Date | Panel | Item | Activity | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intellectual disability syndromic and non-syndromic v0.5601 | DLG2 |
Elena Savva gene: DLG2 was added gene: DLG2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature Mode of inheritance for gene: DLG2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: DLG2 were set to PMID: 37860969 Phenotypes for gene: DLG2 were set to Intellectual disability (MONDO#0001071), DLG2-related Review for gene: DLG2 was set to AMBER Added comment: PMID: 37860969 - 13 patients from 10 families with neurodevelopmental disorders, dysmorphic features and intragenic deletions including both exonic (minimal affect all transcripts) and UTR regions. Majority of variants were inherited, some de novo. But many NMD PTCs in gnomAD (some looking messy, in noncanonical transcript etc.) Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.5275 | INTS13 |
Chirag Patel gene: INTS13 was added gene: INTS13 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature Mode of inheritance for gene: INTS13 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: INTS13 were set to PMID: 36229431 Phenotypes for gene: INTS13 were set to Oral-facial-digital syndrome Review for gene: INTS13 was set to GREEN Added comment: 2 families with 4 affected individuals with Oral-facial-digital (OFD) phenotype. Homozygosity mapping and WES found 2 homozygous variants in INTS13 gene. This is a subunit of the Integrator complex, which associates with RNA Polymerase II and cleaves nascent RNA to modulate gene expression. Variants segregated with disease. Depletion of INTS13 disrupts ciliogenesis in human cultured cells and causes dysregulation of a broad collection of ciliary genes. Knockdown in Xenopus embryos leads to motile cilia anomalies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.5134 | TRA2B |
Elena Savva gene: TRA2B was added gene: TRA2B was added to Intellectual disability syndromic and non-syndromic. Sources: Literature Mode of inheritance for gene: TRA2B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: TRA2B were set to PMID: 36549593 Phenotypes for gene: TRA2B were set to Neurodevelopmental disorder, TRA2B-related (MONDO#0700092) Review for gene: TRA2B was set to GREEN Added comment: PMID: 36549593 - 12 individuals with ID and dev delay. Additional features include infantile spams 6/12, hypotonia 12/12, dilated brain ventricles 6/12, microcephaly 5/12 - All variants result in the loss of 1/2 transcripts (start-losses or PTCs upstream of a second translation start position). Shorter transcript expression is increased, longer transcript expression is decreased. - Apparently het mice K/O are normal, but complete K/O cannot develop embryonically. - DN mechanism suggested Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.4955 | PTS | Zornitza Stark Tag treatable tag was added to gene: PTS. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.4023 | AP1G1 |
Zornitza Stark changed review comment from: Two bi-allelic homozygous missense variants were found in two distinct families with Italian and Pakistani origins; homozygous missense variants. Eight de novo heterozygous variants were identified in nine isolated affected individuals from nine families; including five missense, two frameshift, and one intronic variant that disrupts the canonical splice acceptor site. Knocking out AP1G1 Zebrafish model resulted in severe developmental abnormalities and increased lethality. All individuals had neurodevelopmental disorder (NDD) including global developmental delay and ID, which varied in severity from mild to severe. Sources: Literature; to: Two bi-allelic homozygous missense variants were found in two distinct families with Italian and Pakistani origins; homozygous missense variants. Eight de novo heterozygous variants were identified in nine isolated affected individuals from nine families; including five missense, two frameshift, and one intronic variant that disrupts the canonical splice acceptor site. Knocking out AP1G1 Zebrafish model resulted in severe developmental abnormalities and increased lethality. All individuals had neurodevelopmental disorder (NDD) including global developmental delay and ID, which varied in severity from mild to severe. GREEN for mono-allelic, AMBER for bi-allelic. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.4023 | AP1G1 |
Zornitza Stark gene: AP1G1 was added gene: AP1G1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature Mode of inheritance for gene: AP1G1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: AP1G1 were set to 34102099 Phenotypes for gene: AP1G1 were set to Neurodevelopmental disorder (NDD); Intellectual Disability; Epilepsy Review for gene: AP1G1 was set to GREEN Added comment: Two bi-allelic homozygous missense variants were found in two distinct families with Italian and Pakistani origins; homozygous missense variants. Eight de novo heterozygous variants were identified in nine isolated affected individuals from nine families; including five missense, two frameshift, and one intronic variant that disrupts the canonical splice acceptor site. Knocking out AP1G1 Zebrafish model resulted in severe developmental abnormalities and increased lethality. All individuals had neurodevelopmental disorder (NDD) including global developmental delay and ID, which varied in severity from mild to severe. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.2627 | UGDH |
Konstantinos Varvagiannis gene: UGDH was added gene: UGDH was added to Intellectual disability syndromic and non-syndromic. Sources: Literature Mode of inheritance for gene: UGDH was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: UGDH were set to 32001716 Phenotypes for gene: UGDH were set to Epileptic encephalopathy, early infantile, 84 - MIM #618792 Penetrance for gene: UGDH were set to Complete Review for gene: UGDH was set to GREEN Added comment: Hengel et al (2020 - PMID: 32001716) report on 36 individuals with biallelic UGDH pathogenic variants. The phenotype corresponded overall to a developmental epileptic encephalopathy with hypotonia, feeding difficulties, severe global DD, moderate or commonly severe ID in all. Hypotonia and motor disorder (incl. spasticity, dystonia, ataxia, chorea, etc) often occurred prior to the onset of seizures. A single individual did not present seizures and 2 sibs had only seizures in the setting of fever. Affected subjects were tested by exome sequencing and UGDH variants were the only/best candidates for the phenotype following also segregation studies. Many were compound heterozygous or homozygous (~6 families were consanguineous) for missense variants and few were compound heterozygous for missense and pLoF variants. There were no individuals with biallelic pLoF variants identified. Parental/sib studies were all compatible with AR inheritance mode. UGDH encodes the enzyme UDP-glucose dehydrogenase which converts UDP-glucose to UDP-glucuronate, the latter being a critical component of the glycosaminoglycans, hyaluronan, chondroitin sulfate, and heparan sulfate [OMIM]. Patient fibroblast and biochemical assays suggested a LoF effect of variants leading to impairment of UGDH stability, oligomerization or enzymatic activity (decreased UGDH-catalyzed reduction of NAD+ to NADH / hyaluronic acid production which requires UDP-glucuronate). Attempts to model the disorder using an already developped zebrafish model (for a hypomorphic LoF allele) were unsuccessful as fish did not exhibit seizures spontaneously or upon induction with PTZ. Modelling of the disorder in vitro using patient-derived cerebral organoids demonstrated smaller organoids due to reduced number of proliferating neural progenitors. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.2117 | ZIC1 |
Chirag Patel gene: ZIC1 was added gene: ZIC1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list Mode of inheritance for gene: ZIC1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ZIC1 were set to PMID: 26340333, 30391508 Phenotypes for gene: ZIC1 were set to Structural brain anomalies with impaired intellectual development and craniosynostosis; OMIM #618736 Review for gene: ZIC1 was set to GREEN Added comment: 5 families with heterozygous mutations located in the final (third) exon of ZIC1 who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5-12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. 2 sibs with BAIDCS, Vandervore et al. (2018) identified heterozygosity for a frameshift mutation in the ZIC1 gene. Neither parent had evidence of the mutation by whole-exome sequencing, suggesting that gonadal mosaicism for the mutation was present in one of the parents. Expression of the mutated allele was detected in patient fibroblasts by RT-PCR, evidence that the mutant mRNA did not undergo nonsense-mediated decay and probably generates an abnormal protein. Also heterozygous deletions of ZIC1 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum. Loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.1317 | PISD |
Chirag Patel changed review comment from: 4 individuals in 2 unrelated but consanguineous families from Portugal and Brazil affected by early-onset retinal degeneration, sensorineural hearing loss, microcephaly, intellectual disability, and skeletal dysplasia with scoliosis and short stature (Liberfarb syndrome). Affected individuals shared a homozygous 10-bp deletion immediately upstream of the last exon of the PISD gene. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts. Sources: Literature; to: 4 individuals in 2 unrelated but consanguineous families from Portugal and Brazil affected by early-onset retinal degeneration, sensorineural hearing loss, microcephaly, intellectual disability, and skeletal dysplasia with scoliosis and short stature (Liberfarb syndrome). Affected individuals shared a homozygous 10-bp deletion immediately upstream of the last exon of the PISD gene. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts. 1 family with 2 sisters with congenital cataracts, short stature, and white matter changes identified compound heterozygous variants in the PISD gene. Decreased conversion of phosphatidylserine to PE in patient fibroblasts is consistent with impaired phosphatidylserine decarboxylase (PISD) enzyme activity. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.1317 | PISD |
Chirag Patel gene: PISD was added gene: PISD was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature Mode of inheritance for gene: PISD was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PISD were set to PMID: 31263216 Phenotypes for gene: PISD were set to no OMIM number yet. Review for gene: PISD was set to AMBER Added comment: 4 individuals in 2 unrelated but consanguineous families from Portugal and Brazil affected by early-onset retinal degeneration, sensorineural hearing loss, microcephaly, intellectual disability, and skeletal dysplasia with scoliosis and short stature (Liberfarb syndrome). Affected individuals shared a homozygous 10-bp deletion immediately upstream of the last exon of the PISD gene. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.302 | ZNF41 | Chirag Patel changed review comment from: Shoichet et al. (2003) described a female patient with severe nonsyndromic mental retardation and a de novo balanced translocation t(X;7)(p11.3;q11.21) in whom they cloned the DNA fragment that contained the X chromosomal and the autosomal breakpoint. In silico sequence analysis demonstrated that the ZNF41 gene was disrupted. Expression studies indicated that ZNF41 transcripts were absent in the patient cell line, suggesting that the mental disorder in this patient resulted from loss of functional ZNF41. Moreover, screening of a panel of patients with MRX led to the identification of 2 other ZNF41 mutations (314995.0001-314995.0002) that were not found in healthy control individuals. Based on their finding of the mutations in ZNF41 identified by Shoichet et al. (2003) in a total of 7 males in the NHLBI Exome Variant Server, and the additional finding of truncating ZNF41 variants in 1 male and 1 female in that database, Piton et al. (2013) classified the involvement of ZNF41 in mental retardation as highly questionable.; to: Shoichet et al. (2003) described a female patient with severe nonsyndromic mental retardation and a de novo balanced translocation t(X;7)(p11.3;q11.21) in whom they cloned the DNA fragment that contained the X chromosomal and the autosomal breakpoint. In silico sequence analysis demonstrated that the ZNF41 gene was disrupted. Expression studies indicated that ZNF41 transcripts were absent in the patient cell line, suggesting that the mental disorder in this patient resulted from loss of functional ZNF41. Screening of patients with mental retardation led to the identification of 2 other ZNF41 mutations that were not found in healthy control individuals. Based on their finding of the mutations in ZNF41 identified by Shoichet et al. (2003) in a total of 7 males in the NHLBI Exome Variant Server, and the additional finding of truncating ZNF41 variants in 1 male and 1 female in that database, Piton et al. (2013) classified the involvement of ZNF41 in mental retardation as highly questionable. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intellectual disability syndromic and non-syndromic v0.0 | PTS |
Zornitza Stark gene: PTS was added gene: PTS was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Expert Review Green,Genetic Health Queensland Mode of inheritance for gene: PTS was set to Unknown |