Activity

Filter

Cancel
Date Panel Item Activity
9 actions
Hereditary Neuropathy - complex v1.10 NARS Zornitza Stark changed review comment from: AR disorder: assessed as LIMITED by ClinGen (borderline MODERATE).; to: Both MOIs assessed as MODERATE by ClinGen.
Hereditary Neuropathy - complex v1.10 NARS Zornitza Stark commented on gene: NARS: AR disorder: assessed as LIMITED by ClinGen (borderline MODERATE).
Hereditary Neuropathy - complex v0.91 NARS Zornitza Stark Phenotypes for gene: NARS were changed from Abnormal muscle tone; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Ataxia; Abnormality of the face; Demyelinating peripheral neuropathy to Neurodevelopmental disorder with microcephaly, impaired language, and gait abnormalities (NEDMILG), MIM#619091; Neurodevelopmental disorder with microcephaly, impaired language, epilepsy, and gait abnormalities (NEDMILEG), MIM#619092; Abnormal muscle tone; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Ataxia; Abnormality of the face; Demyelinating peripheral neuropathy
Hereditary Neuropathy - complex v0.90 NARS Zornitza Stark edited their review of gene: NARS: Changed phenotypes: Neurodevelopmental disorder with microcephaly, impaired language, and gait abnormalities (NEDMILG), MIM#619091, Neurodevelopmental disorder with microcephaly, impaired language, epilepsy, and gait abnormalities (NEDMILEG), MIM#619092, Abnormal muscle tone, Microcephaly, Global developmental delay, Intellectual disability, Seizures, Ataxia, Abnormality of the face, Demyelinating peripheral neuropathy
Hereditary Neuropathy - complex v0.77 NARS Zornitza Stark Marked gene: NARS as ready
Hereditary Neuropathy - complex v0.77 NARS Zornitza Stark Gene: nars has been classified as Green List (High Evidence).
Hereditary Neuropathy - complex v0.77 NARS Zornitza Stark Classified gene: NARS as Green List (high evidence)
Hereditary Neuropathy - complex v0.77 NARS Zornitza Stark Gene: nars has been classified as Green List (High Evidence).
Hereditary Neuropathy - complex v0.76 NARS Zornitza Stark gene: NARS was added
gene: NARS was added to Hereditary Neuropathy - complex. Sources: Literature
new gene name tags were added to gene: NARS.
Mode of inheritance for gene: NARS was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: NARS were set to 32738225
Phenotypes for gene: NARS were set to Abnormal muscle tone; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Ataxia; Abnormality of the face; Demyelinating peripheral neuropathy
Review for gene: NARS was set to GREEN
Added comment: [Please note that HGNC Approved Gene Symbol for this gene is NARS1] Manole et al (2020 - PMID: 32738225) provide evidence that both biallelic and monoallelic (de novo) pathogenic NARS1 variants cause a neurodevelopmental disorder. In total 32 individuals from 21 families are reported, with biallelic variants identified in individuals from 13 families and de novo in 8 families. Similar features were reported for AR/AD occurrences of the disorder and included microcephaly (90% - most often primary), epilepsy (23/32 or 74% - variable semiology incl. partial/myoclonic/generalized tonic-clonic seizures), DD and ID (as a universal feature), abnormal tone in several (hypotonia/spasticity), ataxia, demyelinating peripheral neuropathy (in 3 or more for each inheritance mode - or a total of 25%). Some individuals had dysmorphic features. NARS1 encodes an aminoacyl-tRNA synthetase (ARS) [asparaginyl-tRNA synthetase 1]. Aminoacyl-tRNA synthetases constitute a family of enzymes catalyzing attachment of amino-acids to their cognate tRNAs. As the authors comment, mutations in genes encoding several other ARSs result in neurological disorders ranging from peripheral neuropathy to severe multi-systemic NDD. Dominant, recessive or both modes for inheritance for mutations in the same gene (e.g. AARS1, YARS1, MARS1, etc) have been reported. Some variants were recurrent, e.g. the c.1600C>T / p.Arg534* which occurred in 6 families as a de novo event or c.1633C>T p.Arg545Cys (homozygous in 6 families). 3 different variants were reported to have occured de novo (c.965G>T - p.Arg322Leu, c.1525G>A - p.Gly509Ser, p.Arg534*) with several other variants identified in hmz/compound htz individuals. A single SNV (c.1067A>C - p.Asp356Ala) was suggested to be acting as modifier and pathogenic only when in trans with a severe variant. [NM_004539.4 used as RefSeq for all]. The authors provide several lines of evidence for a partial loss-of-function effect (e.g. reduction in mRNA expression, enzyme levels and activity in fibroblasts or iNPCs) underlying pathogenicity of the variants identified in individuals with biallelic variants. A gain-of-function (dominant-negative) effect is proposed for de novo variants (such effect also demonstrated for the p.Arg534* in a zebrafish model).
Sources: Literature