZDHHC15: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: cerebral palsy, intellectual disability, autism spectrum disorder, epilepsy; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8601 | CLCN3 |
Kristin Rigbye gene: CLCN3 was added gene: CLCN3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CLCN3 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: CLCN3 were set to PMID: 34186028 Phenotypes for gene: CLCN3 were set to Neurodevelopmental disorder Mode of pathogenicity for gene: CLCN3 was set to Other Review for gene: CLCN3 was set to GREEN Added comment: 11 individuals reported, 9 that carried 8 different rare heterozygous missense variants in CLCN3, and 2 siblings that were homozygous for an NMD-predicted frameshift variant likely abolishing ClC-3 function. All missense variants were confirmed to be de novo in eight individuals for whom parental data was available. The 11 individuals in the cohort share clinical features of variable severity. All 11 have GDD or ID and dysmorphic features, and a majority has mood or behavioural disorders and structural brain abnormalities: - Structural brain abnormalities on MRI (9/11) included partial or full agenesis of the corpus callosum (6/9), disorganized cerebellar folia (4/9), delayed myelination (3/9), decreased white matter volume (3/9), pons hypoplasia (3/9), and dysmorphic dentate nuclei (3/9). Six of those with brain abnormalities also presented with seizures. - Nine have abnormal vision, including strabismus in four and inability to fix or follow in the two with homozygous loss-of-function variants. - Hypotonia ranging from mild to severe was reported in 7 of the 11 individuals. - Six have mood or behavioural disorders, particularly anxiety (3/6). - Consistent dysmorphic facial features included microcephaly, prominent forehead, hypertelorism, down-slanting palpebral fissures, full cheeks, and micrognathia. The severity of disease in the two siblings with homozygous disruption of ClC-3 is consistent with the drastic phenotype seen in Clcn3 KO mice. The disease was more severe in two siblings carrying homozygous loss-of-function variants with the presence of GDD, absent speech, seizures, and salt and pepper fundal pigmentation in both individuals, with one deceased at 14 months of age. The siblings also had significant neuroanatomical findings including diffusely decreased white matter volume, thin corpora callosa, small hippocampi, and disorganized cerebellar folia. Supporting biallelic inheritance for LoF variants, disruption of mouse Clcn3 results in drastic neurodegeneration with loss of the hippocampus a few months after birth and early retinal degeneration. Clcn3−/− mice display severe neurodegeneration, whereas heterozygous Clcn3+/− mice appear normal. Patch-clamp studies were used to investigate four of the missense variants. These suggested a gain of function in two variants with increased current in HEK cells, however they also showed reduced rectification of voltage and a loss of transient current, plus decreased current amplitude, glycosylation and surface expression when expressed in oocytes, and were suspected to interfere with channel gating and a negative feedback mechanism. These effects were also shown to vary depending on pH levels. The current of the remaining two variants did not differ from WT. For heterozygous missense variants, the disruption induced may be at least partially conferred to mutant/WT homodimers and mutant/ClC-4 heterodimers. Both loss and gain of function in this gene resulted in the same phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8586 | GCNA |
Ain Roesley gene: GCNA was added gene: GCNA was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GCNA was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: GCNA were set to 33963445 Phenotypes for gene: GCNA were set to primary spermatogenic failure Penetrance for gene: GCNA were set to unknown Review for gene: GCNA was set to GREEN Added comment: 7x probands all missense except 1 fs. Variants had <0.0005 MAF in gnomad v2 male cohort and absent in 5784 Dutch control cohort no functional studies were done except for histology of Ser659Trp, revealing a Sertoli-cell only Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8522 | SYNCRIP |
Zornitza Stark gene: SYNCRIP was added gene: SYNCRIP was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SYNCRIP was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: SYNCRIP were set to 34157790; 30504930; 27479843; 23020937 Phenotypes for gene: SYNCRIP were set to Global developmental delay; Intellectual disability; Autism; Myoclonic atonic seizures; Abnormality of nervous system morphology Review for gene: SYNCRIP was set to GREEN Added comment: Semino et al (2021 - PMID: 34157790) provide clinical details on 3 unrelated individuals with de novo SYNCRIP variants and provide a review of 5 additional subjects previously identified within large cohorts in the literature and databases. Features included DD, ID (7/7 for whom this information was available), ASD or autistic features (4/7). MRI abnormalities were observed in 3 (widening of CSF spaces, periventricular nodular heterotopia, prominent lat. ventricles). Epilepsy (myoclonic-astatic epilepsy / Doose syndrome) was reported for 2(/8) individuals. The 3 patients here reported were identified following trio/singleton exome with Sanger confirmation of the variants and their de novo occurrence. Variants are in almost all cases de novo (7/7 for whom this was known) and in 5/8 cases were pLoF, in 2/8 missense SNVs while a case from DECIPHER had a 77.92 kb whole gene deletion not involving other genes with unknown inheritance. Overall the variants reported to date include [NM_006372.5]: 1 - c.858_859del p.(Gly287Leufs*5) 2 - c.854dupA p.(Asn285Lysfs*8) 3 - c.734T>C p.(Leu245Pro) 4 - chr6:85605276-85683190 deletion (GRCh38) 5 - c.629T>C p.(Phe210Ser) 6 - c.1573_1574delinsTT p.(Gln525Leu) 7 - c.1247_1250del p.(Arg416Lysfs*145) 8 - c.1518_1519insC p.(Ala507Argfs*14) [P1-3: this report, P4: DECIPHER 254774, P5-6: Guo et al 2019 - PMID: 30504930, P7: Lelieveld et al 2016 - PMID: 27479843, P8: Rauch et al 2012 - PMID: 23020937 / all other Refs not here reviewed, clinical details summarized by Semino et al in table 1] SYNCRIP (also known as HNRNPQ) encodes synaptotagmin‐binding cytoplasmic RNA‐interacting protein. As the authors note, this RNA-binding protein is involved in multiple pathways associated with neuronal/muscular developmental disorders. Several references are provided for its involvement in regulation of RNA metabolism, among others sequence recognition, pre-mRNA splicing, translation, transport and degradation. Mutations in other RNA-interacting proteins and hnRNP members (e.g. HNRNPU, HNRNPD) are associated with NDD. The missense variant (p.Leu245Pro) is within RRM2 one of the 3 RNA recognition motif (RRM) domains of the protein. These 3 domains, corresponding to the central part of the protein (aa 150-400), are relatively intolerant to variation (based on in silico predictions and/or variation in gnomAD). Leu245 localizes within an RNA binding pocket and in silico modeling suggests alteration of the tertiary structure and RNA-binding capacity of RRM2. There are no additional studies performed. Overall haploinsufficiency appears to be the underlying disease mechanism based on the truncating variants and the gene deletion. [pLI in gnomAD : 1, %HI : 2.48%] Animal models are not discussed. There is no associated phenotype in OMIM. This gene is included in the DD panel of G2P (monoallelic LoF variants / SYNCRIP-related developmental disorder). SysID also lists SYNCRIP within the current primary ID genes. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8519 | MSN | Zornitza Stark Mode of inheritance for gene: MSN was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8518 | MSN | Zornitza Stark reviewed gene: MSN: Rating: GREEN; Mode of pathogenicity: None; Publications: 27405666; Phenotypes: Immunodeficiency 50, MIM# 300988; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8511 | CAMK4 |
Zornitza Stark gene: CAMK4 was added gene: CAMK4 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: CAMK4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CAMK4 were set to 30262571; 33098801; 33211350 Phenotypes for gene: CAMK4 were set to Intellectual disability; Autism; Behavioral abnormality; Abnormality of movement; Dystonia; Ataxia; Chorea; Myoclonus Review for gene: CAMK4 was set to GREEN Added comment: 3 publications by Zech et al (2018, 2020 - PMIDs : 30262571, 33098801, 33211350) provide clinical details on 3 individuals, each harboring a private de novo CAMK4 variant. Overlapping features included DD, ID, behavoral issues, autism and abnormal hyperkinetic movements. Dystonia and chorea in all 3 appeared 3-20 years after initial symptoms. CAMK4 encodes Calcium/Calmodulin-dependent protein kinase IV, an important mediator of calcium-mediated activity and dynamics, particularly in the brain. It is involved in neuronal transmission, synaptic plasticity, and neuronal gene expression required for brain development and neuronal homeostasis (summary by OMIM based on Zech et al, 2018). The 473 aa enzyme has a protein kinase domain (aa 46-300) and a C-terminal autoregulatory domain (aa 305-341) the latter comprising an autoinhibitory domain (AID / aa 305-321) and a calmodulin-binding domain (CBD / aa 322-341) [NP_001735.1 / NM_001744.4 - also used below]. Variants in all 3 subjects were identified following trio-WES and were in all cases protein-truncating, mapping to exon 10 or exon 10-intron 10 junction, expected to escape NMD and cause selective abrogation of the autoinhibitory domain (aa 305-321) leading overall to gain-of-function. Variation databases include pLoF CAMK4 variants albeit in all cases usptream or downstream of this region (pLI of this gene in gnomAD: 0.51). Variants leading to selective abrogation of the autoregulatory domain have not been reported. Extensive evidence for the GoF effect of the variant has been provided in the first publication. Several previous studies have demonstrated that abrogation of the AID domain leads to consitutive activation (details below). Mouse models - though corresponding to homozygous loss of function - support a role for CAMKIV in cognitive and motor symptoms. Null mice display tremulous and ataxic movements, deficiencies in balance and sensorimotor performance associated with reduced number of Purkinje neurons (Ribar et al 2000, PMID: 11069976 - not reviewed). Wei et al (2002, PMID: 12006982 - not reviewed) provided evidence for alteration in hippocampal physiology and memory function. Heterozygous mutations in other genes for calcium/calmodulin-dependent protein kinases (CAMKs) e.g. CAMK2A/CAMK2B (encoding subunits of CAMKII) have been reported in individuals with ID. --- The proband in the first publication (PMID: 30262571) was a male with DD, ID, behavioral difficulties (ASD, autoaggression, stereotypies) and hyperkinetic movement disorder (myoclonus, chorea, ataxia) with severe generalized dystonia (onset at the age of 13y). Brain MRI demonstrated cerebellar atrophy. Extensive work-up incl. karyotyping, CMA, DYT-TOR1A, THAP1, GCH1, SCA1/2/3/6/7/8/12/17, Friedreich's ataxia and FMR1 analysis was negative.F Trio WES identified a dn splice site variant (c.981+1G>A) in the last exon-intron junction. RT-PCR followed by gel electrophoresis and Sanger in fibroblasts from an affected and control subject revealed that the proband had - as predicted by the type/location of the variant - in equal amount 2 cDNA products, a normal as well as a truncated one. Sequencing of the shortest revealed utilization of a cryptic donor splice site upstream of the mutated donor leading to a 77bp out-of-frame deletion and introduction of a premature stop codon in the last codon (p.Lys303Serfs*28). Western blot in fibroblast cell lines revealed 2 bands corresponding to the normal protein product as well as to the p.Lys303Serfs*28 although expression of the latter was lower than that of the full length protein. Several previous studies have shown that mutant CAMKIV species that lack the autoinhibitory domain are consitutively active (several Refs provided). Among others Chatila et al (1996, PMID: 8702940) studied an in vitro-engineered truncation mutant (Δ1-317 - truncation at position 317 of the protein) with functionally validated gain-of-function effect. To prove enhanced activity of the splicing variant, Zech et al assessed phosphorylation of CREB (cyclic AMP-responsive element binding protein), a downstream substrate of CAMKIV. Immunobloting revealed significant increase of CREB phosphorylation in patient fibroblasts compared to controls. Overactivation of CAMKIV signaling was reversed when cells were treated with STO-609 an inhibitor of CAMKK, the ustream activator of CAMKIV. Overall the authors demonstrated that loss of CAMKIV autoregulatory domain due to this splice variant had a gain-of-function effect. ---- Following trio-WES, Zech et al (2020 - PMID: 33098801) identified another relevant subject within cohort of 764 individuals with dystonia. This 12-y.o. male, harboring a different variant affecting the same donor site (c.981+1G>T), presented DD, ID, dystonia (onset at 3y) and additional movement disorders (myoclonus, ataxia) as well as similar behavior (ASD, autoaggression, stereotypies). [Details in suppl. p20]. ---- Finally Zech et al (2020 - PMID: 33211350) reported on a 24-y.o. woman with adolescence onset choreodystonia. Other features included DD, moderate ID, absence seizures in infancy, OCD with anxiety and later diagnosis of ASD. Trio WES revealed a dn stopgain variant (c.940C>T; p.Gln314*). Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8504 | CYBB | Zornitza Stark Mode of inheritance for gene: CYBB was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8503 | CYBB | Zornitza Stark reviewed gene: CYBB: Rating: GREEN; Mode of pathogenicity: None; Publications: 2556453, 1710153, 9585602; Phenotypes: Chronic granulomatous disease, X-linked, MIM# 306400; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8485 | STX3 |
Zornitza Stark changed review comment from: At least 5 unrelated families reported.; to: At least 5 unrelated families reported. STX3 isoform B (STX3B) predominates in the retina, so mutations in the STX3 gene that affect both isoform A (STX3A) and STX3B cause both retinal and gastrointestinal disease (RDMVID), whereas mutations in STX3 affecting only the STX3A transcript cause only diarrhoea. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8476 | CD40LG | Zornitza Stark Mode of inheritance for gene: CD40LG was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8468 | CD40LG | Danielle Ariti reviewed gene: CD40LG: Rating: GREEN; Mode of pathogenicity: None; Publications: 7679801, 7679206, 8094231, 9933119, 15358621, 15997875, 7678782, 7915248, 15367912, 7518839, 16311023, 9933119, 12402041, 7882172, 33475257; Phenotypes: mmunodeficiency, X-linked, with hyper-IgM MIM# 308230, Severe opportunistic infections (recurrent), idiopathic neutropaenia, dysgammaglobulinaemia hepatitis, cholangitis, cholangiocarcinoma, autoimmune blood cytopenias, haemolytic anaemia, thrombocytopaenia, diarrhoea, peripheral neuroectodermal tumours; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8463 | ABCD1 | Zornitza Stark Mode of inheritance for gene: ABCD1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8449 | ZNF148 |
Natalie Tan gene: ZNF148 was added gene: ZNF148 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ZNF148 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ZNF148 were set to PMID: 27964749 Phenotypes for gene: ZNF148 were set to Global developmental delay, absent or hypoplastic corpus callosum, and dysmorphic facies; MIM#617260 Review for gene: ZNF148 was set to GREEN Added comment: Four unrelated individuals with de novo heterozygous nonsense or frameshift mutations (all resulting in premature termination codons in the last exon of ZNF148, predicted to escape nonsense-mediated mRNA decay and result in expression of a truncated protein). Phenotype characterised by underdevelopment of the corpus callosum, mild to moderate developmental delay and ID, variable microcephaly or mild macrocephaly, short stature, feeding problems, facial dysmorphisms, and cardiac and renal malformations. No functional studies to date. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8445 | SYP | Elena Savva reviewed gene: SYP: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 23966691, 19377476; Phenotypes: Mental retardation, X-linked 96 MIM#300802; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8443 | ZIC3 | Zornitza Stark Mode of inheritance for gene: ZIC3 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8423 | RPGR | Zornitza Stark Mode of inheritance for gene: RPGR was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8377 | GDF1 | Zornitza Stark Mode of inheritance for gene: GDF1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8306 | NYNRIN |
Laura Raiti gene: NYNRIN was added gene: NYNRIN was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NYNRIN was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NYNRIN were set to PMID: 30885698 Review for gene: NYNRIN was set to AMBER Added comment: 3 individuals with Wilms Tumour reported (2 children from 1 family, the 3rd child from a second family). Biallelic truncating mutations in NYNRIN in three children with Wilms Tumour from two families, each parent was heterozygous for one of the mutations. One of the affected children had an inguinal hernia and another had epilepsy, hypothyroidism, and intellectual disability. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8292 | RING1 |
Eleanor Williams gene: RING1 was added gene: RING1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RING1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: RING1 were set to 29386386 Phenotypes for gene: RING1 were set to microcephaly; intellectual disability Review for gene: RING1 was set to RED Added comment: Not associated with any phenotype in OMIM. PMID: 29386386 - Pierce et al 2018 - report a 13 yo female with a de novo RING1 p.R95Q variant and syndromic neurodevelopmental disabilities. Early motor and language development were normal but were delayed after the first year of life. Cognitive testing showed a verbal IQ of 55 and a visual performance IQ of 63. Head circumference at birth was -4.9 SD, and -4.2 SD at age 13 which falls into the severe microcephaly category. C. elegans with either the missense mutation or complete knockout of spat-3 (the suggested RING1 ortholog) were defective in monoubiquitylation of histone H2A and had defects in neuronal migration and axon guidance. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8177 | ARHGEF9 | Zornitza Stark Mode of inheritance for gene: ARHGEF9 was changed from X-LINKED: hemizygous mutation in males, biallelic mutations in females to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8156 | KLHL7 | Zornitza Stark Mode of inheritance for gene: KLHL7 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8145 | KLHL7 | Ain Roesley reviewed gene: KLHL7: Rating: GREEN; Mode of pathogenicity: None; Publications: 31953236, 30300710, 31856884; Phenotypes: PERCHING syndrome (MIM#617055), Retinitis pigmentosa 42 (MIM#612943); Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8108 | NDUFB11 | Zornitza Stark edited their review of gene: NDUFB11: Changed mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8033 | GATA1 | Zornitza Stark Mode of inheritance for gene: GATA1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8032 | GATA1 | Zornitza Stark reviewed gene: GATA1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Thrombocytopaenia, X-linked, with or without dyserythropoietic anaemia, MIM# 300367; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8000 | PLXNA3 |
Zornitza Stark gene: PLXNA3 was added gene: PLXNA3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PLXNA3 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: PLXNA3 were set to 33495532 Phenotypes for gene: PLXNA3 were set to Hypogonadotropic hypogonadism Review for gene: PLXNA3 was set to GREEN Added comment: Screened 216 patients with Idiopathic hypogonadotropic hypogonadism by exome sequencing. Identified 7 individuals from 5 families with hemizygous PLXNA3 missense variants. In 2 of the kindreds, there was at least one more gene known to be associated with IHH (oligogenecity). Data provided with evidence that PLXNA3, a key component of the SEMA3F holoreceptor complex,31 is expressed by the human GnRH and olfactory/vomeronasal systems. S646P variant showed PLXNA3 localization exclusively in the ER, indicating that the variant S646P disrupts cell surface localization of PLXNA3. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7988 | ZNF81 | Zornitza Stark Mode of inheritance for gene: ZNF81 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7986 | ZNF81 | Zornitza Stark reviewed gene: ZNF81: Rating: RED; Mode of pathogenicity: None; Publications: 15121780; Phenotypes: Intellectual disability; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7986 | RELN |
Ee Ming Wong edited their review of gene: RELN: Added comment: - Six affected individuals carrying missense variants in RELN including 1. Two individuals with compound heterozygous variants - One of the variants has 26 homozygotes in gnomAD and therefore pathogenicity of this variant is in question - LoF demonstrated for three of the variants (reduced RELN secretion), except for p.Y1821H which demonstrated an apparently increased RELN secretion (GoF) 2. Two brothers carrying the maternally inherited variant (mother apparently healthy) - LoF demonstrated for these variants 3. Two individuals de novo for RELN variants - Dominant negative demonstrated for these variants where secretion of WT-RELN was impaired when co-transfected with mutant constructs in HEK293T cells; Changed rating: AMBER; Changed publications: Riva et al bioRxiv (pre-print, not peer-reviewed); Changed phenotypes: Pachygyria, Polymicrogyria, Heterotopia; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7949 | SASH3 |
Zornitza Stark gene: SASH3 was added gene: SASH3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SASH3 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: SASH3 were set to 33876203 Phenotypes for gene: SASH3 were set to Combined immunodeficiency; immune dysregulation Review for gene: SASH3 was set to GREEN Added comment: Four unrelated males reported presenting with combined immunodeficiency and immune dysregulation manifesting as recurrent sinopulmonary, cutaneous and mucosal infections, and refractory autoimmune cytopaenias. One missense variant, rest were nonsense. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7891 | CADM3 |
Teresa Zhao gene: CADM3 was added gene: CADM3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CADM3 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: CADM3 were set to PMID: 33889941 Phenotypes for gene: CADM3 were set to Charcot-Marie-Tooth disease Review for gene: CADM3 was set to AMBER Added comment: Three families reported with the same missense variant in CADM3 p.Tyr172Cys (one family de novo), with mice work to show reduced expression of the mutant protein in axons and abnormal axonal organization. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7879 | SLC9A6 | Zornitza Stark Mode of inheritance for gene: SLC9A6 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7878 | SLC9A6 | Zornitza Stark reviewed gene: SLC9A6: Rating: GREEN; Mode of pathogenicity: None; Publications: 18342287, 19377476, 25044251, 33278113, 32569089, 31879735; Phenotypes: Mental retardation, X-linked syndromic, Christianson type, MIM# 300243, MONDO:0010278; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7865 | IQSEC2 | Zornitza Stark reviewed gene: IQSEC2: Rating: GREEN; Mode of pathogenicity: None; Publications: 33368194, 20473311, 23674175; Phenotypes: Mental retardation, X-linked 1/78, MIM# 309530, MONDO:0010656, Severe intellectual disability-progressive postnatal microcephaly- midline stereotypic hand movements syndrome MONDO:0018347; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7818 | SERPINE1 | Zornitza Stark Mode of inheritance for gene: SERPINE1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7817 | SERPINE1 | Zornitza Stark reviewed gene: SERPINE1: Rating: GREEN; Mode of pathogenicity: None; Publications: 9207454, 15650551; Phenotypes: Plasminogen activator inhibitor-1 deficiency, MIM# 613329; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7765 | F9 | Zornitza Stark Mode of inheritance for gene: F9 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7764 | F9 | Zornitza Stark reviewed gene: F9: Rating: GREEN; Mode of pathogenicity: None; Publications: 19846852, 34015304, 33656538; Phenotypes: Haemophilia B, MIM# 306900, Thrombophilia, X-linked, due to factor IX defect, MIM# 300807; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7762 | F8 | Zornitza Stark Mode of inheritance for gene: F8 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7761 | F8 | Zornitza Stark reviewed gene: F8: Rating: GREEN; Mode of pathogenicity: None; Publications: 2986011, 3097553; Phenotypes: Haemophilia A, MIM# 306700, MONDO:0010602; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7749 | MCM7 |
Arina Puzriakova gene: MCM7 was added gene: MCM7 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MCM7 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MCM7 were set to 33654309; 34059554 Phenotypes for gene: MCM7 were set to Meier-Gorlin syndrome; Microcephaly; Intellectual disability; Lipodystrophy; Adrenal insufficiency Review for gene: MCM7 was set to AMBER Added comment: MCM7 is a component of the MCM complex, a DNA helicase which is essential for DNA replication. Other components have been linked to disease with phenotypes including microcephaly and ID. MCM7 is not associated with any phenotype in OMIM or G2P at present. ------ Currently there are 3 unrelated pedigrees in literature with different biallelic MCM7 variants associated with disease (see below). Although there is some functional data in support of variant-level deleteriousness or gene-level pathogenicity, the clinical gestalt is very different between the 3 families. - PMID: 33654309 (2021) - Two unrelated individuals with different compound het variants in MCM7 but disparate clinical features. One patient had typical Meier-Gorlin syndrome (including growth retardation, microcephaly, congenital lung emphysema, absent breast development, microtia, facial dysmorphism) whereas the second case had a multi-system disorder with neonatal progeroid appearance, lipodystrophy and adrenal insufficiency. While small at birth, the second patient did not demonstrate reduced stature or microcephaly at age 14.5 years. Both individuals had normal neurodevelopment. Functional studies using patient-derived fibroblasts demonstrate that the identified MCM7 variants were deleterious at either transcript or protein levels and through interfering with MCM complex formation, impact efficiency of S phase progression. - PMID: 34059554 (2021) - Homozygous missense variant identified in three affected individuals from a consanguineous family with severe primary microcephaly, severe ID and behavioural abnormalities. Knockdown of Mcm7 in mouse neuroblastoma cells lead to reduced cell viability and proliferation with increased apoptosis, which were rescued by overexpression of wild-type but not mutant MCM7. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7700 | KLHL13 |
Zornitza Stark gene: KLHL13 was added gene: KLHL13 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: KLHL13 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: KLHL13 were set to 24627108 Phenotypes for gene: KLHL13 were set to HMSN Review for gene: KLHL13 was set to RED Added comment: Single family (two affected males) with an inherited peripheral neuropathy, no functional analysis. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7670 | ATP7A | Zornitza Stark reviewed gene: ATP7A: Rating: GREEN; Mode of pathogenicity: None; Publications: 20170900, 33137485, 31969342, 31558336; Phenotypes: Menkes disease MIM#309400, Occipital horn syndrome MIM#304150, Spinal muscular atrophy, distal, X-linked 3, MIM# 300489; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7644 | DKC1 | Zornitza Stark Mode of inheritance for gene: DKC1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7643 | DKC1 | Zornitza Stark reviewed gene: DKC1: Rating: GREEN; Mode of pathogenicity: None; Publications: 31269755, 26951492, 29081935, 25940403; Phenotypes: Dyskeratosis congenita, X-linked 305000, Hoyeraal-Hreidarsson Syndrome; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7641 | THOC2 | Zornitza Stark Mode of inheritance for gene: THOC2 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7637 | THOC2 | Paul De Fazio edited their review of gene: THOC2: Changed mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7496 | OCRL | Zornitza Stark Mode of inheritance for gene: OCRL was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7495 | OCRL | Zornitza Stark reviewed gene: OCRL: Rating: GREEN; Mode of pathogenicity: None; Publications: 15627218, 9199559; Phenotypes: Dent disease 2, MIM# 300555, Lowe syndrome , MIM#309000; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7471 | GJB1 | Zornitza Stark Mode of inheritance for gene: GJB1 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7470 | GJB1 | Zornitza Stark reviewed gene: GJB1: Rating: GREEN; Mode of pathogenicity: None; Publications: 8266101, 17100997, 17353473, 31842800; Phenotypes: Charcot-Marie-Tooth neuropathy, X-linked dominant, 1, MIM# 302800, MONDO:0010549, reversible posterior leukoencephalopathy; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7464 | VPS41 |
Kristin Rigbye changed review comment from: "Five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function."; to: "Five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function." "Affected individuals were born after uneventful pregnancies and presented in most cases early in life with developmental delay. Various degrees of ataxia, hypotonia, and dystonia were present in all affected individuals, preventing independent ambulation. Likewise, nystagmus was commonly described. In addition, all affected individuals displayed intellectual disability and speech delay. Two siblings further presented with therapy-resistant epilepsy. No major dysmorphic features were found. In two individuals, retinal pigment alterations were noticed. Brain MRI revealed mild cerebellar atrophy and vermian atrophy without other major structural abnormalities in most affected individuals while in one case (Subject 9) bilateral hyperintensities at the nucleus caudatus area were noted. No hearing or vision problems were noted and in cases where nerve conduction studies were performed, these were normal. Transmission electron microscopy (TEM) on peripheral blood lymphocytes from Subject 2 and lymphoblastoid cells from Subject 3 revealed more multilayered vesicles compared to control cells." |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7415 | NPAS2 | Alison Compton changed review comment from: The brothers with NOA from consanguineous Turkish family, homozygous NM_002518.3(NPAS2) c.1363C>G; p.(Pro455Ala) variant identified. Heterozygous in mother, and fertile brother and sister. Not present in 1000 Genomes, EVS or gnomAD. Predicted to be “benign” by Polyphen2, and "neutral" by both SIFT and Mutation taster. Not predicted to in a functional domain. Not listed as a disease-gene in OMIM, no other 'pathogenic' or 'likely pathogenic' variants listed in ClinVar. Paper did not include any functional work.; to: Three brothers with NOA from consanguineous Turkish family, homozygous NM_002518.3(NPAS2) c.1363C>G; p.(Pro455Ala) variant identified. Found to be heterozygous in mother, and fertile brother and sister. Not present in 1000 Genomes, EVS or gnomAD. Predicted to be “benign” by Polyphen2, and "neutral" by both SIFT and Mutation taster. Not predicted to be within a functional domain. Gene not listed as a disease-gene in OMIM, no other 'pathogenic' or 'likely pathogenic' variants listed in ClinVar. Publication did not include any functional work as support. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7358 | JMJD1C |
Zornitza Stark gene: JMJD1C was added gene: JMJD1C was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: JMJD1C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: JMJD1C were set to 26181491; 32996679 Phenotypes for gene: JMJD1C were set to Intellectual disability Review for gene: JMJD1C was set to GREEN Added comment: Reported in ID cohort (with Rett-like phenotypic overlap) with supporting functional studies (PMID: 26181491). 7 individuals with rare variants identified, and variants demonstrated to be de novo in 2, one with a Rett-like phenotype and the other with ID. Functional study of the JMJD1C mutant Rett syndrome patient demonstrated that the altered protein had abnormal subcellular localization, diminished activity to demethylate the DNA damage-response protein MDC1, and reduced binding to MECP2. JMJD1C protein shown to be widely expressed in brain regions and that its depletion compromised dendritic activity. Splice-disrupting JMJD1C variant reported in association with learning disability and myoclonic epilepsy (PMID 32996679). Disruption of gene due to balanced translocation (PMID 33591602) implicated in autism spectrum disease phenotype. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7346 | GCGR |
Zornitza Stark gene: GCGR was added gene: GCGR was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: GCGR was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: GCGR were set to 19657311; 25695890; 27933176; 30032256; 30294546 Phenotypes for gene: GCGR were set to Mahvash disease, MIM# 619290 Review for gene: GCGR was set to GREEN Added comment: Mahvash disease (MVAH) is caused by inactivating mutations in the glucagon receptor, leading to alpha-cell hyperplasia of the pancreas, hyperglucagonaemia without glucagonoma syndrome, and occasional hypoglycaemia. The disease may lead to glucagonomas and/or primitive neuroectodermal tumours. More than 5 unrelated families reported. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7250 | NDUFB11 | Zornitza Stark Mode of inheritance for gene: NDUFB11 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7249 | NDUFB11 | Kristin Rigbye reviewed gene: NDUFB11: Rating: GREEN; Mode of pathogenicity: None; Publications: 28050600, 27488349, 30423443, 27488349; Phenotypes: Linear skin defects with multiple congenital anomalies 3, XLD (MIM#300952), Mitochondrial complex I deficiency, nuclear type 30, XLR (MIM#301021); Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7240 | FANCB | Zornitza Stark Mode of inheritance for gene: FANCB was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7239 | FANCB | Zornitza Stark reviewed gene: FANCB: Rating: GREEN; Mode of pathogenicity: None; Publications: 15502827; Phenotypes: Fanconi anaemia, complementation group B, MIM# 300514, MONDO:0010351; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7192 | ADCY6 |
Zornitza Stark changed review comment from: Laquerriere et al. (2014): 2 sibs from a consanguineous family with an axoglial form of lethal congenital contracture syndrome, and homozygous missense ADCY6 mutation (R1116C). The parents were heterozygous for the mutation. Knocked down ADCY6 orthologs in zebrafish showed a loss of myelin basic protein expression in the peripheral nervous system but no defects in Schwann cell migration and axonal growth. Gonzaga‐Jauregui et al. (2015): 1 patient with congenital hypotonia, distal joint contractures, hypomyelinating neuropathy, and vocal cord paralysis, and a homozygous missense ADCY6 variant. No functional studies. Deceased sister with a similar phenotype with hypotonia, areflexia, and hypomyelinating neuropathy who died at 18 months of respiratory insufficiency. Agolini et al. (2020): 1 patient with severe form of AMC, with two novel compound heterozygous variants in ADCY6 (parents confirmed carriers), but no functional studies. Sources: Literature; to: - PMID: 33820833 (2021) - Further 2 sibs reported with a homozygous c.3346C>T:p.Arg1116Cys variant in the ADCY6 gene. The family was identified from a cohort of 315 genetically undiagnosed and unrelated AMC families. Arthrogryposis and IUGR were detected prenatally. Laquerriere et al. (2014): 2 sibs from a consanguineous family with an axoglial form of lethal congenital contracture syndrome, and homozygous missense ADCY6 mutation (R1116C). The parents were heterozygous for the mutation. Knocked down ADCY6 orthologs in zebrafish showed a loss of myelin basic protein expression in the peripheral nervous system but no defects in Schwann cell migration and axonal growth. Gonzaga‐Jauregui et al. (2015): 1 patient with congenital hypotonia, distal joint contractures, hypomyelinating neuropathy, and vocal cord paralysis, and a homozygous missense ADCY6 variant. No functional studies. Deceased sister with a similar phenotype with hypotonia, areflexia, and hypomyelinating neuropathy who died at 18 months of respiratory insufficiency. Agolini et al. (2020): 1 patient with severe form of AMC, with two novel compound heterozygous variants in ADCY6 (parents confirmed carriers), but no functional studies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7186 | EXOSC1 |
Zornitza Stark gene: EXOSC1 was added gene: EXOSC1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: EXOSC1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: EXOSC1 were set to 33463720 Phenotypes for gene: EXOSC1 were set to Pontocerebellar hypoplasia Review for gene: EXOSC1 was set to RED Added comment: An 8‐months‐old male with developmental delay, microcephaly, subtle dysmorphism, hypotonia, pontocerebellar hypoplasia and delayed myelination. Similarly affected elder sibling succumbed at the age of 4‐years 6‐months. Exome sequencing revealed a homozygous missense variant (c.104C >T, p.Ser35Leu) in EXOSC1. In silico mutagenesis revealed loss of a polar contact with neighbouring Leu37 residue. Quantitative real‐time PCR indicated no appreciable differences in EXOSC1 transcript levels. Immunoblotting and blue native PAGE revealed reduction in the EXOSC1 protein levels and EXO9 complex in the proband, respectively. Of note, bi‐allelic variants in other exosome subunits EXOSC3, EXOSC8 and EXOSC9 have been reported to cause pontocerebellar hypoplasia type 1B, type 1C and type 1D, respectively. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7173 | GRIA3 | Zornitza Stark Mode of inheritance for gene: GRIA3 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7172 | GRIA3 | Zornitza Stark reviewed gene: GRIA3: Rating: GREEN; Mode of pathogenicity: None; Publications: 32977175, 17989220; Phenotypes: Intellectual developmental disorder, X-linked, syndromic, Wu type (MIM#300699); Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7172 | FAT1 |
Ee Ming Wong changed review comment from: - 5 consanguineous families with homozygous frameshift mutations in FAN1 - FAN1 KO mice had microphthalmia, with fully penetrant coloboma which was not observed in heterozygous mice - in human retinal pigment epithelium (RPE) cells, FAN1 knockdown resulted in compromised early cell-cell junction integrity and filament organisation; to: - 5 consanguineous families with homozygous frameshift mutations in FAT1 - FAT1 KO mice had microphthalmia, with fully penetrant coloboma which was not observed in heterozygous mice - in human retinal pigment epithelium (RPE) cells, FAT1 knockdown resulted in compromised early cell-cell junction integrity and filament organisation |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7161 | PSAP |
Zornitza Stark changed review comment from: Well established gene-disease association for bi-allelic variants. Early-onset PD reported with mono-allelic variants.; to: Well established gene-disease association for bi-allelic variants. Early-onset PD reported with mono-allelic variants. The PSAP gene encodes saposins A, B, C and D. Variants resulting in PSAP null allele can be shared in patients with the deficit of other saposins (A-D) or whole prosaposin. The patient's phenotype depends then on the nature of the second allele - atypical Gaucher disease in case of saposin A, MLD in case of saposin B, and Krabbe disease in case of saposin C impairing mutations. The clinically most severe prosaposin deficit is caused by the presence of two PSAP null alleles. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7134 | LAMP2 | Zornitza Stark Mode of inheritance for gene: LAMP2 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7133 | LAMP2 | Zornitza Stark reviewed gene: LAMP2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Danon disease, MIM# 300257, MONDO:0010281; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7127 | VWA1 |
Melanie Marty gene: VWA1 was added gene: VWA1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: VWA1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: VWA1 were set to 33459760; 33693694; 33559681 Phenotypes for gene: VWA1 were set to Hereditary motor neuropathy Review for gene: VWA1 was set to GREEN Added comment: Six different truncating variants identified in 15 affected individuals from six families (biallelic inheritance). Disease manifested in childhood or adulthood with proximal and distal muscle weakness predominantly of the lower limbs. Myopathological and neurophysiological findings were indicative of combined neurogenic and myopathic pathology. Early childhood foot deformity was frequent, but no sensory signs were observed. An additional 17 individuals from 15 families with hereditary motor neuropathy were identified. A 10-bp repeat expansion at the end of exon 1 was observed in 14 families and was homozygous in 10 of them. This mutation, c.62_71dup [p.Gly25Argfs*74], leads to a frameshift that results in a reduction in VWA1 transcript levels via nonsense-mediated decay. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7007 | ABCB7 | Zornitza Stark Mode of inheritance for gene: ABCB7 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7006 | ABCB7 | Zornitza Stark reviewed gene: ABCB7: Rating: GREEN; Mode of pathogenicity: None; Publications: 10196363, 10196363, 33157103, 31772327, 31511561, 26242992; Phenotypes: Anaemia, sideroblastic, with ataxia, MIM# 301310; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7005 | PORCN | Zornitza Stark Mode of inheritance for gene: PORCN was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7004 | PORCN | Zornitza Stark reviewed gene: PORCN: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Focal dermal hypoplasia, MIM# 305600; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6901 | SPINT2 | Zornitza Stark changed review comment from: More than 15 unrelated families reported.; to: Well established gene-disease association. PMID 30445423 reviews 34 patients from 26 families: 13 different variants in SPINT2 were seen, including 3 premature termination codons, 2 start codon removals, and 3 canonical splice site variants, supporting loss of function as the pathogenic mechanism. The most commonly observed variant was Y163C, observed in 40 (59%) of 68 disease alleles. Seven unrelated patients with the Y163C mutation had a shared haplotype, suggesting that it is a founder mutation. Choanal atresia (20/34) and keratitis of infantile onset (26/34) were the most common findings. All patients presented with intractable diarrhoea, with onset typically in the first 2 weeks of life. Episodes of intestinal pseudoobstruction sometimes preceded the onset of diarrhoea. Characteristic epithelial tufts on intestinal histology were seen in 13 of the 34 patients. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6876 | POLR3A | Elena Savva reviewed gene: POLR3A: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 31637490; Phenotypes: Leukodystrophy, hypomyelinating, 7, with or without oligodontia and/or hypogonadotropic hypogonadism MIM#607694, Wiedemann-Rautenstrauch syndrome MIM#264090, POLR3A-related spastic ataxia; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6873 | COL4A6 | Zornitza Stark Mode of inheritance for gene: COL4A6 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6870 | COL4A6 | Paul De Fazio reviewed gene: COL4A6: Rating: RED; Mode of pathogenicity: None; Publications: 23714752, 12784310; Phenotypes: ?Deafness, X-linked 6 MIM#300914; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6868 | MED12 | Zornitza Stark Mode of inheritance for gene: MED12 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6863 | MED12 | Elena Savva reviewed gene: MED12: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 33244166, 32174975, 30006928, 27312080; Phenotypes: Ohdo syndrome, X-linked MIM#300895, Lujan-Fryns syndrome MIM#309520, Opitz-Kaveggia syndrome MIM#305450; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6861 | ZNF711 | Zornitza Stark Mode of inheritance for gene: ZNF711 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6860 | ZNF711 | Zornitza Stark reviewed gene: ZNF711: Rating: GREEN; Mode of pathogenicity: None; Publications: 27993705, 19377476; Phenotypes: Mental retardation, X-linked 97, OMIM #300803; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6858 | SLC35A2 | Zornitza Stark Mode of inheritance for gene: SLC35A2 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6857 | SLC35A2 | Zornitza Stark reviewed gene: SLC35A2: Rating: GREEN; Mode of pathogenicity: None; Publications: 23561849, 24115232, 27743886, 25778940, 33407896; Phenotypes: Congenital disorder of glycosylation, type IIm (MIM #300896) 30817854, Mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE); Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6848 | CHRDL1 | Zornitza Stark Mode of inheritance for gene: CHRDL1 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6847 | CHRDL1 | Zornitza Stark reviewed gene: CHRDL1: Rating: GREEN; Mode of pathogenicity: None; Publications: 25093588; Phenotypes: Megalocornea OMIM# 309300; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6846 | HDL2 |
Bryony Thompson STR: HDL2 was added STR: HDL2 was added to Mendeliome. Sources: Expert list Mode of inheritance for STR: HDL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for STR: HDL2 were set to 20301701 Phenotypes for STR: HDL2 were set to Huntington disease-like 2 MIM#606438 Review for STR: HDL2 was set to GREEN STR: HDL2 was marked as clinically relevant Added comment: NM_001271604.2:c.431CTG[X] or NM_020655.4:c.382+760CTG[X] In an alternatively spliced exon, the repeat can be transcribed in both directions, leading to CUG (more common) or CAG (less common) repeat-containing transcripts. While a dominant RNA toxic effect may occur, the repeat expansion also reduces levels of the Junctophilin-3 protein Normal: ≤28 repeats Questionable significance: 29-39 repeats, mutable normal or reduced penetrance included Full penetrance: ≥40 repeats Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6843 | DM2 |
Bryony Thompson STR: DM2 was added STR: DM2 was added to Mendeliome. Sources: Expert list Mode of inheritance for STR: DM2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for STR: DM2 were set to 20301639; 29325606 Phenotypes for STR: DM2 were set to Myotonic dystrophy 2 MIM#602668 Review for STR: DM2 was set to GREEN STR: DM2 was marked as clinically relevant Added comment: HGVS nomenclature: NM_003418.4:c.-14-833_-14-830[X] Toxic gain of function RNA expected mechanism of disease Normal: ≤30 uninterrupted CCTG repeats, 11-26 CCTG repeats with any GCTC or TCTG interruptions Unknown significance (normal vs. mutable): 27-29 CCTG repeats Mutable normal (premutation) alleles. ~30-~54 CCTG repeats Unknown significance (premutation vs pathogenic): ~55-74 CCTG repeats Pathogenic: ~75-11,000 CCTG repeats Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6840 | DM1 |
Bryony Thompson STR: DM1 was added STR: DM1 was added to Mendeliome. Sources: Expert list Mode of inheritance for STR: DM1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for STR: DM1 were set to 20301344; 29325606 Phenotypes for STR: DM1 were set to Myotonic dystrophy 1 MIM#160900 Review for STR: DM1 was set to GREEN STR: DM1 was marked as clinically relevant Added comment: HGVS nomenclature: NM_001081560.2:c.*224_*226CTG[X] RNA toxic gain of function is mechanism of disease Premutation: 35-49 repeats, no clinical signs Mild: 50-~150 repeats, age of onset 20-70 yrs, clinical signs - cataracts, mild myotonia Classic: ~100-~1,000 repeats, age of onset 10-30 yrs, clinical signs - weakness, myotonia, cataracts, balding, cardiac arrhythmia Congenital: >1,000 repeats, age of onset birth-10 yrs , clinical signs - infantile hypotonia, respiratory deficits, intellectual disability, classic signs in adults Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6822 | SCA7 |
Bryony Thompson STR: SCA7 was added STR: SCA7 was added to Mendeliome. Sources: Expert list Mode of inheritance for STR: SCA7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for STR: SCA7 were set to 29325606; 20301433 Phenotypes for STR: SCA7 were set to Spinocerebellar ataxia 7 MIM#164500 Review for STR: SCA7 was set to GREEN STR: SCA7 was marked as clinically relevant Added comment: NM_000333.3:c.89_91AGC[X] Gain of function mechanism of disease Normal: ≤27 repeats Mutable normal: 28-33 repeats, meiotically unstable, but not associated with an abnormal phenotype. Pathogenic reduced penetrance: 34-36 repeats, when manifestations occur, they are more likely to be later onset and milder than average Pathogenic full penetrance: 37-460 repeats Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6781 | SCA1 |
Bryony Thompson STR: SCA1 was added STR: SCA1 was added to Mendeliome. Sources: Expert list Mode of inheritance for STR: SCA1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for STR: SCA1 were set to 29325606; 20301363 Phenotypes for STR: SCA1 were set to Spinocerebellar ataxia 1 MIM#164400 STR: SCA1 was marked as clinically relevant Added comment: NM_000332.3:c.589_591CAG[X] Toxic protein aggregation is mechanism of disease Normal: ≤35 CAG repeats or 36-44 CAG repeats with CAT interruptions Mutable normal (intermediate): 36-38 CAG repeats without CAT interruptions Full-penetrance: ≥39 CAG repeats without CAT interruptions or ≥46 uninterrupted CAG repeats with CAT interruptions and additional CAGs Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6769 | ALDH1L2 |
Naomi Baker gene: ALDH1L2 was added gene: ALDH1L2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ALDH1L2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ALDH1L2 were set to PMID: 31341639; 33168096 Phenotypes for gene: ALDH1L2 were set to pruritic ichthyosis, severe diffuse hypomyelination seen on MRI, and abnormal lipid peaks Review for gene: ALDH1L2 was set to RED Added comment: Individual reported with bialleleic ALDH1L2 variants (non-canonical splice and a frameshift mutation), who also has a de novo hemizygous RPS6KA3 frameshift mutation. Authors state that not all features of the individual could be explained by the RPS6KA3 variant, and that consideration of Coffin-Lowry sysndrome was only made after identification of the RPS6KA3 variant. Therefore individual has there is a blended phenotype of Coffin–Lowry syndrome and Sjögren–Larsson syndrome. From functional studies authors propose that the ALDH1L2 loss induces mitochondrial dysfunction due to reduced NADPH and increased oxidative stress (PMID: 31341639). Knockout mouse model was viable and did not show an apparent phenotype, however metabolomic analysis showed vastly changed metabotypes in the liver and plasma in these mice suggesting channeling of fatty acids away from β-oxidation. Authors therefore postulate that the role of ALDH1L2 in the lipid metabolism explains why the loss of this enzyme is associated with neuro-cutaneous disease. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6753 | KDM5B | Zornitza Stark reviewed gene: KDM5B: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Mental retardation, autosomal recessive 65 MIM#618109, Intellectual disability and/or autism, autosomal dominant; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6751 | KDM5B | Zornitza Stark Mode of inheritance for gene: KDM5B was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6742 | UBAP1 |
Zornitza Stark changed review comment from: PMID 31696996: Five unrelated families reported with childhood-onset HSP. A recurrent two‐base pair deletion (c.426_427delGA, p.K143Sfs*15) in the UBAP1 gene was found in four families, and a similar variant (c.475_476delTT, p.F159*) was detected in a fifth family. The variant was confirmed to be de novo in two families and inherited from an affected parent in two other families. RNA studies performed in lymphocytes from one patient with the de novo c.426_427delGA variant demonstrated escape of nonsense‐mediated decay of the UBAP1 mutant transcript, suggesting the generation of a truncated protein. Both variants identified are predicted to result in truncated proteins losing the capacity of binding to ubiquitinated proteins, hence appearing to exhibit a dominant‐negative effect on the normal function of the endosome‐specific endosomal sorting complexes required for the transport‐I complex.; to: PMID 31696996: Five unrelated families reported with childhood-onset HSP. A recurrent two‐base pair deletion (c.426_427delGA, p.K143Sfs*15) in the UBAP1 gene was found in four families, and a similar variant (c.475_476delTT, p.F159*) was detected in a fifth family. The variant was confirmed to be de novo in two families and inherited from an affected parent in two other families. RNA studies performed in lymphocytes from one patient with the de novo c.426_427delGA variant demonstrated escape of nonsense‐mediated decay of the UBAP1 mutant transcript, suggesting the generation of a truncated protein. Both variants identified are predicted to result in truncated proteins losing the capacity of binding to ubiquitinated proteins, hence appearing to exhibit a dominant‐negative effect on the normal function of the endosome‐specific endosomal sorting complexes required for the transport‐I complex. PMID 32934340: additional 7 families. Median age of onset 10yrs. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6739 | KDM5B | Elena Savva reviewed gene: KDM5B: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 29276005, 30217758, 30409806; Phenotypes: Mental retardation, autosomal recessive 65 MIM#618109, autosomal dominant autism spectrum disorder or intellectual disability; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6697 | KDM5C | Zornitza Stark Mode of inheritance for gene: KDM5C was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6696 | KDM5C | Zornitza Stark reviewed gene: KDM5C: Rating: GREEN; Mode of pathogenicity: None; Publications: 15586325, 32279304; Phenotypes: Mental retardation, X-linked, syndromic, Claes-Jensen type, MIM# 300534, MONDO:0010355; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6631 | PGK1 | Zornitza Stark Mode of inheritance for gene: PGK1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6630 | PGK1 | Zornitza Stark reviewed gene: PGK1: Rating: GREEN; Mode of pathogenicity: None; Publications: 6933565, 1547346, 7577653, 9512313; Phenotypes: Phosphoglycerate kinase 1 deficiency, MIM# 300653; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6627 | PHKA1 | Zornitza Stark Mode of inheritance for gene: PHKA1 was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6626 | PHKA1 | Zornitza Stark edited their review of gene: PHKA1: Changed mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6589 | SIAH1 |
Arina Puzriakova gene: SIAH1 was added gene: SIAH1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SIAH1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: SIAH1 were set to 32430360 Phenotypes for gene: SIAH1 were set to Developmental delay; Infantile hypotonia; Dysmorphic features; Laryngomalacia Review for gene: SIAH1 was set to GREEN Added comment: - PMID: 32430360 (2021) - Five unrelated individuals with shared features of developmental delay, infantile hypotonia, dysmorphic features and laryngomalacia. All had speech delay and where cognitive assessment was age appropriate individuals exhibited learning difficulties. Trio WES revealed distinct de novo variants in SIAH1. In vitro assays demonstrated that SIAH1 mutants induce loss of Wnt stimulatory activity. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6582 | SYCP2L |
Arina Puzriakova gene: SYCP2L was added gene: SYCP2L was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SYCP2L was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SYCP2L were set to 32303603 Phenotypes for gene: SYCP2L were set to Premature ovarian insufficiency Review for gene: SYCP2L was set to AMBER Added comment: - PMID: 32303603 (2021) - Two unrelated individuals with premature ovarian insufficiency and homozygous variants (c.150_151del (p.Ser52Profs*7), c.999A>G (p.Ile333Met)) in SYCP2L. In vitro assays revealed that mutant SYCP2L proteins induced mislocalisation and reduced expression. Sycp2l knockout mice exhibit accelerated reproductive ageing. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6570 | CLCN4 | Zornitza Stark Mode of inheritance for gene: CLCN4 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6569 | CLCN4 | Zornitza Stark reviewed gene: CLCN4: Rating: GREEN; Mode of pathogenicity: None; Publications: 27550844; Phenotypes: Raynaud-Claes syndrome, MIM#300114, intellectual disability, epilepsy, autistic features, mood disorders, cerebral white matter changes, progressive appendicular spasticity; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6556 | ACSL5 |
Zornitza Stark gene: ACSL5 was added gene: ACSL5 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ACSL5 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ACSL5 were set to 33191500 Phenotypes for gene: ACSL5 were set to severe FTT (no OMIM #) Review for gene: ACSL5 was set to RED Added comment: 6 individuals of a large consanguineous family presented in the neonatal period with recurrent vomiting and diarrhea, leading to severe FTT. Autozygosity mapping and WES identified homozygous variant (c.1358C>A:p.(Thr453Lys) in ACSL5. Segregated with affected individuals. Functional in vitro analysis of the ACSL5 variant by immunofluorescence, western blotting and enzyme assay suggested that Thr453Lys is a loss‐of‐function mutation without any remaining activity. Affected individuals were treated with total parenteral nutrition or medium‐chain triglyceride‐based formula restricted in long‐chain triglycerides. They responded well and follow up suggests that treatment is only required during early life. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6554 | GDF5 | Zornitza Stark reviewed gene: GDF5: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Type A1C brachydactyly (MIM#615072), Type A2 brachydactyly, (MIM#112600), Type C brachydactyly (MIM#113100), Grebe type chondrodysplasia (MIM#200700), Du Pan syndrome (MIM#228900), Multiple synostoses syndrome 2 (MIM#610017), Proximal Symphalangism 1B (MIM#615298); Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6553 | GDF5 | Zornitza Stark Mode of inheritance for gene: GDF5 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6540 | DLK1 |
Zornitza Stark gene: DLK1 was added gene: DLK1 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: DLK1 was set to MONOALLELIC, autosomal or pseudoautosomal, maternally imprinted (paternal allele expressed) Publications for gene: DLK1 were set to 28324015; 30462238 Phenotypes for gene: DLK1 were set to central precocious puberty Review for gene: DLK1 was set to GREEN Added comment: PMID: 30462238 "three frameshift mutations of DLK1 (p.Gly199Alafs*11, p.Val271Cysfs*14, and p.Pro160Leufs*50) in five women from three families with CPP. Segregation analysis was consistent with the maternal imprinting of DLK1". PMID: 28324015 single large family, only affected females, central precocious puberty all carrying paternally inherited LOF variant (del/dup of 5'UTR and exon 1) absent DLK1 expression in all affected. Unclear if males affected as none reported to date. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6539 | GDF5 | Ain Roesley reviewed gene: GDF5: Rating: GREEN; Mode of pathogenicity: None; Publications: 33333243; Phenotypes: Type A1C brachydactyly (MIM#615072), Type A2 brachydactyly, (MIM#112600), Type C brachydactyly (MIM#113100), Grebe type chondrodysplasia (MIM#200700), Du Pan syndrome (MIM#228900), Multiple synostoses syndrome 2 (MIM#610017), Proximal Symphalangism 1B (MIM#615298); Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6531 | PERP |
Zornitza Stark edited their review of gene: PERP: Added comment: Four families reported with heterozygous variants and Olmsted syndrome-2 (OLMS2), which is characterised by mutilating hyperkeratotic skin lesions, primarily on the palms and soles, but also extending onto dorsal surfaces of the hands and feet and distal extremities. The lesions are progressive, becoming thicker with verrucous fissures on the palms and soles over time. In addition, affected individuals exhibit perioral hyperkeratosis, and may have lesions around other orifices as well, such as the nostrils, perineum, and anus. Most patients also have hyperkeratotic nails and light-colored woolly hair. Two families reported with bi-allelic variants and Erythrokeratodermia variabilis et progressiva-7 (EKVP7), which is characterised by palmoplantar keratoderma that extends to the dorsal surface of the hands and feet (transgrediens), as well as erythematous annular skin lesions. Pruritis, woolly hair, and dystrophic nails may also be present.; Changed rating: GREEN; Changed publications: 31898316, 30321533, 31361044; Changed phenotypes: Olmsted syndrome 2, MIM# 619208, Erythrokeratodermia variabilis et progressiva 7, MIM# 619209; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6527 | APOO | Zornitza Stark reviewed gene: APOO: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Developmental delay, Lactic acidosis, Muscle weakness, Hypotonia, Repetitive infections, Cognitive impairment, Autistic behaviour; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6526 | APOO |
Arina Puzriakova gene: APOO was added gene: APOO was added to Mendeliome. Sources: Literature Mode of inheritance for gene: APOO was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: APOO were set to 32439808 Phenotypes for gene: APOO were set to Developmental delay; Lactic acidosis; Muscle weakness; Hypotonia; Repetitive infections; Cognitive impairment; Autistic behaviour Review for gene: APOO was set to RED Added comment: - PMID: 32439808 (2021) - Three generation family with c.350T>C variant in APOO, encoding a component of the MICOS complex which plays a role in maintaining inner mitochondrial membrane architecture. Phenotypes include fatigue and muscle weakness (6/8), learning difficulties and cognitive impairment (4/8), and increased blood lactate (2/8). Four individuals were asymptomatic carriers, including one male (authors indicate variability in female carriers was due to skewed X-inactivation, although skewing studies were inconclusive in some cases). Variability in clinical presentation suggests reduced penetrance or possible contribution of additional factors. Functional studies showed altered MICOS assembly and abnormalities in mitochondria ultrastructure in patient-derived fibroblasts. Knockdown studies in Drosophila and yeast demonstrated mitochondrial structural and functional deficiencies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6467 | ANKZF1 |
Bryony Thompson gene: ANKZF1 was added gene: ANKZF1 was added to Mendeliome. Sources: Other Mode of inheritance for gene: ANKZF1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ANKZF1 were set to 28302725 Phenotypes for gene: ANKZF1 were set to Infantile-onset inflammatory bowel disease Review for gene: ANKZF1 was set to AMBER Added comment: Two unrelated cases (1 homozygous and 1 compound heterozygous), and supporting in vitro and yeast assays indicating that loss-of-function mutations in ANKZF1 result in deregulation of mitochondrial integrity. Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6443 | SAT1 | Bryony Thompson reviewed gene: SAT1: Rating: RED; Mode of pathogenicity: None; Publications: 12215835, 20672378, 9228047; Phenotypes: Keratosis follicularis spinulosa decalvans; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6405 | HARS | Zornitza Stark Mode of inheritance for gene: HARS was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6404 | HARS | Elena Savva reviewed gene: HARS: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 32333447, 32940403, 26072516; Phenotypes: Charcot-Marie-Tooth disease, axonal, type 2W MIM#616625, Usher syndrome type 3B MIM#614504, Multisystemic ataxic syndrome; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6398 | MVD |
Zornitza Stark gene: MVD was added gene: MVD was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: MVD was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: MVD were set to 30942823; 33491095 Phenotypes for gene: MVD were set to Porokeratosis 7, multiple types, MIM# 614714 Review for gene: MVD was set to GREEN Added comment: Porokeratoses are a heterogeneous group of keratinization disorders. For linear porokeratosis and disseminated superficial actinic porokeratosis, a heterozygous pathogenic germline variant in a mevalonate pathway gene and a postzygotic second hit mutation present in affected skin have been shown to be the patho-genetic mechanism for the development of the lesions. At least 5 individuals reported. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6390 | MSL3 | Zornitza Stark Mode of inheritance for gene: MSL3 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6389 | MSL3 | Zornitza Stark reviewed gene: MSL3: Rating: GREEN; Mode of pathogenicity: None; Publications: 33173220; Phenotypes: Basilicata-Akhtar syndrome, OMIM # 301032; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6354 | ITGB4 | Zornitza Stark Mode of inheritance for gene: ITGB4 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6353 | ITGB4 | Zornitza Stark reviewed gene: ITGB4: Rating: GREEN; Mode of pathogenicity: None; Publications: 11328943, 9670011, 33225458, 30079450, 29380424, 29198538, 28557647; Phenotypes: Epidermolysis bullosa of hands and feet, MIM# 131800, Epidermolysis bullosa, junctional, non-Herlitz type, MIM# 226650, Epidermolysis bullosa, junctional, with pyloric atresia, MIM# 226730; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6324 | IGSF1 | Zornitza Stark Mode of inheritance for gene: IGSF1 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6323 | IGSF1 | Zornitza Stark reviewed gene: IGSF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 27310681, 30086211, 24108313, 26840047, 27762734, 23143598; Phenotypes: Hypothyroidism, central, and testicular enlargement, MIM# 300888; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6195 | DNAJC30 |
Zornitza Stark gene: DNAJC30 was added gene: DNAJC30 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: DNAJC30 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: DNAJC30 were set to 33465056 Phenotypes for gene: DNAJC30 were set to Leber Hereditary Optic Neuropathy Review for gene: DNAJC30 was set to GREEN Added comment: 33 individuals from 29 families had homozygous DNAJC30 missense variants. Three different variants identified (one responsible for most cases). All three variants absent from gnomAD. Incomplete penetrance and male predominance in affected individuals both typical of LHON due to mtDNA mutations. All 3 variants in the J domain of the protein. Functional evidence. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6193 | NFS1 | Zornitza Stark edited their review of gene: NFS1: Added comment: Second paper reporting another family (consanguineous) with three affected children and supportive functional data. Homozygous for the same missense variant as reported in the 2014 paper - this family of Christian Arab descent; the family in the previous report of Mennonite background. Suggests this is a mutation hotspot.; Changed rating: GREEN; Changed publications: 24498631, 33457206 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6193 | PCDH19 | Zornitza Stark Mode of inheritance for gene: PCDH19 was changed from X-LINKED: hemizygous mutation in males, biallelic mutations in females to Other | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6190 | TLR8 |
Zornitza Stark gene: TLR8 was added gene: TLR8 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TLR8 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: TLR8 were set to 33512449 Phenotypes for gene: TLR8 were set to Immunodeficiency; bone marrow failure Mode of pathogenicity for gene: TLR8 was set to Other Review for gene: TLR8 was set to GREEN Added comment: Six unrelated males reported with a phenotype comprising neutropaenia, infections, lymphoproliferation, humoral immune defects, and in some cases bone marrow failure. Three different variants reported, the variant was somatic in 5/6 individuals. GoF mechanism demonstrated. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6187 | PIGF |
Paul De Fazio changed review comment from: The same homozygous missense variant identified in 2 individuals from different families from the same region of India. Individuals had a phenotype similar to DOORS syndrome without deafness. Impaired glycosylphosphatidylinositol (GPI) biosynthesis was demonstrated. Rated Red as the two families are likely to be related (founder mutation?). Sources: Literature; to: The same homozygous missense variant identified in 2 individuals from different families from the same region of India. Individuals had a phenotype similar to DOORS syndrome without deafness - only one of the two had seizures (GTCS), the other was 14mo and noted to have tonic posturing. Impaired glycosylphosphatidylinositol (GPI) biosynthesis was demonstrated by flow cytometry and a rescue assay. Alkaline phosphatase in both individuals was normal. Rated Red as the two families are likely to be related (founder mutation?). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6187 | PIGF |
Paul De Fazio changed review comment from: The same missense variant identified in 2 individuals from different families from the same region of India. Individuals had a phenotype similar to DOORS syndrome without deafness. Impaired glycosylphosphatidylinositol (GPI) biosynthesis was demonstrated. Rated Red as the two families are likely to be related (founder mutation?). Sources: Literature; to: The same homozygous missense variant identified in 2 individuals from different families from the same region of India. Individuals had a phenotype similar to DOORS syndrome without deafness. Impaired glycosylphosphatidylinositol (GPI) biosynthesis was demonstrated. Rated Red as the two families are likely to be related (founder mutation?). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6187 | PIGF |
Paul De Fazio changed review comment from: Identified in 2 individuals with a phenotype similar to DOORS (syndrome Sources: Literature; to: The same missense variant identified in 2 individuals from different families from the same region of India. Individuals had a phenotype similar to DOORS syndrome without deafness. Impaired glycosylphosphatidylinositol (GPI) biosynthesis was demonstrated. Rated Red as the two families are likely to be related (founder mutation?). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6178 | HEY2 |
Zornitza Stark gene: HEY2 was added gene: HEY2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: HEY2 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal Publications for gene: HEY2 were set to 32820247 Phenotypes for gene: HEY2 were set to congenital heart defects and thoracic aortic aneurysms Review for gene: HEY2 was set to RED Added comment: A very large family affected by CHD and familial thoracic aortic aneurysms. Trio genome sequencing was carried out in an index patient with critical CHD, and family members had either exome or Sanger sequencing. Identified homozygous loss-of-function variant (c.318_319delAG, p.G108*) in HEY2 in 3 individuals in family with critical CHD, whereas the 20 heterozygous carriers show a spectrum of CVDs (CHD and FTAA, but varying expressivity and incomplete penetrance). Other studies show that knockout of HEY2 in mice results in cardiovascular defects (CVDs), including septal defects, cardiomyopathy, a thin-walled aorta, and valve anomalies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6174 | OTUD5 |
Zornitza Stark gene: OTUD5 was added gene: OTUD5 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: OTUD5 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: OTUD5 were set to 33131077 Phenotypes for gene: OTUD5 were set to X-linked severe neurodevelopmental delay, hydrocephalus, and early lethality Review for gene: OTUD5 was set to RED Added comment: 13 male patients from a single family with three generations affected. Patients presented prenatally or during the neonatal period with IUGR, ventriculomegaly, hydrocephalus, hypotonia, congenital heart defects, hypospadias, and severe neurodevelopmental delay. The disease is typically fatal during infancy, mainly due to sepsis (pneumonias). Female carriers are asymptomatic. WGS in four individuals identified a unique candidate variant in the OTUD5 gene (NM_017602.3:c.598G > A, p.Glu200Lys). The variant cosegregated with the disease in 10 tested individuals. No functional studies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6171 | CFAP47 |
Hazel Phillimore gene: CFAP47 was added gene: CFAP47 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CFAP47 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: CFAP47 were set to PMID: 33472045 Phenotypes for gene: CFAP47 were set to asthenoteratozoospermia; morphological abnormalities of the flagella (MMAF) Review for gene: CFAP47 was set to AMBER Added comment: CFAP47 also known as CXorf22. 3 different missense variants in 3 unrelated Chinese individuals with asthenoteratozoospermia associated with morphological abnormalities of the flagella (MMAF). Immunoblotting and immunofluorescence showed reduced levels of CFAP47 in spermatozoa in all 3 men. A separate asthenoteratozoospermia cohort showed 1 individual with CNV including whole gene deletion of CFAP47. Mouse model (with frameshift variants generated (via CRISPR-Cas9 technology) were sterile and presented with reduced sperm motility and abnormal flagellar morphology. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6120 | OPA3 | Zornitza Stark Mode of inheritance for gene: OPA3 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6119 | OPA3 | Zornitza Stark reviewed gene: OPA3: Rating: GREEN; Mode of pathogenicity: Other; Publications: 25159689, 31119193, 31928268; Phenotypes: 3-methylglutaconic aciduria, type III (MGA3) (MIM#258501), AR, Optic atrophy 3 with cataract (MIM#165300), AD; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6107 | CREB3L3 |
Bryony Thompson gene: CREB3L3 was added gene: CREB3L3 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: CREB3L3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CREB3L3 were set to 32580631; 29954705; 27982131; 27291420; 26427795; 21666694 Phenotypes for gene: CREB3L3 were set to Hyperlipidaemia; hypertriglyceridemia Review for gene: CREB3L3 was set to AMBER Added comment: PMID: 26427795 - a loss of function variant (c.359delG p.K120fsX20) was identified in 2 affected adult siblings and a 13 yo normotriglyceridemic daughter of one of the siblings. PMID: 21666694 - Lipoprotein profiles of the families of 4 individuals with CREB3L3 nonsense mutations showed a significantly elevated mean plasma TG level in 11 mutation carriers compared with 5 non-carrier first-degree relatives (9.67 ± 4.70 vs. 1.66 ± 0.55 mM, P = 0.021, Wilcoxon test). 3 of those families have the same variant - Lys245GlufsTer130, which has 126 (281,946 alleles) hets in gnomAD v2.1. PMID: 32580631 - case-control analysis of nonmonogenic severe hypertriglyceridemia cases (N=265) vs normolipidemic controls (N=477), identified 5 cases with LoF variants (3 of whom had the Lys245GlufsTer130 frameshift) and none in controls. OR 20.2 (95% CI 1.11–366.1) p = 0.002, adjusted p = 0.03. The frequency of Lys245GlufsTer130 is higher than expected for a dominant disorder, but other loss of function variants have been identified. The gene may be associated with variable penetrance. There are multiple supporting null mouse models with hyperlipidaemia. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6016 | FGF13 |
Zornitza Stark gene: FGF13 was added gene: FGF13 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FGF13 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: FGF13 were set to 33245860 Phenotypes for gene: FGF13 were set to Intellectual disability; epilepsy Mode of pathogenicity for gene: FGF13 was set to Other Review for gene: FGF13 was set to GREEN Added comment: Two sibling pairs and three unrelated males reported who presented in infancy with intractable focal seizures and severe developmental delay. The variants were located in the N-terminal domain of the A isoform of FGF13/FHF2 (FHF2A). The X-linked FHF2 gene (also known as FGF13) has alternative first exons which produce multiple protein isoforms that differ in their N-terminal sequence. The variants were located at highly conserved residues in the FHF2A inactivation particle that competes with the intrinsic fast inactivation mechanism of Nav channels. Functional characterization of mutant FHF2A co-expressed with wild-type Nav1.6 (SCN8A) revealed that mutant FHF2A proteins lost the ability to induce rapid-onset, long-term blockade of the channel while retaining pro-excitatory properties. These gain-of-function effects are likely to increase neuronal excitability consistent with the epileptic potential of FHF2 variants. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5903 | HSD17B10 | Zornitza Stark Mode of inheritance for gene: HSD17B10 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5902 | HSD17B10 | Zornitza Stark reviewed gene: HSD17B10: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: HSD10 mitochondrial disease, MIM# 300438; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5739 | TBL1X |
Elena Savva gene: TBL1X was added gene: TBL1X was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TBL1X was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: TBL1X were set to PMID: 27603907 Phenotypes for gene: TBL1X were set to Hypothyroidism, congenital, nongoitrous, 8 MIM#301033 Review for gene: TBL1X was set to GREEN Added comment: PMID: 27603907 - mostly males but also a female diagnosed with central hypothyroidism. 6 families reported (5/6 missense, 1/6 splice). Supported by functional studies ->LOF All mutations were located in the highly conserved WD40-repeat domains. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5718 | PGM3 |
Zornitza Stark changed review comment from: Phosphoglucomutase 3 (PGM3) protein catalyzes the conversion of N-acetyl-d-glucosamine-6-phosphate (GlcNAc-6-P) to N-acetyl-d-glucosamine-1-phosphate (GlcNAc-1-P), which is required for the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) an important precursor for protein glycosylation. Bi-allelic variants in this gene are associated with a primary immunodeficiency syndrome characterised by onset of recurrent infections, usually respiratory or cutaneous, in early childhood. Immune workup usually shows neutropenia, lymphopenia, eosinophilia, and increased serum IgE or IgA. Neutrophil chemotactic defects have also been reported. Infectious agents include bacteria, viruses, and fungi. Many patients develop atopic dermatitis, eczema, and other signs of autoinflammation. Affected individuals may also show developmental delay or cognitive impairment of varying severity. More than 10 unrelated families reported.; to: Phosphoglucomutase 3 (PGM3) protein catalyzes the conversion of N-acetyl-d-glucosamine-6-phosphate (GlcNAc-6-P) to N-acetyl-d-glucosamine-1-phosphate (GlcNAc-1-P), which is required for the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) an important precursor for protein glycosylation. Bi-allelic variants in this gene are associated with a primary immunodeficiency syndrome characterised by onset of recurrent infections, usually respiratory or cutaneous, in early childhood. Immune workup usually shows neutropenia, lymphopenia, eosinophilia, and increased serum IgE or IgA. Neutrophil chemotactic defects have also been reported. Infectious agents include bacteria, viruses, and fungi. Many patients develop atopic dermatitis, eczema, and other signs of autoinflammation. Affected individuals may also show developmental delay or cognitive impairment of varying severity. More than 10 unrelated families reported. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5700 | PIGA | Zornitza Stark Mode of inheritance for gene: PIGA was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5699 | PIGA | Zornitza Stark reviewed gene: PIGA: Rating: GREEN; Mode of pathogenicity: None; Publications: 22305531, 24357517, 24706016, 26545172, 33333793, 32694024; Phenotypes: Multiple congenital anomalies-hypotonia-seizures syndrome 2, MIM# 300868, MONDO:0010466; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5679 | SLC2A1 | Zornitza Stark Mode of inheritance for gene: SLC2A1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5677 | SLC2A1 | Elena Savva reviewed gene: SLC2A1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID:18451999, 20129935, 10980529, 20221955, 31196579; Phenotypes: GLUT1 deficiency syndrome 1, infantile onset, severe, MIM#606777, Dystonia 9, MIM#601042, Stomatin-deficient cryohydrocytosis with neurologic defects, MIM#608885, GLUT1 deficiency syndrome 2, childhood onset, MIM#612126, {Epilepsy, idiopathic generalized, susceptibility to, 12}, MIM#614847; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5644 | MSH5 |
Bryony Thompson gene: MSH5 was added gene: MSH5 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MSH5 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MSH5 were set to 28175301; 9916805; 24970489 Phenotypes for gene: MSH5 were set to Premature ovarian failure 13 MIM#617442 Review for gene: MSH5 was set to AMBER Added comment: A homozygous missense mutation (p.D487Y) in two sisters with POI. Also, homologous mutation in mice results in atrophic ovaries without oocytes, and in vitro functional study revealed that mutant MSH5 impaired DNA homologous recombination repair. Null mouse model is viable, but sterile. A case with congenital adrenal hyperplasia, ovarian failure and Ehlers-Danlos syndrome had a de novo t(6;14)(p21;q32) translocation, including CYP21A2,TNXB and MSH5. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5633 | POF1B | Zornitza Stark Mode of inheritance for gene: POF1B was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5631 | POF1B | Zornitza Stark reviewed gene: POF1B: Rating: AMBER; Mode of pathogenicity: None; Publications: 16773570, 25676666; Phenotypes: Premature ovarian failure 2B, MIM# 300604; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5630 | DIAPH2 | Bryony Thompson reviewed gene: DIAPH2: Rating: RED; Mode of pathogenicity: None; Publications: 9497258, 30689869, 26175800, 11129329; Phenotypes: ?Premature ovarian failure 2A MIM#300511; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5553 | MINPP1 |
Zornitza Stark gene: MINPP1 was added gene: MINPP1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MINPP1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MINPP1 were set to 33257696 Phenotypes for gene: MINPP1 were set to Pontocerebellar hypoplasia Review for gene: MINPP1 was set to GREEN Added comment: 8 individuals from 6 unrelated families reported with bi-allelic LOF variants. All presented with almost complete absence of motor and cognitive development, progressive or congenital microcephaly, spastic tetraplegia or dystonia, and vision impairments. For most, the first symptoms included neonatal severe axial hypotonia and epilepsy that started during the first months or years of life. Prenatal symptoms of microcephaly associated with increased thalami echogenicity were detected in one, while the seven other individuals presented with progressive microcephaly. Some exhibited rapidly progressive phenotype and the affected children died in their infancy or middle-childhood. Strikingly, all the affected children had a unique brain MRI showing a mild to severe PCH, fluid-filled posterior fossa, with dilated lateral ventricles. In addition, severe atrophy at the level of the basal ganglia or thalami often associated with typical T2 hypersignal were identified in all the patients MRI. Supportive functional data showing accumulation of highly phosphorylated inositols, mostly inositol hexakisphosphate (IP6), detected in HEK293 cells, fibroblasts, iPSCs and differentiating neurons lacking MINPP1. In mutant cells, higher IP6 level is expected to be associated with an increased chelation of intracellular cations, such as iron or calcium, resulting in decreased levels of available ions. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5550 | DNAJB11 | Zornitza Stark Mode of inheritance for gene: DNAJB11 was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5549 | DNAJB11 | Zornitza Stark edited their review of gene: DNAJB11: Added comment: Single family reported with bi-allelic variant and severe, fetal onset renal cystic disease, dilation and proliferation of pancreatic duct cells, and liver ductal plate malformation, an association known as Ivemark II syndrome.; Changed publications: 29706351, 29777155, 33129895; Changed phenotypes: Polycystic kidney disease 6 with or without polycystic liver disease, MIM#618061, Ivermark II syndrome.; Changed mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5531 | PRPS1 | Zornitza Stark Mode of inheritance for gene: PRPS1 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5527 | PRPS1 | Elena Savva reviewed gene: PRPS1: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 32781272, 17701896, 7593598; Phenotypes: Arts syndrome MIM#301835, Charcot-Marie-Tooth disease, X-linked recessive, 5 MIM#311070, Deafness, X-linked 1 MIM#304500, Gout, PRPS-related MIM#300661, Phosphoribosylpyrophosphate synthetase superactivity MIM#300661; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5524 | TFE3 | Zornitza Stark Mode of inheritance for gene: TFE3 was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5523 | TFE3 | Zornitza Stark edited their review of gene: TFE3: Added comment: PMID: 32409512 (2020) - 14 variants reported as de novo events in 17 unrelated cases (including 5 previously published) of severe intellectual disability with pigmentary mosaicism and storage disorder-like features; Changed publications: 30595499, 31833172, 32409512; Changed mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5481 | ATP7A | Zornitza Stark Mode of inheritance for gene: ATP7A was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5474 | ATP7A | Elena Savva reviewed gene: ATP7A: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 21221114; Phenotypes: Occipital horn syndrome, 304150, X-linked recessive Menkes disease, 309400 Spinal muscular atrophy, distal, X-linked 3, 300489; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5467 | OGT | Zornitza Stark Mode of inheritance for gene: OGT was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5466 | OGT | Zornitza Stark reviewed gene: OGT: Rating: GREEN; Mode of pathogenicity: None; Publications: 28302723, 28584052, 31296563, 31627256, 29769320, 29606577; Phenotypes: Mental retardation, X-linked 106, MIM# 300997; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5429 | SMARCA1 | Zornitza Stark Mode of inheritance for gene: SMARCA1 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5422 | SMARCA1 | Naomi Baker reviewed gene: SMARCA1: Rating: RED; Mode of pathogenicity: None; Publications: PMID: 26740508, 26539891, 29249292.; Phenotypes: ; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5417 | USP9X | Zornitza Stark Mode of inheritance for gene: USP9X was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5407 | USP9X | Paul De Fazio reviewed gene: USP9X: Rating: GREEN; Mode of pathogenicity: None; Publications: 31443933, 26833328; Phenotypes: Mental retardation, X-linked 99, XLR (MIM#300919) and XLD (MIM#300968); Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5374 | RLIM | Zornitza Stark Mode of inheritance for gene: RLIM was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5373 | RLIM | Zornitza Stark reviewed gene: RLIM: Rating: GREEN; Mode of pathogenicity: None; Publications: 29728705, 25735484, 25644381; Phenotypes: Tonne-Kalscheuer syndrome, MIM# 300978; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5317 | UBA1 | Zornitza Stark edited their review of gene: UBA1: Added comment: Association with VEXAS: 25 men reported with somatic mutations affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation, and an often fatal, treatment-refractory inflammatory syndrome develops in late adulthood, with fevers, cytopaenias, characteristic vacuoles in myeloid and erythroid precursor cells, dysplastic bone marrow, neutrophilic cutaneous and pulmonary inflammation, chondritis, and vasculitis.; Changed publications: 18179898, 32181232, 31932168, 29034082, 27699224, 26028276, 23518311, 33108101; Changed phenotypes: Spinal muscular atrophy, X-linked 2, infantile, MIM# 301830, Autoinflammatory disease, adult onset: VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5198 | ODC1 | Zornitza Stark commented on gene: ODC1: Fifth individual reported in PMID 30239107: de novo nonsense variant identified, molecular modeling suggested that due to lack of a C terminus in the mutant protein, antizyme binding does not induce ODC degradation, leading to accumulation of active protein. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5186 | NUS1 | Zornitza Stark Mode of inheritance for gene: NUS1 was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5174 | NUS1 | Elena Savva reviewed gene: NUS1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 25066056, 29100083, 31656175, 32485575; Phenotypes: ?Congenital disorder of glycosylation, type 1aa 617082, Mental retardation, autosomal dominant 55, with seizures 617831; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5141 | TAF1 | Zornitza Stark Mode of inheritance for gene: TAF1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5140 | TAF1 | Zornitza Stark reviewed gene: TAF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 17273961, 31646703; Phenotypes: Dystonia-Parkinsonism, X-linked, MIM# 314250, Mental retardation, X-linked, syndromic 33, MIM# 300966; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5106 | CNGA2 |
Zornitza Stark gene: CNGA2 was added gene: CNGA2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CNGA2 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: CNGA2 were set to 28572688 Phenotypes for gene: CNGA2 were set to Congenital anosmia Review for gene: CNGA2 was set to RED Added comment: Single multiplex family with high-impact variant segregating with anosmia. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5102 | PRKACB |
Konstantinos Varvagiannis gene: PRKACB was added gene: PRKACB was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PRKACB was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: PRKACB were set to 33058759 Phenotypes for gene: PRKACB were set to Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth; Intellectual disability Penetrance for gene: PRKACB were set to unknown Mode of pathogenicity for gene: PRKACB was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments Review for gene: PRKACB was set to GREEN Added comment: Palencia-Campos et al (2020 - PMID: 33058759) report on the phenotype of 3 individuals heterozygous for PRKACA and 4 individuals heterozygous for PRKACB pathogenic variants. The most characteristic features in all individuals with PRKACA/PRKACB mutation, included postaxial polydactyly of hands (6/7 bilateral, 1/7 unilateral) and feet (4/7 bilateral, 1/7 unilateral), brachydactyly and congenital heart defects (CHD 5/7) namely a common atrium or AVSD. Two individuals with PRKACA variant who did not have CHD had offspring with the same variant and an AVSD. Other variably occurring features included short stature, limbs, narrow chest, abnormal teeth, oral frenula, nail dysplasia. One individual with PRKACB variant presented tumors. Intellectual disability was reported in 2/4 individuals with PRKACB variant (1/4: mild, 1/4: severe). The 3 individuals with PRKACA variant did not present ID. As the phenotype was overall suggestive of Ellis-van Creveld syndrome (or the allelic Weyers acrofacial dysostosis), although these diagnoses were ruled out following analysis of EVC and EVC2 genes. WES was carried out in all. PRKACA : A single heterozygous missense variant was identified in 3 individuals from 3 families (NM_002730.4:c.409G>A / p.Gly137Arg) with 1 of the probands harboring the variant in mosaic state (28% of reads) and having 2 similarly affected offspring. The variant was de novo in one individual and inherited in a third one having a similarly affected fetus (narrow thorax, postaxial polyd, AVSD). PRKACB : 4 different variants were identified (NM_002731.3: p.His88Arg/Asn, p.Gly235Arg, c.161C>T - p.Ser54Leu). One of the individuals was mosaic for the latter variant, while in all other cases the variant had occurred de novo. Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes. The authors provide evidence that the variants confer increased sensitivity of PKA holoenzymes to activation by cAMP (compared to wt). By performing ectopic expression of wt or mt PRKACA/B (variants studied : PRKACA p.Gly137Arg / PRKACB p.Gly235Arg) in NIH 3T3 fibroblasts, the authors demonstrate that inhibition of hedgehog signaling likely underlyies the developmental defects observed in affected individuals. As for PRKACA, the authors cite another study where a 31-month old female with EvC syndrome diagnosis was found to harbor the aforementioned variant (NM_001304349.1:c.637G>A:p.Gly213Arg corresponding to NM_002730.4:c.409G>A / p.Gly137Arg) as a de novo event. Without additional evidence at the time, the variant was considered to be a candidate for this subject's phenotype (Monies et al 2019 – PMID: 31130284). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5102 | PRKACA |
Konstantinos Varvagiannis gene: PRKACA was added gene: PRKACA was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PRKACA was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: PRKACA were set to 33058759; 31130284 Phenotypes for gene: PRKACA were set to Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth; Intellectual disability Penetrance for gene: PRKACA were set to unknown Mode of pathogenicity for gene: PRKACA was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments Review for gene: PRKACA was set to GREEN Added comment: Palencia-Campos et al (2020 - PMID: 33058759) report on the phenotype of 3 individuals heterozygous for PRKACA and 4 individuals heterozygous for PRKACB pathogenic variants. The most characteristic features in all individuals with PRKACA/PRKACB mutation, included postaxial polydactyly of hands (6/7 bilateral, 1/7 unilateral) and feet (4/7 bilateral, 1/7 unilateral), brachydactyly and congenital heart defects (CHD 5/7) namely a common atrium or AVSD. Two individuals with PRKACA variant who did not have CHD had offspring with the same variant and an AVSD. Other variably occurring features included short stature, limbs, narrow chest, abnormal teeth, oral frenula, nail dysplasia. One individual with PRKACB variant presented tumors. Intellectual disability was reported in 2/4 individuals with PRKACB variant (1/4: mild, 1/4: severe). The 3 individuals with PRKACA variant did not present ID. As the phenotype was overall suggestive of Ellis-van Creveld syndrome (or the allelic Weyers acrofacial dysostosis), although these diagnoses were ruled out following analysis of EVC and EVC2 genes. WES was carried out in all. PRKACA : A single heterozygous missense variant was identified in 3 individuals from 3 families (NM_002730.4:c.409G>A / p.Gly137Arg) with 1 of the probands harboring the variant in mosaic state (28% of reads) and having 2 similarly affected offspring. The variant was de novo in one individual and inherited in a third one having a similarly affected fetus (narrow thorax, postaxial polyd, AVSD). PRKACB : 4 different variants were identified (NM_002731.3: p.His88Arg/Asn, p.Gly235Arg, c.161C>T - p.Ser54Leu). One of the individuals was mosaic for the latter variant, while in all other cases the variant had occurred de novo. Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes. The authors provide evidence that the variants confer increased sensitivity of PKA holoenzymes to activation by cAMP (compared to wt). By performing ectopic expression of wt or mt PRKACA/B (variants studied : PRKACA p.Gly137Arg / PRKACB p.Gly235Arg) in NIH 3T3 fibroblasts, the authors demonstrate that inhibition of hedgehog signaling likely underlyies the developmental defects observed in affected individuals. As for PRKACA, the authors cite another study where a 31-month old female with EvC syndrome diagnosis was found to harbor the aforementioned variant (NM_001304349.1:c.637G>A:p.Gly213Arg corresponding to NM_002730.4:c.409G>A / p.Gly137Arg) as a de novo event. Without additional evidence at the time, the variant was considered to be a candidate for this subject's phenotype (Monies et al 2019 – PMID: 31130284). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5042 | ARHGEF9 | Zornitza Stark Mode of inheritance for gene: ARHGEF9 was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5041 | ARHGEF9 | Zornitza Stark edited their review of gene: ARHGEF9: Changed mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4998 | CSNK1G1 |
Zornitza Stark gene: CSNK1G1 was added gene: CSNK1G1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CSNK1G1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CSNK1G1 were set to 33009664 Phenotypes for gene: CSNK1G1 were set to Global developmental delay; Intellectual disability; Autism; Seizures Review for gene: CSNK1G1 was set to GREEN Added comment: Borderline Green/Amber rating. Gold et al (2020 - PMID: 33009664) report 5 individuals with CSNK1G1 variants, including updated information on a previously reported subject (Martin et al 2014 - PMID: 24463883). Features included DD (5/5) with associated expressive language delay, ASD (in at least 3/5), seizures (2/5), dysmorphic facial features (4/5 arched eyebrows, 3/5 prominent central incisors, 2/5 epicanthus) and limb anomalies (2/5 - proximally placed thumb, 5th f. clinodactyly, asymmetric overgrowth - the other individual had tapering fingers). GI problems were observed in 4/5. Two individuals had macrocephaly and one had microcephaly. There was no formal developmental assessment although ID might be implied in at least 3 individuals (p1: 20y - single words/regression in walking following a seizure episode, p2: 8y - first words at 5y, assistance to feed, dress and bathe, ASD, p4: 13y - regression, assistance to feed and dress). CSNK1G1 encodes the gamma-1 isoform of casein kinase 1, a protein involved in growth and cell morphogenesis. The gene has ubiquitous expression, incl. brain. As commented, in brain it regulates phosphorylation of NMDA receptors, playing a role in synaptic transmission (4 articles cited). One individual had a 1.2 kb deletion spanning exon 3 of CSNK1G1 [chr15:64550952-64552120 - GRCh37]. Parental samples were unavailable for this individual. Four individuals were found to harbor de novo CSNK1G1 variants [NM_022048.3: c.688C>T - p.(Arg230Trp) dn | c.1255C>T - p.(Gln419*) dn | c.1214+5G>A dn with in silico predictions in favor of splice disruption | c.419C>T - p.(Thr140Met) dn]. Arg230Trp is however present once in gnomAD. The stopgain variant is located in the last exon and predicted to skip NMD. There were no variant studies performed. The Drosophila gish gene encodes a CK1γ homolog with preferential expression in the mushroom body. Heterozygous and homozygous mutants exhibit impairment in memory retention, more severe in homozygous flies. gish was also identified as a seizure modifier in a fly epilepsy model (heterozygous para mt flies). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4851 | CAPN3 | Zornitza Stark Mode of inheritance for gene: CAPN3 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4850 | CAPN3 | Zornitza Stark reviewed gene: CAPN3: Rating: GREEN; Mode of pathogenicity: None; Publications: 31937337, 28881388, 32342993, 32557990; Phenotypes: Muscular dystrophy, limb-girdle, autosomal dominant 4, MIM# 618129, Muscular dystrophy, limb-girdle, autosomal recessive 1, MIM# 253600; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4844 | ARX | Zornitza Stark Mode of inheritance for gene: ARX was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4843 | ARX | Elena Savva reviewed gene: ARX: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 14722918, 19738637, 32519823, 28150386, 21496008; Phenotypes: Epileptic encephalopathy, early infantile, 1 MIM#308350, Hydranencephaly with abnormal genitalia MIM#300215, Lissencephaly, X-linked 2 MIM#300215, Mental retardation, X-linked 29 and others MIM#300419, Partington syndrome MIM#309510, Proud syndrome MIM#300004; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4791 | AP1S1 |
Ee Ming Wong changed review comment from: - Established green gene in Ichthyosis, Palmoplantar Keratoderma and Erythrokeratoderma, ID and Hereditary Neuropathy (complex) panels associated with MEDNIK syndrome - PMID: 32306098 propose a clinical and genetic expansion for AP1S1-associated disease - 2 consanguineous families, each carrying a homozygous missense AP1S1 variant - AP1S1 knockout cell line demonstrated tight-junction and polarity abnormalities that were rescued by WT AP1S1, but not the AP1S1 missense mutants; to: - Established green gene in Ichthyosis, Palmoplantar Keratoderma and Erythrokeratoderma, ID and Hereditary Neuropathy (complex) panels associated with MEDNIK syndrome - PMID: 32306098 propose a clinical and genetic expansion for AP1S1-associated disease - 2 consanguineous families, each carrying a homozygous missense AP1S1 variant - AP1S1 knockout cell line demonstrated tight-junction and polarity abnormalities that were rescued by WT AP1S1, but not the AP1S1 missense mutants |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4791 | AP1S1 |
Ee Ming Wong changed review comment from: - 2 consanguineous families, each carrying a homozygous missense AP1S1 variant - AP1S1 knockout cell line demonstrated tight-junction and polarity abnormalities that were rescued by WT AP1S1, but not the AP1S1 missense mutants; to: - Established green gene in Ichthyosis, Palmoplantar Keratoderma and Erythrokeratoderma, ID and Hereditary Neuropathy (complex) panels associated with MEDNIK syndrome - PMID: 32306098 propose a clinical and genetic expansion for AP1S1-associated disease - 2 consanguineous families, each carrying a homozygous missense AP1S1 variant - AP1S1 knockout cell line demonstrated tight-junction and polarity abnormalities that were rescued by WT AP1S1, but not the AP1S1 missense mutants |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4788 | AKNA |
Elena Savva gene: AKNA was added gene: AKNA was added to Mendeliome. Sources: Literature Mode of inheritance for gene: AKNA was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: AKNA were set to PMID: 21606955 Phenotypes for gene: AKNA were set to Primary ciliary dyskinesia Review for gene: AKNA was set to RED Added comment: https://link.springer.com/article/10.1007/s00439-020-02170-2 Two siblings with homozygous PTCs with PCD. Carrier parents and mutation negative siblings (5) was normal. PMID: 21606955: Null mice have neonatal death with systemic inflammation and alveolar loss Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4783 | PRICKLE3 |
Teresa Zhao gene: PRICKLE3 was added gene: PRICKLE3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PRICKLE3 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: PRICKLE3 were set to 32516135 Phenotypes for gene: PRICKLE3 were set to Leber’s hereditary optic neuropathy MIM#535000 Review for gene: PRICKLE3 was set to AMBER Added comment: Reported as X-linked LHON modifier (c.157C>T, p.Arg53Trp) in PRICKLE3 in 3 Chinese families. All affected individuals carried both ND4 11778G>A and p.Arg53Trp mutations, while subjects bearing only a single mutation exhibited normal vision. Defective assembly, stability, and function of ATP synthase observed using Lymphoblastoid cell lines from one of the families. This finding indicated that the p.Arg53Trp mutation acted in synergy with the m.11778G>A mutation and deteriorated mitochondrial dysfunctions necessary for the expression of LHON. Prickle3-deficient mice exhibited pronounced ATPase deficiencies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4743 | PRKD1 |
Zornitza Stark changed review comment from: PMID: 32817298 (2020) - Two additional unrelated cases with de novo variants, c.1774G>C and c.1808G>A, and telangiectasia, ectodermal dysplasia, brachydactyly and congenital heart disease. Functional analysis using in vitro kinase assays with recombinant proteins showed that the c.1808G>A, p.(Arg603His) variant represents a gain-of-function mutation encoding an enzyme with a constitutive, lipid-independent catalytic activity. The c.1774G>C, p.(Gly592Arg) variant in contrast shows a defect in substrate phosphorylation representing a loss-of-function mutation. c.1774G>C, p.(Gly592Arg) is recurrent, reported in 3/5 individuals.; to: PMID: 27479907 (2016): three individuals reported, two with the c.1774G>A variant and one with the c.896T>G variant. All had congenital heart disease, two had some developmental delay, and two had variable features of ectodermal dysplasia, including sparse hair, dry skin, thin skin, fragile nails, premature loss of primary teeth, and small widely spaced teeth; the third individuals had a 'disorganized eyebrow.' PMID: 32817298 (2020) - Two additional unrelated cases with de novo variants, c.1774G>C and c.1808G>A, and telangiectasia, ectodermal dysplasia, brachydactyly and congenital heart disease. Functional analysis using in vitro kinase assays with recombinant proteins showed that the c.1808G>A, p.(Arg603His) variant represents a gain-of-function mutation encoding an enzyme with a constitutive, lipid-independent catalytic activity. The c.1774G>C, p.(Gly592Arg) variant in contrast shows a defect in substrate phosphorylation representing a loss-of-function mutation. c.1774G>C, p.(Gly592Arg) is recurrent, reported in 3/5 individuals. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4700 | SMPX | Zornitza Stark Mode of inheritance for gene: SMPX was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4699 | SMPX | Zornitza Stark reviewed gene: SMPX: Rating: GREEN; Mode of pathogenicity: None; Publications: 21549342, 21549336, 21893181, 22911656, 28542515; Phenotypes: Deafness, X-linked 4, MIM# 300066; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4697 | MYO6 | Zornitza Stark Mode of inheritance for gene: MYO6 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4696 | MYO6 | Zornitza Stark reviewed gene: MYO6: Rating: GREEN; Mode of pathogenicity: None; Publications: 24105371, 11468689, 25999546, 25227905, 18348273, 27171474; Phenotypes: Deafness, autosomal dominant 22, MIM# 606346, Deafness, autosomal recessive 37, MIM# 607821; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4670 | ALG13 | Zornitza Stark Mode of inheritance for gene: ALG13 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4669 | ALG13 | Zornitza Stark reviewed gene: ALG13: Rating: GREEN; Mode of pathogenicity: None; Publications: 23033978, 23934111, 24781210, 24896178, 25732998, 26138355, 26482601, 28940310, 32238909; Phenotypes: Congenital disorder of glycosylation, type Is (MIM# 300884); Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4664 | FOXL2 |
Ain Roesley changed review comment from: PMID: 31077882; 19x probands reported, AD. PMID: 18642388; BPES type I : Mutations predicted to result in proteins with truncation before the poly-Ala tract BPES type II: poly-Ala expansions (WT poly-Ala is between aa 221-234) Exceptions: Truncated proteins with complete forkhead and poly-Ala domains, can be either Type I and II NOTE: only 1 family reported for AR (PMID: 17089161); to: PMID: 31077882; >100 probands reported, AD. PMID: 18642388; BPES type I : Mutations predicted to result in proteins with truncation before the poly-Ala tract BPES type II: poly-Ala expansions (WT poly-Ala is between aa 221-234) Exceptions: Truncated proteins with complete forkhead and poly-Ala domains, can be either Type I and II NOTE: only 1 family reported for AR (PMID: 17089161) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4622 | COL4A5 | Zornitza Stark Mode of inheritance for gene: COL4A5 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4621 | COL4A5 | Zornitza Stark reviewed gene: COL4A5: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Alport syndrome 1, X-linked, MIM# 301050; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4597 | UBA1 | Zornitza Stark Mode of inheritance for gene: UBA1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4596 | UBA1 | Zornitza Stark reviewed gene: UBA1: Rating: GREEN; Mode of pathogenicity: None; Publications: 18179898, 32181232, 31932168, 29034082, 27699224, 26028276, 23518311; Phenotypes: Spinal muscular atrophy, X-linked 2, infantile, MIM# 301830; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4568 | RPS20 |
Bryony Thompson gene: RPS20 was added gene: RPS20 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RPS20 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: RPS20 were set to 32790018 Phenotypes for gene: RPS20 were set to Diamond Blackfan anaemia Mode of pathogenicity for gene: RPS20 was set to Other Review for gene: RPS20 was set to AMBER Added comment: Two unrelated cases where a de novo variant involving Ile84 (Ile84Ser and Ile84Asn), and reduce the RPS20 protein level in patient cells. Yeast models with mutation of the cognate residue resulted in defects in growth, ribosome biogenesis, and polysome formation. Loss of function may not be the mechanism of disease, because loss of function variants appear to be exclusively associated with familial colorectal cancer without the DBA phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4558 | UPF3B | Zornitza Stark Mode of inheritance for gene: UPF3B was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4557 | UPF3B | Zornitza Stark reviewed gene: UPF3B: Rating: GREEN; Mode of pathogenicity: None; Publications: 19377476, 17704778, 31737052, 28948974, 32667670; Phenotypes: Mental retardation, X-linked, syndromic 14, MIM# 300676; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4557 | MECP2 | Arina Puzriakova reviewed gene: MECP2: Rating: GREEN; Mode of pathogenicity: None; Publications: 32469049; Phenotypes: Rett syndrome, 312750; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4540 | RP1L1 | Zornitza Stark Mode of inheritance for gene: RP1L1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4528 | RP1L1 | Teresa Zhao reviewed gene: RP1L1: Rating: GREEN; Mode of pathogenicity: None; Publications: 23281133, 30025130, 32360662; Phenotypes: Occult macular dystrophy (MIM#613587) AD, Retinitis pigmentosa 88 (MIM#618826) AR; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4520 | SLC12A2 |
Zornitza Stark edited their review of gene: SLC12A2: Added comment: Monoallelic : DD/ID was a feature in >= 6 individuals with monoallelic de novo SLC12A2. An individual with an exon 22 truncating variant was reported to have normal milestones and cognitive function. Exon 21 variants have been described in individuals with rather isolated hearing impairment (possibly some associated motor delay, but normal cognition). Hearing impairment was also reported in 2/6 patients with variants in other exons (1 missense / 1 frameshift). Biallelic : DD/ID was reported in at least 3 individuals in literature. Hearing impairment has been reported on 2 occasions (although this was not probably evaluated in all subjects). --- Monoallelic SLC12A2 mutations : ► Individuals with de novo mutations and developmental disorder were first identified by the DDD study (2017 - PMID: 28135719). 5 of them have been reported in detail by McNeill et al (below). ► McNeill et al (2020 - PMID: 32658972) report on 6 individuals with neurodevelopmental disorder due to de novo SLC12A2 mutation. All presented DD or ID ranging from mild to severe. ASD was reported in 3/6. Sensorineural hearing loss was a feature in 2/6 with the remaining having normal formal evaluations. Brain, cardiac and/or additional malformations were reported in a single individual. Following non-diagnostic prior work-up (CMA, FMR1 or other investigations) trio exome sequencing revealed missense (4/6) or truncating variants (2/6). Three additional individuals (incl. a father and his son) with missense variants in exon 21 (NM_001046.3 / p.Glu979Lys and p.Glu980Lys) presented with bilateral sensorineural hearing loss. Speech and/or motor delay reported in these cases were attributed to the hearing impairment/vestibular arreflexia (cognitive abilities not tested). SLC12A2 encodes sodium-potassium-chloride transporter 1 (also NKCC1). The GTEx project has identified 8 isoforms. In brain both exon 21-containing/deleted isoforms are expressed (cited Morita et al 2014 - PMID: 24695712). As the authors discuss, RNA-seq of the developing mouse cochlea suggests that the exon 21 containing isoform is the single transcript expressed. Evidence from RNA-seq data (BrainSpan project) and literature suggests that the significant amounts of exon 21 lacking isoforms in fetal brain compensate for the deleterious effects of exon 21 variants and explain the lack of NDD in relevant patients. Slc12a2 (NKCC1) null mouse model has demonstrated that the transporter plays a role in accumulation of the potassium rich endolymph in the inner ear, with NKCC1 absence causing sensorineural deafness and imbalance. Slc12a2 display cochlear malformations, loss of hair cells and hearing impairment (cited Delpire et al 1999 - PMID: 10369265). The brain phenotype has not been studied extensively, although loss of Slc12a2 has been shown to inhibit neurogenesis (cited: Magalhães and Rivera et al. - PMID: 27582690). Slc12a2 null zebrafish display a collapse of the otic vesicle and reduced endolymph (Abbas and Whitfield, 2009 - PMID: 19633174) relevant to the human hearing disorder. In vitro assessment of NKCC1 ion transporter function in Xenopus laevis, supported the deleterious effect of the identified variants (significant reduction in K+ influx). Using available single cell RNA-seq data the authors further demonstrated that SLC12A2 expressing cells display transcriptomic profiles reflective of active neurogenesis. ► Delpire et al (2016 - PMID: 27900370 - not reviewed in detail) described a 13 y.o. girl harboring a de novo 11-bp deletion in SLC12A2 exon 22. This individual reached developmental milestones on time and had a NORMAL cognitive function. Hearing was seemingly normal. Features included orthostatic intolerance, respiratory weakness, multiple endocrine abnormalities, pancreatic insufficiency and multiorgan failure incl. gut and bladder. Exome in the proband, parents and 3 unaffected sibs suggested SLC12A2 as the only candidate for her phenotype. Functional analyses in Xenopus laevis oocytes suggested that a non functional transporter was expressed and trafficked to the membrane as the wt. Detection of the truncated protein at higher molecular sizes suggested either enhanced dimerization or misfolded aggregate. There was no dominant-negative effect of mutant NKCC1. In patient fibroblasts a reduced total and NKCC1-mediated K+ influx. ► Mutai et al (2020 - PMID: 32294086) report on several individuals from 4 families, harboring variants within exon 21 or - in one case - at it's 3' splice-site (leading to skipping oe this exon at the mRNA level). All subjects were investigated for severe/profound hearing loss (in line with the role of exon 21-included isoforms in cochlea. The variant segregated with hearing impairment in 3 generations of a family while in all other subjects the variant had occured as de novo event. Despite motor delays (e.g. the subject from fam2 could not hold head or sit at the age of 10m / the proband in Fam3 was able to hold his head and walk at 6 and 20 m respectively) behavior and cognition were commented to be within normal range. ----- Biallelic SLC12A2 mutations: ► Anazi et al (2017 - PMID: 29288388) briefly reported on a 3 y.o. boy (17DG0776) with central hypotonia, neonatal respiratory distress, failure to thrive, global DD and microcephaly and a skeletal survey suggestive of osteopenia. After non-diagnostic prior investigations (CMA revealing a 1p duplication classified as VUS, extensive metabolic workup), WES revealed a homozygous SLC12A2 splicing variant [NM_001046.2:c.2617-2A>G]. ► Macnamara et al (2019 - PMID: 30740830) described a 5.5 y.o. male with sensorineural hearing loss, profound delays in all developmental areas among several other features (choanal atresia, failure to thrive, respiratory problems, absent sweat and tear production or salivation, GI abnormalities). Genetic testing for several disorders considered (cystic fibrosis, spinal muscular atrophy, sequencing and del/dup analysis of mtDNA) was normal. CMA revealed paternal uniparental isodisomy for chr. 5 and WGS a homozygous 22kb deletion in SLC12A2. This was followed by confirmation of homozygosity in the proband, heterozygosity of the unaffected father, delineation of breakpoints (chr5:127441491-127471419). mRNA studies in patient fibroblasts confirmed deletion of ex2-7, splicing of ex1 directly to ex8 and introduction of a premature stop codon in ex9. qRT-PCR confirmed that mRNA is likely subjected to NMD (expression ~80% of control). Western blot confirmed absence of the protein in the patient's fibroblasts. Again mouse models are thought to recapitulate the hearing defect but also the deficient saliva production (cited Evans et al 2000 - PMID: 10831596). Again the authors speculate a role of SLC12A2 in brain development based on evidence from murine models (migration, dendritic growth, increse in neuron density through regulation of GABAergic signalling (Young et al 2012 - PMID: 23015452). Hypotheses are also made on a regulatory relationship between NKCC1 and CFTR based on mRNA data from the ko mouse model. ► Stödberg et al (2020 - PMID: 32754646) reported 2 sibs with a complex neurodevelopmental disorder due to compound heterozygosity for a frameshift SLC12A2 variant and a splicing one (NM_001046:c.1431delT and c.2006-1G>A). Both presented hypotonia, neonatal S. aureus parotitis and respiratory problems (incl. apneas). While the older sib died at the age of 22 days, the younger one had persistent respiratory issues incl. a dry respiratory mucosa motivating metabolic, immunology investigations and testing for CF. She displayed microcephaly (OFC -2.5 SD, H was also -3.5SD), severe intellectual disability. MRI was suggestive of white matter and basal ganglia abnormalities. Other features incl. hearing impairment, and lack of tears,saliva and sweat, constipation and intestinal malrotation. There was facial dysmorphism. The variants were the only retained following WGS of the 2 affected sisters, parents and an unaffected brother. The splicing variant was shown to result in skipping of exon 13, while the indel in NMD. Again the authors discuss that the deficient saliva production, impaired hearing and GI problems are recapitulated in the mouse model (several refs provided).; Changed rating: GREEN; Changed publications: 28135719, 32658972, 27900370, 32294086, 29288388, 30740830, 32754646; Changed phenotypes: Kilquist syndrome, deafness, intellectual disability, dysmorphic features, absent salivation, ectodermal dysplasia, constipation, intestinal malrotation, multiple congenital anomalies; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4503 | ZMYM2 |
Zornitza Stark gene: ZMYM2 was added gene: ZMYM2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ZMYM2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ZMYM2 were set to 32891193 Phenotypes for gene: ZMYM2 were set to Congenital anomalies of kidney and urinary tract; Neurodevelopmental disorder Review for gene: ZMYM2 was set to GREEN Added comment: Heterozygous pathogenic (pLoF) ZMYM2 variants have been reported in individuals with syndromic presentation including CAKUT (in several cases) and variable neurological manifestations among extra-renal features. -- Connaughton et al (2020 - PMID: 32891193) report on 19 individuals (from 15 unrelated families) with heterozygous pathogenic ZMYM2 variants. Affected individuals from 7 families presented with CAKUT while all of them displayed extra-renal features. Neurological manifestations were reported in 16 individuals from 14 families (data not available for 1 fam), among others hypotonia (3/14 fam), speech delay (4/14 fam), global DD (9/14 fam), ID (4/14 fam), microcephaly (4/14 fam). ASD was reported in 4 fam (4 indiv). Seizures were reported in 2 fam (2 indiv). Variable other features included cardiac defects, facial dysmorphisms, small hands and feet with dys-/hypo-plastic nails and clinodactyly. 14 pLoF variants were identified, in most cases as de novo events (8 fam). In 2 families the variant was inherited from an affected parent. Germline mosaicism occurred in 1 family. The human disease features were recapitulated in a X. tropicalis morpholino knockdown, with expression of truncating variants failing to rescue renal and craniofacial defects. Heterozygous Zmym2-deficient mice also recapitulated the features of CAKUT. ZMYM2 (previously ZNF198) encodes a nuclear zinc finger protein localizing to the nucleus (and PML nuclear body). It has previously been identified as transcriptional corepressor interacting with nuclear receptors and the LSD1-CoREST-HDAC1 complex. It has also been shown to interact with FOXP transcription factors. The authors provide evidence for loss of interaction of the truncated ZMYM2 with FOXP1 (mutations in the latter having recently been reported in syndromic CAKUT). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4466 | GGT1 |
Elena Savva edited their review of gene: GGT1: Added comment: PMID: 29483667 - 1 family (2 sibs) w/ a homozygous 16.9kb deletion spanning part of the gene and no others. Carrier parents were normal. PMID: 23615310 - homozygous mutant mouse model have dwarfism, cataracts and coat colour abnormalities. Protein activity reduced to 4% of wildtype. Noted it was for use as a GGT deficiency model. PMID: 31520399 - 2 families with AD inheritance showing GGT1 deficiency but NO clinical symptoms. Authors call GGTemia a benign condition.; Changed publications: PMID: 29483667, 23615310, 31520399 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4443 | TSR2 | Zornitza Stark Mode of inheritance for gene: TSR2 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4441 | TSR2 | Zornitza Stark reviewed gene: TSR2: Rating: RED; Mode of pathogenicity: None; Publications: 24942156; Phenotypes: Diamond-Blackfan anemia 14 with mandibulofacial dysostosis, MIM# 300946; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4398 | SVBP |
Zornitza Stark changed review comment from: 5 unrelated families with homozygous mutations in SVBP. The mutations segregated with the disorder in all families. In vitro functional cellular expression studies showed that protein levels of the SVBP mutants were barely detectable, suggesting instability, and that the mutant proteins had lost VASH/SVBP catalytic detyrosination activity toward tubulin. Knockdown of about 50% Svbp expression using shRNA in rat hippocampal neurons impaired the formation of excitatory synapses compared to controls. Sources: Literature; to: 5 unrelated families with homozygous mutations in SVBP. Some shared the same founder variant, p.Q28*. The mutations segregated with the disorder in all families. In vitro functional cellular expression studies showed that protein levels of the SVBP mutants were barely detectable, suggesting instability, and that the mutant proteins had lost VASH/SVBP catalytic detyrosination activity toward tubulin. Knockdown of about 50% Svbp expression using shRNA in rat hippocampal neurons impaired the formation of excitatory synapses compared to controls. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4380 | KCNA2 | Zornitza Stark commented on gene: KCNA2: Review of 23 affected individuals in PMID 29050392: some variants are LoF and others GoF, and some genotype-phenotype correlations made. The main differences were (i) predominant focal (loss-of-function) versus generalized (gain-of-function) seizures and corresponding epileptic discharges with prominent sleep activation in most cases with loss-of-function mutations; (ii) more severe epilepsy, developmental problems and ataxia, and atrophy of the cerebellum or even the whole brain in about half of the patients with gain-of-function mutations; and (iii) most severe early-onset phenotypes, occasionally with neonatal onset epilepsy and developmental impairment, as well as generalised and focal seizures and EEG abnormalities for patients with gain- and loss-of-function mutations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4355 | SOS1 | Zornitza Stark edited their review of gene: SOS1: Added comment: Over 50 individuals reported with SOS1 variants and a Noonan syndrome phenotype. Pulmonic stenosis tends to be more frequent compared to those with PTPN11 mutations, and atrial septal defect is relatively rare. Ectodermal features including keratosis pilaris and curly hair are significantly more prevalent compared with the general Noonan population. Height below the third percentile and learning disability are observed in fewer individuals compared with Noonan syndrome in general. In contrast, macrocephaly is overrepresented among those with SOS1 mutations.; Changed rating: GREEN; Changed mode of pathogenicity: Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments; Changed publications: 17143285, 17143282, 28884940, 17586837; Changed phenotypes: Noonan syndrome 4, MIM# 610733; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4309 | ZSWIM6 |
Zornitza Stark changed review comment from: MIM #617865 (NEDMAGA): A recurrent de novo heterozygous truncating mutation in the ZSWIM6 gene (R913X)identified in 7 unrelated patients. Analysis of patient cells indicated that the mutant transcript escaped nonsense-mediated mRNA decay, and most likely produced a truncated protein, although antibody studies were unable to detect a truncated protein. Possible dominant-negative effect. NB a more proximal nonsense variant was also reported inherited in a family with an unaffected mother: loss of function variants may not cause a phenotype. MIM#603671 (acromelic frontonasal dysplasia): recurrent missense identified in 6 unrelated families, p.Arg1163Trp; to: MIM #617865 (NEDMAGA): A recurrent de novo heterozygous truncating mutation in the ZSWIM6 gene (R913X) identified in 7 unrelated patients. Analysis of patient cells indicated that the mutant transcript escaped nonsense-mediated mRNA decay, and most likely produced a truncated protein, although antibody studies were unable to detect a truncated protein. Possible dominant-negative effect. NB a more proximal nonsense variant was also reported inherited in a family with an unaffected mother: loss of function variants may not cause a phenotype. MIM#603671 (acromelic frontonasal dysplasia): recurrent missense identified in 6 unrelated families, p.Arg1163Trp |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4309 | ZSWIM6 |
Zornitza Stark changed review comment from: MIM #617865 A recurrent de novo heterozygous truncating mutation in the ZSWIM6 gene (R913X)identified in 7 unrelated patients. Analysis of patient cells indicated that the mutant transcript escaped nonsense-mediated mRNA decay, and most likely produced a truncated protein, although antibody studies were unable to detect a truncated protein. Possible dominant-negative effect. NB a more proximal nonsense variant was also reported inherited in a family with an unaffected mother: loss of function variants may not cause a phenotype. MIM#603671: recurrent missense identified in 6 unrelated families, p.Arg1163Trp; to: MIM #617865 (NEDMAGA): A recurrent de novo heterozygous truncating mutation in the ZSWIM6 gene (R913X)identified in 7 unrelated patients. Analysis of patient cells indicated that the mutant transcript escaped nonsense-mediated mRNA decay, and most likely produced a truncated protein, although antibody studies were unable to detect a truncated protein. Possible dominant-negative effect. NB a more proximal nonsense variant was also reported inherited in a family with an unaffected mother: loss of function variants may not cause a phenotype. MIM#603671 (acromelic frontonasal dysplasia): recurrent missense identified in 6 unrelated families, p.Arg1163Trp |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4293 | SLC16A2 | Zornitza Stark Mode of inheritance for gene: SLC16A2 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4292 | SLC16A2 | Zornitza Stark reviewed gene: SLC16A2: Rating: GREEN; Mode of pathogenicity: None; Publications: 15980113, 31410843, 20301789; Phenotypes: Allan-Herndon-Dudley syndrome, MIM# 300523; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4279 | TLR7 | Zornitza Stark Mode of inheritance for gene: TLR7 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4256 | SVIL | Melanie Marty edited their review of gene: SVIL: Added comment: Four patients from two unrelated consanguineous families with a childhood/adolescence onset of a myopathy associated with homozygous loss-of-function mutations in SVIL. Wide neck, anteverted shoulders and prominent trapezius muscles together with variable contractures were characteristic features. Functional studies on muscle biopsies showed complete loss protein in muscle fibres by western blot.; Changed rating: AMBER | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4250 | SVIL |
Melanie Marty gene: SVIL was added gene: SVIL was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SVIL was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SVIL were set to 32779703 Phenotypes for gene: SVIL were set to myopathy Penetrance for gene: SVIL were set to unknown Review for gene: SVIL was set to GREEN Added comment: Four patients from two unrelated consanguineous families with a childhood/adolescence onset of a myopathy associated with homozygous loss-of-function mutations in SVIL. Wide neck, anteverted shoulders and prominent trapezius muscles together with variable contractures were characteristic features. Functional studies on muscle biopsies showed complete loss protein in muscle fibres by western blot. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4223 | EIF2S3 | Zornitza Stark Mode of inheritance for gene: EIF2S3 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4222 | EIF2S3 | Zornitza Stark reviewed gene: EIF2S3: Rating: GREEN; Mode of pathogenicity: None; Publications: 23063529, 27333055, 28055140, 32799315; Phenotypes: MEHMO syndrome, MIM# 300148; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4191 | PAK3 | Zornitza Stark Mode of inheritance for gene: PAK3 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4190 | PAK3 | Zornitza Stark reviewed gene: PAK3: Rating: GREEN; Mode of pathogenicity: None; Publications: 9731525, 10946356, 12884430, 17853471, 18523455, 32050918, 32005903, 31943058, 31843706, 31678216; Phenotypes: Mental retardation, X-linked 30/47, MIM# 300558; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4187 | PAK3 | Arina Puzriakova reviewed gene: PAK3: Rating: GREEN; Mode of pathogenicity: None; Publications: 31943058; Phenotypes: Intellectual disability; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4185 | RPL10 | Zornitza Stark Mode of inheritance for gene: RPL10 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4184 | RPL10 | Zornitza Stark reviewed gene: RPL10: Rating: GREEN; Mode of pathogenicity: None; Publications: 25316788, 25846674, 26290468; Phenotypes: Mental retardation, X-linked, syndromic, 35, MIM# 300998; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4173 | RAD21 | Zornitza Stark Mode of inheritance for gene: RAD21 was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4142 | TIMM8A | Zornitza Stark Mode of inheritance for gene: TIMM8A was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4139 | TIMM8A | Zornitza Stark reviewed gene: TIMM8A: Rating: GREEN; Mode of pathogenicity: None; Publications: 11803487, 11405816; Phenotypes: Mohr-Tranebjaerg syndrome, MIM# 304700; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4134 | TRAPPC2L |
Arina Puzriakova changed review comment from: Gene is associated with Encephalopathy, progressive, early-onset, with episodic rhabdomyolysis in OMIM, but not in G2P. PMID: 30120216 (2018) - Two unrelated probands with an identical homozygous missense (c.109G>T, p.Asp37Tyr) variant in TRAPPC2L. Both individuals presented neurodevelopmental delay, febrile illness-induced encephalopathy, and episodic rhabdomyolysis, followed by developmental arrest, seizures and tetraplegia. The variant segregated with the phenotype in each family, and haplotype analysis suggested a founder effect. The mutant protein was expressed in patient fibroblasts, but displayed membrane trafficking delays. Studies in yeast showed that the variant impaired interaction with TRAPPC10, and increased levels of the active RAB11. PMID: 32843486 (2020) - In an Ashkenazi Jewish family with three affected sibs with GDD/ID, WGS revealed a segregating homozygous missense variant (c.5G>C, p.Ala2Gly) in the TRAPPC2L gene. No seizures, brain MRI abnormalities, or illness provoked regression were documented in this family. Comparable to the previous study, the variant resulted in delayed ER-to-Golgi trafficking and elevated levels of active RAB11. Studies using yeast and in vitro binding, showed that the variant disrupted interaction with another core TRAPP protein, TRAPPC6a. Sources: Literature; to: Total of three families, but two share a founder variant, and there are some disparities between the clinical presentations reported in the two publications. Rating Amber as additional cases required to delineate the genotype-phenotype relationship. PMID: 30120216 (2018) - Two unrelated probands with an identical homozygous missense (c.109G>T, p.Asp37Tyr) variant in TRAPPC2L. Both individuals presented neurodevelopmental delay, febrile illness-induced encephalopathy, and episodic rhabdomyolysis, followed by developmental arrest, seizures and tetraplegia. The variant segregated with the phenotype in each family, and haplotype analysis suggested a founder effect. The mutant protein was expressed in patient fibroblasts, but displayed membrane trafficking delays. Studies in yeast showed that the variant impaired interaction with TRAPPC10, and increased levels of the active RAB11. PMID: 32843486 (2020) - In an Ashkenazi Jewish family with three affected sibs with GDD/ID, WGS revealed a segregating homozygous missense variant (c.5G>C, p.Ala2Gly) in the TRAPPC2L gene. No seizures, brain MRI abnormalities, or illness provoked regression were documented in this family. Comparable to the previous study, the variant resulted in delayed ER-to-Golgi trafficking and elevated levels of active RAB11. Studies using yeast and in vitro binding, showed that the variant disrupted interaction with another core TRAPP protein, TRAPPC6a. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4134 | TRAPPC2L |
Arina Puzriakova gene: TRAPPC2L was added gene: TRAPPC2L was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TRAPPC2L was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TRAPPC2L were set to 30120216; 32843486 Phenotypes for gene: TRAPPC2L were set to Encephalopathy, progressive, early-onset, with episodic rhabdomyolysis, 618331 Review for gene: TRAPPC2L was set to AMBER Added comment: Gene is associated with Encephalopathy, progressive, early-onset, with episodic rhabdomyolysis in OMIM, but not in G2P. PMID: 30120216 (2018) - Two unrelated probands with an identical homozygous missense (c.109G>T, p.Asp37Tyr) variant in TRAPPC2L. Both individuals presented neurodevelopmental delay, febrile illness-induced encephalopathy, and episodic rhabdomyolysis, followed by developmental arrest, seizures and tetraplegia. The variant segregated with the phenotype in each family, and haplotype analysis suggested a founder effect. The mutant protein was expressed in patient fibroblasts, but displayed membrane trafficking delays. Studies in yeast showed that the variant impaired interaction with TRAPPC10, and increased levels of the active RAB11. PMID: 32843486 (2020) - In an Ashkenazi Jewish family with three affected sibs with GDD/ID, WGS revealed a segregating homozygous missense variant (c.5G>C, p.Ala2Gly) in the TRAPPC2L gene. No seizures, brain MRI abnormalities, or illness provoked regression were documented in this family. Comparable to the previous study, the variant resulted in delayed ER-to-Golgi trafficking and elevated levels of active RAB11. Studies using yeast and in vitro binding, showed that the variant disrupted interaction with another core TRAPP protein, TRAPPC6a. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4134 | TIMM8A | Arina Puzriakova reviewed gene: TIMM8A: Rating: ; Mode of pathogenicity: None; Publications: 32820032; Phenotypes: ; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4121 | UFC1 |
Paul De Fazio gene: UFC1 was added gene: UFC1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: UFC1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: UFC1 were set to 29868776; 30552426 Phenotypes for gene: UFC1 were set to Neurodevelopmental disorder with spasticity and poor growth (MIM#618076) Review for gene: UFC1 was set to GREEN gene: UFC1 was marked as current diagnostic Added comment: PMID 29868776: 8 affected individuals from 4 families reported. 7 were described to be postnatally microcephalic (at or below 3rd percentile). One was -5.1SD and one was -3.6SD. SD values for the others weren't provided. The following head circumference measurements were provided for 6 of the affecteds: 51cm at 16yo; 50cm at 19yo; 42.5cm at 12mo, 45cm at 28mo, 45.2cm at 7yo; 45cm at 4yo. 3 of the families were consanguineous Saudi families with the same homozygous missense variant. In vitro functional expression studies showed that both mutations caused impaired thioester binding with UFM1. Patient cells also showed decreased UFC1 intermediate formation with UFM1. The decrease in function was consistent with a hypomorphic allele, and the authors suggested that complete loss of function would be embryonic lethal. PMID 30552426: 1 more individual with epileptic encephalopathy reported with a different homozygous missense variant in UFC1. The patient had microcephaly <3rd percentile. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4091 | CTNND1 | Eleanor Williams changed review comment from: PMID: 32196547 - Alharatani et al 2020 - report an expanded phenotype for CTNND1 patients. They report 13 individuals from nine families with novel protein-truncating variants in CTNND1 identified by WES. The mutations were not previously described in blepharocheilodontic (BCD), orofacial cleft cases nor in gnomAD. 8 patients had de novo variants, 2 inherited from affected parents, 2 participants inherited a variant from a parent with a mild phenotype. Additional phenotypic features seen include mild limb phenotypes (9/13), cardiovascular anomalies (6/13) and Developmental delay and other neurodevelopmental problems (8/13).; to: PMID: 32196547 - Alharatani et al 2020 - report an expanded phenotype for CTNND1 patients. They report 13 individuals from nine families with novel protein-truncating variants in CTNND1 identified by WES. The mutations were not previously described in blepharocheilodontic (BCD), orofacial cleft cases nor in gnomAD. 8 patients had de novo variants, 2 inherited from affected parents, 2 participants inherited a variant from a parent with a mild phenotype. 8/13 patients showed cleft palate Additional phenotypic features seen include mild limb phenotypes (9/13), cardiovascular anomalies (6/13) and Developmental delay and other neurodevelopmental problems (8/13). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4060 | COL11A1 | Zornitza Stark Mode of inheritance for gene: COL11A1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4059 | COL11A1 | Elena Savva reviewed gene: COL11A1: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID 25073711, 30245514, 32427345, 27081569, 21035103; Phenotypes: Fibrochondrogenesis 1 (MIM#228520), Marshall syndrome (MIM#154780), Stickler syndrome, type II (MIM#604841), {Lumbar disc herniation, susceptibility to}, (MIM#603932), ?Deafness, autosomal dominant 37, (MIM#618533); Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4053 | LAGE3 | Zornitza Stark Mode of inheritance for gene: LAGE3 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4052 | LAGE3 | Zornitza Stark reviewed gene: LAGE3: Rating: GREEN; Mode of pathogenicity: None; Publications: 28805828; Phenotypes: Galloway-Mowat syndrome 2, X-linked, MIM# 301006; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3971 | DCX | Zornitza Stark Mode of inheritance for gene: DCX was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3970 | DCX | Zornitza Stark reviewed gene: DCX: Rating: GREEN; Mode of pathogenicity: None; Publications: 10915612, 9489699, 12552055; Phenotypes: Lissencephaly, X-linked, MIM# 300067, Subcortical laminal heterotopia, X-linked 300067; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3970 | TLR7 | Zornitza Stark reviewed gene: TLR7: Rating: GREEN; Mode of pathogenicity: None; Publications: 32706371; Phenotypes: Immunodeficiency 74, COVID19-related, X-linked, MIM# 301051; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3909 | MAOA | Zornitza Stark Mode of inheritance for gene: MAOA was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3908 | MAOA | Zornitza Stark reviewed gene: MAOA: Rating: GREEN; Mode of pathogenicity: None; Publications: 25807999, 24169519; Phenotypes: Brunner syndrome, MIM# 300615; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3732 | FAM50A |
Zornitza Stark gene: FAM50A was added gene: FAM50A was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FAM50A was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: FAM50A were set to 32703943 Phenotypes for gene: FAM50A were set to Mental retardation syndrome, X-linked, Armfield type (MIM #300261) Review for gene: FAM50A was set to GREEN Added comment: Lee et al (2020 - PMID: 32703943) provide evidence that Armfield X-Linked intellectual disability syndrome is caused by monoallelic FAM50A pathogenic variants. The current review is based only on this reference. The authors provide clinical details on 6 affected individuals from 5 families. Features included postnatal growth delay, DD and ID (6/6 - also evident for those without formal IQ assesment), seizures (3/6 from 2 families), prominent forehead with presence of other facial features and variable head circumference (5th to >97th %le), ocular anomalies (5/6 - strabismus/nystagmus/Axenfeld-Rieger), cardiac (3/6 - ASD/Fallot) and genitourinary anomalies (3/6). In the first of these families (Armfield et al 1999 - PMID: 10398235), linkage analysis followed by additional studies (Sanger, NGS of 718 genes on chrX, X-exome NGS - several refs provided) allowed the identification of a FAM50A variant. Variants in other families were identified by singleton (1 fam) or trio-ES (3 fam). In affected individuals from 3 families, the variant had occurred de novo. Carrier females in the other families were unaffected (based on pedigrees and/or the original publication). XCI was rather biased in most obligate carrier females from the 1st family (although this ranged from 95:5 to 60:40). Missense variants were reported in all affected subjects incl. Trp206Gly, Asp255Gly, Asp255Asn (dn), Glu254Gly (dn), Arg273Trp (dn) (NM_004699.3). Previous studies have demonstrated that FAM50A has ubiquitous expression in human fetal and adult tissues (incl. brain in fetal ones). Immunostaining suggests a nuclear localization for the protein (NIH/3T3 cells). Comparison of protein levels in LCLs from affected males and controls did not demonstrate significant differences. Protein localization for 3 variants (transfection of COS-7 cells) was shown to be similar to wt. Complementation studies in zebrafish provided evidence that the identified variants confer partial loss of function (rescue of the morpholino phenotype with co-injection of wt but not mt mRNA). The zebrafish ko model seemed to recapitulate the abnormal development of cephalic structures and was indicative of diminished/defective neurogenesis. Transcriptional dysregulation was demonstrated in zebrafish (altered levels and mis-splicing). Upregulation of spliceosome effectors was demonstrated in ko zebrafish. Similarly, mRNA expression and splicing defects were demonstrated in LCLs from affected individuals. FAM50A pulldown followed by mass spectrometry in transfected HEK293T cells demonstrated enrichment of binding proteins involved in RNA processing and co-immunoprecipitation assays (transfected U-87 cells) suggested that FAM50A interacts with spliceosome U5 and C-complex proteins. Overall aberrant spliceosome C-complex function is suggested as the underlying pathogenetic mechanism. Several other neurodevelopmental syndromes are caused by variants in genes encoding C-complex affiliated proteins (incl. EFTUD2, EIF4A3, THOC2, etc.). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3713 | HYLS1 |
Melanie Marty changed review comment from: A recurring homozygous missense variant p.Asp211Gly has been identified in at least 64 cases of hydrolethalus syndrome, described as a Finnish founder mutation (PMID: 15843405, PMID: 18648327). Functional studies in human and patient cells have shown mislocalisation of the protein to the nucleus (PMID: 15843405, PMID: 19400947). Functional studies in c. elegans showed that this variant impaired ciliogenesis (PMID: 19656802). Functional studies in drosophila showed that deletion of HYLS1 led to cilia dysfunction (PMID: 32509774). 2 homozygous living siblings (stop-loss, extension variant p.Ter300TyrextTer11) both diagnosed with Joubert syndrome. Patients had molar tooth signs and dysplasia of cerebellar vermis (PMID: 26830932). No other variants have been reported as pathogenic in this gene.; to: A recurring homozygous missense variant p.Asp211Gly has been identified in at least 64 cases of hydrolethalus syndrome, described as a Finnish founder mutation (PMID: 15843405, PMID: 18648327). Functional studies in human cells have shown mislocalisation of the protein to the nucleus (PMID: 19400947). Functional studies in c. elegans showed that this variant impaired ciliogenesis (PMID: 19656802). Functional studies in drosophila showed that deletion of HYLS1 led to cilia dysfunction (PMID: 32509774). 2 homozygous living siblings (stop-loss, extension variant p.Ter300TyrextTer11) both diagnosed with Joubert syndrome. Patients had molar tooth signs and dysplasia of cerebellar vermis (PMID: 26830932). No other variants have been reported as pathogenic in this gene. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3694 | BCOR | Zornitza Stark Mode of inheritance for gene: BCOR was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3693 | BCOR | Zornitza Stark reviewed gene: BCOR: Rating: GREEN; Mode of pathogenicity: None; Publications: 29974297; Phenotypes: Microphthalmia, syndromic 2, MIM# 300166, Oculofaciocardiodental syndrome, Lenz microphthalmia; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3692 | ARSE | Zornitza Stark Mode of inheritance for gene: ARSE was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3690 | ARSE | Zornitza Stark reviewed gene: ARSE: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Chondrodysplasia punctata, X-linked recessive, MIM# 302950; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3679 | FRMD7 | Zornitza Stark Mode of inheritance for gene: FRMD7 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3676 | AIFM1 | Zornitza Stark Mode of inheritance for gene: AIFM1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3675 | FRMD7 | Elena Savva reviewed gene: FRMD7: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 19072571, 23406872; Phenotypes: Nystagmus 1, congenital, X-linked 310700, Nystagmus, infantile periodic alternating, X-linked 310700; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3675 | AIFM1 | Elena Savva reviewed gene: AIFM1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 28842795; Phenotypes: Combined oxidative phosphorylation deficiency 6, 300816, Cowchock syndrome, 310490, Deafness, X-linked 5, 300614, Spondyloepimetaphyseal dysplasia, X-linked, with hypomyelinating leukodystrophy, 300232; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3675 | PIGQ |
Zornitza Stark edited their review of gene: PIGQ: Added comment: Homozygous or compound heterozygous mutations in PIGQ cause Epileptic encephalopathy, early infantile, 77 (MIM #618548). Johnstone et al (2020 - PMID: 32588908) describe the phenotype of 7 children (from 6 families) with biallelic PIGQ pathogenic variants. The authors also review the phenotype of 3 subjects previously reported in the literature (by Martin et al, Alazami et al, Starr et al - respective PMIDs: 24463883, 25558065, 31148362). Affected individuals displayed severe to profound global DD/ID and seizures with onset in the first year of life. There were variable other features incl. - among others - genitourinary, cardiac, skeletal, ophthalmological anomalies, gastrointestinal issues. Within the cohort there was significant morbidity/mortality. PIGQ encodes phosphatidylinositol glycan anchor biosynthesis class Q protein, playing a role (early) in the biosynthesis of the GPI-anchor. Several genes in the GPI biosynthesis pathway cause multi-system disease with DD/ID and seizures. Flow cytometry has been used in individuals with PIGQ-related disorder. Serum ALP was elevated in some (4) although - as the authors comment - elevations are more typical in disorders affecting later steps of GPI biosynthesis. More than 10 variants have been reported to date (missense / pLoF).; Changed phenotypes: Epileptic encephalopathy, early infantile, 77, MIM# 618548 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3646 | PJA1 |
Zornitza Stark gene: PJA1 was added gene: PJA1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PJA1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: PJA1 were set to 32530565 Phenotypes for gene: PJA1 were set to Intellectual disability; trigonocephaly Review for gene: PJA1 was set to AMBER Added comment: Recurrent variant, p.Arg376Cys, reported in 7 Japanese individuals, supportive mouse model. Individuals shared a common haplotype, suggestive of founder effect Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3645 | MCF2 |
Zornitza Stark gene: MCF2 was added gene: MCF2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MCF2 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: MCF2 were set to 31846234 Phenotypes for gene: MCF2 were set to Perisylvian polymicrogyria Review for gene: MCF2 was set to RED Added comment: Single individual reported, inherited missense variant from unaffected mother, some support from mouse model. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3643 | NARS |
Zornitza Stark gene: NARS was added gene: NARS was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NARS was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: NARS were set to 32738225 Phenotypes for gene: NARS were set to Abnormal muscle tone; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Ataxia; Abnormality of the face; Demyelinating peripheral neuropathy Review for gene: NARS was set to GREEN Added comment: [Please note that HGNC Approved Gene Symbol for this gene is NARS1] Manole et al (2020 - PMID: 32738225) provide evidence that both biallelic and monoallelic (de novo) pathogenic NARS1 variants cause a neurodevelopmental disorder. In total 32 individuals from 21 families are reported, with biallelic variants identified in individuals from 13 families and de novo in 8 families. Similar features were reported for AR/AD occurrences of the disorder and included microcephaly (90% - most often primary), epilepsy (23/32 or 74% - variable semiology incl. partial/myoclonic/generalized tonic-clonic seizures), DD and ID (as a universal feature), abnormal tone in several (hypotonia/spasticity), ataxia, demyelinating peripheral neuropathy (in 3 or more for each inheritance mode - or a total of 25%). Some individuals had dysmorphic features. NARS1 encodes an aminoacyl-tRNA synthetase (ARS) [asparaginyl-tRNA synthetase 1]. Aminoacyl-tRNA synthetases constitute a family of enzymes catalyzing attachment of amino-acids to their cognate tRNAs. As the authors comment, mutations in genes encoding several other ARSs result in neurological disorders ranging from peripheral neuropathy to severe multi-systemic NDD. Dominant, recessive or both modes for inheritance for mutations in the same gene (e.g. AARS1, YARS1, MARS1, etc) have been reported. Some variants were recurrent, e.g. the c.1600C>T / p.Arg534* which occurred in 6 families as a de novo event or c.1633C>T p.Arg545Cys (homozygous in 6 families). 3 different variants were reported to have occured de novo (c.965G>T - p.Arg322Leu, c.1525G>A - p.Gly509Ser, p.Arg534*) with several other variants identified in hmz/compound htz individuals. A single SNV (c.1067A>C - p.Asp356Ala) was suggested to be acting as modifier and pathogenic only when in trans with a severe variant. [NM_004539.4 used as RefSeq for all]. The authors provide several lines of evidence for a partial loss-of-function effect (e.g. reduction in mRNA expression, enzyme levels and activity in fibroblasts or iNPCs) underlying pathogenicity of the variants identified in individuals with biallelic variants. A gain-of-function (dominant-negative) effect is proposed for de novo variants (such effect also demonstrated for the p.Arg534* in a zebrafish model). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3561 | KLF10 |
Paul De Fazio gene: KLF10 was added gene: KLF10 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: KLF10 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: KLF10 were set to 22234868 Phenotypes for gene: KLF10 were set to HCM gene: KLF10 was marked as current diagnostic Added comment: Curated by ClinGen and rated as limited evidence. Misssense mutations reported in six unrelated individuals patients (two males/four females), with family history of HCM only reported for one individual (PMID: 22234868). No further reports in the literature. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3539 | LARS |
Zornitza Stark Added comment: Comment when marking as ready: Lenz et al (2020 - PMID: 32699352) review the phenotype of 25 affected individuals from 15 families. Seizures occurred in 19/24 and were commonly associated with infections. Encephalopathic episodes (in 13 patients) accompanied by seizures up to status epilepticus occurred independently of hepatic decompensation. In addition 22/24 presented with neurodevelopmental delay. The authors comment that cognitive impairment was present in 13/17 individuals (mild-severe) whereas most presented with learning disabilities. These patients will most likely investigated for their liver disease (although presentation was highly variable and/or very mild in few). The gene encodes a cytoplasmic amino-acyl tRNA synthetase (ARS) with neurologic manifestations observed in almost all patients (and seizures / DD and ID common to other disorders due to mutations in other genes encoding for ARSs). Please note that the HGNC approved symbol for this gene is LARS1. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3524 | BMP10 |
Zornitza Stark gene: BMP10 was added gene: BMP10 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: BMP10 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: BMP10 were set to 30578383 Phenotypes for gene: BMP10 were set to Pulmonary arterial hypertension Review for gene: BMP10 was set to AMBER Added comment: A truncating mutation and a predicted loss-of-function missense variant were identified in BMP10 in two severely affected sporadic PAH female patients. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3494 | HPD | Zornitza Stark Mode of inheritance for gene: HPD was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3493 | HPD | Zornitza Stark reviewed gene: HPD: Rating: GREEN; Mode of pathogenicity: None; Publications: 10942115, 17560158; Phenotypes: Hawkinsinuria (MIM#140350), AD, Tyrosinemia type III (MIM#276710), AR; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3487 | HDAC8 | Zornitza Stark Mode of inheritance for gene: HDAC8 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3486 | HDAC8 | Zornitza Stark reviewed gene: HDAC8: Rating: GREEN; Mode of pathogenicity: None; Publications: 30614194, 24403048; Phenotypes: Cornelia de Lange syndrome 5, MIM# 300882; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3450 | DACT1 |
Natalie Tan gene: DACT1 was added gene: DACT1 was added to Mendeliome. Sources: NHS GMS Mode of inheritance for gene: DACT1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: DACT1 were set to PMID: 28054444; 22610794; 19701191 Phenotypes for gene: DACT1 were set to ?Townes-Brocks syndrome 2 (OMIM #617466) Review for gene: DACT1 was set to RED Added comment: Webb et al. (2017) reported 6 affected members of a 3-generation family with ?Townes-Brocks syndrome-2, identified heterozygosity for a nonsense mutation in the DACT1 gene that segregated with disease. Clinical features include imperforate anus, rectovaginal fistula, crossed fused renal ectopia, vesicoureteral reflux, unilateral microtia, overfolded helices and cupped ears. One family member (proband's mother) with scoliosis and spina bifida occulta. Neural tube defects reported in a study of human fetuses (PMID: 22610794) and a mouse model (PMID: 19701191). Listed in Decipher v10.0 for an individual with abnormalities of (i) head or neck (ii) nervous system (iii) skeletal system. Unlike the gene SALL1 that causes Townes-Brocks syndrome 1, there is no information specifically relating to DACT1 with radial dysplasia, as these were not observed in the family with ?Townes-Brocks syndrome 2 (PMID: 28054444). Sources: NHS GMS |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3428 | NR0B1 | Zornitza Stark Mode of inheritance for gene: NR0B1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3425 | NSDHL | Zornitza Stark Mode of inheritance for gene: NSDHL was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3413 | NR0B1 | Ain Roesley reviewed gene: NR0B1: Rating: GREEN; Mode of pathogenicity: None; Publications: 19508677, 26030781; Phenotypes: Adrenal hypoplasia, congenital (MIM# 300200); Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3413 | NSDHL | Crystle Lee reviewed gene: NSDHL: Rating: GREEN; Mode of pathogenicity: None; Publications: 15689440; Phenotypes: CHILD syndrome (MMIM#308050); Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3323 | EXOC2 |
Zornitza Stark gene: EXOC2 was added gene: EXOC2 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: EXOC2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: EXOC2 were set to 32639540 Phenotypes for gene: EXOC2 were set to Global developmental delay; Intellectual disability; Abnormality of the face; Abnormality of brain morphology Review for gene: EXOC2 was set to AMBER Added comment: Van Bergen et al (2020 - PMID: 32639540) report on 3 individuals from 2 families, harboring biallelic EXOC2 mutations. Clinical presentation included DD, ID (severe in 2 subjects from fam1, borderline intellectual functioning in fam2), dysmorphic features and brain abnormalities. Cerebellar anomalies were common to all with a molar tooth sign observed in one (1/3). Other findings limited to subjects from one family included acquired microcephaly, congenital contractures, spastic quadriplegia (each observed 2/3). Previous investigations were in all cases non-diagnostic. WES identified biallelic EXOC2 mutations in all affected individuals. EXOC2 encodes an exocyst subunit. The latter is an octameric complex, component of the membrane transport machinery, required for tethering and fusion of vesicles at the plasma membrane. As discussed ,vesicle transport is important for the development of brain and the function of neurons and glia. Exocyst function is also important for delivery of Arl13b to the primary cilium (biallelic ARL13B mutations cause Joubert syndrome 8) and ciliogenesis. Affected subjects from a broader consanguineous family (fam1) were homozygous for a truncating variant. Fibroblast studies revealed mRNA levels compatible with NMD (further restored in presence of CHX) as well as reduced protein levels. The female belonging to the second non-consanguineous family was found to harbor 2 missense variants in trans configuration. An exocytosis defect was demonstrated in fibroblasts from individuals belonging to both families. Ciliogenesis appeared to be normal, however Arl13b localization/recruitment to the cilia was reduced compared with control cells with the defect rescued upon exogenous expression of wt EXOC2. Mutations in other genes encoding components of the exocyst complex have been previously reported in individuals with relevant phenotypes (e.g. EXOC8 in a boy with features of Joubert s. or EXOC4 in nephrotic syndrome). The authors discuss on the essential role of EXOC2 based on model organism studies (e.g. impaired neuronal membrane traffic, failure of neuronal polarization and neuromuscular junction expansion seen in Drosophila Sec5 (EXOC2) null mutants). Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3278 | PYCR1 |
Dean Phelan changed review comment from: Aortopathy/Connective tissue review Variants in this gene are associated with Cutis Laxa: Cutis laxa type 2 (ARCL2, [MIM 219200]) is an autosomal-recessive multisystem disorder with prominent connective-tissue features characterized by the appearance of premature aging, particularly wrinkled and lax skin with reduced elasticity. GEL PanelApp: Green in EDS panel - clinical features overlapping EDS Cutis laxa, autosomal recessive, type IIIB (ARCL3B) PMID: 19648921,4076251, 22052856 Cutis laxa, autosomal recessive, type IIB (ARCL2B) PMID: 19576563, 19648921, 9648921, 22052856, 28294978 AR PMID: 27756598: a homozygous mutation in PYCR1 segregating in the family with the affected individuals with complex connective tissue disorder and severe intellectual disability.; to: Aortopathy/Connective tissue review Variants in this gene are associated with Cutis Laxa: Cutis laxa type 2 (ARCL2, [MIM 219200]) is an autosomal-recessive multisystem disorder with prominent connective-tissue features characterized by the appearance of premature aging, particularly wrinkled and lax skin with reduced elasticity. GEL PanelApp: Green in EDS panel - clinical features overlapping EDS Cutis laxa, autosomal recessive, type IIIB (ARCL3B) PMID: 19648921,4076251, 22052856 Cutis laxa, autosomal recessive, type IIB (ARCL2B) PMID: 19576563, 19648921, 9648921, 22052856, 28294978 AR PMID: 27756598: a homozygous mutation in PYCR1 segregating in the family with the affected individuals with complex connective tissue disorder and severe intellectual disability. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3266 | GGPS1 |
Zornitza Stark gene: GGPS1 was added gene: GGPS1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GGPS1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: GGPS1 were set to 32403198 Phenotypes for gene: GGPS1 were set to Muscular dystrophy; Deafness; Ovarian insufficiency Review for gene: GGPS1 was set to GREEN Added comment: 11 individuals from 6 unrelated families reported. In addition to proximal weakness, all but one patient presented with congenital sensorineural hearing loss, and all postpubertal females had primary ovarian insufficiency. Muscle histology was dystrophic, with ultrastructural evidence of autophagic material and large mitochondria in the most severe cases. Knock-in mouse of one of the mutations (Y259C) resulted in prenatal lethality. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3253 | SFTPA1 | Zornitza Stark Mode of inheritance for gene: SFTPA1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3251 | SFTPA1 | Zornitza Stark reviewed gene: SFTPA1: Rating: AMBER; Mode of pathogenicity: None; Publications: 31601679, 30854216, 28869238, 26792177; Phenotypes: Idiopathic pulmonary fibrosis; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3248 | ASPRV1 |
Ee Ming Wong gene: ASPRV1 was added gene: ASPRV1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ASPRV1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ASPRV1 were set to PMID: 32516568 Phenotypes for gene: ASPRV1 were set to palmoplantar keratoderma; lamellar ichthyosis Review for gene: ASPRV1 was set to GREEN gene: ASPRV1 was marked as current diagnostic Added comment: -3 heterozygous missense variants identified across 4 unrelated kindreds -mutant ASPRV1 expressed in human keratinocytes suggests impaired filaggrin processing Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3202 | CAPZA2 |
Eleanor Williams gene: CAPZA2 was added gene: CAPZA2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CAPZA2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: CAPZA2 were set to 32338762 Phenotypes for gene: CAPZA2 were set to intellectual disability Review for gene: CAPZA2 was set to AMBER Added comment: PMID: 32338762 - Huang et al 2020 - report 2 unrelated families (Chinese and European) in which a de novo heterozygous variant has been identified in CAPZA2 in paediatric probands that present with global motor development delay, speech delay, intellectual disability, hypotonia. One proband had seizures at 7 months but these were controlled with medication and did not repeat. The other proband at age one had an atypical febrile seizure that was controlled without medication. Functional studies in Drosophila suggest that these variants are mild loss of function mutations but that they can act as dominant negative variants in actin polymerization in bristles. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3194 | PDCD6IP |
Zornitza Stark gene: PDCD6IP was added gene: PDCD6IP was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PDCD6IP was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PDCD6IP were set to 32286682 Phenotypes for gene: PDCD6IP were set to Microcephaly; intellectual disability Review for gene: PDCD6IP was set to AMBER Added comment: One consanguineous family with 2 affected sibs with primary microcephaly (-4SD), intellectual disability and short stature (-5/6SD), and homozygous frameshift variant in PDCD6IP. The homozygous variant was confirmed in both affected sibs, while the four healthy siblings and parents were heterozygous. The clinical features observed in the patients were similar to the phenotypes observed in mouse and zebrafish models of PDCD6IP mutations in previous studies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3189 | EMILIN1 |
Naomi Baker changed review comment from: Missense mutations identified in two families. First family, proband presented with ascending and descending aortic aneurysms, bilateral lower leg and foot sensorimotor peripheral neuropathy, arthropathy, and increased skin elasticity. Variant segregated with disease in the affected proband, mother, and son. Second family, father and three affected children showed amyotrophy and weakness of the distal lower limbs, dating back to early childhood. Some functional studies performed in patient fibroblasts and zebrafish, however these were not conclusive as the two missense mutations are at different locations within the protein. Sources: Literature; to: Missense mutations identified in two families. First family, proband presented with ascending and descending aortic aneurysms, bilateral lower leg and foot sensorimotor peripheral neuropathy, arthropathy, and increased skin elasticity. Variant segregated with disease in the affected proband, mother, and son. Second family, father and three affected children showed amyotrophy and weakness of the distal lower limbs, dating back to early childhood. Some functional studies performed in patient fibroblasts and zebrafish, however these were not conclusive as the two missense mutations are at different locations within the protein. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3189 | EMILIN1 |
Naomi Baker gene: EMILIN1 was added gene: EMILIN1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: EMILIN1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: EMILIN1 were set to PMID: 31978608; 26462740. Phenotypes for gene: EMILIN1 were set to peripheral neuropathy Penetrance for gene: EMILIN1 were set to unknown Review for gene: EMILIN1 was set to AMBER Added comment: Missense mutations identified in two families. First family, proband presented with ascending and descending aortic aneurysms, bilateral lower leg and foot sensorimotor peripheral neuropathy, arthropathy, and increased skin elasticity. Variant segregated with disease in the affected proband, mother, and son. Second family, father and three affected children showed amyotrophy and weakness of the distal lower limbs, dating back to early childhood. Some functional studies performed in patient fibroblasts and zebrafish, however these were not conclusive as the two missense mutations are at different locations within the protein. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3158 | UBE2A | Zornitza Stark Mode of inheritance for gene: UBE2A was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3157 | UBE2A | Zornitza Stark reviewed gene: UBE2A: Rating: GREEN; Mode of pathogenicity: None; Publications: 24053514, 16909393; Phenotypes: Mental retardation, X-linked syndromic, Nascimento-type (MIM#300860); Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3156 | AXL |
Bryony Thompson gene: AXL was added gene: AXL was added to Mendeliome. Sources: Literature Mode of inheritance for gene: AXL was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: AXL were set to 18787040; 24476074 Phenotypes for gene: AXL were set to Kallman syndrome; normosmic idiopathic hypogonadotropic hypogonadism Review for gene: AXL was set to AMBER Added comment: Axl null mice had delayed first oestrus and persistently abnormal oestrous cyclicality compared with wild-type controls. Only a single study reported screening human cases. In a screen of 104 probands with KS or nIHH, four heterozygous AXL mutations were identified in two KS and two nIHH unrelated subjects (two males and two females). Three of the variants appear to be too common in gnomAD v2.1 given the reported prevalence of KS reported in GeneReviews (1:30,000 in males and 1:125,000 in females): c.587-6C>T (normal splicing in RNA studies, NFE AF 0.0001472), p.Q361P (NFE 0.002560), p.L50F (AJ 0.004405). The other variant p.S202C (4 hets, 1 female in gnomAD v2.1) is rare enough in gnomAD for a dominant disorder. In vitro functional assays were conducted and p.S202C had an significant effect on function, but so did the more common variant p.Q361P. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3130 | ALPK3 | Zornitza Stark Mode of inheritance for gene: ALPK3 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3129 | ALPK3 | Zornitza Stark reviewed gene: ALPK3: Rating: GREEN; Mode of pathogenicity: None; Publications: 26846950, 27106955, 32480058; Phenotypes: Cardiomyopathy, familial hypertrophic 27, MIM# 618052; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3117 | NEXMIF | Zornitza Stark Mode of inheritance for gene: NEXMIF was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3112 | KDM6A | Zornitza Stark Mode of inheritance for gene: KDM6A was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3111 | KDM6A | Elena Savva reviewed gene: KDM6A: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID:27302555, 24664873; Phenotypes: Kabuki syndrome 2, 300867; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3111 | NEXMIF | Elena Savva reviewed gene: NEXMIF: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 27358180; Phenotypes: Mental retardation, X-linked 98 300912; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3082 | HPRT1 | Zornitza Stark Mode of inheritance for gene: HPRT1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3081 | HPRT1 | Ain Roesley reviewed gene: HPRT1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 20176575; Phenotypes: HPRT-related gout (MIM# 300323), Lesch-Nyhan syndrome (MIM# 300322); Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3076 | SI | Zornitza Stark Mode of inheritance for gene: SI was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3074 | SI | Elena Savva reviewed gene: SI: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 3149304, 31557950; Phenotypes: Sucrase-isomaltase deficiency, congenital #222900; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3049 | RAD21 | Elena Savva reviewed gene: RAD21: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 31334757, 25575569, 32193685; Phenotypes: ?Mungan syndrome, 611376, Cornelia de Lange syndrome 4, 614701, Holoprocencephaly; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3017 | PERP |
Zornitza Stark gene: PERP was added gene: PERP was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PERP was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PERP were set to 31898316 Phenotypes for gene: PERP were set to Erythrokeratoderma, no OMIM # yet Review for gene: PERP was set to AMBER Added comment: One extended multiplex consanguineous family with Erythrokeratoderma (striking similarity to that observed in Perp −/− mice), and a novel homozygous variant (c.466G>A; p.Gly156Arg) in PERP that fully segregated with the phenotype. Functional analysis of patient‐ and control‐derived keratinocytes revealed a deleterious effect of the identified variant on the intracellular localization of PERP. A previous report showed that PERP mutation causes a dominant form of keratoderma but a single patient in that report with a homozygous variant in PERP suggests that recessive inheritance is also possible. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3015 | ADCY6 |
Zornitza Stark gene: ADCY6 was added gene: ADCY6 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ADCY6 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ADCY6 were set to 24319099; 26257172; 31846058 Phenotypes for gene: ADCY6 were set to Lethal congenital contracture syndrome 8, OMIM # 616287 Review for gene: ADCY6 was set to GREEN Added comment: Laquerriere et al. (2014): 2 sibs from a consanguineous family with an axoglial form of lethal congenital contracture syndrome, and homozygous missense ADCY6 mutation (R1116C). The parents were heterozygous for the mutation. Knocked down ADCY6 orthologs in zebrafish showed a loss of myelin basic protein expression in the peripheral nervous system but no defects in Schwann cell migration and axonal growth. Gonzaga‐Jauregui et al. (2015): 1 patient with congenital hypotonia, distal joint contractures, hypomyelinating neuropathy, and vocal cord paralysis, and a homozygous missense ADCY6 variant. No functional studies. Deceased sister with a similar phenotype with hypotonia, areflexia, and hypomyelinating neuropathy who died at 18 months of respiratory insufficiency. Agolini et al. (2020): 1 patient with severe form of AMC, with two novel compound heterozygous variants in ADCY6 (parents confirmed carriers), but no functional studies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3014 | DSCR3 |
Zornitza Stark gene: DSCR3 was added gene: DSCR3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: DSCR3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: DSCR3 were set to 31845315 Phenotypes for gene: DSCR3 were set to Intellectual disability, no OMIM # yet Review for gene: DSCR3 was set to RED Added comment: 1 family/2 cousins with cognitive impairment, growth failure, skeletal abnormalities, and distinctive facial features. Both shared the homozygous nonsense variant c.178G>T (p.Glu60*) in the VPS26C gene. This gene encodes VPS26C, a member of the retriever integral membrane protein recycling pathway. The nature of the variant which is predicted to result in loss‐of‐function, expression studies revealing significant reduction in the mutant transcript, and the co‐segregation of the homozygous variant with the phenotype in two affected individuals. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2996 | ARL13B | Zornitza Stark edited their review of gene: ARL13B: Added comment: Eight families reported in the literature. Many are homozygous missense variants in consanguineous families with no further supporting evidence, but sufficient number have functional evidence at protein level. Gene has appropriate tissue expression. Zebrafish model: curved tails and cystic kidneys. Hennin mouse model discovered in ENU mutagenesis screen: has polydactyly, ciliary defect, and much more severe neurological phenotype (neural tube defect).; Changed publications: 18674751, 25138100, 26092869, 27894351, 29255182, 17488627 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2955 | VWA3B |
Bryony Thompson gene: VWA3B was added gene: VWA3B was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: VWA3B was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: VWA3B were set to 26157035 Phenotypes for gene: VWA3B were set to Spinocerebellar ataxia, autosomal recessive 22 MIM#616948 Review for gene: VWA3B was set to AMBER Added comment: A homozygous missense variant was identified in 3 brothers from a single consanguineous Japanese family with autosomal recessive cerebellar ataxia. Transfection of the mutant VWA3B protein into several different cultured cell lines resulted in decreased cell viability. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2932 | DNAH6 |
Elena Savva gene: DNAH6 was added gene: DNAH6 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: DNAH6 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: DNAH6 were set to PMID: 26918822 Phenotypes for gene: DNAH6 were set to Heterotaxy, Azoospermia Review for gene: DNAH6 was set to AMBER Added comment: PMID: 26918822 - zebrafish model has disrupted motile cilia and cilia length, with some body axis defects within embryos. Transfected human cells also had defective motile cilia and cilia width. Two patients with heterotaxy, one homozygous (missense), the other heterozygous (missense), but the heterozygous carrier has an additional known PCD mutation in DNA1. Summary: 1 convincing patient with animal model Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2931 | XIST | Zornitza Stark Mode of inheritance for gene: XIST was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2930 | XIST | Zornitza Stark reviewed gene: XIST: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: X-inactivation, familial skewed, MIM# 300087; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2913 | GPR143 | Zornitza Stark Mode of inheritance for gene: GPR143 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2909 | GPR143 | Teresa Zhao reviewed gene: GPR143: Rating: GREEN; Mode of pathogenicity: None; Publications: 30555098, 29761529; Phenotypes: congenital nystagmus 6, MIM 300814, ty[e I ocular albinism, Nettleship-Falls type, MIM 300500; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2889 | ARL3 |
Bryony Thompson gene: ARL3 was added gene: ARL3 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: ARL3 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: ARL3 were set to 30269812; 16565502; 26964041; 30932721 Phenotypes for gene: ARL3 were set to Joubert syndrome 35 MIM#618161; Retinitis pigmentosa 83 MIM#618173 Review for gene: ARL3 was set to GREEN Added comment: 4 patients from 2 unrelated consanguineous families with a phenotype resembling Joubert syndrome with homozygous missense mutations affecting the same residue (R149C, R149H), and supporting in vitro functional assays. All reported cases had rod-cone dystrophy. An Arl3 null mouse model has a ciliary disease phenotype affecting the kidney, biliary tract, pancreas, and retina. Two unrelated families with retinitis pigmentosa segregating the same heterozygous missense variant (Y90C). Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2861 | FAT1 |
Ee Ming Wong changed review comment from: - 5 consanguineous families with homozygous frameshift mutations in FAN1 - FAN1 KO mice had microphthalmia, with fully penetrant coloboma which was not observed in heterozygous mice - in human retinal pigment epithelium (RPE) cells, FAN1 knockdown resulted in compromised early cell-cell junction integrity and filament organisation; to: - 5 consanguineous families with homozygous frameshift mutations in FAN1 - FAN1 KO mice had microphthalmia, with fully penetrant coloboma which was not observed in heterozygous mice - in human retinal pigment epithelium (RPE) cells, FAN1 knockdown resulted in compromised early cell-cell junction integrity and filament organisation |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2847 | CLCC1 |
Bryony Thompson gene: CLCC1 was added gene: CLCC1 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: CLCC1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CLCC1 were set to 30157172 Phenotypes for gene: CLCC1 were set to Retinitis pigmentosa 32 Review for gene: CLCC1 was set to AMBER Added comment: A presumptive Pakastani founder mutation (c.75C>A, p.D25E) was identified in 8 consanguineous arRP families. A knockout zebrafish model and a Clcc1 +/- mouse model had a supporting retinal phenotype. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2823 | NDP | Zornitza Stark Mode of inheritance for gene: NDP was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2816 | ALPL | Zornitza Stark Mode of inheritance for gene: ALPL was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2814 | ALPL | Melanie Marty reviewed gene: ALPL: Rating: GREEN; Mode of pathogenicity: Other; Publications: 19500388, 23688511; Phenotypes: Hypophosphatasia, adult 146300 (AD, AR), Hypophosphatasia, childhood 241510 AR, Hypophosphatasia, infantile 241500 AR, Odontohypophosphatasia 146300 AD, AR; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2814 | LRRC56 |
Elena Savva gene: LRRC56 was added gene: LRRC56 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: LRRC56 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: LRRC56 were set to PMID: 30388400 Phenotypes for gene: LRRC56 were set to Ciliary dyskinesia, primary, 39 618254 Added comment: PMID: 30388400 - used protist null model to show abnormal ciliary beatings, replicated the phenotype when the protist was transfected with mutant allele observed in a patient. 3 unrelated families reported with either homozygous splice, missense or chet (nonsense/splice). Patients exhibited phenotypes including chronic respiratory/ear infections, situs inversus Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2796 | PIH1D3 | Zornitza Stark Mode of inheritance for gene: PIH1D3 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2795 | PIH1D3 | Zornitza Stark reviewed gene: PIH1D3: Rating: GREEN; Mode of pathogenicity: None; Publications: 28041644, 24421334, 28176794; Phenotypes: Ciliary dyskinesia, primary, 36, X-linked (MIM#300991); Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2771 | KLB |
Zornitza Stark gene: KLB was added gene: KLB was added to Mendeliome. Sources: Literature Mode of inheritance for gene: KLB was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: KLB were set to 28754744 Review for gene: KLB was set to GREEN Added comment: Seven heterozygous loss‐of‐function KLB mutations in 13 individuals reported. In mice, lack of Klb led to delayed puberty, altered estrous cyclicity, and subfertility due to a hypothalamic defect associated with inability of GnRH neurons to release GnRH in response to FGF21. Functional analysis showed decreased activity in response to FGF21 and FGF8. KLB is an obligate coreceptor for FGF21 alongside FGFR1. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2742 | CFAP43 |
Elena Savva gene: CFAP43 was added gene: CFAP43 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CFAP43 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal Publications for gene: CFAP43 were set to PMID: 31884020; 28552195; 31004071; 29449551 Phenotypes for gene: CFAP43 were set to Hydrocephalus, normal pressure, 1 236690; Spermatogenic failure 19 617592 Added comment: aka WDR96 PMID: 31884020 - animal models (mouse, frog) demonstrate the protein localizes in ciliary axoneme and is involved in MOTILE cilia movement. LOF CFAP43 caused mucus acucmulation in airways, impaired spermatogenesis and hydrocephalus. PMID: 28552195 - 3x chet (bilallelic PTCs or chet PTC/missense) with abnormal sperm motility. Null mouse models were also infertile. PMID: 31004071 - one family with a heterozygous nonsense and AD inheritance of late onset hydrocephaly (checked in Mutalyzer, variant is NMD predicted). Abnormal cilia observed from mucosa sample. Null mice also show abnormal sperm and dilation of brain ventricles. PMID: 29449551 - reports an additional 10 patients with either homozygous PTCs or chet PTC/missense who were infertile with flagella defects Summary: single report of AD hydrocephaly Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2723 | ARMC9 | Zornitza Stark edited their review of gene: ARMC9: Added comment: ARMC9 localizes to the ciliary basal body and daughter centriole and is predicted to function in ciliogenesis PMID: 28625504 - 8 families with Joubert syndrome, all variant types detected. Functional studies show protein localizes at the basal body and upregulates during ciliogenesis. Zebrafish with frameshift mutation recapitulated the human phenotype including a curved body, coloboma, retinal dystrophy and less cilia.; Changed rating: GREEN; Changed publications: 28625504 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2611 | PDGFRB |
Ee Ming Wong changed review comment from: - > 3 unrelated families - Functional studies on patient fibroblasts, HeLa and HEK293 cells harbouring mutant constructs demonstrate constitutive tyrosine kinase activation (gain of function) compared with WT constructs; to: - > 3 unrelated individuals diagnosed with Penttinen syndrome - Functional studies on patient fibroblasts, HeLa and HEK293 cells harbouring mutant constructs demonstrate constitutive tyrosine kinase activation (gain of function) compared with WT constructs |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2504 | TLK2 | Zornitza Stark Mode of inheritance for gene: TLK2 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2449 | SMCHD1 | Zornitza Stark Added comment: Comment when marking as ready: Note association with FSHD2 is postulated to have digenic inheritance, caused by the combination of a heterozygous mutation in the SMCHD1 gene (614982) on chromosome 18p and presence of a haplotype on chromosome 4 that is permissive for DUX4 (606009) expression. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2444 | CDKL5 | Zornitza Stark Mode of inheritance for gene: CDKL5 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2440 | CDKL5 | Teresa Zhao reviewed gene: CDKL5: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Epileptic encephalopathy, early infantile, 2, MIM 300672; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2436 | WARS |
Naomi Baker gene: WARS was added gene: WARS was added to Mendeliome. Sources: Literature Mode of inheritance for gene: WARS was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: WARS were set to PMID: 28369220; 31321409; 31069783. Phenotypes for gene: WARS were set to Neuronopathy, distal hereditary motor, type IX (OMIM:617721); juvenile to adult onset (15-23 years); distal wasting; distal weakness; length-dependent motor axonal degeneration Review for gene: WARS was set to GREEN Added comment: 14 patients from five families were reported to have WARS-related neuropathy across three publications. Expression studies of mutant demonstrated decreased protein when compared to wild-type. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2429 | PCDH19 | Zornitza Stark Mode of inheritance for gene: PCDH19 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2427 | SLC9A7 | Dean Phelan reviewed gene: SLC9A7: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 30335141; Phenotypes: Intellectual disability; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2421 | TLK2 | Teresa Zhao reviewed gene: TLK2: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID:29861108, 29942082, 27479843, 23911319, 30559488, 29942082, 31558842; Phenotypes: Intellectual disability, MIM 618050, Neurodevelopmental disease; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2418 | SAMD12 | Zornitza Stark Mode of inheritance for gene: SAMD12 was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2396 | NAA10 | Zornitza Stark Mode of inheritance for gene: NAA10 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2377 | CDKL5 | Ain Roesley reviewed gene: CDKL5: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 27080038, 30842224; Phenotypes: Rett syndrome, Rett-like phenotypes, Epileptic encephalopathy; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2377 | GSX2 |
Elena Savva gene: GSX2 was added gene: GSX2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GSX2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: GSX2 were set to PMID: 31412107 Phenotypes for gene: GSX2 were set to Diencephalic-mesencephalic junction dysplasia syndrome 2 618646 Review for gene: GSX2 was set to GREEN Added comment: PMID: 31412107 - 2 unrelated patients with homozygous mutations (nonsense, missense). Functional analysis of the missense in transfected HeLa cells demonstrated protein mislocalization and protein expression. Downstream gene expression was also reduced by both mutations. Summary: GREEN - 2 patients and functional evidence Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2371 | PCDH19 | Ee Ming Wong reviewed gene: PCDH19: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 18469813, 30287595; Phenotypes: PCDH19-related epilepsy (early seizure onset, generalised or focused seizures), cognitive impairment; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2364 | CFAP65 |
Daniel Flanagan gene: CFAP65 was added gene: CFAP65 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CFAP65 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CFAP65 were set to 31501240; 31413122 Phenotypes for gene: CFAP65 were set to Spermatogenic failure 40 618664 Penetrance for gene: CFAP65 were set to unknown Review for gene: CFAP65 was set to GREEN gene: CFAP65 was marked as current diagnostic Added comment: 9 patients with multiple morphological abnormalities of the sperm flagella (MMAF) or completely immotile spermatozoa, in which, homozygous or compound heterozygous truncating CFAP65 variants were identified. Cfap65-mutated male mice displayed typical MMAF phenotypes with severe morphological abnormalities of the sperm flagella (PMID: 31501240, 31413122). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2361 | NAA10 | Naomi Baker reviewed gene: NAA10: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 30842225.; Phenotypes: syndromic X-linked microphthalmia; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2361 | USP45 |
Kristin Rigbye gene: USP45 was added gene: USP45 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: USP45 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: USP45 were set to 30573563 Phenotypes for gene: USP45 were set to Leber congenital amaurosis; retinal dystrophy Review for gene: USP45 was set to GREEN Added comment: 2 unrelated Chinese families reported with rare homozygous variants (one missense, one nonsense) and Leber congenital amaurosis. Animal knockout functional studies supported gene-disease association. PMID: 30573563 "By analysing WES data based on allele frequencies of in-house controls, population allele frequencies and in silico prediction tools, two rare homozygous mutations in USP45 were identified in two unrelated families. Immunohistochemistry of USP45 in the human and zebrafish retinal sections revealed enriched expression in the inner segments of photoreceptors. The knockdown of usp45 transcript in zebrafish led to abnormal retinal development with effects on photoreceptors, which could be successfully rescued by wild-type usp45 mRNA. Moreover, targeted knockout of Usp45 in mice caused abnormal electroretinography responses, similar to that seen in patients with LCA." Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2356 | EMG1 |
Zornitza Stark gene: EMG1 was added gene: EMG1 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: EMG1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: EMG1 were set to 19463982 Phenotypes for gene: EMG1 were set to Bowen-Conradi syndrome, MIM#211180 Review for gene: EMG1 was set to AMBER Added comment: Founder mutation in Hutterite, D86G. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2314 | F11 | Zornitza Stark Mode of inheritance for gene: F11 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2281 | SIPA1L3 |
Bryony Thompson gene: SIPA1L3 was added gene: SIPA1L3 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: SIPA1L3 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: SIPA1L3 were set to 28951961; 27993984; 25804400 Phenotypes for gene: SIPA1L3 were set to Cataract 45 MIM#616851 Review for gene: SIPA1L3 was set to AMBER Added comment: A consanguineous German family segregating a homozygous nonsense mutation in two sisters with congenital cataracts (PMID: 25804400). Null Zebrafish, Xenopus and mouse models recapitulate the human cataract phenotype. A case with congenital cataracts as a feature of their condition harboured a de novo balanced chromosomal translocation, 46,XY,t(2;19)(q37.3;q13.1), where breakpoint mapping and sequencing showed a physical disruption of the 5′UTR of SIPA1L3 (PMID: 26231217). In a case with bilateral congenital cataracts a heterozygous missense (D148Y) was identified and in vitro functional assays of the variant resulted in abnormal actin morphology (PMID: 26231217). Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2280 | KCNJ11 |
Elena Savva edited their review of gene: KCNJ11: Added comment: Congenital hyperinsulinism (HI) variants are generally reported in heterozygous patients where they also carry a somatic 2nd hit, or have isodisomy of the paternal allele (focal HI), or in bilallelic patients (diffuse HI). This condition can be dominant (but rarely), where patients with these missense are diazoxide-responsive. Patients with recessively inherited variants are diazoxide-unresponsive (OMIM, PMID:11395395, PMID: 23275527, PMID: 23345197). Genotype-phenotype correlation: Permanent neonatal diabetes – GOF (OMIM) Permanent neonatal diabetes + other features – GOF (OMIM) Congenital hyperinsulinism – LOF (PMID:18250167). PTCs - LOF Missense - Loss and gain of function LOF – cause reduce channel expression, channel activity and increase current decay (PMID:18250167) GOF - impair ATP-based sensitivity, more open state channel (OMIM) Mutations generally occur on the paternal allele (PMID: 23345197).; Changed publications: PMID:18250167, 11395395, 23275527, 23345197 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2259 | MARS2 | Zornitza Stark changed review comment from: 1 family with 2 sibs with combined oxidative phosphorylation deficiency-25 (with ID) with compound heterozygous mutations in the MARS2 gene. Patient fibroblasts showed decreased activities of mitochondrial complexes I and IV, consistent with a mitochondrial translation defect. Immunoblot analysis showed reduced MARS2 protein levels as well as reduced levels of selected subunits of complexes I and IV.; to: 1 family with 2 sibs with combined oxidative phosphorylation deficiency-25 (with ID) with compound heterozygous mutations in the MARS2 gene. Patient fibroblasts showed decreased activities of mitochondrial complexes I and IV, consistent with a mitochondrial translation defect. Immunoblot analysis showed reduced MARS2 protein levels as well as reduced levels of selected subunits of complexes I and IV. Spastic ataxia association: note complex chromosomal rearrangements rather than SNVs reported in group of 54 French Canadians. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2044 | MIR140 |
Zornitza Stark gene: MIR140 was added gene: MIR140 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: MIR140 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: MIR140 were set to 30804514; 31633310 Phenotypes for gene: MIR140 were set to Spondyloepiphyseal dysplasia, Nishimura type, MIM# 618618 Review for gene: MIR140 was set to GREEN Added comment: Single clinical paper (30804514) reports variant in affected mother and child (de novo in mother) and in a separate unrelated female (de novo) with spondylo-epiphyseal dysplasia. Mouse model (21576357) deletion of gene causes impaired longitudinal bone growth. Separate mouse model studies by same authors as clinical paper above (30804514) showed phenotype of mice with same mutation in this gene consistent with the skeletal dysplasia features of patients with the n.24A-G mutation, suggestive of neomorphic effects (mutation produces both loss-of-function and gain-of-function effects.) Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1988 | POLA1 | Zornitza Stark Mode of inheritance for gene: POLA1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1987 | POLA1 | Zornitza Stark reviewed gene: POLA1: Rating: GREEN; Mode of pathogenicity: None; Publications: 27019227, 31006512; Phenotypes: Pigmentary disorder, reticulate, with systemic manifestations, X-linked, MIM# 301220, Van Esch-O'Driscoll syndrome OMIM# 301030; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1987 | IRAK1 |
Zornitza Stark gene: IRAK1 was added gene: IRAK1 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: IRAK1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: IRAK1 were set to 28069966 Phenotypes for gene: IRAK1 were set to Susceptibility to bacterial infections Review for gene: IRAK1 was set to RED Added comment: Single individual with MECP2 and IRAK1 deletion, died in infancy, immunological phenotype not fully elucidated. In vitro studies. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1941 | SH3KBP1 |
Zornitza Stark gene: SH3KBP1 was added gene: SH3KBP1 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: SH3KBP1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: SH3KBP1 were set to 29636373; 21708930 Phenotypes for gene: SH3KBP1 were set to Immunodeficiency 61, MIM# 300310 Review for gene: SH3KBP1 was set to RED Added comment: Single family reported, 247.5-kb intragenic deletion detected by array. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1937 | ATP6AP1 | Zornitza Stark Mode of inheritance for gene: ATP6AP1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1876 | DRP2 |
Zornitza Stark gene: DRP2 was added gene: DRP2 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: DRP2 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: DRP2 were set to 26227883; 11430802; 31217940; 22764250; 29473052 Phenotypes for gene: DRP2 were set to Charcot Marie Tooth, intermediate X-linked; HMSN Review for gene: DRP2 was set to GREEN Added comment: Three unrelated families, functional data. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1858 | PQBP1 | Zornitza Stark Mode of inheritance for gene: PQBP1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1851 | DLG3 | Zornitza Stark Mode of inheritance for gene: DLG3 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1842 | PQBP1 | Elena Savva reviewed gene: PQBP1: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID:31840929, 14634649, 20410308; Phenotypes: Renpenning syndrome; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1842 | DLG3 | Elena Savva reviewed gene: DLG3: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID 28777483; Phenotypes: Mental retardation, X-linked 90; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1834 | NRROS |
Sue White gene: NRROS was added gene: NRROS was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NRROS was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NRROS were set to 32100099; 32197075 Phenotypes for gene: NRROS were set to neurodegeneration; intracranial calcification; epilepsy Penetrance for gene: NRROS were set to Complete Review for gene: NRROS was set to GREEN Added comment: normal development or mild developmental delay until onset of regression around age of 1 concurrent with epilepsy biallelic LOF mutations with functional evidence of pathogenicity Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1812 | PNPLA4 | Zornitza Stark Mode of inheritance for gene: PNPLA4 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1799 | MRPL3 | Zornitza Stark changed review comment from: 1 French family with 4 sibs with severe mitochondrial disorder - compound heterozygous mutations in the MRPL3 gene, no functional studies. 1 male infant with a severe mitochondrial disorder - compound heterozygous mutations in the MRPL3 gene, no functional studies.; to: 1 French family with 4 sibs with severe mitochondrial disorder - compound heterozygous mutations in the MRPL3 gene, some functional studies. 1 male infant with a severe mitochondrial disorder - compound heterozygous mutations in the MRPL3 gene, no functional studies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1782 | HCFC1 | Zornitza Stark Mode of inheritance for gene: HCFC1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1777 | TIMMDC1 |
Zornitza Stark gene: TIMMDC1 was added gene: TIMMDC1 was added to Mendeliome. Sources: NHS GMS Mode of inheritance for gene: TIMMDC1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TIMMDC1 were set to 28604674; 30981218 Phenotypes for gene: TIMMDC1 were set to Mitochondrial complex I deficiency, nuclear type 31 MIM#618251 Review for gene: TIMMDC1 was set to AMBER Added comment: A deep intronic variant (c.597-1340A>G, only detectable by WGS) that causes a splicing aberration was identified in a homozygous state in 3 unrelated cases from different ethnic backgrounds. A patient with Leigh-like syndrome had a homozygous stopgain variant in PDHX and a homozygous stopgain variant in TIMMDC1 (p.Arg225*). The TIMMDC1 mutant protein could still rescue complex I assembly in TIMMDC1 knockout cells and the patient’s clinical phenotype was not clearly distinct from that of other patients with the same PDHX defect. Sources: NHS GMS |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1772 | HCFC1 | Elena Savva reviewed gene: HCFC1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 23000143; Phenotypes: Mental retardation, X-linked 3 (methylmalonic acidemia and homocysteinemia, cblX type ) 309541; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1654 | MAPRE2 | Zornitza Stark Mode of inheritance for gene: MAPRE2 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1653 | MAPRE2 | Zornitza Stark reviewed gene: MAPRE2: Rating: GREEN; Mode of pathogenicity: None; Publications: 26637975; Phenotypes: Symmetric circumferential skin creases, congenital, 2, MIM# 616734; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1634 | NKAP |
Zornitza Stark gene: NKAP was added gene: NKAP was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: NKAP was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: NKAP were set to 26358559; 26350204; 31587868 Phenotypes for gene: NKAP were set to Intellectual disability Review for gene: NKAP was set to GREEN gene: NKAP was marked as current diagnostic Added comment: 10 males from 8 unrelated families with missense mutations in NKAP (on Xq24) Hypotonia and tall stature with Marfanoid habitus was predominant phenotype. One variant (NM_024528:c.988G>A / p.Arg333Gln) Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1623 | ZDHHC15 | Zornitza Stark Mode of inheritance for gene: ZDHHC15 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1621 | ZDHHC15 | Zornitza Stark reviewed gene: ZDHHC15: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Mental retardation, X-linked 91, 300577; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1607 | RS1 | Zornitza Stark Mode of inheritance for gene: RS1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1604 | SMC1A | Zornitza Stark Mode of inheritance for gene: SMC1A was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1594 | WFS1 | Zornitza Stark Mode of inheritance for gene: WFS1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1590 | RS1 | Kristin Rigbye reviewed gene: RS1: Rating: GREEN; Mode of pathogenicity: None; Publications: 15932525, 23453514, 23847049; Phenotypes: Retinoschisis, 312700; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1590 | SMC1A | Melanie Marty reviewed gene: SMC1A: Rating: GREEN; Mode of pathogenicity: None; Publications: 17273969, 22106055, 19701948, 26752331, 28166369; Phenotypes: Cornelia de Lange syndrome 2 300590; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1590 | WFS1 | Teresa Zhao reviewed gene: WFS1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 25211237; Phenotypes: ?Cataract 41, Deafness, autosomal dominant 6/14/38, Wolfram syndrome 1, Wolfram-like syndrome, autosomal dominant, {Diabetes mellitus, noninsulin-dependent, association with}; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1555 | TMLHE | Zornitza Stark Mode of inheritance for gene: TMLHE was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1554 | TMLHE | Zornitza Stark reviewed gene: TMLHE: Rating: GREEN; Mode of pathogenicity: None; Publications: 21865298; Phenotypes: {Autism, susceptibility to, X-linked 6}, MIM#300872; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1519 | SRPX2 | Zornitza Stark Mode of inheritance for gene: SRPX2 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1517 | SRPX2 | Zornitza Stark reviewed gene: SRPX2: Rating: RED; Mode of pathogenicity: None; Publications: 16497722, 23933820, 23871722; Phenotypes: Rolandic epilepsy, mental retardation, and speech dyspraxia, MIM# 300643; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1512 | MC4R | Zornitza Stark Mode of inheritance for gene: MC4R was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1473 | MC4R | Michelle Torres reviewed gene: MC4R: Rating: GREEN; Mode of pathogenicity: None; Publications: 29970488; Phenotypes: {Obesity, resistence to (BMIQ20)} 618306, Obesity (BMIQ20) 618406 AD, AR; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1455 | POU3F4 | Zornitza Stark Mode of inheritance for gene: POU3F4 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1435 | POU3F4 | Elena Savva reviewed gene: POU3F4: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 31786483, 30176854; Phenotypes: Deafness, X-linked 2; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1429 | HTRA1 | Zornitza Stark Mode of inheritance for gene: HTRA1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1415 | HTRA1 | Elena Savva reviewed gene: HTRA1: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 29895533, 19387015; Phenotypes: {Macular degeneration, age-related, 7}, 6101493, {Macular degeneration, age-related, neovascular type}, 610149, CARASIL syndrome, 600142, Cerebral arteriopathy, autosomal dominant, with subcortical infarcts and leukoencephalopathy, type 2, 616779; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1384 | SHROOM4 | Zornitza Stark Mode of inheritance for gene: SHROOM4 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1382 | SHROOM4 | Zornitza Stark reviewed gene: SHROOM4: Rating: AMBER; Mode of pathogenicity: None; Publications: 16249884, 26740508; Phenotypes: Stocco dos Santos X-linked mental retardation syndrome, 300434, Intellectual disability; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1370 | SOX3 | Zornitza Stark Mode of inheritance for gene: SOX3 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1368 | SOX3 | Zornitza Stark reviewed gene: SOX3: Rating: AMBER; Mode of pathogenicity: None; Publications: 29175558, 30125608, 12428212, 15800844; Phenotypes: Mental retardation, X-linked, with isolated growth hormone deficiency, MIM#300123, Panhypopituitarism, X-linked, MIM#312000; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1358 | ATRX | Zornitza Stark Mode of inheritance for gene: ATRX was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1357 | ATRX | Elena Savva reviewed gene: ATRX: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Alpha-thalassemia myelodysplasia syndrome, somatic, Alpha-thalassemia/mental retardation syndrome, Mental retardation-hypotonic facies syndrome, X-linked; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1349 | KRT14 | Zornitza Stark Mode of inheritance for gene: KRT14 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1348 | KRT14 | Zornitza Stark reviewed gene: KRT14: Rating: GREEN; Mode of pathogenicity: None; Publications: 16960809, 18049449; Phenotypes: Epidermolysis bullosa simplex, recessive 1, 601001, Dermatopathia pigmentosa reticularis, 125595, Epidermolysis bullosa simplex, Dowling-Meara type, 131760, Epidermolysis bullosa simplex, Koebner type, 131900, Epidermolysis bullosa simplex, Weber-Cockayne type, 131800, Naegeli-Franceschetti-Jadassohn syndrome, 161000; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1314 | KIF4A | Zornitza Stark Mode of inheritance for gene: KIF4A was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1312 | KIF4A | Zornitza Stark reviewed gene: KIF4A: Rating: RED; Mode of pathogenicity: None; Publications: 24812067; Phenotypes: Mental retardation, X-linked 100, MIM# 300923; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1280 | IGBP1 | Zornitza Stark Mode of inheritance for gene: IGBP1 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1278 | IGBP1 | Zornitza Stark reviewed gene: IGBP1: Rating: RED; Mode of pathogenicity: None; Publications: 14556245; Phenotypes: Corpus callosum, agenesis of, with mental retardation, ocular coloboma and micrognathia, MIM# 300472; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1275 | IQSEC2 | Zornitza Stark Mode of inheritance for gene: IQSEC2 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1274 | IQSEC2 | Elena Savva reviewed gene: IQSEC2: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 31415821, 20473311, 30842726; Phenotypes: Mental retardation, X-linked 1/78; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1238 | OPA1 | Zornitza Stark Mode of inheritance for gene: OPA1 was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1220 | OPA1 | Ee Ming Wong reviewed gene: OPA1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 30165240; Phenotypes: 1. ?Mitochondrial DNA depletion syndrome 14 (encephalocardiomyopathic type) 6168963, 2. {Glaucoma, normal tension, susceptibility to} 6066573, 3. Behr syndrome 210000 AR, 4. Optic atrophy 1 165500 AD, 5. Optic atrophy plus syndrome 125250 AD; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1191 | CLCN5 | Zornitza Stark Mode of inheritance for gene: CLCN5 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1190 | CLCN5 | Zornitza Stark reviewed gene: CLCN5: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Dent disease, MIM#300009, Hypophosphatemic rickets, MIM#300554, Nephrolithiasis, type I, MIM#310468, Proteinuria, low molecular weight, with hypercalciuric nephrocalcinosis, MIM#308990; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1189 | PHEX | Zornitza Stark Mode of inheritance for gene: PHEX was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1188 | PHEX | Zornitza Stark reviewed gene: PHEX: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Hypophosphatemic rickets, MIM#307800; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1121 | ACSL4 | Zornitza Stark Mode of inheritance for gene: ACSL4 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1120 | ACSL4 | Zornitza Stark reviewed gene: ACSL4: Rating: GREEN; Mode of pathogenicity: None; Publications: 11889465, 12525535; Phenotypes: Mental retardation, X-linked 63, MIM# 300387 XLD; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1112 | HUWE1 | Zornitza Stark Mode of inheritance for gene: HUWE1 was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1109 | FLNA | Zornitza Stark Mode of inheritance for gene: FLNA was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1069 | HUWE1 | Elena Savva reviewed gene: HUWE1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 30797980, 29180823; Phenotypes: Mental retardation, X-linked syndromic, Turner type, Say-Meyer syndrome; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1069 | FLNA | Elena Savva reviewed gene: FLNA: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 30089473; Phenotypes: ?FG syndrome 2, XL, Cardiac valvular dysplasia, X-linked, Congenital short bowel syndrome, Frontometaphyseal dysplasia 1, Heterotopia, periventricular, 1, Intestinal pseudoobstruction, neuronal Melnick-Needles syndrome, Otopalatodigital syndrome, type I, Otopalatodigital syndrome, type II, Terminal osseous dysplasia; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1060 | PHF8 | Zornitza Stark Mode of inheritance for gene: PHF8 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1059 | PHF8 | Zornitza Stark reviewed gene: PHF8: Rating: GREEN; Mode of pathogenicity: None; Publications: 17661819, 17594395, 16199551; Phenotypes: Mental retardation syndrome, X-linked, Siderius type, MIM#300263; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1012 | ARHGEF6 | Zornitza Stark Mode of inheritance for gene: ARHGEF6 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1010 | ARHGEF6 | Zornitza Stark reviewed gene: ARHGEF6: Rating: RED; Mode of pathogenicity: None; Publications: 11017088; Phenotypes: MENTAL RETARDATION X-LINKED TYPE 46; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.980 | CLIC2 | Zornitza Stark Mode of inheritance for gene: CLIC2 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.976 | CLIC2 | Zornitza Stark reviewed gene: CLIC2: Rating: RED; Mode of pathogenicity: None; Publications: 22814392, 25927380; Phenotypes: Mental retardation, X-linked, syndromic 32, 300886; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.942 | NLGN4X | Zornitza Stark Mode of inheritance for gene: NLGN4X was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.940 | NLGN4X | Zornitza Stark reviewed gene: NLGN4X: Rating: RED; Mode of pathogenicity: None; Publications: 12669065, 18231125, 10071191, 29428674; Phenotypes: Mental retardation, X-linked, MIM# 300495; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.899 | FGF16 |
Zornitza Stark gene: FGF16 was added gene: FGF16 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: FGF16 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Phenotypes for gene: FGF16 were set to Metacarpal 4-5 fusion, MIM# 309630 Review for gene: FGF16 was set to GREEN gene: FGF16 was marked as current diagnostic Added comment: Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.830 | GPC4 | Alison Yeung reviewed gene: GPC4: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 30982611; Phenotypes: Keipert syndrome OMIM# 301026; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.788 | TDP2 |
Zornitza Stark gene: TDP2 was added gene: TDP2 was added to Mendeliome_VCGS. Sources: Expert list Mode of inheritance for gene: TDP2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TDP2 were set to 31410782; 30109272; 24658003 Phenotypes for gene: TDP2 were set to Spinocerebellar ataxia, autosomal recessive 23; OMIM #616949 Review for gene: TDP2 was set to GREEN Added comment: ID is part of the phenotype: 4 families with 6 affected patients, with functional evidence. 1 family with 3 affected sibs with homozygous splice site mutation in the TDP2 gene. Patient cell extracts showed absence of the full-length TDP2 protein and absence of 5-prime TDP activity, consistent with a loss of function, although 3-prime TDP activity, conferred by TDP1, was normal. In addition, patient lymphoblastoid cells were hypersensitive to the TOP2 poison etoposide. The findings indicated impaired capacity for double-strand break repair. 1 unrelated Egyptian patient with a similar disorder was homozygous for a truncating mutation in the TDP2 gene 1 unrelated Caucasian patient with same homozygous splice site mutation in the TDP2 gene. Western blot analysis did not detect TDP2 protein in patient primary skin fibroblasts. Patient fibroblasts showed an inability to rapidly repair topoisomerase-induced DNA double-strand breaks in the nucleus and also showed a profound hypersensitivity to this type of DNA damage. Complementation of patient cells with recombinant human TDP2 restored normal rates of nuclear DSB repair. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.786 | TRMT1 |
Zornitza Stark gene: TRMT1 was added gene: TRMT1 was added to Mendeliome_VCGS. Sources: Expert list Mode of inheritance for gene: TRMT1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TRMT1 were set to 30289604; 26308914; 21937992 Phenotypes for gene: TRMT1 were set to Mental retardation, autosomal recessive 68; OMIM #618302 Review for gene: TRMT1 was set to GREEN Added comment: 4 families reported: -1 consanguineous Iranian family with 5 individuals with nonsyndromic moderate to severe impaired intellectual development. -1 consanguineous Iranian family with 3 adult brothers with global developmental delay and moderately delayed intellectual development -2 unrelated Pakistani families with 4 patients with impaired intellectual development. All with homozygous mutations in the TRMT1 gene which segregated with the disorder in the families, but functional studies of the variants were not performed. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.785 | SLC35A3 |
Zornitza Stark Added comment: Comment when marking as ready: 1 family with 2 sibs, with segregation but no functional studies. 1 family with 8 affected people. The mutations segregated with the disorder in the family. Patient cells showed no normal transcript, indicating that they had no functional SLC35A3 protein. Golgi vesicles derived from patient fibroblasts showed significantly reduced transport of UDP-GlCNAc compared to controls. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.780 | SLC9A7 |
Zornitza Stark gene: SLC9A7 was added gene: SLC9A7 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: SLC9A7 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: SLC9A7 were set to 30335141 Phenotypes for gene: SLC9A7 were set to Intellectual developmental disorder, X-linked 108; OMIM #301024 Review for gene: SLC9A7 was set to AMBER Added comment: 6 males from 2 unrelated families with hemizygous missense mutation in the SLC9A7 gene. The mutation segregated with the disorder in the family. In vitro functional expression studies in CHO cells (AP-1 cells) showed that the mutation caused decreased levels of protein expression and reduced oligosaccharide maturation/glycosylation compared to wildtype, indicating impaired posttranslational processing. Subcellular localization studies indicated that protein trafficking was unaffected by the mutation. However, examination of the trans-Golgi compartment suggested a gain-of-function effect and a perturbation of glycosylation of secretory cargo. Serum transferrin studies in 1 patient suggested a glycosylation defect. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.778 | KIAA1161 |
Zornitza Stark gene: KIAA1161 was added gene: KIAA1161 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: KIAA1161 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: KIAA1161 were set to 30656188; 30649222; 30460687; 29910000 Phenotypes for gene: KIAA1161 were set to Basal ganglia calcification, idiopathic, 7, autosomal recessive; OMIM #618317 Review for gene: KIAA1161 was set to GREEN Added comment: Total 9 families, but no functional evidence: 12 patients from 6 unrelated Chinese families reported by Yao et al. (2018) and homozygous or compound heterozygous mutations in the MYORG gene. Functional studies of the variants and studies of patient cells were not performed, but the presence of nonsense mutations suggested a loss of function. 1 Chinese woman identified with homozygous nonsense mutation in the MYORG gene, segregated with the disorder in the family. Functional studies of the variant and studies of patient cells were not performed. 2 unrelated Middle Eastern families with homozygous mutations in the MYORG gene, which segregated with the disorder in the families. Functional studies of the variants were not performed. 4 sibs from one Turkish family with homozygous missense mutation in the MYORG gene, which segregated with the disorder in the family. Functional studies of the variant and studies of patient cells were not performed. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.758 | AVPR2 | Zornitza Stark Mode of inheritance for gene: AVPR2 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.749 | AVPR2 | Belinda Chong reviewed gene: AVPR2: Rating: GREEN; Mode of pathogenicity: None; Publications: PubMed: 9127330, PubMed: 15872203; Phenotypes: Diabetes insipidus, nephrogenic 304800, Nephrogenic syndrome of inappropriate antidiuresis 300539; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.748 | STAG2 |
Zornitza Stark gene: STAG2 was added gene: STAG2 was added to Mendeliome_VCGS. Sources: Other Mode of inheritance for gene: STAG2 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: STAG2 were set to 30765867; 28296084; 30447054; 29263825; 30158690 Phenotypes for gene: STAG2 were set to Mullegama-Klein-Martinez syndrome, MIM#301022 Review for gene: STAG2 was set to GREEN Added comment: 12 unrelated families reported both males and females affected. Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.652 | H3F3B | Zornitza Stark commented on gene: H3F3B: Elizabeth J Bhoj, H3F3A/B Consortium, Hakon H. Hakonarson.: Mutations In H3f3a And H3f3b Encoding Histone 3.3: Report Of 26 Patients With Neurodevelopmental And Congenital Manifestations. American Society of Human Genetics, Orlando, FL October 2017 Notes: Platform Presentation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.635 | CXorf56 |
Zornitza Stark gene: CXorf56 was added gene: CXorf56 was added to Mendeliome_VCGS. Sources: Expert list Mode of inheritance for gene: CXorf56 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: CXorf56 were set to 29374277 Phenotypes for gene: CXorf56 were set to Mental retardation, X-linked 107, MIM# 301013 Review for gene: CXorf56 was set to RED Added comment: Single multigenerational family reported. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.633 | USP27X |
Zornitza Stark gene: USP27X was added gene: USP27X was added to Mendeliome_VCGS. Sources: Expert list Mode of inheritance for gene: USP27X was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: USP27X were set to 25644381 Phenotypes for gene: USP27X were set to Mental retardation, X-linked 105, MIM#300984 Review for gene: USP27X was set to AMBER Added comment: Four individuals from two unrelated families reported. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.631 | KLHL15 |
Zornitza Stark gene: KLHL15 was added gene: KLHL15 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: KLHL15 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: KLHL15 were set to 25644381; 24817631 Phenotypes for gene: KLHL15 were set to Mental retardation, X-linked 103, MIM#300982 Review for gene: KLHL15 was set to AMBER Added comment: Two families described: variants maternally inherited in both, one deletion, the other truncating. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.513 | PROC | Zornitza Stark Mode of inheritance for gene: PROC was changed from Unknown to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.512 | PROC | Chris Richmond reviewed gene: PROC: Rating: GREEN; Mode of pathogenicity: None; Publications: 22545135, 30925296; Phenotypes: Thrombophilia due to protein C deficiency, autosomal dominant (176860), Thrombophilia due to protein C deficiency, autosomal recessive (612304); Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.453 | ATP2B3 | Zornitza Stark Mode of inheritance for gene: ATP2B3 was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.451 | ATP2B3 | Zornitza Stark reviewed gene: ATP2B3: Rating: AMBER; Mode of pathogenicity: None; Publications: 22912398, 27653636, 27632770; Phenotypes: Spinocerebellar ataxia, X-linked 1, MIM#302500; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.409 | TBC1D8B | Zornitza Stark Mode of inheritance for gene: TBC1D8B was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.408 | TBC1D8B | Zornitza Stark reviewed gene: TBC1D8B: Rating: GREEN; Mode of pathogenicity: None; Publications: 30661770; Phenotypes: Nephrotic syndrome, type 20, MIM# 301028; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.366 | TASP1 |
Zornitza Stark gene: TASP1 was added gene: TASP1 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: TASP1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TASP1 were set to 31209944; 31350873 Phenotypes for gene: TASP1 were set to Developmental delay; microcephaly; dysmorphic features; congenital abnormalities Review for gene: TASP1 was set to GREEN Added comment: Four unrelated families reported; two with founder mutation. Protein interacts with KMT2A and KMT2D. Another infant with a de novo missense variant reported in a single infant with multiple congenital abnormalities, insufficient evidence for mono allelic disease at present. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.331 | VAMP2 |
Zornitza Stark gene: VAMP2 was added gene: VAMP2 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: VAMP2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: VAMP2 were set to 30929742 Phenotypes for gene: VAMP2 were set to Intellectual disability; Autism Review for gene: VAMP2 was set to GREEN Added comment: 5 unrelated patients with heterozygous de novo mutations in VAMP2, presenting with a neurodevelopmental disorder characterized by axial hypotonia, intellectual disability, and autistic features. Affected individuals carrying de novo non-synonymous variants involving the C-terminal region presented a more severe phenotype with additional neurological features, including central visual impairment, hyperkinetic movement disorder, and epilepsy or electroencephalography abnormalities. Reconstituted fusion involving a lipid-mixing assay indicated impairment in vesicle fusion as one of the possible associated disease mechanisms. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.324 | TANC2 |
Zornitza Stark gene: TANC2 was added gene: TANC2 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: TANC2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: TANC2 were set to 31616000 Phenotypes for gene: TANC2 were set to Intellectual disability; autism; epilepsy; dysmorphism Review for gene: TANC2 was set to GREEN Added comment: 19 families with potentially disruptive heterozygous TANC2 variants, including 16 likely gene-disrupting mutations and three intragenic microdeletions. Patients presented with autism, intellectual disability, delayed language and motor development, epilepsy, facial dysmorphism, with complex psychiatric dysfunction or behavioral problems in adult probands or carrier parents. No functional evidence of specific variants, but they show TANC2 is expressed broadly in the human developing brain, especially in excitatory neurons and glial cells, and shows a more restricted pattern in Drosophila glial cells where its disruption affects behavioral outcomes. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.322 | SVBP |
Zornitza Stark gene: SVBP was added gene: SVBP was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: SVBP was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SVBP were set to 31363758; 30607023 Phenotypes for gene: SVBP were set to Neurodevelopmental disorder with ataxia, hypotonia, and microcephaly; OMIM #618569 Review for gene: SVBP was set to GREEN Added comment: 5 unrelated families with homozygous mutations in SVBP. The mutations segregated with the disorder in all families. In vitro functional cellular expression studies showed that protein levels of the SVBP mutants were barely detectable, suggesting instability, and that the mutant proteins had lost VASH/SVBP catalytic detyrosination activity toward tubulin. Knockdown of about 50% Svbp expression using shRNA in rat hippocampal neurons impaired the formation of excitatory synapses compared to controls. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.320 | SOX4 |
Zornitza Stark gene: SOX4 was added gene: SOX4 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: SOX4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: SOX4 were set to 30661772 Phenotypes for gene: SOX4 were set to Coffin-Siris syndrome 10; OMIM #618506 Review for gene: SOX4 was set to GREEN Added comment: 4 patients with syndromic DD/ID and de novo mutations in SOX4 gene. Functional assays demonstrated that the SOX4 proteins carrying these variants were unable to bind DNA in vitro and transactivate SOX reporter genes in cultured cells. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.315 | SCAPER |
Zornitza Stark gene: SCAPER was added gene: SCAPER was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: SCAPER was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SCAPER were set to 28794130; 31069901; 31192531; 30723319 Phenotypes for gene: SCAPER were set to Intellectual disability; retinitis pigmentosa Review for gene: SCAPER was set to GREEN Added comment: 28 patients from 14 unrelated families with ID and retinitis pigmentosa (some with BBS phenotype), and homozygous or compound heterozygous mutations in SCAPER gene. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.313 | SCAMP5 |
Zornitza Stark gene: SCAMP5 was added gene: SCAMP5 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: SCAMP5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: SCAMP5 were set to 31439720 Phenotypes for gene: SCAMP5 were set to Intellectual disability; seizures; autism Mode of pathogenicity for gene: SCAMP5 was set to Other Review for gene: SCAMP5 was set to GREEN Added comment: 2 unrelated individuals with ASD, ID and seizures, with the same heterozygous de novo variant in SCAMP5 (p.Gly302Trp). Western blot analysis of proteins overexpressed in the Drosophila fat body showed strongly reduced levels of the SCAMP p.Gly302Trp protein compared with the wild-type protein, indicating that the mutant either reduced expression or increased turnover of the protein. The expression of the fly homologue of the human SCAMP5 p.Gly180Trp mutation caused similar eye and neuronal phenotypes as the expression of SCAMP RNAi, suggesting a dominant-negative effect. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.311 | PPP2CA |
Zornitza Stark gene: PPP2CA was added gene: PPP2CA was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: PPP2CA was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: PPP2CA were set to 30595372 Phenotypes for gene: PPP2CA were set to Neurodevelopmental disorder and language delay with or without structural brain abnormalities; OMIM #618354 Review for gene: PPP2CA was set to GREEN Added comment: 15 unrelated patients with a neurodevelopmental disorder with de novo heterozygous PPP2CA mutations, and 1 with partial deletion of PPP2CA. Functional studies showed complete PP2A dysfunction in 4 individuals with seemingly milder ID, hinting at haploinsufficiency. Ten other individuals showed mutation-specific biochemical distortions, including poor expression, altered binding to the A subunit and specific B-type subunits, and impaired phosphatase activity and C-terminal methylation. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.307 | PIGB |
Zornitza Stark gene: PIGB was added gene: PIGB was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: PIGB was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PIGB were set to 31256876 Phenotypes for gene: PIGB were set to Epileptic encephalopathy, early infantile, 80; OMIM #618580 Review for gene: PIGB was set to GREEN Added comment: 10 unrelated families with biallelic mutations in PIGB, with global DD and/or ID, and seizures. Two had polymicrogyria, 4 had a peripheral neuropathy, and 2 had a clinical diagnosis of DOORS syndrome. Patient lymphocytes and fibroblasts showed variably decreased levels of cell surface GPI-anchored proteins, including CD16 and CD59. In vitro functional expression studies performed with some of the mutations in PIGB-null CHO cells showed that the mutant proteins were unable to fully restore expression of GPI-anchored surface proteins, consistent with a loss of function, although the mutations had variable effects. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.299 | PAK1 |
Zornitza Stark gene: PAK1 was added gene: PAK1 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: PAK1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: PAK1 were set to 31504246; 30290153 Phenotypes for gene: PAK1 were set to Intellectual developmental disorder with macrocephaly, seizures, and speech delay; OMIM #618158 Review for gene: PAK1 was set to GREEN Added comment: 2 unrelated individuals with de novo PAK1 mutations, with developmental delay, secondary macrocephaly, seizures, and ataxic gait. Enhanced phosphorylation of the PAK1 targets JNK and AKT shown in fibroblasts of one subject and of c-JUN in those of both subjects compared with control subjects. In fibroblasts of the 2 affected individuals, they observed a trend toward enhanced PAK1 kinase activity. By using co-immunoprecipitation and size-exclusion chromatography, they observed a significantly reduced dimerization for both PAK1 mutants compared with wild-type PAK1. 4 unrelated individuals with intellectual disability, macrocephaly and seizures, with de novo heterozygous missense variants in PAK1. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.288 | MAST1 |
Zornitza Stark gene: MAST1 was added gene: MAST1 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: MAST1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: MAST1 were set to 31721002; 30449657 Phenotypes for gene: MAST1 were set to Mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations; OMIM #618273 Review for gene: MAST1 was set to GREEN Added comment: 6 unrelated patients with mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCCCHCM) with de novo heterozygous mutations in MAST1 gene. In vitro functional studies showed that 1 of the variants (lys276del) increased MAST1 binding to microtubules compared to controls. Mutant mice heterozygous for a Mast1 leu278del allele showed a thicker corpus callosum compared to wildtype, and an overall reduction in cortical volume and thickness and decreased cerebellar volume and number of granule and Purkinje cells due to increased apoptosis compared to controls. 1 Emirati patient with ID, microcephaly, and dysmorphic features, with missense variant in MAST1. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.282 | LMAN2L |
Zornitza Stark gene: LMAN2L was added gene: LMAN2L was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: LMAN2L was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: LMAN2L were set to 31020005; 26566883 Phenotypes for gene: LMAN2L were set to Mental retardation, autosomal recessive, 52; OMIM #616887 Review for gene: LMAN2L was set to AMBER Added comment: 1 consanguineous family with 7 individuals with ID and epilepsy, with homozygous LMAN2L missense mutation. Segregated with disease in family, and unaffected family members were heterozygous variant carriers. No functional studies. 1 non-consanguineous family with 4 affected with heterozygous frameshift LMAN2L mutation. Segregates in family. Mutation eliminates LMAN2L's endoplasmic reticulum retention signal and mislocalizes the protein from that compartment to the plasma membrane. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.279 | GRIA2 |
Zornitza Stark gene: GRIA2 was added gene: GRIA2 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: GRIA2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: GRIA2 were set to 31300657 Phenotypes for gene: GRIA2 were set to Intellectual disability; autism; Rett-like features; epileptic encephalopathy Review for gene: GRIA2 was set to GREEN Added comment: 28 unrelated patients with ID, ASD, Rett-like features, seizures/EE, and de novo heterozygous GRIA2 mutations. In functional expression studies, mutations led to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.273 | GABRA5 |
Zornitza Stark gene: GABRA5 was added gene: GABRA5 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: GABRA5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: GABRA5 were set to 31056671; 29961870 Phenotypes for gene: GABRA5 were set to Epileptic encephalopathy, early infantile, 79; OMIM #618559 Review for gene: GABRA5 was set to GREEN Added comment: 3 unrelated patients with de novo heterozygous missense mutations in GABRA5 gene. In vitro functional expression studies in HEK293 cells showed that the mutant subunit was expressed at the surface and incorporated into the channel, but the mutant channel was 10 times more sensitive to GABA compared to wildtype. This increased sensitization resulted in increased receptor desensitization to GABA, with a reduced maximal GABA-evoked current and impaired capacity to pass GABAergic chloride current. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.271 | FRY |
Zornitza Stark gene: FRY was added gene: FRY was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: FRY was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: FRY were set to 31487712; 27457812; 21937992 Phenotypes for gene: FRY were set to Intellectual disability Review for gene: FRY was set to AMBER Added comment: 1 patient with ID/DD and a novel homozygous deletion involving FRY gene identified by genomic SNP microarray. No functional evidence. 2 consanguineous families with 6 affected individuals with ID, and homozygous mutations of FRY. No functional evidence. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.256 | DDX6 |
Zornitza Stark gene: DDX6 was added gene: DDX6 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: DDX6 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: DDX6 were set to 31422817 Phenotypes for gene: DDX6 were set to Intellectual developmental disorder with impaired language and dysmorphic facies, MIM#618653 Review for gene: DDX6 was set to GREEN Added comment: Five unrelated individuals reported with 5 different de novo heterozygous missense mutations in exon 11 of the DDX6 gene. All variants occurred at conserved residues in either the QxxR or V motifs within the second RecA-2 domain of the helicase core; this region is involved in RNA and/or ATP binding, suggesting functional consequences. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.244 | RNF113A | Zornitza Stark Mode of inheritance for gene: RNF113A was changed from Unknown to X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.242 | RNF113A | Zornitza Stark reviewed gene: RNF113A: Rating: AMBER; Mode of pathogenicity: None; Publications: 25612912, 31793730; Phenotypes: Trichothiodystrophy 5, nonphotosensitive, OMIM #300953; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.241 | PUS7 |
Zornitza Stark gene: PUS7 was added gene: PUS7 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: PUS7 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PUS7 were set to 30526862; 30778726; 31583274 Phenotypes for gene: PUS7 were set to Intellectual developmental disorder with abnormal behavior, microcephaly, and short stature; OMIM #618342 Review for gene: PUS7 was set to GREEN Added comment: 11 patients from 6 families with ID, speech delay, short stature, microcephaly, and aggressive behavior, with homozygous PUS7 mutations, which segregated with disease. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.231 | BCORL1 |
Zornitza Stark gene: BCORL1 was added gene: BCORL1 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: BCORL1 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: BCORL1 were set to 24123876; 30941876 Phenotypes for gene: BCORL1 were set to Shukla-Vernon syndrome, MIM#301029 Review for gene: BCORL1 was set to GREEN Added comment: Four unrelated families reported altogether; some mothers mildly affected. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.169 | CDK16 |
Zornitza Stark gene: CDK16 was added gene: CDK16 was added to Mendeliome_VCGS. Sources: Expert list Mode of inheritance for gene: CDK16 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: CDK16 were set to 25644381 Phenotypes for gene: CDK16 were set to Intellectual disability Review for gene: CDK16 was set to AMBER Added comment: Single family described in this manuscript describing multiple candidate genes for XLID. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.148 | FRMPD4 |
Zornitza Stark gene: FRMPD4 was added gene: FRMPD4 was added to Mendeliome_VCGS. Sources: Expert list Mode of inheritance for gene: FRMPD4 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: FRMPD4 were set to 25644381; 29267967 Phenotypes for gene: FRMPD4 were set to Mental retardation, X-linked 104, MIM#300983 Review for gene: FRMPD4 was set to GREEN Added comment: Multiple affected individuals from unrelated families reported. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.0 | MUT |
Zornitza Stark gene: MUT was added gene: MUT was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services Mode of inheritance for gene: MUT was set to Unknown |