Activity

Filter

Cancel
Date Panel Item Activity
1696 actions
Mendeliome v1.1888 CRNKL1 Mark Cleghorn gene: CRNKL1 was added
gene: CRNKL1 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: CRNKL1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: CRNKL1 were set to complex neurodevelopmental disorder MONDO:0100038
Review for gene: CRNKL1 was set to GREEN
Added comment: Unpublished, presented at ESHG June 2024 - Louise Bicknell, University of Otago NZ
8 unrelated families via gene matcher with rare, de novo, missense variants in CRNKL1
severe microcephaly (all, -8 to -11 SD)
ID/epilepsy
pontocerebellar hypoplasia (6/8)
simplified gyration (8/8)
7 variants are missense at p.Arg267 residue
1 variant missense at p.Arg301
RNA-seq on patient fibroblasts - no alteration in gene expression
Zebrafish homolog of Arg267 and Arg301 - mimics observed phenotype (reduced brain development), increased in embryo apoptosis
RNA seq on affected zebrafish embryos - transcriptome strongly disrupted
Splicing analysis in progress

CRKNL1 supports U6 structure in spliceosome
Sources: Other
Mendeliome v1.1886 DDOST Achchuthan Shanmugasundram reviewed gene: DDOST: Rating: GREEN; Mode of pathogenicity: None; Publications: 34462534; Phenotypes: Congenital disorder of glycosylation, type Ir, OMIM:614507; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1879 FDXR Zornitza Stark Phenotypes for gene: FDXR were changed from Auditory neuropathy and optic atrophy, MIM#617717 to Auditory neuropathy and optic atrophy, MIM#617717; Neurodevelopmental disorder with mitochondrial abnormalities, optic atrophy, and developmental regression, MIM# 620887
Mendeliome v1.1877 FDXR Zornitza Stark edited their review of gene: FDXR: Added comment: Multiple reports of individuals with extra-ocular features, including ID and regression.; Changed publications: 30250212, 28965846, 29040572, 33348459, 37046037, 37481223; Changed phenotypes: Auditory neuropathy and optic atrophy, MIM#617717, Neurodevelopmental disorder with mitochondrial abnormalities, optic atrophy, and developmental regression, MIM# 620887
Mendeliome v1.1877 RNU4-2 Zornitza Stark Phenotypes for gene: RNU4-2 were changed from Neurodevelopmental disorder, MONDO:0700092, RNU4-2 related to Neurodevelopmental disorder with hypotonia, brain anomalies, distinctive facies, and absent language, MIM# 620851
Mendeliome v1.1876 RNU4-2 Zornitza Stark edited their review of gene: RNU4-2: Changed phenotypes: Neurodevelopmental disorder with hypotonia, brain anomalies, distinctive facies, and absent language, MIM# 620851
Mendeliome v1.1869 PSMC5 Zornitza Stark Phenotypes for gene: PSMC5 were changed from Developmental disorders to Neurodevelopmental disorder (MONDO#0700092), PSMC5-related
Mendeliome v1.1865 PSMF1 Zornitza Stark gene: PSMF1 was added
gene: PSMF1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PSMF1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PSMF1 were set to https://www.medrxiv.org/content/10.1101/2024.06.19.24308302v1
Phenotypes for gene: PSMF1 were set to Complex neurodevelopmental disorder with motor features, MONDO:0100516, PSMF1-related
Review for gene: PSMF1 was set to GREEN
Added comment: 22 individuals from 15 families reported with a range of neurological phenotypes ranging from early-onset Parkinson's disease; childhood conditions typified by ID and a range of movement disorders; through to perinatal lethal presentations with arthrogryposis multiplex. Genotype-phenotype correlation: biallelic missense variants resulted in the milder phenotypes, while bi-allelic LoF variants in the more severe phenotypes. Supportive functional data.
Sources: Literature
Mendeliome v1.1860 PSMC5 Rylee Peters reviewed gene: PSMC5: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 38776958, 38293138; Phenotypes: Neurodevelopmental disorder (MONDO#0700092), PSMC5-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1857 PSMD11 Bryony Thompson gene: PSMD11 was added
gene: PSMD11 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PSMD11 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PSMD11 were set to 38866022; 30733659
Phenotypes for gene: PSMD11 were set to Neurodevelopmental disorder, MONDO:0700092, PSMD11-related
Review for gene: PSMD11 was set to GREEN
Added comment: PMID: 38866022 - 10 unrelated children with early-onset syndromic intellectual disability and neurodevelopmental delay with recurrent obesity. Cognitive impairment is recapitulated in a drosophila model. Loss of function is the mechanism of disease

PMID: 30733659 - 4 probands with ID and different 17q11.2 deletions spanning PSMD11
Sources: Literature
Mendeliome v1.1855 VPS50 Ain Roesley reviewed gene: VPS50: Rating: GREEN; Mode of pathogenicity: None; Publications: 38876772; Phenotypes: Neurodevelopmental disorder with microcephaly, seizures, and neonatal cholestasis MIM#619685; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.1851 RBFOX3 Zornitza Stark gene: RBFOX3 was added
gene: RBFOX3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RBFOX3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RBFOX3 were set to 35951651; 36117209; 24039908
Phenotypes for gene: RBFOX3 were set to Neurodevelopmental disorder (MONDO:0700092), RBFOX3-related
Review for gene: RBFOX3 was set to AMBER
Added comment: Reported as a candidate gene for epilepsy, particularly Rolandic epilepsy. Two supportive animal models.
Sources: Literature
Mendeliome v1.1847 THBS2 Zornitza Stark Phenotypes for gene: THBS2 were changed from {Lumbar disc herniation, susceptibility to} 603932; connective tissue disorder MONDO:0003900, THBS2-related to Ehlers-Danlos syndrome, classic type, 3, MIM# 620865
Mendeliome v1.1846 MTSS1L Ain Roesley Phenotypes for gene: MTSS1L were changed from ntellectual developmental disorder with ocular anomalies and distinctive facial features MIM#620086 to Intellectual developmental disorder with ocular anomalies and distinctive facial features MIM#620086
Mendeliome v1.1845 MTSS1L Ain Roesley Phenotypes for gene: MTSS1L were changed from Intellectual disability, MTSS2-related (MONDO#0001071) to ntellectual developmental disorder with ocular anomalies and distinctive facial features MIM#620086
Mendeliome v1.1843 ZNF292 Ain Roesley Phenotypes for gene: ZNF292 were changed from Intellectual developmental disorder, autosomal dominant 63, MIM# 619188; Intellectual disability; Autism; ADHD to Intellectual developmental disorder, autosomal dominant 64 MIM#619188
Mendeliome v1.1842 MYH10 Zornitza Stark Phenotypes for gene: MYH10 were changed from Microcephaly; Intellectual Disability to AD complex neurodevelopmental disorder with or without congenital anomalies (MONDO:0100465)
Mendeliome v1.1838 RDH14 Zornitza Stark gene: RDH14 was added
gene: RDH14 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RDH14 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RDH14 were set to 34848785
Phenotypes for gene: RDH14 were set to Neurodevelopmental disorder, MONDO:0700092, RDH14-related
Review for gene: RDH14 was set to RED
Added comment: Two related individuals with ID and cerebellar atrophy and homozygous LoF variant reported.
Sources: Literature
Mendeliome v1.1837 HYKK Zornitza Stark gene: HYKK was added
gene: HYKK was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HYKK was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HYKK were set to 23242558
Phenotypes for gene: HYKK were set to inborn disorder of lysine and hydroxylysine metabolism MONDO:0017351
Review for gene: HYKK was set to RED
Added comment: No known gene-disease association as classified by ClinGen Aminoacidopathy GCEP on 14/07/2023 - https://search.clinicalgenome.org/CCID:005104 HYKK has been reported as a disorders of lysine, hydroxylysine, and tryptophan metabolism by ICIMD however there are no reported pathogenic variants in this gene to support the gene-disease association.
Sources: Literature
Mendeliome v1.1833 ATXN7L3 Zornitza Stark Phenotypes for gene: ATXN7L3 were changed from Neurodevelopmental disorder, MONDO_0100500 to Neurodevelopmental disorder, MONDO_0100500, ATXN7L3-related
Mendeliome v1.1830 FAM177A1 Zornitza Stark Phenotypes for gene: FAM177A1 were changed from Neurodevelopmental disorder, MONDO_0100500 to Neurodevelopmental disorder, MONDO_0100500, FAM177A1-related
Mendeliome v1.1828 MSL2 Zornitza Stark Phenotypes for gene: MSL2 were changed from Developmental disorders; autism to Neurodevelopmental disorder, MONDO:0700092, MSL2-related
Mendeliome v1.1817 MSL2 Sangavi Sivagnanasundram reviewed gene: MSL2: Rating: GREEN; Mode of pathogenicity: None; Publications: 38815585, 38702431; Phenotypes: MSL2-Related Developmental Disorder; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1816 ATXN7L3 Chirag Patel gene: ATXN7L3 was added
gene: ATXN7L3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATXN7L3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ATXN7L3 were set to PMID: 38753057
Phenotypes for gene: ATXN7L3 were set to Neurodevelopmental disorder, MONDO_0100500
Review for gene: ATXN7L3 was set to GREEN
gene: ATXN7L3 was marked as current diagnostic
Added comment: This study reports 9 unrelated individuals with de novo heterozygous variants in ATXN7L3 identified through WES testing and GeneMatcher. Core clinical features included: global motor and language developmental delay, hypotonia, and dysmorphic features (hypertelorism, epicanthal folds, blepharoptosis, small nose, small mouth, and low-set posteriorly rotated ears). Variable features included: feeding difficulties, seizures, mild periventricular leukomalacia, and structural cardiac abnormalities.

A recurrent nonsense variant [p.(Arg114Ter)] was found in 5/9 individuals. The other variants were 1 frameshift [p.(Ser112LysfsTer12)] and 3 missense variants [p.(Ile71Thr), p.(Ser92Arg), and p.(Leu106Pro)]. They investigated the effects of the recurrent nonsense variant [p.(Arg114Ter)] in fibroblasts of an affected individual. ATXN7L3 protein levels were reduced, and deubiquitylation was impaired (as indicated by an increase in histone H2Bub1 levels). This is consistent with the previous observation of increased H2Bub1 levels in Atxn7l3-null mouse embryos, which have developmental delay and embryonic lethality.

Pathogenic variants in deubiquitinating enzymes (DUBs) have been implicated in neurodevelopmental disorders (ND) and congenital abnormalities. ATXN7L3 is a component of the DUB module of the SAGA complex, and two other related DUB modules, and serves as an obligate adaptor protein of 3 ubiquitin-specific proteases (USP22, USP27X or USP51).
Sources: Literature
Mendeliome v1.1814 FAM177A1 Chirag Patel gene: FAM177A1 was added
gene: FAM177A1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FAM177A1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FAM177A1 were set to PMID: 38767059, 25558065
Phenotypes for gene: FAM177A1 were set to Neurodevelopmental disorder, MONDO_0100500
Review for gene: FAM177A1 was set to GREEN
gene: FAM177A1 was marked as current diagnostic
Added comment: PMID: 38767059
5 individuals from 3 unrelated families reported with with biallelic loss of function variants in FAM177A1. Clinical features included: global developmental delay, intellectual disability, seizures, behavioural abnormalities, hypotonia, gait disturbance, and macrocephaly.

They showed that FAM177A1 localizes to the Golgi complex in mammalian and zebrafish cells. Intersection of the RNA-seq and metabolomic datasets from FAM177A1-deficient human fibroblasts and whole zebrafish larvae demonstrated dysregulation of pathways associated with apoptosis, inflammation, and negative regulation of cell proliferation.

PMID: 25558065
A study of 143 multiplex consanguineous families identified a homozygous frameshift variant in FAM177A1 in 1 family with 4 affected siblings with intellectual disability, dolicocephaly, obesity, and macrocephaly. The variant segregated with all 4 affected siblings and parents were confirmed heterozygous carriers.
Sources: Literature
Mendeliome v1.1810 ANO4 Ain Roesley gene: ANO4 was added
gene: ANO4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ANO4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ANO4 were set to 38744284
Phenotypes for gene: ANO4 were set to neurodevelopmental disorder MONDO:0700092, ANO4-related
Review for gene: ANO4 was set to GREEN
gene: ANO4 was marked as current diagnostic
Added comment: aka TMEM16D

5x de novo + 2x inherited missense (73% penetrance + asymptomatic)

the ones with de novo variants:
all had ID, hypotonia
4x skeletal features (scoliosis, funnel chest, pet plants, hyper extensible joints)

all had epilepsy
all had abnormal MRI
Sources: Literature
Mendeliome v1.1808 KCND1 Ain Roesley gene: KCND1 was added
gene: KCND1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KCND1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: KCND1 were set to 38772379
Phenotypes for gene: KCND1 were set to neurodevelopmental disorder MONDO:0700092, KCND1-related
Review for gene: KCND1 was set to GREEN
gene: KCND1 was marked as current diagnostic
Added comment: 18 males from 17 families
2x de novo missense + 3x maternal NMDs + 12x maternal missense
Some functional studies were done

14x ID
4x delayed motor dev
7x muscular hypotonia
6x epilepsy
Sources: Literature
Mendeliome v1.1806 LRRC23 Zornitza Stark Phenotypes for gene: LRRC23 were changed from Non-syndromic male infertility due to sperm motility disorder, (MONDO:0017173), LRRC23-related to Spermatogenic failure 92, MIM# 620848
Mendeliome v1.1800 GABRA4 Zornitza Stark Phenotypes for gene: GABRA4 were changed from Developmental and epileptic encephalopathy MONDO:0100062, GABRA4-related to Neurodevelopmental disorder MONDO:0700092, GABRA4-related
Mendeliome v1.1797 GABRA4 Zornitza Stark edited their review of gene: GABRA4: Added comment: Three more novel de novo missense variants in GABRA4 (NM_000809.4): c.797 C > T, p.(Pro266Leu), c.899 C > A, p.(Thr300Asn), and c.634 G > A, p.(Val212Ile) reported.

The p.(Thr300Asn) variant impacts the same codon as the previously reported variant p.(Thr300Ile) and likely arose post-zygotically as evidenced by sequencing oral mucosal cells.

Overlapping phenotypes among affected individuals included developmental delay (4/4), epileptiform EEG abnormalities (3/4), attention deficits (3/4), seizures (2/4), autistic features (2/4) and structural brain abnormalities (2/4).; Changed rating: GREEN; Changed publications: 35152403, 38565639; Changed phenotypes: Neurodevelopmental disorder MONDO:0700092, GABRA4-related
Mendeliome v1.1791 ZDHHC15 Zornitza Stark Phenotypes for gene: ZDHHC15 were changed from Mental retardation, X-linked 91, 300577; cerebral palsy; intellectual disability; autism spectrum disorder; epilepsy to Intellectual disability, X-linked 91, 300577
Mendeliome v1.1790 ZNF41 Zornitza Stark gene: ZNF41 was added
gene: ZNF41 was added to Mendeliome. Sources: Expert Review
disputed tags were added to gene: ZNF41.
Mode of inheritance for gene: ZNF41 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: ZNF41 were set to 14628291; 23871722
Phenotypes for gene: ZNF41 were set to non-syndromic X-linked intellectual disability MONDO:0019181
Review for gene: ZNF41 was set to RED
Added comment: DISPUTED by ClinGen.

Shoichet et al. (2003) described a female patient with severe nonsyndromic mental retardation and a de novo balanced translocation t(X;7)(p11.3;q11.21) in whom they cloned the DNA fragment that contained the X chromosomal and the autosomal breakpoint. In silico sequence analysis demonstrated that the ZNF41 gene was disrupted. Expression studies indicated that ZNF41 transcripts were absent in the patient cell line, suggesting that the mental disorder in this patient resulted from loss of functional ZNF41. Screening of patients with mental retardation led to the identification of 2 other ZNF41 mutations that were not found in healthy control individuals. Based on their finding of the mutations in ZNF41 identified by Shoichet et al. (2003) in a total of 7 males in the NHLBI Exome Variant Server, and the additional finding of truncating ZNF41 variants in 1 male and 1 female in that database, Piton et al. (2013) classified the involvement of ZNF41 in mental retardation as highly questionable.
Sources: Expert Review
Mendeliome v1.1788 ALG9 Ain Roesley Phenotypes for gene: ALG9 were changed from Congenital disorder of glycosylation, type Il, MIM#608776; Gillessen-Kaesbach-Nishimura syndrome, MIM# 263210; Polycystic kidney disease to Congenital disorder of glycosylation, type Il, MIM#608776; Gillessen-Kaesbach-Nishimura syndrome, MIM# 263210; Polycystic kidney disease; ALG9-associated autosomal dominant polycystic kidney disease MONDO:0700000
Mendeliome v1.1787 AGTR2 Zornitza Stark changed review comment from: Variants in AGTR2 have been reported in individuals presenting various neurodevelopmental phenotypes, including intellectual disability, autistic features, epileptic seizures, speech delay, restlessness, and hyperactivity, as early as 2002. Per criteria outlined by the ClinGen Lumping and Splitting Working Group, we found no difference in molecular mechanism, inheritance pattern, or phenotypic variability. Therefore, for the purposes of this curation, all of these features have been lumped into one disease entity, X-linked complex neurodevelopmental disorder. Although eight unique variants, including missense and truncating, have been reported in affected humans, the majority (six) have been ruled out from disease-causality based on high frequency in control populations (Piton et al., PMID 23871722), occurrence in unaffected males (Erdmann et al., PMID 14722754), non-segregation within a family (Bienvenu et al., PMID 12746399), and lack of enrichment in patients in a case-control study (Huang et al., PMID 16283672). Given that the two remaining variants are missense with no supporting functional evidence, and AGTR2 was the only gene sequenced in each case, the ClinGen Intellectual Disability and Autism Working Group recommended awarding 0 points for these variants. There are two AGTR2 mouse models which collectively show altered neuronal spine morphology, spatial memory impairment, delayed learning, and reduced exploratory behavior (PMIDs 18335189 and 7477267).
Sources: Expert Review; to: DISPUTED by ClinGen:

Variants in AGTR2 have been reported in individuals presenting various neurodevelopmental phenotypes, including intellectual disability, autistic features, epileptic seizures, speech delay, restlessness, and hyperactivity, as early as 2002. Per criteria outlined by the ClinGen Lumping and Splitting Working Group, we found no difference in molecular mechanism, inheritance pattern, or phenotypic variability. Therefore, for the purposes of this curation, all of these features have been lumped into one disease entity, X-linked complex neurodevelopmental disorder. Although eight unique variants, including missense and truncating, have been reported in affected humans, the majority (six) have been ruled out from disease-causality based on high frequency in control populations (Piton et al., PMID 23871722), occurrence in unaffected males (Erdmann et al., PMID 14722754), non-segregation within a family (Bienvenu et al., PMID 12746399), and lack of enrichment in patients in a case-control study (Huang et al., PMID 16283672). Given that the two remaining variants are missense with no supporting functional evidence, and AGTR2 was the only gene sequenced in each case, the ClinGen Intellectual Disability and Autism Working Group recommended awarding 0 points for these variants. There are two AGTR2 mouse models which collectively show altered neuronal spine morphology, spatial memory impairment, delayed learning, and reduced exploratory behavior (PMIDs 18335189 and 7477267).
Sources: Expert Review
Mendeliome v1.1787 AGTR2 Zornitza Stark gene: AGTR2 was added
gene: AGTR2 was added to Mendeliome. Sources: Expert Review
disputed tags were added to gene: AGTR2.
Mode of inheritance for gene: AGTR2 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Phenotypes for gene: AGTR2 were set to X-linked complex neurodevelopmental disorder MONDO:0100148
Review for gene: AGTR2 was set to RED
Added comment: Variants in AGTR2 have been reported in individuals presenting various neurodevelopmental phenotypes, including intellectual disability, autistic features, epileptic seizures, speech delay, restlessness, and hyperactivity, as early as 2002. Per criteria outlined by the ClinGen Lumping and Splitting Working Group, we found no difference in molecular mechanism, inheritance pattern, or phenotypic variability. Therefore, for the purposes of this curation, all of these features have been lumped into one disease entity, X-linked complex neurodevelopmental disorder. Although eight unique variants, including missense and truncating, have been reported in affected humans, the majority (six) have been ruled out from disease-causality based on high frequency in control populations (Piton et al., PMID 23871722), occurrence in unaffected males (Erdmann et al., PMID 14722754), non-segregation within a family (Bienvenu et al., PMID 12746399), and lack of enrichment in patients in a case-control study (Huang et al., PMID 16283672). Given that the two remaining variants are missense with no supporting functional evidence, and AGTR2 was the only gene sequenced in each case, the ClinGen Intellectual Disability and Autism Working Group recommended awarding 0 points for these variants. There are two AGTR2 mouse models which collectively show altered neuronal spine morphology, spatial memory impairment, delayed learning, and reduced exploratory behavior (PMIDs 18335189 and 7477267).
Sources: Expert Review
Mendeliome v1.1786 AVPR1A Zornitza Stark gene: AVPR1A was added
gene: AVPR1A was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: AVPR1A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: AVPR1A were set to 24924430
Phenotypes for gene: AVPR1A were set to Autism spectrum disorder MONDO:0005258
Review for gene: AVPR1A was set to RED
Added comment: DISPUTED by ClinGen:

The Arginine Vasopressin Receptor 1A (AVPR1A) was considered a candidate gene in autism spectrum disorder (ASD) based on reports focused on linkage intervals and animal models. Additionally, experimental evidence showed that AVPR1A is possibly involved in social behaviors, including affiliation and attachment (PMID: 24924430). However, these association studies were underpowered—sequencing more individuals may have identified variants of functional significance. In two studies, transmission disequilibrium between AVPR1A microsatellites and autism were found but most were not statistically significant (PMID: 12082568, 16520824). In another study, investigators screened AVPR1A exons in 125 independent autistic probands (PMID: 15098001). However, the study did not demonstrate a disease-causing variant in the coding sequence, and the authors noted that differences in AVPR1A at the amino-acid level are unlikely to confer genetic vulnerability to autism. Experimental evidence is available, but, in the absence of human genetic evidence, such data were not utilized in the scoring. In summary, there is no valid genetic evidence to support an association between AVPR1A and autism spectrum disorder.
Sources: Expert list
Mendeliome v1.1779 KDM5A Zornitza Stark Phenotypes for gene: KDM5A were changed from autism spectrum disorder, MONDO:0005258; Neurodevelopmental disorder MONDO:0700092, KDM5A-related to El Hayek-Chahrour neurodevelopmental syndrome, MIM# 620820; Neurodevelopmental disorder MONDO:0700092, KDM5A-related
Mendeliome v1.1768 SLC52A1 Bryony Thompson reviewed gene: SLC52A1: Rating: AMBER; Mode of pathogenicity: None; Publications: 37510312, 29122468, 21089064; Phenotypes: Maternal riboflavin deficiency MONDO:0014013, Disorders of riboflavin metabolism; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1765 GLUL Zornitza Stark Phenotypes for gene: GLUL were changed from Developmental and epileptic encephalopathy, MONDO:0100062, GLUL-related; Glutamine deficiency, congenital MIM#610015; disorder of amino acid metabolism to Developmental and epileptic encephalopathy 116, MIM# 620806; Glutamine deficiency, congenital MIM#610015; disorder of amino acid metabolism
Mendeliome v1.1755 CYHR1 Bryony Thompson Phenotypes for gene: CYHR1 were changed from Neurodevelopmental disorder and microcephaly, MONDO:0700092, CYHR1-related to Neurodevelopmental disorder, MONDO:0700092, ZTRAF1-related
Mendeliome v1.1752 CYHR1 Bryony Thompson reviewed gene: CYHR1: Rating: GREEN; Mode of pathogenicity: None; Publications: 38641995; Phenotypes: neurodevelopmental disorder MONDO:0700092, ZTRAF1-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1744 PRMT9 Zornitza Stark Phenotypes for gene: PRMT9 were changed from Neurodevelopmental disorder, MONDO:0100500 to Neurodevelopmental disorder, MONDO:0100500, PRMT9-related
Mendeliome v1.1732 PRMT9 Chirag Patel gene: PRMT9 was added
gene: PRMT9 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRMT9 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PRMT9 were set to PMID: 38561334
Phenotypes for gene: PRMT9 were set to Neurodevelopmental disorder, MONDO:0100500
Review for gene: PRMT9 was set to RED
Added comment: A homozygous variant (G189R) in PRMT9 is reported based on large WGS study in 136 consanguineous families - unclear if only found in 1 family and no clinical information on case(s).

PMRTs (protein arginine methyltransferases) catalyse post translational modification via arginine methylation. Functional studies showed that the G189R variant abolishes PRMT9's methyltransferase activity - specifically at the R508 residue of SF3B2 RNA (exclusively methylated by PRMT9) - and leads to heavy PRMT9 ubiquitination, and abnormal splicing activity of SF3B2. Knock out mouse model showed PRMT9 loss in excitatory neurons leads to aberrant synapse development and impaired learning and memory.
Sources: Literature
Mendeliome v1.1724 OTUD7A Zornitza Stark Phenotypes for gene: OTUD7A were changed from Intellectual disability; Epilepsy to Neurodevelopmental disorder with hypotonia and seizures, MIM# 620790
Mendeliome v1.1723 OTUD7A Zornitza Stark edited their review of gene: OTUD7A: Changed phenotypes: Neurodevelopmental disorder with hypotonia and seizures, MIM# 620790
Mendeliome v1.1716 FOSL2 Zornitza Stark Phenotypes for gene: FOSL2 were changed from Neurodevelopmental disorder, MONDO:0700092, FOSL2-related to Aplasia cutis-enamel dysplasia syndrome, MIM# 620789
Mendeliome v1.1713 CYLD Zornitza Stark commented on gene: CYLD: DEFINITIVE by ClinGen for the cutaneous disorder, Brooke-Spiegler syndrome, 605041.
LIMITED for FTD/ALS -- rated as Amber due to multiple affected individuals and experimental data.
Mendeliome v1.1708 CNOT1 Zornitza Stark commented on gene: CNOT1: DEFINITIVE by ClinGen for Neurodevelopmental disorder.
Mendeliome v1.1698 ACBD6 Zornitza Stark Phenotypes for gene: ACBD6 were changed from Neurodevelopmental disorder (MONDO#0700092), ACBD6-related to Neurodevelopmental disorder with progressive movement abnormalities, MIM# 620785
Mendeliome v1.1697 ACBD6 Zornitza Stark reviewed gene: ACBD6: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with progressive movement abnormalities, MIM# 620785; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1697 IQSEC2 Ain Roesley Phenotypes for gene: IQSEC2 were changed from Mental retardation, X-linked 1/78, MIM# 309530, MONDO:0010656; Severe intellectual disability-progressive postnatal microcephaly- midline stereotypic hand movements syndrome MONDO:0018347 to Intellectual developmental disorder, X-linked 1 MIM#309530, MONDO:0010656; Severe intellectual disability-progressive postnatal microcephaly- midline stereotypic hand movements syndrome MONDO:0018347
Mendeliome v1.1694 SNF8 Zornitza Stark Phenotypes for gene: SNF8 were changed from Developmental and epileptic encephalopathy 115, MIM#620783 to Developmental and epileptic encephalopathy 115, MIM#620783; Neurodevelopmental disorder plus optic atrophy, MIM# 620784
Mendeliome v1.1693 SNF8 Zornitza Stark edited their review of gene: SNF8: Added comment: Four individuals from 3 families with NDD plus OA, rather than DEE.; Changed phenotypes: Developmental and epileptic encephalopathy 115, MIM#620783, Neurodevelopmental disorder plus optic atrophy, MIM# 620784
Mendeliome v1.1693 NSUN6 Zornitza Stark Phenotypes for gene: NSUN6 were changed from neurodevelopmental disorder MONDO:0700092, NSUN6-related to Intellectual developmental disorder, autosomal recessive 82, MIM# 620779
Mendeliome v1.1692 NSUN6 Zornitza Stark reviewed gene: NSUN6: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual developmental disorder, autosomal recessive 82, MIM# 620779; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1691 CAPRIN1 Zornitza Stark Phenotypes for gene: CAPRIN1 were changed from Neurodevelopmental disorder, CAPRIN1-related MONDO:0700092; Neurodegeneration, childhood-onset, with cerebellar ataxia and cognitive decline, MIM# 620636 to Neurodevelopmental disorder with language impairment, autism, and attention deficit-hyperactivity disorder, MIM# 620782; Neurodegeneration, childhood-onset, with cerebellar ataxia and cognitive decline, MIM# 620636
Mendeliome v1.1690 KDM5C Ain Roesley Phenotypes for gene: KDM5C were changed from Mental retardation, X-linked, syndromic, Claes-Jensen type, MIM# 300534; MONDO:0010355 to Intellectual developmental disorder, X-linked syndromic, Claes-Jensen type MIM# 300534; MONDO:0010355
Mendeliome v1.1688 SNF8 Zornitza Stark Phenotypes for gene: SNF8 were changed from Neurodevelopmental disorder (MONDO:0700092), SNF8-related to Developmental and epileptic encephalopathy 115, MIM#620783
Mendeliome v1.1687 PURA Ain Roesley Phenotypes for gene: PURA were changed from Mental retardation, autosomal dominant 31, MIM# 616158 to Neurodevelopmental disorder with neonatal respiratory insufficiency, hypotonia, and feeding difficulties (OMIM 616158)
Mendeliome v1.1686 EFEMP1 Zornitza Stark Phenotypes for gene: EFEMP1 were changed from Glaucoma 1, open angle, H, MIM# 611276; Doyne honeycomb degeneration of retina, MIM# 126600; EFEMP1-related connective tissue disorder to Doyne honeycomb degeneration of retina, MIM# 126600; Cutis laxa, autosomal recessive, type ID, MIM# 620780; Glaucoma 1, open angle, H, MIM# 611276
Mendeliome v1.1685 GALE Zornitza Stark Phenotypes for gene: GALE were changed from Galactose epimerase deficiency MIM#230350; Disorders of galactose metabolism to Galactose epimerase deficiency MIM#230350; Thrombocytopenia 12, syndromic, MIM#620776
Mendeliome v1.1683 BANF1 Zornitza Stark Phenotypes for gene: BANF1 were changed from Nestor-Guillermo progeria syndrome, MIM# 614008 to Nestor-Guillermo progeria syndrome, MIM# 614008; Neurodevelopmental disorder, MONDO:0700092, BANF1-related; Hereditary peripheral neuropathy, MONDO:0020127, BANF1-related
Mendeliome v1.1680 BANF1 Zornitza Stark edited their review of gene: BANF1: Added comment: PMID 35982159: Single individual reported with a de novo variant, p.Ala87Thr, and a neurodevelopmental disorder.

PMID 36980188: Hereditary peripheral neuropathy, MONDO:0020127, BANF1-related; Changed publications: 32783369, 21549337, 35982159, 36980188; Changed phenotypes: Nestor-Guillermo progeria syndrome, MIM# 614008, Neurodevelopmental disorder, MONDO:0700092, BANF1-related, Hereditary peripheral neuropathy, MONDO:0020127, BANF1-related; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.1680 FILIP1 Zornitza Stark Phenotypes for gene: FILIP1 were changed from Arthrogryposis multiplex congenita MONDO:0015168, FILIP1 related to Neuromuscular disorder, congenital, with dysmorphic facies, MIM# 620775
Mendeliome v1.1679 FILIP1 Zornitza Stark reviewed gene: FILIP1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neuromuscular disorder, congenital, with dysmorphic facies, MIM# 620775; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1678 RNU4-2 Zornitza Stark gene: RNU4-2 was added
gene: RNU4-2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RNU4-2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: RNU4-2 were set to Neurodevelopmental disorder, MONDO:0700092, RNU4-2 related
Review for gene: RNU4-2 was set to GREEN
Added comment: Emerging evidence that de novo variants in this gene cause ID.
Sources: Literature
Mendeliome v1.1676 YKT6 Zornitza Stark gene: YKT6 was added
gene: YKT6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: YKT6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: YKT6 were set to 38522068
Phenotypes for gene: YKT6 were set to Syndromic disease, MONDO:0002254, YKT6-related
Review for gene: YKT6 was set to AMBER
Added comment: Two individuals homozygous for YKT6 [NM_006555.3:c.554A>G p.(Tyr185Cys)] exhibited normal prenatal course followed by failure to thrive, developmental delay and progressive liver disease. Haplotype analysis identified a shared homozygous region flanking the variant, suggesting a common ancestry. The third individual homozygous for YKT6 [NM_006555.3:c.191A>G p.(Tyr64Cys)] exhibited neurodevelopmental disorders and optic atrophy. Supportive functional data in Drosophila.

Amber rating due to homozygous missense variants and founder effect in two of the families.
Sources: Literature
Mendeliome v1.1674 SEPHS1 Zornitza Stark gene: SEPHS1 was added
gene: SEPHS1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SEPHS1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SEPHS1 were set to 38531365
Phenotypes for gene: SEPHS1 were set to Neurodevelopmental disorder, MONDO:0700092, SEPHS1-related
Review for gene: SEPHS1 was set to GREEN
Added comment: Nine individuals from eight families with developmental delay, growth and feeding problems, hypotonia, and dysmorphic features, all with heterozygous missense variants in SEPHS1. Eight of these individuals had a recurrent variant at amino acid position 371 of SEPHS1 (p.Arg371Trp, p.Arg371Gln, and p.Arg371Gly); seven of these variants were known to be de novo.
Sources: Literature
Mendeliome v1.1673 GLUL Zornitza Stark Phenotypes for gene: GLUL were changed from Glutamine deficiency, congenital MIM#610015; disorder of amino acid metabolism to Developmental and epileptic encephalopathy, MONDO:0100062, GLUL-related; Glutamine deficiency, congenital MIM#610015; disorder of amino acid metabolism
Mendeliome v1.1668 GTF3C5 Bryony Thompson gene: GTF3C5 was added
gene: GTF3C5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GTF3C5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GTF3C5 were set to 38520561; 35503477
Phenotypes for gene: GTF3C5 were set to neurodevelopmental disorder MONDO:0700092, GTF3C5-related
Review for gene: GTF3C5 was set to GREEN
Added comment: 4 families/probands with syndromic ID. Loss of function is the expected
PMID: 38520561 - Biallelic variants identified (3 missense & 1 stopgain) in 4 individuals from 3 families presenting with multisystem developmental syndrome including the features: growth retardation, developmental delay, intellectual disability, dental anomalies, cerebellar malformations, delayed bone age, skeletal anomalies, and facial dysmorphism. Gene-disease relationship supported by: reduced protein expression in patient cells, yeast assays, and a zebrafish model
PMID: 35503477 - 1 proband with biallelic missense variants and hypomelanosis of Ito, seizures, growth retardation, abnormal brain MRI, developmental delay, and facial dysmorphism
Sources: Literature
Mendeliome v1.1664 PLXNB2 Zornitza Stark Phenotypes for gene: PLXNB2 were changed from Amelogenesis imperfecta MONDO:0019507, PLXNB2 -related; Sensorineural hearing loss disorder MONDO:0020678, PLXNB2 -related to Syndromic disease MONDO:0002254, PLXNB2 -related
Mendeliome v1.1660 DOCK4 Sangavi Sivagnanasundram gene: DOCK4 was added
gene: DOCK4 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: DOCK4 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: DOCK4 were set to PMID: 38526744
Phenotypes for gene: DOCK4 were set to DOCK4-related neurodevelopmental disorder (MONDO:0060490)
Review for gene: DOCK4 was set to GREEN
Added comment: 7 unrelated individuals reported with heterozygous variants (missense or null variants) in DOCK4. The individuals either had ID or DD between mild and moderate with brain abnormalities. Two of the individuals are reportedly compound heterozygous.

Functional assay neuro-2A Dock4 knockout cells by using the Alt-R CRISPR-Cas9 system utilizing two different guide RNAs (ko1 and ko2) and one nonspecific control guide RNA (C: control). The assay depicted the loss of function mechanism in the presence of either p.Arg853Leu and p.Asp946_Lys1966delinsValSer* (described as 945VS).
Sources: Other
Mendeliome v1.1656 FRYL Ain Roesley gene: FRYL was added
gene: FRYL was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FRYL was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FRYL were set to 38479391
Phenotypes for gene: FRYL were set to neurodevelopmental disorder MONDO:0700092, FRYL-related
Review for gene: FRYL was set to GREEN
gene: FRYL was marked as current diagnostic
Added comment: 14 individuals, all de novo except 1x duo testing (not present in tested father)
5x missense + 8x fs/stopgain + 1x canonical splice

13/13 with ID/DD (1x deceased)
4/14 seizures
7/14 with cardiac anomalies such as PDA, TOF, VSD, dextrocardia

1x also has a de novo fs variant in SF3B4
1x also has a de novo stop gain variant in SDHA

functional studies using flies were performed
Sources: Literature
Mendeliome v1.1654 KCNB2 Ain Roesley gene: KCNB2 was added
gene: KCNB2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KCNB2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KCNB2 were set to 38503299
Phenotypes for gene: KCNB2 were set to neurodevelopmental disorder MONDO:0700092, KCNB2-related
Review for gene: KCNB2 was set to GREEN
gene: KCNB2 was marked as current diagnostic
Added comment: 7 individuals, all missense
1x from asymptomatic father

2/5 MRI anomalies
2/5 cardiac anomalies
2/7 urogenital anomalies
7/7 with ID
2/7 epilepsy
2/7 hypotonia
Sources: Literature
Mendeliome v1.1649 PLXNB2 Chirag Patel gene: PLXNB2 was added
gene: PLXNB2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLXNB2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PLXNB2 were set to PMID: 38458752
Phenotypes for gene: PLXNB2 were set to Amelogenesis imperfecta MONDO:0019507, PLXNB2 -related; Sensorineural hearing loss disorder MONDO:0020678, PLXNB2 -related
Review for gene: PLXNB2 was set to GREEN
gene: PLXNB2 was marked as current diagnostic
Added comment: 8 individuals from 6 families with core features of amelogenesis imperfecta and sensorineural hearing loss. Intellectual disability, ocular disease, ear developmental abnormalities and lymphoedema were also present in multiple cases. WES and WGS identified biallelic pathogenic variants in PLXNB2 (missense, nonsense, splice and a multiexon deletion variants). Variants segregated with disease.

PLXNB2 is a large transmembrane semaphorin receptor protein, and semaphorin-plexin signalling controls cellular interactions that are critical during development as well as in adult life stages. Plxnb2 expression was detected in differentiating ameloblasts in mice. Human phenotype overlaps with that seen in Plxnb2 knockout mice.
Sources: Literature
Mendeliome v1.1634 FEM1B Zornitza Stark edited their review of gene: FEM1B: Added comment: Five individuals reported now with same recurrent missense variant, NM_015322.5:c.377G>A NP_056137.1:p.(Arg126Gln). Affected individuals shared a severe neurodevelopmental disorder with behavioral phenotypes and a variable set of malformations, including brain anomalies, clubfeet, skeletal abnormalities, and facial dysmorphism. Overexpression of the the FEM1BR126Q variant but not FEM1B wild-type protein, during mouse brain development, resulted in delayed neuronal migration of the target cells.; Changed rating: GREEN; Changed publications: 31036916, 38465576; Changed phenotypes: Syndromic disease MONDO:0002254, FEM1B-related; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1632 ZFX Zornitza Stark Phenotypes for gene: ZFX were changed from Neurodevelopmental disorder, MONDO:0700092, ZFX-related to Intellectual developmental disorder, X-linked syndromic 37, MIM# 301118
Mendeliome v1.1631 ZFX Zornitza Stark edited their review of gene: ZFX: Changed phenotypes: Intellectual developmental disorder, X-linked syndromic 37, MIM# 301118
Mendeliome v1.1620 SV2A Zornitza Stark Phenotypes for gene: SV2A were changed from Neurodevelopmental disorder, MONDO:0700092, SV2A-related to Neurodevelopmental disorder, MONDO:0700092, SV2A-related; Developmental and epileptic encephalopathy 113, MIM# 620772
Mendeliome v1.1619 SV2A Zornitza Stark edited their review of gene: SV2A: Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, SV2A-related, Developmental and epileptic encephalopathy 113, MIM# 620772
Mendeliome v1.1619 GNE Zornitza Stark Phenotypes for gene: GNE were changed from Nonaka myopathy 605820; Sialuria MIM#269921; ADUDP-GlcNAc epimerase/kinase deficiency (Disorders of multiple glycosylation and other glycosylation pathways) to Thrombocytopenia 12 with or without myopathy, MIM#620757; Nonaka myopathy 605820; Sialuria MIM#269921; ADUDP-GlcNAc epimerase/kinase deficiency (Disorders of multiple glycosylation and other glycosylation pathways)
Mendeliome v1.1618 GNE Zornitza Stark edited their review of gene: GNE: Changed phenotypes: Thrombocytopenia 12 with or without myopathy, MIM#620757, Nonaka myopathy 605820, Sialuria MIM#269921, ADUDP-GlcNAc epimerase/kinase deficiency (Disorders of multiple glycosylation and other glycosylation pathways)
Mendeliome v1.1611 PTRHD1 Zornitza Stark Phenotypes for gene: PTRHD1 were changed from Parkinsonism; Intellectual disability to Neurodevelopmental disorder with early-onset parkinsonism and behavioral abnormalities, MIM# 620747
Mendeliome v1.1610 ZFHX3 Lucy Spencer reviewed gene: ZFHX3: Rating: GREEN; Mode of pathogenicity: None; Publications: 38412861; Phenotypes: Neurodevelopmental disorder (MONDO:0700092), ZFHX3-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1610 EFEMP1 Zornitza Stark Phenotypes for gene: EFEMP1 were changed from Glaucoma 1, open angle, H, MIM# 611276; Doyne honeycomb degeneration of retina, MIM# 126600; EFEMP1-related connective tissue disorder to Glaucoma 1, open angle, H, MIM# 611276; Doyne honeycomb degeneration of retina, MIM# 126600; EFEMP1-related connective tissue disorder
Mendeliome v1.1609 EFEMP1 Zornitza Stark Phenotypes for gene: EFEMP1 were changed from Doyne honeycomb degeneration of retina, MIM# 126600; EFEMP1-related connective tissue disorder to Glaucoma 1, open angle, H, MIM# 611276; Doyne honeycomb degeneration of retina, MIM# 126600; EFEMP1-related connective tissue disorder
Mendeliome v1.1608 EFEMP1 Zornitza Stark edited their review of gene: EFEMP1: Changed phenotypes: Doyne honeycomb degeneration of retina, MIM# 126600, EFEMP1-related connective tissue disorder, Glaucoma 1, open angle, H, MIM# 611276
Mendeliome v1.1608 SLC4A10 Zornitza Stark Phenotypes for gene: SLC4A10 were changed from Neurodevelopmental disorderMONDO:0700092, SLC4A10-related to Neurodevelopmental disorder with hypotonia and characteristic brain abnormalities, MIM# 620746
Mendeliome v1.1607 SLC4A10 Zornitza Stark reviewed gene: SLC4A10: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with hypotonia and characteristic brain abnormalities, MIM# 620746; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1607 RREB1 Zornitza Stark Phenotypes for gene: RREB1 were changed from Noonan syndrome-like disorder to Rasopathy, MONDO:0021060, RREB1-related
Mendeliome v1.1606 RGS6 Zornitza Stark Phenotypes for gene: RGS6 were changed from Cataract,MONDO:0005129; intellectual disability, MONDO:0001071; microcephaly, MONDO:0001149 to Neurodevelopmental disorder, MONDO:0700092, RGS6-related
Mendeliome v1.1596 NARS Zornitza Stark changed review comment from: AR disorder: assessed as LIMITED by ClinGen (borderline MODERATE).; to: Both MOIs assessed as MODERATE by ClinGen.
Mendeliome v1.1596 CIAO1 Paul De Fazio changed review comment from: PMID:38196629 (note pre-print) describes 4 unrelated patients with core features of progressive muscle weakness, respiratory insufficiency, joint hyperlaxity, ankle tightness, calf pseudohypertrophy, elevated CK, and larning disabilities/difficulties. 2 patients presented with increased iron deposition in the brain. Age of recognition of myopathic symptoms varied from early childhood to adolescence.

PMID: 38411040 reports 2 unrelated patients. Patient 1 was born with microcephaly and borderline hypertonia, and died at 18 months of respiratory failure from bronchiolitis. Patient 2 presented with failure to thrive, a hyperkinetic movement disorder, and autism before deteriorating in late teens with muscle weakness, recurrent pneuomonia with respiratory insufficiency, and eventually death due to multi-organ failure with carnificating pneumonia, septic cardiomyopathy, and intracranial hemorrhages. Immune deficiency was ruled out.

All variants reported were homozygous or compound heterozygous missense variants, with the exception of one large in-frame deletion of exon 7. Cell line studies showed the variants resulted in reduced protein stability and downstream cellular defects which could be rescued by wild-type CIAO1.
Sources: Literature; to: PMID:38196629 (note pre-print) describes 4 unrelated patients with core features of progressive muscle weakness, respiratory insufficiency, joint hyperlaxity, ankle tightness, calf pseudohypertrophy, elevated CK, and larning disabilities/difficulties. 2 patients presented with increased iron deposition in the brain. Age of recognition of myopathic symptoms varied from early childhood to adolescence. Muscle biopsy showed variation in fiber size and an increase in internalized nuclei, as well as scattered degenerating/regenerating fibers and a mild to minimal increase in endomysial fibrosis. Electron microscopy revealed morphologically abnormal mitochondria.

PMID: 38411040 reports 2 unrelated patients. Patient 1 was born with microcephaly and borderline hypertonia, and died at 18 months of respiratory failure from bronchiolitis. Patient 2 presented with failure to thrive, a hyperkinetic movement disorder, and autism before deteriorating in late teens with muscle weakness, recurrent pneuomonia with respiratory insufficiency, and eventually death due to multi-organ failure with carnificating pneumonia, septic cardiomyopathy, and intracranial hemorrhages. Immune deficiency was ruled out.

All variants reported were homozygous or compound heterozygous missense variants, with the exception of one large in-frame deletion of exon 7. Cell line studies showed the variants resulted in reduced protein stability and downstream cellular defects which could be rescued by wild-type CIAO1.
Mendeliome v1.1596 CIAO1 Paul De Fazio gene: CIAO1 was added
gene: CIAO1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CIAO1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CIAO1 were set to 38411040; 38196629
Phenotypes for gene: CIAO1 were set to Neuromuscular disease, CIAO1-related (MONDO:0019056)
Penetrance for gene: CIAO1 were set to unknown
Review for gene: CIAO1 was set to GREEN
gene: CIAO1 was marked as current diagnostic
Added comment: PMID:38196629 (note pre-print) describes 4 unrelated patients with core features of progressive muscle weakness, respiratory insufficiency, joint hyperlaxity, ankle tightness, calf pseudohypertrophy, elevated CK, and larning disabilities/difficulties. 2 patients presented with increased iron deposition in the brain. Age of recognition of myopathic symptoms varied from early childhood to adolescence.

PMID: 38411040 reports 2 unrelated patients. Patient 1 was born with microcephaly and borderline hypertonia, and died at 18 months of respiratory failure from bronchiolitis. Patient 2 presented with failure to thrive, a hyperkinetic movement disorder, and autism before deteriorating in late teens with muscle weakness, recurrent pneuomonia with respiratory insufficiency, and eventually death due to multi-organ failure with carnificating pneumonia, septic cardiomyopathy, and intracranial hemorrhages. Immune deficiency was ruled out.

All variants reported were homozygous or compound heterozygous missense variants, with the exception of one large in-frame deletion of exon 7. Cell line studies showed the variants resulted in reduced protein stability and downstream cellular defects which could be rescued by wild-type CIAO1.
Sources: Literature
Mendeliome v1.1596 THBS2 Ain Roesley Phenotypes for gene: THBS2 were changed from {Lumbar disc herniation, susceptibility to} 603932 to {Lumbar disc herniation, susceptibility to} 603932; connective tissue disorder MONDO:0003900, THBS2-related
Mendeliome v1.1593 THBS2 Chris Ciotta reviewed gene: THBS2: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 38433265; Phenotypes: connective tissue disorder MONDO:0003900, THBS2-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1587 CELSR3 Crystle Lee gene: CELSR3 was added
gene: CELSR3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CELSR3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CELSR3 were set to PMID: 38429302
Phenotypes for gene: CELSR3 were set to Neurodevelopmental disorder (MONDO#0700092), CELSR3-related
Review for gene: CELSR3 was set to GREEN
Added comment: PMID: 38429302:12 affected individuals from 11 families reported with bi-allelic variants. Phenotype ranged from CNS anomalies (7/12), CNS and CAKUT (3/12) and CAKUT only (2/12). Only missense variants reported and 1 inframe variant. Functional studies done in zebrafish demonstrate similar structural anomalies of the developing pronephros and neuronal abnormalities to affected individuals

PMID: 34951123: 5 het missense variants reported in patients with febrile seizures (FS)/epilepsy. Arg3141Gln present in gnomAD (7 hets). No functional studies. Summarised as potentially associated with febrile seizures (FS)/epilepsy
Sources: Literature
Mendeliome v1.1587 APOLD1 Lucy Spencer changed review comment from: PMID: 35638551
1 family with an atypical inherited bleeding disorder characterised by severe spontaneous bleeding episodes in childhood and microcirculatory problems. 4 affected individuals across 2 generations have R49*in APOLD1, another affected individual from a third generation was not able to be sequenced = 4 meiosis. 4 unaffected individuals did not have the variant.

This gene has no NMD region, R49* would affect 82% of the protein. Paper is not using the MANE select transcript, alt p. in MANE select is R18* which affects 92% of the MANE select protein

Interestingly R49* is created by a delins/2 missense in cis, 1 common R49Q and 1 rare R49W, some UNaffected family members just have the common missense without the other in cis.

Immunofluorescence studies in patient platelets showed a 50% reduction of APOLD1 and disrupted cytoskeletal and junctional organization.
Sources: Literature; to: PMID: 35638551
1 family with an atypical inherited bleeding disorder characterised by severe spontaneous bleeding episodes in childhood and microcirculatory problems. 4 affected individuals across 2 generations have R49*in APOLD1, another affected individual from a third generation was not able to be sequenced = 4 meiosis. 4 unaffected individuals did not have the variant.

This gene has no NMD region, R49* would affect 82% of the protein. Paper is not using the MANE select transcript, alt p. in MANE select is R18* which affects 92% of the MANE select protein

Interestingly R49* is created by a delins/2 missense in cis, 1 common R49Q and 1 rare R49W, some UNaffected family members just have the common missense without the other in cis.

Immunofluorescence studies in patient platelets showed a 50% reduction of APOLD1 and disrupted cytoskeletal and junctional organization.

SiRNA silencing of APOLD1 in HBDEC cells resulted in altered cell shape and size, and were associated with endothelial cell junction dismantling. These cells were also almost devoid of VWF.
Sources: Literature
Mendeliome v1.1587 ZSCAN10 Rylee Peters gene: ZSCAN10 was added
gene: ZSCAN10 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZSCAN10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZSCAN10 were set to PMID: 38386308
Phenotypes for gene: ZSCAN10 were set to syndromic disease MONDO:0002254
Review for gene: ZSCAN10 was set to GREEN
Added comment: Bi-allelic ZSCAN10 loss-of-function variants were identified in seven affected individuals from five unrelated families with syndromic neurodevelopmental disorder.

Highly consistent phenotypic features include global developmental delay, behavioural abnormalities, and variable facial asymmetry with outer and inner ear malformations leading to profound SNHL.

Facial asymmetry was recapitulated in the Zscan10 mouse model along with inner and outer ear malformations.
Sources: Literature
Mendeliome v1.1586 SLC12A9 Zornitza Stark gene: SLC12A9 was added
gene: SLC12A9 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC12A9 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC12A9 were set to 38334070
Phenotypes for gene: SLC12A9 were set to Neurodevelopmental disorder, MONDO:0700092, SLC12A9-related
Review for gene: SLC12A9 was set to GREEN
Added comment: Three individuals from unrelated families with bi-allelic LoF variants and a neurodevelopment phenotype, skeletal and brain abnormalities, hypopigmentation, dysmorphic features.
Sources: Literature
Mendeliome v1.1585 SNF8 Chern Lim gene: SNF8 was added
gene: SNF8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SNF8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SNF8 were set to 38423010
Phenotypes for gene: SNF8 were set to Neurodevelopmental disorder (MONDO:0700092), SNF8-related
Review for gene: SNF8 was set to GREEN
gene: SNF8 was marked as current diagnostic
Added comment: PMID: 38423010
- Nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8. In total, three putative LoF variants and four missense variants were identified.
- The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile) as compound heterozygous.
- Functional studies using fibroblasts derived from patients and zebrafish model showed LoF is the disease mech.
Sources: Literature
Mendeliome v1.1584 APOLD1 Lucy Spencer gene: APOLD1 was added
gene: APOLD1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: APOLD1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: APOLD1 were set to 35638551
Phenotypes for gene: APOLD1 were set to Bleeding disorder, vascular-type (MIM#620715)
Review for gene: APOLD1 was set to AMBER
Added comment: PMID: 35638551
1 family with an atypical inherited bleeding disorder characterised by severe spontaneous bleeding episodes in childhood and microcirculatory problems. 4 affected individuals across 2 generations have R49*in APOLD1, another affected individual from a third generation was not able to be sequenced = 4 meiosis. 4 unaffected individuals did not have the variant.

This gene has no NMD region, R49* would affect 82% of the protein. Paper is not using the MANE select transcript, alt p. in MANE select is R18* which affects 92% of the MANE select protein

Interestingly R49* is created by a delins/2 missense in cis, 1 common R49Q and 1 rare R49W, some UNaffected family members just have the common missense without the other in cis.

Immunofluorescence studies in patient platelets showed a 50% reduction of APOLD1 and disrupted cytoskeletal and junctional organization.
Sources: Literature
Mendeliome v1.1583 DIP2C Melanie Marty gene: DIP2C was added
gene: DIP2C was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DIP2C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DIP2C were set to PMID: 38421105
Phenotypes for gene: DIP2C were set to Neurodevelopmental disorder (MONDO#0700092), DIP2C-related
Review for gene: DIP2C was set to GREEN
Added comment: PMID: 38421105 - Twenty three patients with het DIP2C variants (10 de novo).
All patients had developmental delays affecting expressive language and speech, most had mild dev delay and ID. Four patients had seizures. Additional phenotypic findings were non-specific but recurrent anomalies did include a high anterior hair-line, prominent forehead, and a broad nasal tip. Four patients had cardiac defects (hypertrophic cardiomyopathy, atrial septal defects,and bicuspid aortic valve)
Sources: Literature
Mendeliome v1.1580 NIT1 Paul De Fazio gene: NIT1 was added
gene: NIT1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NIT1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NIT1 were set to 38430071
Phenotypes for gene: NIT1 were set to Cerebrovascular disorder, NIT1-related (MONDO:0011057)
Penetrance for gene: NIT1 were set to unknown
gene: NIT1 was marked as current diagnostic
Added comment: 5 unrelated families reported with recessively inherited cerebral small vessel disease had compound hetereozygous or homozygous variants in NIT1. 1 family (3 siblings) had p.(Ala68*) in trans with p.(Arg243Trp), the remaining 4 families (1 individual each) were all homozygous for p.(Arg243Trp).

Patients presented in mid-adulthood with progressive movement disorders (e.g. dystonia, chorea, bradykinesia and tremor, gait disturbance, dysarthria) and had abnormal brain MRI findings (honeycomb appearance of the basal ganglia-thalamus complex, due to numerous strongly dilated PVS). 3 patients had non-lobar intracerebral hemorrhage. Slowly progressive cognitive decline was also a key feature.

Metabolic analysis in urine confirmed loss of NIT1 enzymatic function.

Note p.(Arg243Trp) has 1 homozygote in gnomAD v4, but permitted due to later presentation in reported patients.
Sources: Literature
Mendeliome v1.1580 DENND5B Elena Savva reviewed gene: DENND5B: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 38387458; Phenotypes: Neurodevelopmental disorder (MONDO#0700092), DENND5B-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v1.1578 FEZF2 Ain Roesley gene: FEZF2 was added
gene: FEZF2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FEZF2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FEZF2 were set to 38425142
Phenotypes for gene: FEZF2 were set to neurodevelopmental disorder MONDO:0700092, FEZF2-related
Review for gene: FEZF2 was set to GREEN
gene: FEZF2 was marked as current diagnostic
Added comment: - 7 indiv but 1 has whole gene deletion and 6x SNV (4x PTCs and 2x same missense Arg344Cys)
- of the 6x SNV, 4x de novo + 1x from affected father
- all have ID/ASD
- 1x seizures
- 1x hypotonia
- 1x motor coordination disorder
- 2x enuresis after 7yo
Sources: Literature
Mendeliome v1.1576 ZFX Zornitza Stark gene: ZFX was added
gene: ZFX was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZFX was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: ZFX were set to 26350204; 26740508; 38325380
Phenotypes for gene: ZFX were set to Neurodevelopmental disorder, MONDO:0700092, ZFX-related
Review for gene: ZFX was set to GREEN
Added comment: A single ZFX variant has been associated with a neurodevelopmental disorder, that has a Rett syndrome-like phenotype disorder, in a 14 year old male. The ZFX variant was allelic with another X-linked variant in SHROOM4. These variants were inherited from the mother, who had random X inactivation pattern (PMID: 26740508).
PMID: 38325380 reports 11 ZFX variants in 18 subjects from 16 unrelated families (14 males and 4 females) with an X-linked neurodevelopmental disorder with recurrent facial gestalt. Seven variants were truncating and the remaining were missense variants within the Zinc finger array. In the pedigree of family 6 (figure 3, PMID: 38325380), it was apparent that there were female carriers of the ZFX variant (GRCh38 chrX: 24229396A>G, c.2438A>G, p.Tyr774Cys) with hyperparathyroidism and two affected males and one affected female, with the neurodevelopmental disorder. It appeared that skewed X-inactivation in the female carriers was responsible for the different phenotypic features. The association between ZFX variants and a novel neurodevelopmental disorder, was further supported by functional studies showing altered transcriptional activity in missense variants and altered behavior in a zebrafish loss-of-function model.
Sources: Literature
Mendeliome v1.1575 NARS Zornitza Stark commented on gene: NARS: AR disorder: assessed as LIMITED by ClinGen (borderline MODERATE).
Mendeliome v1.1573 PI4K2A Zornitza Stark Phenotypes for gene: PI4K2A were changed from complex neurodevelopmental disorder with motor features, PI4K2A-related, MONDO:0100516; Cutis laxa, intellectual disability, movement disorder to Neurodevelopmental disorder with hyperkinetic movements, seizures and structural brain abnormalities, MIM# 620732; Cutis laxa, intellectual disability, movement disorder
Mendeliome v1.1561 WASHC4 Elena Savva Phenotypes for gene: WASHC4 were changed from Mental retardation, autosomal recessive 43, MIM #615817 to Intellectual developmental disorder, autosomal recessive 43 MIM#615817
Mendeliome v1.1557 PUM1 Zornitza Stark Phenotypes for gene: PUM1 were changed from Spinocerebellar ataxia 47, MIM# 617931; Neurodevelopmental disorder, MONDO:0700092, PUM1-related to Spinocerebellar ataxia 47, MIM# 617931; Neurodevelopmental disorder with motor abnormalities, seizures, and facial dysmorphism, MIM# 620719
Mendeliome v1.1555 PUM1 Zornitza Stark edited their review of gene: PUM1: Changed phenotypes: Spinocerebellar ataxia 47, MIM# 617931, Neurodevelopmental disorder with motor abnormalities, seizures, and facial dysmorphism, MIM# 620719
Mendeliome v1.1555 TRMT1 Elena Savva Phenotypes for gene: TRMT1 were changed from Mental retardation, autosomal recessive 68; OMIM #618302 to Intellectual developmental disorder, autosomal recessive 68 MIM#618302
Mendeliome v1.1538 FBXO31 Lucy Spencer reviewed gene: FBXO31: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual developmental disorder, autosomal recessive 45 (MIM#615979); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1538 SIRT1 Achchuthan Shanmugasundram gene: SIRT1 was added
gene: SIRT1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SIRT1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SIRT1 were set to 23473037
Phenotypes for gene: SIRT1 were set to autoimmune disease, MONDO:0007179
Review for gene: SIRT1 was set to RED
Added comment: PMID:23473037 reported the identification of a missense SIRT1 variant (p.Leu107Pro) in five members of a single family and all five of them had autoimmune disorder, four had type I diabetes and one had ulcerative colitis.
Sources: Literature
Mendeliome v1.1538 TET3 Elena Savva Phenotypes for gene: TET3 were changed from Intellectual disability; dysmorphic features; abnormal growth; movement disorders to Beck-Fahrner syndrome MIM#618798
Mendeliome v1.1529 TAF1C Elena Savva Phenotypes for gene: TAF1C were changed from Global developmental delay; Intellectual disability; Spasticity; Strabismus; Seizures; Abnormality of nervous system morphology to Neurodevelopmental disorder (MONDO#0700092), TAF1C-related
Mendeliome v1.1527 CSTF2 Zornitza Stark Phenotypes for gene: CSTF2 were changed from Intellectual disability to Intellectual developmental disorder, X-linked 113, MIM# 301116
Mendeliome v1.1526 CSTF2 Zornitza Stark edited their review of gene: CSTF2: Changed phenotypes: Intellectual developmental disorder, X-linked 113, MIM# 301116
Mendeliome v1.1525 ASCC3 Zornitza Stark Phenotypes for gene: ASCC3 were changed from Neuromuscular syndrome; congenital myopathy to Intellectual developmental disorder, autosomal recessive 81, MIM# 620700
Mendeliome v1.1523 ASCC3 Zornitza Stark reviewed gene: ASCC3: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual developmental disorder, autosomal recessive 81, MIM# 620700; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1523 GIGYF1 Zornitza Stark Phenotypes for gene: GIGYF1 were changed from Autism, Intellectual disability, GIGYF1-related (MONDO#0001071) to Autism spectrum disorder (MONDO:0005258), GIGYF1-related
Mendeliome v1.1522 HNRNPC Zornitza Stark Phenotypes for gene: HNRNPC were changed from Neurodevelopmental disorder (MONDO:0700092), HNRNPC-related to Intellectual developmental disorder-74, MIM#620688
Mendeliome v1.1521 HNRNPC Zornitza Stark edited their review of gene: HNRNPC: Changed phenotypes: intellectual developmental disorder-74, MIM#620688
Mendeliome v1.1513 SP9 Zornitza Stark Phenotypes for gene: SP9 were changed from neurodevelopmental disorder MONDO:0700092 to neurodevelopmental disorder MONDO:0700092, SP9-related
Mendeliome v1.1511 SP9 Suliman Khan gene: SP9 was added
gene: SP9 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SP9 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SP9 were set to PMID: 38288683
Phenotypes for gene: SP9 were set to neurodevelopmental disorder MONDO:0700092
Review for gene: SP9 was set to GREEN
Added comment: Sources: Literature
Mendeliome v1.1507 MEI4 Lisa Norbart gene: MEI4 was added
gene: MEI4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MEI4 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Publications for gene: MEI4 were set to 38252283
Phenotypes for gene: MEI4 were set to Infertility disorder, MONDO:0005047, MEI4-related
Review for gene: MEI4 was set to GREEN
Added comment: PMID: 38252283 - 5x compound heterozygous missense variants and 1x homozygous missense variant seen in five individuals across 4 unrelated families affected with female infertility characterised by preimplantation embryonic arrest. Includes one family with two affected sisters with the same compound heterozygous variants. 2/4 families showed inheritance, parental data not available for other two families. Homozygous variant in the consanguineous family appears with a more severe phenotype.

In vitro evidence shows variants reduced the interactions between MEI4 and DNA, but no effects on protein levels. In vivo knock-out mouse model showed female mice were infertile, characterised by developmental defects during oogenesis.
Sources: Literature
Mendeliome v1.1501 CAMK2D Elena Savva gene: CAMK2D was added
gene: CAMK2D was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CAMK2D was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: CAMK2D were set to 38272033
Phenotypes for gene: CAMK2D were set to Neurodevelopmental disorder (MONDO#0700092), CAMK2D-related
Added comment: PMID: 38272033
- 8 patients (5/8 de novo) with mostly missense and a single splice site variant, ages range from 5 weeks to 20 years old
- Most variants functionally shown to have a GOF mechanism causing addition DCM phenotype, LOF is only neurological
- Phenotypes include dev delay (mild-severe) (7/7 patients), skeletal anomalies (7/8, scoliosis, kyphosis, involving spine/hands/feet/palate), DCM (6/8), seizures (3/8), visual anomalies (astigmatism, cortical vision impairment, myopia, strabismus 5/5), enlarged brain ventricles (3/5)
Sources: Literature
Mendeliome v1.1499 RBMX Zornitza Stark Phenotypes for gene: RBMX were changed from Intellectual developmental disorder, syndromic 11, Shashi type, MIM#300238 to Intellectual developmental disorder, syndromic 11, Shashi type, MIM#300238; Gustavson syndrome, MIM# 309555
Mendeliome v1.1497 RBMX Zornitza Stark edited their review of gene: RBMX: Added comment: PMID 37277488: In-frame deletion reported in a large multiplex Swedish family; Changed publications: 25256757, 34260915, 37277488; Changed phenotypes: Intellectual developmental disorder, syndromic 11, Shashi type, MIM#300238, Gustavson syndrome, MIM# 309555
Mendeliome v1.1495 KDM5A Elena Savva Phenotypes for gene: KDM5A were changed from autism spectrum disorder, MONDO:0005258; intellectual disability, MONDO:0001071 to autism spectrum disorder, MONDO:0005258; Neurodevelopmental disorder MONDO:0700092, KDM5A-related
Mendeliome v1.1485 ATP6V0A1 Elena Savva Phenotypes for gene: ATP6V0A1 were changed from Neurodevelopmental disorder MONDO:0700092, ATP6V0A1-associated to Developmental and epileptic encephalopathy 104 MIM#619970; Neurodevelopmental disorder with epilepsy and brain atrophy MIM#619971
Mendeliome v1.1477 KPNA7 Elena Savva Phenotypes for gene: KPNA7 were changed from Oocyte/zygote/embryo maturation arrest 17, MIM# 620319; Neurodevelopmental disorder to Oocyte/zygote/embryo maturation arrest 17, MIM# 620319; Neurodevelopmental disorder (MONDO#0700092), KPNA7-related
Mendeliome v1.1476 KIF4A Elena Savva Phenotypes for gene: KIF4A were changed from Mental retardation, X-linked 100, MIM# 300923; Taurodontism, microdontia, and dens invaginatus (MIM#313490) to Intellectual developmental disorder, X-linked 100 MIM#300923; Taurodontism, microdontia, and dens invaginatus MIM#313490
Mendeliome v1.1474 KCTD13 Elena Savva Phenotypes for gene: KCTD13 were changed from Intellectual disability; seizures to Neurodevelopmental disorder (MONDO#0700092), KCTD13-related
Mendeliome v1.1471 KCNAB3 Elena Savva reviewed gene: KCNAB3: Rating: RED; Mode of pathogenicity: None; Publications: PMID: 37396552, 32990398, 36345448; Phenotypes: Neurodevelopmental disorder (MONDO#0700092), KCNAB3-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v1.1471 KCNAB3 Elena Savva Phenotypes for gene: KCNAB3 were changed from febrile seizures; afebrile seizure; genetic epilepsy with febrile seizures plus to Neurodevelopmental disorder (MONDO#0700092), KCNAB3-related
Mendeliome v1.1470 JAKMIP1 Elena Savva Phenotypes for gene: JAKMIP1 were changed from Intellectual disability; Seizures to Neurodevelopmental disorder (MONDO#0700092), JAKMIP1-related
Mendeliome v1.1468 PPFIA3 Zornitza Stark gene: PPFIA3 was added
gene: PPFIA3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PPFIA3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PPFIA3 were set to 37034625
Phenotypes for gene: PPFIA3 were set to Neurodevelopmental disorder, MONDO:0700092, PPFIA3-related
Review for gene: PPFIA3 was set to GREEN
Added comment: 19 individuals with mono-allelic variants presenting with features including developmental delay, intellectual disability, hypotonia, micro/macrocephaly, autism, and epilepsy.

One individual with compound het variants: insufficient evidence for bi-allelic variants causing disease.
Sources: Literature
Mendeliome v1.1459 CACHD1 Zornitza Stark reviewed gene: CACHD1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: syndromic complex neurodevelopmental disorder MONDO:0800439; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1457 CACHD1 Suliman Khan gene: CACHD1 was added
gene: CACHD1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CACHD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CACHD1 were set to PMID: 38158856
Phenotypes for gene: CACHD1 were set to syndromic complex neurodevelopmental disorder MONDO:0800439
Penetrance for gene: CACHD1 were set to unknown
Review for gene: CACHD1 was set to GREEN
Added comment: Sources: Literature
Mendeliome v1.1457 SOX8 Paul De Fazio gene: SOX8 was added
gene: SOX8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SOX8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SOX8 were set to https://www.neurology.org/doi/full/10.1212/NXG.0000000000200088
Phenotypes for gene: SOX8 were set to Neurodevelopmental disorder (MONDO:0700092), SOX8-related
Review for gene: SOX8 was set to RED
gene: SOX8 was marked as current diagnostic
Added comment: Proband presented to genetics clinic at 27 years of age with BMI -3.4SD, height -2.7SD, head circumference -1.8SD. She had mild intellectual delay and clinical features of a congenital, nonprogressive myopathy with moderate proximal and distal weakness. X-rays showed skeletal dysplasia, including cervical thoracic scoliosis and lumbar scoliosis. She was reported as having had weakness at birth with poor suck, micrognathia, hypotonia, and talipes. She was documented to have significant motor delay as a child. MRI of the brain demonstrated large posterior fossa CSF spaces.

Biallelic SOX8 variants biallelic (NM_014587.3:c.422+5G>C; c.583dup p.(His195ProfsTer11)) were identified by WGS. The +5 variant was shown to affect splicing, while the frameshift variant resulted in production of low-level truncated protein (not NMD predicted). Functional studies on patient fibroblasts showed misregulation of downstream SOX8 targets.
Sources: Literature
Mendeliome v1.1457 BORCS8 Lauren Rogers gene: BORCS8 was added
gene: BORCS8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: BORCS8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BORCS8 were set to 38128568
Phenotypes for gene: BORCS8 were set to Neurodevelopmental disorder (MONDO#0700092), BORCS8-related
Review for gene: BORCS8 was set to GREEN
Added comment: 3 unrelated families with five affected children with homozygous or compound heterozygous loss of function missense and PTC variants.

HEK293T cells show the missense variants are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution. The BORCS8 PTC frameshift variant is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution. Zebrafish KO of the orthologous brocs8 causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease.
Sources: Literature
Mendeliome v1.1457 GTPBP1 Lucy Spencer gene: GTPBP1 was added
gene: GTPBP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GTPBP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GTPBP1 were set to 38118446
Phenotypes for gene: GTPBP1 were set to Neurodevelopmental disorder (MONDO#0700092), GTPBP1-related
Review for gene: GTPBP1 was set to GREEN
Added comment: PMID: 38118446- Cohort of individuals with variants in GTPBP2 (which has been previously described) and GTPBP1 (new) who have an identical neurodevelopmental syndrome. 4 homozygous individuals from 3 consanguineous families. 2 families have different NMD-predicted nonsense variants and the third has a missense, all are absent from gnomad v4.

The shared cardinal features of GTPBP1 and 2 related disease are microcephaly, profound neurodevelopmental impairment, and distinctive craniofacial features. Epilepsy was present in 10 of 20 individuals but its not clear if those individuals had GTPBP1 or 2 variants.
Sources: Literature
Mendeliome v1.1456 PUS3 Zornitza Stark Phenotypes for gene: PUS3 were changed from Mental retardation, autosomal recessive 55, MIM# 617051 to Neurodevelopmental disorder with microcephaly and gray sclerae, MIM# 617051
Mendeliome v1.1455 PUS3 Zornitza Stark edited their review of gene: PUS3: Changed phenotypes: Neurodevelopmental disorder with microcephaly and gray sclerae, MIM# 617051
Mendeliome v1.1454 PRICKLE2 Zornitza Stark Phenotypes for gene: PRICKLE2 were changed from Neurodevelopmental disorder, MONDO:0700092; global developmental delay, behavioural difficulties ± epilepsy, autistic features, and attention deficit hyperactive disorder. to Neurodevelopmental disorder MONDO:0700092, PRICKLE2-related
Mendeliome v1.1451 PRICKLE2 Zornitza Stark reviewed gene: PRICKLE2: Rating: AMBER; Mode of pathogenicity: None; Publications: 34092786, 21276947, 26942291, 26942292; Phenotypes: Neurodevelopmental disorder MONDO:0700092, PRICKLE2-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1448 ALG8 Rylee Peters reviewed gene: ALG8: Rating: GREEN; Mode of pathogenicity: None; Publications: 35716054; Phenotypes: Congenital disorder of glycosylation, type Ih, MIM# 608104; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1447 GPT2 Zornitza Stark Phenotypes for gene: GPT2 were changed from Mental retardation, autosomal recessive 49, MIM#616281 to Neurodevelopmental disorder with microcephaly and spastic paraplegia, MIM# 616281
Mendeliome v1.1446 GPT2 Zornitza Stark edited their review of gene: GPT2: Changed phenotypes: Neurodevelopmental disorder with microcephaly and spastic paraplegia, MIM# 616281
Mendeliome v1.1441 CASP2 Zornitza Stark Phenotypes for gene: CASP2 were changed from neurodevelopmental disorder MONDO:0700092, CASP2-related to Intellectual developmental disorder, autosomal recessive 80, with variant lissencephaly, MIM# 620653
Mendeliome v1.1440 CASP2 Zornitza Stark reviewed gene: CASP2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual developmental disorder, autosomal recessive 80, with variant lissencephaly, MIM# 620653; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1440 RBFOX1 Zornitza Stark Phenotypes for gene: RBFOX1 were changed from Intellectual disability; autism to Neurodevelopmental disorder (MONDO:0700092), RBFOX1-related
Mendeliome v1.1435 CAPRIN1 Zornitza Stark Phenotypes for gene: CAPRIN1 were changed from Neurodegeneration, childhood-onset, with cerebellar ataxia and cognitive decline, MIM# 620636 to Neurodevelopmental disorder, CAPRIN1-related MONDO:0700092; Neurodegeneration, childhood-onset, with cerebellar ataxia and cognitive decline, MIM# 620636
Mendeliome v1.1433 CAPRIN1 Zornitza Stark Phenotypes for gene: CAPRIN1 were changed from Neurodevelopmental disorder, CAPRIN1-related MONDO:0700092 to Neurodegeneration, childhood-onset, with cerebellar ataxia and cognitive decline, MIM# 620636
Mendeliome v1.1429 DRG1 Zornitza Stark Phenotypes for gene: DRG1 were changed from Neurodevelopmental disorder (MONDO:0700092), DRG1-related to Tan-Almurshedi syndrome, MIM# 620641
Mendeliome v1.1426 RBFOX1 Dean Phelan reviewed gene: RBFOX1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 37962958; Phenotypes: Neurodevelopmental disorder (MONDO:0700092), RBFOX1-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1415 RAB1A Zornitza Stark gene: RAB1A was added
gene: RAB1A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RAB1A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RAB1A were set to 37924809
Phenotypes for gene: RAB1A were set to neurodevelopmental disorder MONDO:0700092, RAB1A-related
Review for gene: RAB1A was set to AMBER
Added comment: Four families and 5 individuals, 2/5 have speech delay and 4/5 have motor delay. Anxiety in 3/5 and autism in 2/5. Microcephaly in only one individual, spastic paraplegia observed in 2 individuals from one family. In 2 families variants were inherited from an affected parent.
Sources: Literature
Mendeliome v1.1411 SV2A Zornitza Stark Phenotypes for gene: SV2A were changed from Epilepsy, MONDO:0005027 to Neurodevelopmental disorder, MONDO:0700092, SV2A-related
Mendeliome v1.1409 SV2A Zornitza Stark reviewed gene: SV2A: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, SV2A-related; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v1.1408 SV2A Karina Sandoval changed review comment from: Monoallelic variants cause epilepsy. Biallelic variant in this 5yo (Hom p.Arg383Gln) reported to cause severe phenotype of drug-resistant epileptic encephalopathy with microcephaly, DD, movement disorder and growth retardation. Consanguineous.
This paper references 5 other families with both AR & AD
Family #1 – p.Arg383Gln, AR, 2 affected in family, parents healthy carriers
Family #2 – p.Arg570Cys, AD, 2 affected, inherited from affected mother (in gnomAD v2 1 het, absent from gnomAD v3)
Family #3 – p.Gly660Arg, AD, de novo
Family #4 – p.Gly660Arg, AD, segregated in 11 family members
Family #5 (this study) – p.Arg289Ter, AR, parents and 2 sibs asymptomatic carriers
Sources: Literature; to: Monoallelic variants cause epilepsy. Biallelic variant in this 5yo with p.Arg289Ter and another 5yo from another paper with homozygous p.Arg383Gln, reported to cause severe phenotype of drug-resistant epileptic encephalopathy with microcephaly, DD, movement disorder and growth retardation.
This paper references 5 other families with both AR & AD
Family #1 – p.Arg383Gln, AR, 2 affected in family, parents healthy carriers
Family #2 – p.Arg570Cys, AD, 2 affected, inherited from affected mother (in gnomAD v2 1 het, absent from gnomAD v3)
Family #3 – p.Gly660Arg, AD, de novo
Family #4 – p.Gly660Arg, AD, segregated in 11 family members
Family #5 (this study) – p.Arg289Ter, AR, parents and 2 sibs asymptomatic carriers
Sources: Literature
Mendeliome v1.1408 SV2A Karina Sandoval changed review comment from: Monoallelic variants cause epilepsy. Biallelic variant in this 5yo (Hom p.Arg383Gln) reported to cause severe phenotype of drug-resistant epileptic encephalopathy with microcephaly, DD, movement disorder and growth retardation. Consanguineous.
This paper references 5 other families with both AR & AD
Family #1 – p.Arg383Gln, AR, 2 affected in family, parents healthy carriers
Family #2 – p.Arg570Cys, AD, 2 affected, inherited from affected mother
Family #3 – p.Gly660Arg, AD, de novo
Family #4 – p.Gly660Arg, AD, segregated in 11 family members
Family #5 (this study) – p.Arg289Ter, AR, parents and 2 sibs asymptomatic carriers
Sources: Literature; to: Monoallelic variants cause epilepsy. Biallelic variant in this 5yo (Hom p.Arg383Gln) reported to cause severe phenotype of drug-resistant epileptic encephalopathy with microcephaly, DD, movement disorder and growth retardation. Consanguineous.
This paper references 5 other families with both AR & AD
Family #1 – p.Arg383Gln, AR, 2 affected in family, parents healthy carriers
Family #2 – p.Arg570Cys, AD, 2 affected, inherited from affected mother (in gnomAD v2 1 het, absent from gnomAD v3)
Family #3 – p.Gly660Arg, AD, de novo
Family #4 – p.Gly660Arg, AD, segregated in 11 family members
Family #5 (this study) – p.Arg289Ter, AR, parents and 2 sibs asymptomatic carriers
Sources: Literature
Mendeliome v1.1408 CRELD1 Naomi Baker reviewed gene: CRELD1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 37947183; Phenotypes: Neurodevelopmental disorder (MONDO:0700092), CRELD1-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1405 DDX17 Melanie Marty gene: DDX17 was added
gene: DDX17 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DDX17 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DDX17 were set to https://www.medrxiv.org/search/DDX17
Phenotypes for gene: DDX17 were set to Neurodevelopmental disorder (MONDO#0700092), DDX17-related
Review for gene: DDX17 was set to GREEN
Added comment: https://www.medrxiv.org/search/DDX17 (pre-print)
11 patients with het de novo variants in DDX17 (5 NMD, 6 missense). Patient's phenotype included mild-moderate intellectual disability, delayed speech and language development and global developmental delay. 64% had dysmorphic facial features. Some patients also have gross and fine motor delay, generalized hypotonia, stereotypy, and evidence of autism spectrum disorder.

Knockdown of Ddx17 in newborn mice showed impaired axon outgrowth and reduced axon outgrowth and branching was observed in primary cortical neurons in vitro. This result was replicated in Crispant Xenopus tadpoles, which had clear functional neural defects and showed an impaired neurobehavioral phenotype.
Sources: Literature
Mendeliome v1.1405 SV2A Karina Sandoval gene: SV2A was added
gene: SV2A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SV2A was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Publications for gene: SV2A were set to PMID: 37985816
Phenotypes for gene: SV2A were set to Epilepsy, MONDO:0005027
Review for gene: SV2A was set to GREEN
Added comment: Monoallelic variants cause epilepsy. Biallelic variant in this 5yo (Hom p.Arg383Gln) reported to cause severe phenotype of drug-resistant epileptic encephalopathy with microcephaly, DD, movement disorder and growth retardation. Consanguineous.
This paper references 5 other families with both AR & AD
Family #1 – p.Arg383Gln, AR, 2 affected in family, parents healthy carriers
Family #2 – p.Arg570Cys, AD, 2 affected, inherited from affected mother
Family #3 – p.Gly660Arg, AD, de novo
Family #4 – p.Gly660Arg, AD, segregated in 11 family members
Family #5 (this study) – p.Arg289Ter, AR, parents and 2 sibs asymptomatic carriers
Sources: Literature
Mendeliome v1.1401 MARK4 Rylee Peters changed review comment from: Missense variant, c.604T>C; p.Phe202Leu, identified in two siblings with childhood-onset neurodevelopmental disorder characterised by global developmental delay, intellectual disability, behavioural abnormalities, and dysmorphic features. The variant is located in the catalytic domain of the kinase, and is inherited from unaffected mosaic mother.

Functional investigation revealed that the variant results in a gain-of-function in the ability of MARK4 to phosphorylate tau and leads to up-regulation of the mTORC1 pathway.
Sources: Literature; to: Heterozygous missense variant, c.604T>C; p.Phe202Leu, identified in two siblings with childhood-onset neurodevelopmental disorder characterised by global developmental delay, intellectual disability, behavioural abnormalities, and dysmorphic features. The variant is located in the catalytic domain of the kinase, and is inherited from unaffected mosaic mother.

Functional investigation revealed that the variant results in a gain-of-function in the ability of MARK4 to phosphorylate tau and leads to up-regulation of the mTORC1 pathway.
Sources: Literature
Mendeliome v1.1401 MARK4 Rylee Peters gene: MARK4 was added
gene: MARK4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MARK4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MARK4 were set to PMID: 38041405
Phenotypes for gene: MARK4 were set to neurodevelopmental disorder (MONDO:0700092), MARK4-related
Mode of pathogenicity for gene: MARK4 was set to Other
Review for gene: MARK4 was set to AMBER
gene: MARK4 was marked as current diagnostic
Added comment: Missense variant, c.604T>C; p.Phe202Leu, identified in two siblings with childhood-onset neurodevelopmental disorder characterised by global developmental delay, intellectual disability, behavioural abnormalities, and dysmorphic features. The variant is located in the catalytic domain of the kinase, and is inherited from unaffected mosaic mother.

Functional investigation revealed that the variant results in a gain-of-function in the ability of MARK4 to phosphorylate tau and leads to up-regulation of the mTORC1 pathway.
Sources: Literature
Mendeliome v1.1401 SEL1L Sarah Pantaleo gene: SEL1L was added
gene: SEL1L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SEL1L was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SEL1L were set to PMID: 37943610; PMID: 37943617
Phenotypes for gene: SEL1L were set to Neurodevelopmental disorder, MONDO:0700092, SEL1L-related
Penetrance for gene: SEL1L were set to Complete
Added comment: Wang paper PMID: 37943610

SEL1L protein is involved in the SEL1L-HRD1 endoplasmic reticulum (ER)-associated degradation.

Report two biallelic missense variants in SEL1L in six children from three independent families presenting with developmental delay, intellectual disability, microcephaly, facial dysmorphisms, hypotonia and/or ataxia (termed ERAD-associated neurodevelopment disorder with onset in infancy (ENDI). The variants were hypomorphic and impaired ERAD function.

Identified by WES. Parents heterozygous and asymptomatic. P.(Gly585Asp) in Patient 1, p.(Met528Arg) in Patients 2 and 3 (siblings).

All variants cause substrate accumulation. The extent of substrate accumulation in knockin cells was modest compared to those in knockout cells, pointing to a hypomorphic nature.

They also had a variant in HRD1.



Weis paper PMID: 37943617

Third variant p.(Cys141Tyr), biallelic, causing premature death in five patients from a consanguineous family with early-onset neurodevelopmental disorders and agammaglobulinaemia due to severe SEL1L-HRD1 ERAD dysfunction.

This variant appears to have a more severe outcome, exhibiting B cell depletion and agammaglobulinaemia, causing the most severe dysfunction among all of the variants described by this group so far. They postulate that functionality of SEL1L-HRD1 ERAD is inversely correlated with disease severity in humans.

Their symptoms were dev delay, neurological disorder and agammaglobulinaemia in childhood. Along with severe axial hypotonia, short stature and microcephaly.

“Not a complete loss-of-function variant”.
Sources: Literature
Mendeliome v1.1401 PPID Elena Savva gene: PPID was added
gene: PPID was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PPID was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PPID were set to 37977818
Phenotypes for gene: PPID were set to Stutter disorder, (MONDO:0000723), PPID-related
Review for gene: PPID was set to RED
Added comment: PMID: 37977818 - a large family (10 affected confirmed to have the variant) with stuttering/language disorder and a het missense (p.(Pro270Ser)). Mouse K/I model showed microstructural changes in the corticospinal tract
Sources: Literature
Mendeliome v1.1400 ACBD6 Lucy Spencer edited their review of gene: ACBD6: Added comment: PMID: 37951597
Much larger cohort with - 45 individuals from 28 families with a neurodevelopmental syndrome with complex and progressive movement disorder phenotype. 18 PTCs and splice, 1 missense 1 in frame insertion.

Phenotypes: weight was >50th percentile in 20/34 patients, all mod-severe GDD, facial dysmorphism in 38/40, mild cerebellar ataxia 35/41, limb spasticity/hypertonia 31/41, gait abnormalities in 33/35.; Changed publications: 37951597
Mendeliome v1.1400 PRPF19 Dean Phelan gene: PRPF19 was added
gene: PRPF19 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRPF19 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PRPF19 were set to PMID: 37962958
Phenotypes for gene: PRPF19 were set to Neurodevelopmental disorder (MONDO:0700092), PRPF19-related
Review for gene: PRPF19 was set to GREEN
Added comment: PMID: 37962958
Six unrelated individuals with de novo variants. Five had speech language motor delay, four had formal diagnosis of autism, three hypotonia and one fetus with multiple congenital abnormalities.
Sources: Literature
Mendeliome v1.1396 TRAPPC4 Zornitza Stark Phenotypes for gene: TRAPPC4 were changed from intellectual disability; epilepsy; spasticity; microcephaly to Neurodevelopmental disorder with epilepsy, spasticity, and brain atrophy, MIM# 618741
Mendeliome v1.1395 TRAPPC4 Zornitza Stark edited their review of gene: TRAPPC4: Changed phenotypes: Neurodevelopmental disorder with epilepsy, spasticity, and brain atrophy, MIM# 618741
Mendeliome v1.1394 WBP4 Zornitza Stark reviewed gene: WBP4: Rating: GREEN; Mode of pathogenicity: None; Publications: 37963460; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, WBP4-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1387 WNK3 Zornitza Stark Phenotypes for gene: WNK3 were changed from Neurodevelopmental disorder, WNK3-related (MONDO#0700092) to Prieto syndrome, MIM# 309610
Mendeliome v1.1380 DOT1L Zornitza Stark gene: DOT1L was added
gene: DOT1L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DOT1L was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DOT1L were set to 37827158
Phenotypes for gene: DOT1L were set to Neurodevelopmental disorder, MONDO:0700092, DOT1L-related
Mode of pathogenicity for gene: DOT1L was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: DOT1L was set to GREEN
Added comment: Nine individuals reported with seven de novo missense variants.

All had DD/ID and variable patterns of associated congenital anomalies.

Variants demonstrated to be GoF and lead to increased H3K79 methylation levels in flies and human cells.
Sources: Literature
Mendeliome v1.1369 KCNA3 Zornitza Stark reviewed gene: KCNA3: Rating: GREEN; Mode of pathogenicity: None; Publications: 37964487; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, KCNA3-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1367 TOMM7 Zornitza Stark Phenotypes for gene: TOMM7 were changed from Inborn mitochondrial disorder MONDO:0004069, TOMM7-related to Garg-Mishra progeroid syndrome, MIM# 620601
Mendeliome v1.1345 MAN2B2 Zornitza Stark Phenotypes for gene: MAN2B2 were changed from Congenital disorder of glycosylation; immunodeficiency to Congenital disorder of glycosylation, MONDO:0015286, MAN2B2-related; immunodeficiency
Mendeliome v1.1343 ELP1 Ain Roesley Phenotypes for gene: ELP1 were changed from Dysautonomia, familial MIM#223900; paediatric medulloblastoma to Dysautonomia, familial MIM#223900; paediatric medulloblastoma; neurodevelopmental disorder, MONDO:0700092, ELP1-related
Mendeliome v1.1340 ELP1 Ain Roesley reviewed gene: ELP1: Rating: RED; Mode of pathogenicity: None; Publications: 36864284; Phenotypes: neurodevelopmental disorder, MONDO:0700092, ELP1-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1338 SGSM3 Dean Phelan gene: SGSM3 was added
gene: SGSM3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SGSM3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SGSM3 were set to PMID: 37833060
Phenotypes for gene: SGSM3 were set to Neurodevelopmental disorder (MONDO:0700092), SGSM3-related
Review for gene: SGSM3 was set to AMBER
Added comment: PMID: 37833060
- 13 patients from 8 families of Ashkenazi Jewish origin all had the same homozygous frameshift variant (c.981dup). Predicted to cause NMD. The variant co-segregated with disease in all available family members. The affected individuals displayed mild global developmental delay and mild to moderate intellectual disability. Additional prevalent phenotypes observed included hypotonia, behavioural challenges and short stature. Considered a founder variant (1 in 52 Ashkenazi Jews carry the variant). Also present in other populations but no homozygotes in gnomAD.
Sources: Literature
Mendeliome v1.1338 LRRC23 Elena Savva Phenotypes for gene: LRRC23 were changed from Non-syndromic male infertility due to sperm motility disorder, (MONDO:0017173), LRRC23-related to Non-syndromic male infertility due to sperm motility disorder, (MONDO:0017173), LRRC23-related
Mendeliome v1.1337 LRRC23 Elena Savva Phenotypes for gene: LRRC23 were changed from Non-syndromic male infertility due to sperm motility disorder MONDO:0017173 to Non-syndromic male infertility due to sperm motility disorder, (MONDO:0017173), LRRC23-related
Mendeliome v1.1335 AGPAT3 Ee Ming Wong gene: AGPAT3 was added
gene: AGPAT3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: AGPAT3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: AGPAT3 were set to 37821758
Phenotypes for gene: AGPAT3 were set to Neurodevelopmental disorder (MONDO#0700092), AGPAT3-related
Review for gene: AGPAT3 was set to GREEN
gene: AGPAT3 was marked as current diagnostic
Added comment: - Single consanguineous family with four individuals with severe intellectual disability and retinitis pigmentosa
- All affected individuals were homozygous for a nonsense variant in AGPAT3, healthy unaffected individuals who were tested were heterozygous for the variant
- Overexpression of mutant transcript revealed absence of AGPAT3 protein compared to WT transcript via Western blot analysis
- KO AGPAT3 mouse demonstrated impaired neuronal migration
Sources: Literature
Mendeliome v1.1333 DLG2 Elena Savva gene: DLG2 was added
gene: DLG2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DLG2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: DLG2 were set to PMID: 37860969
Phenotypes for gene: DLG2 were set to Intellectual disability (MONDO#0001071), DLG2-related
Review for gene: DLG2 was set to AMBER
Added comment: PMID: 37860969 - 13 patients from 10 families with neurodevelopmental disorders, dysmorphic features and intragenic deletions including both exonic (minimal affect all transcripts) and UTR regions.
Majority of variants were inherited, some de novo. But many NMD PTCs in gnomAD (some looking messy, in noncanonical transcript etc.)
Sources: Literature
Mendeliome v1.1330 LRRC23 Belinda Chong gene: LRRC23 was added
gene: LRRC23 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LRRC23 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LRRC23 were set to 37804054
Phenotypes for gene: LRRC23 were set to Non-syndromic male infertility due to sperm motility disorder MONDO:0017173
Review for gene: LRRC23 was set to RED
Added comment: PMID 37804054: A homozygous nonsense mutation in LRRC23 (c.376C>T: p. Arg126X) in an infertile AZS patient whose parents were consanguineous. We verified the adversity of this novel mutation because of its ability to disrupt LRRC23 synthesis and impair RSs integrity. Furthermore, we demonstrated an interaction between LRRC23 and RSPH3 in vitro, indicating that LCCR23 is associated with RS in humans. Meanwhile, the LRRC23-mutant patient had a good prognosis following intracytoplasmic sperm injection.
Sources: Literature
Mendeliome v1.1330 CASP2 Lisa Norbart gene: CASP2 was added
gene: CASP2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CASP2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CASP2 were set to 37880421
Phenotypes for gene: CASP2 were set to neurodevelopmental disorder MONDO:0700092, CASP2-related
Penetrance for gene: CASP2 were set to Complete
Review for gene: CASP2 was set to GREEN
gene: CASP2 was marked as current diagnostic
Added comment: 7 patients from 5 families
4 families hom for PTCs, 1 family Chet for splice+PTC
RNA studies done for the splice to indicate usage of two cryptic splice donor sites

5/5 have ID/dev delay
1/5 has seizures
2/5 hypotonia
3/5 lissencephaly (pachygyria and cortical thickening)
Sources: Literature
Mendeliome v1.1321 KDM5B Zornitza Stark Phenotypes for gene: KDM5B were changed from Mental retardation, autosomal recessive 65 MIM#618109; Intellectual disability and/or autism, autosomal dominant to Mental retardation, autosomal recessive 65 MIM#618109; Neurodevelopmental disorder (MONDO#0700092), KDM5B-related, autosomal dominant
Mendeliome v1.1320 KDM5B Lauren Rogers reviewed gene: KDM5B: Rating: ; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder (MONDO#0700092), KDM5B-related, Intellectual developmental disorder, autosomal recessive 65 (MIM#618109); Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.1319 PTPN4 Bryony Thompson changed review comment from: >3 unrelated probands and supporting mouse model
PMID: 17953619 - knockout mouse model has impaired motor learning and cerebellar synaptic plasticity
PMID: 25424712 - twins with a de novo whole gene deletion and a Rett-like neurodevelopmental disorder
PMID: 30238967 - mosaic de novo variant (p.Leu72Ser) identified in a child with developmental delay, autistic features, hypotonia, increased immunoglobulin E and dental problems. Also supporting mouse assays demonstrating loss of protein expression in dendritic spines
DOI: https://doi.org/10.1016/j.xhgg.2021.100033 - missense and truncating variants in six unrelated individuals with varying degrees of intellectual disability or developmental delay. 5 were able to undergo segregation analysis and found to be de novo.
Sources: Literature; to: >3 unrelated probands and supporting mouse model
PMID: 17953619 - knockout mouse model has impaired motor learning and cerebellar synaptic plasticity
PMID: 25424712 - twins with a de novo whole gene deletion and a Rett-like neurodevelopmental disorder
PMID: 30238967 - mosaic de novo variant (p.Leu72Ser) identified in a child with developmental delay, autistic features, hypotonia, increased immunoglobulin E and dental problems. Also supporting mouse assays demonstrating loss of protein expression in dendritic spines
PMID: 34527963 - missense and truncating variants in six unrelated individuals with varying degrees of intellectual disability or developmental delay. 5 were able to undergo segregation analysis and found to be de novo.
Sources: Literature
Mendeliome v1.1319 ZFHX3 Zornitza Stark Phenotypes for gene: ZFHX3 were changed from Intellectual disability to Neurodevelopmental disorder, MONDO:0700092, ZFHX3-related
Mendeliome v1.1318 ZFHX3 Zornitza Stark edited their review of gene: ZFHX3: Added comment: 41 individuals with protein truncating variants (PTVs) or (partial) deletions of ZFHX3. Presentations included (mild) ID and/or behavioural problems, postnatal growth retardation, feeding difficulties, dysmorphism (rarely cleft palate). Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation in neural stem cells and SH-SY5Y cells, ZFHX3 interacts with the chromatin remodelling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex. ZFHX3 haploinsufficiency associates with a specific DNA methylation profile in leukocyte-derived DNA, and participates in chromatin remodelling and mRNA processing.; Changed publications: 37292950; Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, ZFHX3-related
Mendeliome v1.1314 COG3 Zornitza Stark Phenotypes for gene: COG3 were changed from Neurodevelopmental disorder (MONDO#0700092), COG3-related to Congenital disorder of glycosylation, type IIbb, MIM# 620546
Mendeliome v1.1313 COG3 Zornitza Stark reviewed gene: COG3: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Congenital disorder of glycosylation, type IIbb, MIM# 620546; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.1306 ZFHX3 Chirag Patel reviewed gene: ZFHX3: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 37292950; Phenotypes: Neurodevelopmental disorder; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v1.1306 KDM2B Ain Roesley edited their review of gene: KDM2B: Changed phenotypes: neurodevelopmental disorder MONDO#0700092, KDM2B-related
Mendeliome v1.1306 KDM2B Ain Roesley Phenotypes for gene: KDM2B were changed from neurodevelopmental disorder MONDO#070009, KDM2B-related to neurodevelopmental disorder MONDO#0700092, KDM2B-related
Mendeliome v1.1286 KCNH5 Zornitza Stark Phenotypes for gene: KCNH5 were changed from Neurodevelopmental disorder MONDO#0700092, KCNH5-related to Developmental and epileptic encephalopathy 112, MIM# 620537
Mendeliome v1.1283 U2AF2 Zornitza Stark Phenotypes for gene: U2AF2 were changed from Neurodevelopmental disorder MONDO:0700092, U2AF2-related to Developmental delay, dysmorphic facies, and brain anomalies, MIM# 620535
Mendeliome v1.1281 ETS1 Zornitza Stark Phenotypes for gene: ETS1 were changed from Intellectual disability to Neurodevelopmental disorder, MONDO:0700092, ETS1-related
Mendeliome v1.1280 ETS1 Zornitza Stark edited their review of gene: ETS1: Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, ETS1-related
Mendeliome v1.1278 EPHA7 Zornitza Stark Phenotypes for gene: EPHA7 were changed from Intellectual disability to Neurodevelopmental disorder MONDO:0700092,EPHA7-related
Mendeliome v1.1277 EPHA7 Zornitza Stark edited their review of gene: EPHA7: Changed phenotypes: Neurodevelopmental disorder MONDO:0700092,EPHA7-related
Mendeliome v1.1275 ELMOD1 Zornitza Stark Phenotypes for gene: ELMOD1 were changed from Intellectual disability to Neurodevelopmental disorder MONDO:0700092,ELMOD1-related
Mendeliome v1.1274 ELMOD1 Zornitza Stark edited their review of gene: ELMOD1: Changed phenotypes: Neurodevelopmental disorder MONDO:0700092,ELMOD1-related
Mendeliome v1.1272 EEF1D Zornitza Stark Phenotypes for gene: EEF1D were changed from Intellectual disability to Neurodevelopmental disorder MONDO:0700092, EEF1D-related
Mendeliome v1.1271 EEF1D Zornitza Stark edited their review of gene: EEF1D: Changed phenotypes: Neurodevelopmental disorder MONDO:0700092, EEF1D-related
Mendeliome v1.1270 DSCR3 Zornitza Stark Phenotypes for gene: DSCR3 were changed from Intellectual disability, no OMIM # yet to Neurodevelopmental disorder (MONDO:0700092), DSCR3-related
Mendeliome v1.1269 DSCR3 Zornitza Stark edited their review of gene: DSCR3: Changed phenotypes: Neurodevelopmental disorder (MONDO:0700092), DSCR3-related
Mendeliome v1.1262 MYCN Elena Savva Phenotypes for gene: MYCN were changed from Feingold syndrome 1; megalencephaly; ventriculomegaly; hypoplastic corpus callosum; intellectual disability; polydactyly; neuroblastoma to Neurodevelopmental disorder (MONDO:0700092), MYCN-related; Feingold syndrome 1 MIM#164280
Mendeliome v1.1252 MYCN Naomi Baker reviewed gene: MYCN: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID:37710961; Phenotypes: Neurodevelopmental disorder (MONDO:0700092), MYCN-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1251 COG3 Daniel Flanagan gene: COG3 was added
gene: COG3 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: COG3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COG3 were set to PMID: 37711075
Phenotypes for gene: COG3 were set to Neurodevelopmental disorder (MONDO#0700092), COG3-related
Review for gene: COG3 was set to AMBER
Added comment: Two COG3 homozygous missense variants in four individuals from two unrelated consanguineous families. Clinical phenotypes of affected individuals include global developmental delay, severe intellectual disability, microcephaly, epilepsy, facial dysmorphism, and variable neurological findings.
Sources: Expert list
Mendeliome v1.1251 ATP2B2 Zornitza Stark Phenotypes for gene: ATP2B2 were changed from Deafness, autosomal dominant 82, MIM# 619804; {Deafness, autosomal recessive 12, modifier of}, MIM# 601386 to Deafness, autosomal dominant 82, MIM# 619804; Neurodevelopmental Disorder, MONDO:0700092, ATP2B2-related
Mendeliome v1.1249 MAST4 Ain Roesley gene: MAST4 was added
gene: MAST4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MAST4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MAST4 were set to 36910266; 33057194
Phenotypes for gene: MAST4 were set to neurodevelopmental disorder MONDO:0700092, MAST4-related
Penetrance for gene: MAST4 were set to Complete
Review for gene: MAST4 was set to GREEN
gene: MAST4 was marked as current diagnostic
Added comment: PMID: 36910266 - 4 families with 4 affecteds, all de novo missense

2x borderline microcephaly (-2SD)
2x gross motor delay
2x dysmorphism
4x ID + seizures
3x abnormal brain MRI findings

PMID: 33057194 - 5x de novos, 4x missense + 1x PTC
Cohort of individuals with severe developmental disorder
individual phenotypic information not provided


Recurrent variants are Thr1471Ile (3x) and Ser1181Phe)
Sources: Literature
Mendeliome v1.1247 ZBTB47 Elena Savva gene: ZBTB47 was added
gene: ZBTB47 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZBTB47 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ZBTB47 were set to 37743782
Phenotypes for gene: ZBTB47 were set to Neurodevelopmental disorder (MONDO#0700092), ZBTB47-related
Review for gene: ZBTB47 was set to GREEN
Added comment: PMID 37743782:
- 5 patients with de novo missense, 4/5 have a recurring p.Gly477Lys. Probands have intellectual disability (5/5), seizures (5/5), hypotonia (5/5), gait abnormalities, and variable movement abnormalities (5/5).
- Missense variants are positioned close to His and Cys residues involved in forming C2H2 zinc fingers.
- No functional studies performed
- Minimal PTCs in gnomAD
Sources: Literature
Mendeliome v1.1245 ATP2B2 Andrew Fennell reviewed gene: ATP2B2: Rating: GREEN; Mode of pathogenicity: Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments; Publications: PMID: 37675773; Phenotypes: Neurodevelopmental Disorder, MONDO:0700092, ATP2B2-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1243 DHX32 Zornitza Stark Phenotypes for gene: DHX32 were changed from Intellectual disability, spastic diplegia, dystonia, brain abnormalities to Neurodevelopmental disorder, MONDO:0700092, DHX32-related
Mendeliome v1.1241 DDX54 Zornitza Stark Phenotypes for gene: DDX54 were changed from Intellectual disability; congenital anomalies to Neurodevelopmental disorder, MONDO:0700092, DDX54-related
Mendeliome v1.1240 DDX54 Zornitza Stark edited their review of gene: DDX54: Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, DDX54-related
Mendeliome v1.1240 DDX23 Zornitza Stark Phenotypes for gene: DDX23 were changed from DDX23-associated neurodevelopmental disorder to Neurodevelopmental disorder, MONDO:0700092, DDX23-related
Mendeliome v1.1239 DDX23 Zornitza Stark edited their review of gene: DDX23: Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, DDX23-related
Mendeliome v1.1239 CSNK1G1 Zornitza Stark Phenotypes for gene: CSNK1G1 were changed from Global developmental delay; Intellectual disability; Autism; Seizures to Neurodevelopmental disorder, MONDO:0700092, CSNK1G-related
Mendeliome v1.1238 CSNK1G1 Zornitza Stark edited their review of gene: CSNK1G1: Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, CSNK1G-related
Mendeliome v1.1234 CTNND2 Zornitza Stark Phenotypes for gene: CTNND2 were changed from Intellectual disability; Autism; Epilepsy to Neurodevelopmental disorder, MONDO:0700092, CTNND2-related
Mendeliome v1.1231 CSGALNACT1 Zornitza Stark Phenotypes for gene: CSGALNACT1 were changed from Congenital disorders of glycosylation; skeletal dysplasia; advanced bone age to Skeletal dysplasia, mild, with joint laxity and advanced bone age, MIM# 618870
Mendeliome v1.1230 CSDE1 Zornitza Stark Phenotypes for gene: CSDE1 were changed from Autism; intellectual disability; seizures; macrocephaly to Neurodevelopmental disorder, MONDO:0700092, CSDE1-related
Mendeliome v1.1229 CSDE1 Zornitza Stark edited their review of gene: CSDE1: Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, CSDE1-related
Mendeliome v1.1226 SNAPC4 Zornitza Stark Phenotypes for gene: SNAPC4 were changed from Neurodevelopmental disorder (MONDO#0700092), SNAPC4-related to Neurodevelopmental disorder with motor regression, progressive spastic paraplegia, and oromotor dysfunction, MIM# 620515
Mendeliome v1.1222 CNTN6 Zornitza Stark Phenotypes for gene: CNTN6 were changed from Intellectual disability; autism; Tourette syndrome; schizophrenia to Neurodevelopmental disorder, MONDO:0700092, CNTN6-related
Mendeliome v1.1221 CNTN6 Zornitza Stark edited their review of gene: CNTN6: Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, CNTN6-related
Mendeliome v1.1221 CNTN3 Zornitza Stark Phenotypes for gene: CNTN3 were changed from Intellectual disability to Neurodevelopmental disorder, MONDO:0700092, CNTN3-related
Mendeliome v1.1219 CNKSR1 Zornitza Stark Phenotypes for gene: CNKSR1 were changed from Intellectual disability to Neurodevelopmental disorder, MONDO:0700092, CNKSR1-related
Mendeliome v1.1218 CMAS Zornitza Stark Phenotypes for gene: CMAS were changed from Intellectual disability to Neurodevelopmental disorder, MONDO:0700092, CMAS-related
Mendeliome v1.1216 NCKAP1 Ain Roesley Phenotypes for gene: NCKAP1 were changed from Intellectual disability; autism to Neurodevelopmental disorder (MONDO#0700092)​​​​​​​, NCKAP1-related
Mendeliome v1.1212 CDK5R1 Zornitza Stark Phenotypes for gene: CDK5R1 were changed from Intellectual disability; autism to Neurodevelopmental disorder, MONDO:0700092, CDK5R1-related
Mendeliome v1.1211 CDK5R1 Zornitza Stark edited their review of gene: CDK5R1: Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, CDK5R1-related
Mendeliome v1.1211 ASTN2 Zornitza Stark Phenotypes for gene: ASTN2 were changed from Intellectual disability to Neurodevelopmental disorder, MONDO:0700092, ASTN2-related
Mendeliome v1.1208 CAPZA2 Zornitza Stark Phenotypes for gene: CAPZA2 were changed from intellectual disability to Neurodevelopmental disorder, MONDO:0700092, CAPZA2-related
Mendeliome v1.1205 BLOC1S1 Zornitza Stark Phenotypes for gene: BLOC1S1 were changed from severe intellectual disability; severe global developmental delay; epilepsy to Neurodevelopmental disorder, MONDO:0700092, BLOC1S1-related
Mendeliome v1.1204 BLOC1S1 Zornitza Stark edited their review of gene: BLOC1S1: Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, BLOC1S1-related
Mendeliome v1.1200 ATXN2L Zornitza Stark Phenotypes for gene: ATXN2L were changed from macrocephaly; intellectual disability to Neurodevelopmental disorder, MONDO:0700092, ATXN2L-related
Mendeliome v1.1196 ASTN2 Zornitza Stark edited their review of gene: ASTN2: Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, ASTN2-related
Mendeliome v1.1194 ARHGAP29 Zornitza Stark Phenotypes for gene: ARHGAP29 were changed from Cleft palate; cleft lip with or without cleft palate to Clefting disorder, MONDO:0000358, ARHGAP29-related
Mendeliome v1.1193 ARHGAP29 Zornitza Stark edited their review of gene: ARHGAP29: Changed phenotypes: Clefting disorder, MONDO:0000358, ARHGAP29-related
Mendeliome v1.1191 ARF3 Zornitza Stark Phenotypes for gene: ARF3 were changed from Global developmental delay; Intellectual disability; Seizures; Morphological abnormality of the central nervous system to Neurodevelopmental disorder, MONDO:0700092, ARF3-related
Mendeliome v1.1183 ALG10 Zornitza Stark Phenotypes for gene: ALG10 were changed from Progressive myoclonus epilepsy; CDG to Congenital disorder of glycosylation, MONDO:0015286, ALG10-related
Mendeliome v1.1182 ALG10 Zornitza Stark edited their review of gene: ALG10: Changed phenotypes: Congenital disorder of glycosylation, MONDO:0015286, ALG10-related
Mendeliome v1.1180 AKAP6 Zornitza Stark Phenotypes for gene: AKAP6 were changed from Intellectual disability to Neurodevelopmental disorder, MONDO:0700092, AKAP6-related
Mendeliome v1.1179 AKAP6 Zornitza Stark edited their review of gene: AKAP6: Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, AKAP6-related
Mendeliome v1.1179 AGO3 Zornitza Stark Phenotypes for gene: AGO3 were changed from Intellectual disability to Neurodevelopmental disorder, MONDO:0700092, AGO3-related
Mendeliome v1.1178 AGMO Zornitza Stark Phenotypes for gene: AGMO were changed from microcephaly; intellectual disability; epilepsy to Neurodevelopmental disorder, MONDO:0700092, AGMO-related
Mendeliome v1.1177 AGMO Zornitza Stark reviewed gene: AGMO: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, AGMO-related; Mode of inheritance: None
Mendeliome v1.1177 ACTL6A Zornitza Stark Phenotypes for gene: ACTL6A were changed from Intellectual disability to Neurodevelopmental disorder, MONDO:0700092, ACTL6A-related
Mendeliome v1.1176 ACTL6A Zornitza Stark edited their review of gene: ACTL6A: Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, ACTL6A-related
Mendeliome v1.1167 GABBR1 Zornitza Stark Phenotypes for gene: GABBR1 were changed from Neurodevelopmental disorder, GABBR1-related, MONDO:0700092 to Neurodevelopmental disorder with language delay and variable cognitive abnormalities, MIM#620502
Mendeliome v1.1166 GABBR1 Zornitza Stark edited their review of gene: GABBR1: Changed phenotypes: Neurodevelopmental disorder with language delay and variable cognitive abnormalities, MIM#620502
Mendeliome v1.1165 FTCD Bryony Thompson edited their review of gene: FTCD: Changed publications: http://iembase.com/disorder/47
Mendeliome v1.1165 FTCD Bryony Thompson changed review comment from: Well-established gene-disease association (see OMIM entry). Glutamate formiminotransferase deficiency is classified as a metabolic disorder by the NIH GARD (https://rarediseases.info.nih.gov/diseases/diseases-by-category/14/metabolic-disorders), and is an inborn error of amino acid metabolism.
Sources: NHS GMS; to: Glutamate formiminotransferase deficiency is classified as a benign form of folate metabolism disorder and an inborn error of amino acid metabolism without clinically significant phenotype (http://iembase.com/disorder/47).
Mendeliome v1.1162 COL4A3BP Zornitza Stark Phenotypes for gene: COL4A3BP were changed from Mental retardation, autosomal dominant 34, MIM# 616351 to Intellectual developmental disorder 34 (MIM#616351)
Mendeliome v1.1158 DBR1 Zornitza Stark edited their review of gene: DBR1: Added comment: PMID: 37656279:
- A homozygous missense as a founder recessive DBR1 variant in four consanguineous families.
- Total of 7 affected children. WES done for one proband from each family.
- Consistent features include prematurity, severe intrauterine growth deficiency, congenital ichthyosis-like presentation (collodion membrane, severe skin peeling and xerosis), and death before the first year of life.
- RNA and protein studies using fibroblasts derived from a patient are supportive of pathogenicity: RNA-seq, rt-qPCR and western blotting, showing marked reduction of DBR1 level and intronic RNA lariat accumulation in the patient sample.
- Haplotype analysis revealed that the four families all share a haplotype extending at least 2.27 Mb around the c.200A>G p.(Tyr67Cys) DBR1 founder variant.
- Authors proposed this is a novel DBR1-related developmental disorder that is distinct from DBR1-related encephalitis susceptibility, and highlighted the apparent lack of correlation with the degree of DBR1 deficiency.; Changed publications: 29474921, 37656279; Changed phenotypes: {Encephalitis, acute, infection (viral)-induced, susceptibility to, 11}, MIM# 619441, Viral infections of the brainstem, Ichthyosis (MONDO#0019269), DBR1-related
Mendeliome v1.1153 COL4A3BP Ee Ming Wong reviewed gene: COL4A3BP: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 36976648; Phenotypes: Intellectual developmental disorder 34 (MIM#616351); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v1.1152 RAB5C Rylee Peters gene: RAB5C was added
gene: RAB5C was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RAB5C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RAB5C were set to PMID: 37552066
Phenotypes for gene: RAB5C were set to Neurodevelopmental disorder MONDO:0700092, RAB5C-related
Penetrance for gene: RAB5C were set to Complete
Review for gene: RAB5C was set to GREEN
gene: RAB5C was marked as current diagnostic
Added comment: 12 individuals with nine different heterozygous de novo variants in RAB5C.
9 with missense, 1 inframe duplication and 2 stop-gains (clinically more severe).
All has mild-severe ID, 4/12 have epilepsy, 6/12 have macrocephaly (more than 3 SD).
Sources: Literature
Mendeliome v1.1148 PPP1R3F Andrew Fennell gene: PPP1R3F was added
gene: PPP1R3F was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PPP1R3F was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: PPP1R3F were set to 37531237
Phenotypes for gene: PPP1R3F were set to Neurodevelopmental Disorder, MONDO:0700092,PPP1R3F-related
Review for gene: PPP1R3F was set to GREEN
Added comment: Sources: Literature
Mendeliome v1.1142 SOX11 Zornitza Stark Phenotypes for gene: SOX11 were changed from Coffin-Siris syndrome 9, MIM# 615866; Congenital abnormalities of the kidneys and urinary tract to Intellectual developmental disorder with microcephaly and with or without ocular malformations or hypogonadotropic hypogonadism, MIM# 615866; Congenital abnormalities of the kidneys and urinary tract
Mendeliome v1.1140 SOX11 Zornitza Stark edited their review of gene: SOX11: Changed phenotypes: Intellectual developmental disorder with microcephaly and with or without ocular malformations or hypogonadotropic hypogonadism, MIM# 615866, Congenital abnormalities of the kidneys and urinary tract
Mendeliome v1.1130 UBAP2L Zornitza Stark Phenotypes for gene: UBAP2L were changed from Neurodevelopmental disorder, MONDO:0700092, UBAP2L-related to Neurodevelopmental disorder with impaired language, behavioral abnormalities, and dysmorphic facies, MIM# 620494
Mendeliome v1.1129 UBAP2L Zornitza Stark edited their review of gene: UBAP2L: Changed phenotypes: Neurodevelopmental disorder with impaired language, behavioral abnormalities, and dysmorphic facies, MIM# 620494
Mendeliome v1.1128 SRSF1 Zornitza Stark Phenotypes for gene: SRSF1 were changed from Neurodevelopmental disorder, SRSF1-related MONDO:0700092 to Neurodevelopmental disorder with dysmorphic facies and behavioral abnormalities, MIM# 620489
Mendeliome v1.1127 SRSF1 Zornitza Stark reviewed gene: SRSF1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with dysmorphic facies and behavioral abnormalities, MIM# 620489; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1127 TPM4 Zornitza Stark Phenotypes for gene: TPM4 were changed from Macrothrombocytopaenia to Bleeding disorder, platelet-type, 25, MIM# 620486
Mendeliome v1.1126 TPM4 Zornitza Stark edited their review of gene: TPM4: Changed phenotypes: Bleeding disorder, platelet-type, 25, MIM# 620486
Mendeliome v1.1125 NEUROG1 Achchuthan Shanmugasundram gene: NEUROG1 was added
gene: NEUROG1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NEUROG1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NEUROG1 were set to 23419067; 26077850; 33439489; 36647078
Phenotypes for gene: NEUROG1 were set to Cranial dysinnervation disorder, congenital, with absent corneal reflex and developmental delay, OMIM:620469
Review for gene: NEUROG1 was set to GREEN
Added comment: There are four unrelated cases reported with global developmental delay/ intellectual disability. Hence, this gene can be added with green rating in the intellectual disability panel.

PMID:23419067 - A homozygous micro deletion of NEUROG1 was identified in a six year-old boy presenting with profound sensorineural deafness, balance disorder, severe disorder of oral motor function, and mild global developmental delay. His IQ was normal.

PMID:26077850 - A homozygous NEUROG1 variant (p.Arg116Leu) was identified in a 12 year-old boy presented with syndromic corneal opacity, mild intellectual disability and absent corneal reflex.

PMID:33439489 - A homozygous loss-of-function variant (p.Glu68Ter) was identified in a 12 year-old boy presenting with hypotonia, global developmental delay, sensorineural hearing loss, and keratoconjunctivitis due to lack of corneal reflex. This patient had a global IQ of 62 at the age of ten.

PMID:36647078 - A female proband was identified with a novel homozygous truncating frameshift variant (p.Thr78ProfsTer122 and was reported with profound global developmental delay, autism spectrum disorder, hearing loss, corneal opacity and no eye blinking. Her sister also had a similar, but less severe phenotype and also harboured the same variant at homozygous state.

This gene has been associated with relevant phenotypes in OMIM (MIM #620469), but not in Gene2Phenotype.
Sources: Literature
Mendeliome v1.1119 ACTB Zornitza Stark Phenotypes for gene: ACTB were changed from Baraitser-Winter syndrome 1 243310; ACTB-related neurodevelopment disorder to Baraitser-Winter syndrome 1 243310; Thrombocytopenia 8, with dysmorphic features and developmental delay, MIM# 620475; ACTB-related neurodevelopment disorder
Mendeliome v1.1115 FBXO31 Zornitza Stark Phenotypes for gene: FBXO31 were changed from Mental retardation, autosomal recessive 45, MIM#615979; Cerebral palsy, MONDO:0006497, FBXO31-related; Spastic-dystonic cerebral palsy, intellectual disability, de novo dominant to Intellectual developmental disorder, autosomal recessive 45 (MIM#615979; Cerebral palsy, MONDO:0006497, FBXO31-related; Spastic-dystonic cerebral palsy, intellectual disability, de novo dominant
Mendeliome v1.1111 FBXO31 Ain Roesley reviewed gene: FBXO31: Rating: AMBER; Mode of pathogenicity: None; Publications: 35019165, 24623383; Phenotypes: Intellectual developmental disorder, autosomal recessive 45 (MIM#615979); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.1111 ZFHX4 Ain Roesley Phenotypes for gene: ZFHX4 were changed from Developmental disorders to neurodevelopmental disorder, ZFHX4-related (MONDO:0700092)
Mendeliome v1.1110 RNH1 Zornitza Stark Phenotypes for gene: RNH1 were changed from Neurodevelopmental disorder, MONDO:0700092, RNH1-related; encephalopathy, acute, infection-induced (MONDO:0000166), RNH1-related to Neurodevelopmental disorder, MONDO:0700092, RNH1-related; {Encephalopathy, acute, infection-induced, susceptibiliyt to, 12}, MIM# 620461
Mendeliome v1.1108 HNRNPC Zornitza Stark gene: HNRNPC was added
gene: HNRNPC was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HNRNPC was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: HNRNPC were set to 37541189
Phenotypes for gene: HNRNPC were set to Neurodevelopmental disorder (MONDO:0700092), HNRNPC-related
Review for gene: HNRNPC was set to GREEN
Added comment: 13 individuals with global developmental delay, intellectual disability, behavioral abnormalities, and subtle facial dysmorphology with heterozygous HNRNPC germline variants. Five had an identical in-frame deletion of nine amino acids in the extreme C terminus. Supportive functional data; haploinsufficiency is the mechanism.
Sources: Literature
Mendeliome v1.1107 PSMC3 Zornitza Stark Phenotypes for gene: PSMC3 were changed from Deafness, cataract, impaired intellectual development, and polyneuropathy, MIM#619354 to neurodevelopmental disorder, MONDO:0700092, PSMC3-related; Deafness, cataract, impaired intellectual development, and polyneuropathy, MIM#619354
Mendeliome v1.1103 PSMC3 Zornitza Stark edited their review of gene: PSMC3: Added comment: PMID:37256937 - 23 individuals with neurodevelopmental disorder was identified with 15 different de novo missense variants. Apart from one child (patient 2), all others had developmental delay characterised by speech delay (19/19) alone or with intellectual disability (16/18) and motor delay (15/19). In addition, structural modeling as well as proteomic and transcriptomic analyses of T cells derived from patients with PSMC3 variants implicated the PSMC3 variants in proteasome dysfunction through disruption of substrate translocation, induction of proteotoxic stress, and alterations in proteins controlling developmental and innate immune program.; Changed rating: GREEN; Changed publications: 32500975, 37256937; Changed phenotypes: neurodevelopmental disorder, MONDO:0700092, PSMC3-related, Deafness, cataract, impaired intellectual development, and polyneuropathy, MIM#619354; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.1074 EZH1 Zornitza Stark gene: EZH1 was added
gene: EZH1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EZH1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: EZH1 were set to 37433783
Phenotypes for gene: EZH1 were set to Neurodevelopmental disorder (MONDO:0700092), EZH1-related
Review for gene: EZH1 was set to GREEN
Added comment: PMID: 37433783
Variants were identified 19 individuals from 14 unrelated families, all sharing a clinical phenotype of a neurodevelopmental disorder manifested early in life as global motor, speech and cognitive delay leading to intellectual disability, usually non-progressive and co-occurring with dysmorphic facial features.

Functional studies have shown that some missense EZH1 variants lead to GOF with increased methyltransferase activity and recessive variants impair EZH1 expression causing loss of function effects.
Sources: Literature
Mendeliome v1.1071 PHF5A Daniel Flanagan gene: PHF5A was added
gene: PHF5A was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: PHF5A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PHF5A were set to PMID: 37422718
Phenotypes for gene: PHF5A were set to Neurodevelopmental disorder (MONDO#0700092), PHF5A-related
Review for gene: PHF5A was set to GREEN
Added comment: Nine subjects with congenital malformations, including hypospadias, growth abnormalities, and developmental delay who had de novo PHF5A variants. Prenatally, six subjects had intrauterine growth retardation. All subjects had motor and speech delay and developmental delay. Congenital abnormalities comprised hypospadias in three of four male subjects, and heart defects (3/9), inguinal hernia (3/9), and sacral dimple (3/9). Six of the nine subjects had short stature. Craniofacial dysmorphism is variable in the nine subjects, high forehead and preauricular skin tag(s) in five subjects.
Sources: Expert list
Mendeliome v1.1067 NAA30 Zornitza Stark Phenotypes for gene: NAA30 were changed from to neurodevelopmental disorder, MONDO:0700092, NAA30-related
Mendeliome v1.1064 STAB1 Chern Lim gene: STAB1 was added
gene: STAB1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: STAB1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: STAB1 were set to 37490907; 28052375
Phenotypes for gene: STAB1 were set to Iron metabolism disease (MONDO:0002279), STAB1-related
Review for gene: STAB1 was set to GREEN
gene: STAB1 was marked as current diagnostic
Added comment: PMID: 37490907
- Biallelic variants identified in 10 individuals from 7 families with unexplained hyperferritinaemia without iron overload. All of them were in good health and had no dysmorphologies, psycho-motor development abnormalities, hearing or vision disorders, or other pathologies.
- Homozygous/compound heterozygous variants: missense, frameshift, stopgain, inframe del of 3 AAs, one synonymous.
- Samples from three of the patients from two families showed no immunoreactivity with anti-stabilin-1 compared to control liver where high signal was detected in the liver sinusoids (immunohistochemistry analysis).
- Patients’ peripheral monocytes and monocyte-derived macrophages showed very little expression of stabilin-1 on CD14+ monocytes and macrophages compared to control subjects (flow cytometry analysis).
- These families have also been published in PMID: 28052375.
Sources: Literature
Mendeliome v1.1062 NAA30 Sarah Pantaleo edited their review of gene: NAA30: Changed phenotypes: neurodevelopmental disorder, MONDO:0700092, NAA30-related
Mendeliome v1.1062 STAT4 Melanie Marty changed review comment from: Baghdassarian et al (2023) Four patients from three unrelated families with disabling pansclerotic morphea (DPM, a rare inflammatory disorder), 3 x het missense variants identified, AD inheritance. All 4 patients had disease onset before 5 years of age, with signs of mucosal ulcerations and skin sclerosis. All variants occur in the SH2 domain. Functional studies showed a gain of function effect for these variants.; to: Baghdassarian et al (2023) Four patients from three unrelated families with disabling pansclerotic morphea (DPM, a rare inflammatory disorder), 3 x het missense variants identified, AD inheritance. All 4 patients had disease onset before 5 years of age, with signs of mucosal ulcerations and skin sclerosis. These variants occur in the SH2 domain. Functional studies showed a gain of function effect for these variants.
Mendeliome v1.1062 STAT4 Melanie Marty commented on gene: STAT4: Baghdassarian et al (2023) Four patients from three unrelated families with disabling pansclerotic morphea (DPM, a rare inflammatory disorder), 3 x het missense variants identified, AD inheritance. All 4 patients had disease onset before 5 years of age, with signs of mucosal ulcerations and skin sclerosis. All variants occur in the SH2 domain. Functional studies showed a gain of function effect for these variants.
Mendeliome v1.1062 STAT4 Melanie Marty edited their review of gene: STAT4: Changed phenotypes: Disabling pansclerotic morphea, inflammatory disorder, poor wound healing, fibrosis, cytopenias, hypogammaglobulinemia, squamous-cell carcinoma
Mendeliome v1.1061 PEX14 Lilian Downie reviewed gene: PEX14: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 37493040; Phenotypes: peroxisome biogenesis disorder due to PEX14 defect MONDO:0100268; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.1060 STAT4 Melanie Marty reviewed gene: STAT4: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 37256972; Phenotypes: Disabling pansclerotic morphea, inflammatory disorder; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.1057 SLC4A10 Krithika Murali gene: SLC4A10 was added
gene: SLC4A10 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC4A10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC4A10 were set to PMID: 37459438
Phenotypes for gene: SLC4A10 were set to Neurodevelopmental disorderMONDO:0700092, SLC4A10-related
Review for gene: SLC4A10 was set to GREEN
Added comment: PMID: 37459438 Fasham et al 2023 (Brain) report 10 affected individuals from 5 unrelated families with biallelic LoF variants in this gene with a novel neurodevelopmental disorder.

Phenotypic features include hypotonia in infancy, delayed psychomotor development, typically severe ID, progressive postnatal microcephaly, ASD traits, corpus callosal abnormalities and 'slit-like' lateral ventricles. These phenotypic features were recapitulated in knockout mice with additional supportive functional studies.

Isolated seizures was reported in 2/10 cases.
Sources: Literature
Mendeliome v1.1056 KDM4B Sarah Pantaleo reviewed gene: KDM4B: Rating: ; Mode of pathogenicity: None; Publications: PMID: 37526414; Phenotypes: Intellectual developmental disorder, autosomal dominant 65, MIM#619320; Mode of inheritance: None
Mendeliome v1.1054 STX5 Ain Roesley gene: STX5 was added
gene: STX5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: STX5 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: STX5 were set to congenital disorder of glycosylation MONDO#0015286, STX5-related
Review for gene: STX5 was set to AMBER
gene: STX5 was marked as current diagnostic
Added comment: 1x family with 3x deceased shortly after death + 3x spontaneous abortions + 2x abortions due to abnormal fatal ultrasound (US).
Hom for NM_003164.4:c.163 A > G p.(Met55Val), which results in complete loss of short isoform (which uses Met55 as the start)

phenotype: short long bones on US, dysmorphism, skeletal dysplasia, profound hypotonia, hepatomegaly elevated cholesterol.
Post-natally they died of progressive liver failure with cholestasis and hyperinsulinemic hypoglycemias

Primary human dermal fibroblasts isolated from these patients show defective glycosylation, altered Golgi morphology as measured by electron microscopy, mislocalization of glycosyltransferases, and compromised ER-Golgi trafficking
Sources: Literature
Mendeliome v1.1052 TEP1 Zornitza Stark gene: TEP1 was added
gene: TEP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TEP1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TEP1 were set to 34543729
Phenotypes for gene: TEP1 were set to Cerebral palsy, MONDO:0006497, TEP1-related
Review for gene: TEP1 was set to AMBER
Added comment: Wang et al. screened a large cohort of more than 600 CP patients from China and found several variants in TEP1, 11 of which were LoF, while no LoF variant was found in the control cohort. These children all had spastic CP. Among these 11 children, 6 children had birth asphyxia and neonatal encephalopathy. Compared to the total group with birth asphyxia (71/667), 6 patients with TEP1 LOF mutations had a significantly greater risk of birth asphyxia. They confirmed TEP1 as a risk factor for CP by cytological and animal models.

Uncertain if these are risk alleles vs indicative of a monogenic disorder. Note LoF variants in gnomad. As this was a cohort study, inheritance of these variants is unknown.
Sources: Literature
Mendeliome v1.1050 EIF4A2 Zornitza Stark Phenotypes for gene: EIF4A2 were changed from Neurodevelopmental disorder (MONDO:0700092), EIF4A2-related to Neurodevelopmental disorder with hypotonia and speech delay, with or without seizures, MIM# 620455
Mendeliome v1.1045 DHX9 Achchuthan Shanmugasundram gene: DHX9 was added
gene: DHX9 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DHX9 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DHX9 were set to 37467750
Phenotypes for gene: DHX9 were set to neurodevelopmental disorder, MONDO:0700092; intellectual disability, MONDO:0001071; Charcot-Marie-Tooth disease, MONDO:0015626
Review for gene: DHX9 was set to GREEN
Added comment: PMID:37467750 - 17 unrelated individuals were identified with de novo, ultra-rare, heterozygous missense or loss-of-function DHX9 variants, of which 14 individuals were reported with a neurodevelopmental disorder (NDD) and three were reported with Charcot-Marie-Tooth disease (CMT). All 14 cases with NDD had developmental delay, of which eight were reported with intellectual disability (4 severe, 1 moderate, 3 mild). Two cases did not have ID, one had borderline ID and three cases were too young (0-5 years old). The three cases with CMT presented with adult-onset axonal neuropathy.
Sources: Literature
Mendeliome v1.1041 WBP4 Zornitza Stark Phenotypes for gene: WBP4 were changed from Neurodevelopmental disorder, MONDO:0700092, WBP4-related to Neurodevelopmental disorder, MONDO:0700092, WBP4-related
Mendeliome v1.1040 WBP4 Zornitza Stark Phenotypes for gene: WBP4 were changed from Neurodevelopmental disorder to Neurodevelopmental disorder, MONDO:0700092, WBP4-related
Mendeliome v1.1039 KDM2A Zornitza Stark Phenotypes for gene: KDM2A were changed from Neurodevelopmental disorder to Neurodevelopmental disorder, MONDO:0700092, KDM2A-related
Mendeliome v1.1038 PIP5K1C Zornitza Stark Phenotypes for gene: PIP5K1C were changed from Lethal congenital contractural syndrome 3, MIM# 611369 to Neurodevelopmental disorder and microcephaly, MONDO:0700092, PIP5K1C-related; Lethal congenital contractural syndrome 3, MIM# 611369
Mendeliome v1.1030 CYHR1 Zornitza Stark Phenotypes for gene: CYHR1 were changed from Neurodevelopmental disorder and microcephaly to Neurodevelopmental disorder and microcephaly, MONDO:0700092, CYHR1-related
Mendeliome v1.1028 TAF4 Zornitza Stark Phenotypes for gene: TAF4 were changed from Neurodevelopmental disorder, MONDO:0700092, TAF4-related to Intellectual developmental disorder, autosomal dominant 73, MIM# 620450
Mendeliome v1.1027 TAF4 Zornitza Stark edited their review of gene: TAF4: Changed phenotypes: Intellectual developmental disorder, autosomal dominant 73, MIM# 620450
Mendeliome v1.1026 POPDC2 Zornitza Stark Phenotypes for gene: POPDC2 were changed from Sinus node dysfunction to Sinoatrial node disorder, MONDO:0000469, POPDC2-related
Mendeliome v1.1025 GPATCH11 Zornitza Stark Phenotypes for gene: GPATCH11 were changed from Leber congenital amaurosis and developmental delay to Neurodevelopmental disorder, MONDO:0700092, GPATCH11-related; Leber congenital amaurosis and developmental delay
Mendeliome v1.1024 KCNA3 Zornitza Stark Phenotypes for gene: KCNA3 were changed from Neurodevelopmental disorder to Neurodevelopmental disorder, MONDO:0700092, KCNA3-related
Mendeliome v1.1023 FSD1L Zornitza Stark Phenotypes for gene: FSD1L were changed from Neurodevelopmental disorder to Neurodevelopmental disorder, MONDO:0700092, FSD1L-related
Mendeliome v1.1022 DENND5B Zornitza Stark Phenotypes for gene: DENND5B were changed from Neurodevelopmental disorder with white matter anomalies to Neurodevelopmental disorder with white matter anomalies, MONDO:0700092, DENND5B-related
Mendeliome v1.1021 DMAP1 Zornitza Stark Phenotypes for gene: DMAP1 were changed from Neurodevelopmental disorder to Neurodevelopmental disorder, MONDO:0700092, DMAP1-related
Mendeliome v1.1017 HCN2 Zornitza Stark Phenotypes for gene: HCN2 were changed from Febrile seizures, familial, 2, MIM# 602477; Genetic epilepsy with febrile seizures plus; Other seizure disorders to Febrile seizures, familial, 2, MIM# 602477; Genetic epilepsy with febrile seizures plus; Other seizure disorders; Neurodevelopmental disorder (MONDO#0700092), HCN2-related
Mendeliome v1.1016 HCN2 Zornitza Stark edited their review of gene: HCN2: Added comment: ICG congress 2023: cohort presented with ID as key feature.; Changed phenotypes: Febrile seizures, familial, 2, MIM# 602477, Genetic epilepsy with febrile seizures plus, Other seizure disorders, Neurodevelopmental disorder (MONDO#0700092), HCN2-related
Mendeliome v1.1012 TTI1 Zornitza Stark Phenotypes for gene: TTI1 were changed from Neurodevelopmental disorder, MONDO:0700092, TTI1-related to Neurodevelopmental disorder with microcephaly and movement abnormalities, MIM# 620445
Mendeliome v1.1009 WBP4 Chirag Patel gene: WBP4 was added
gene: WBP4 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: WBP4 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: WBP4 were set to Neurodevelopmental disorder
Review for gene: WBP4 was set to GREEN
gene: WBP4 was marked as current diagnostic
Added comment: ESHG 2023:
11 individuals from 8 families with homozygous LOF variants in WBP4 gene (4 different variants). Presentation of severe DD and ID, hypotonia, abnormal outer ears, and varying congenital anomalies. WBP4 is spliceosome protein which binds/interacts with SNRNP200. In vivo and in vitro studies previously showed WBP4 enhances splicing and regulates alternative splicing. Patient fibroblasts showed loss of expression of WBP4. RNA sequencing analysis showed abnormal splicing patterns. Proposed spliceosomopathy.
Sources: Other
Mendeliome v1.1007 KDM2A Chirag Patel gene: KDM2A was added
gene: KDM2A was added to Mendeliome. Sources: Other
Mode of inheritance for gene: KDM2A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: KDM2A were set to Neurodevelopmental disorder
Review for gene: KDM2A was set to GREEN
gene: KDM2A was marked as current diagnostic
Added comment: ESHG 2023:
14 patients with de novo HTZ variants in KDM2A (5 x truncating, 9 x missense)
Presentation with DD, ID (mild), seizures, growth retardation, and dysmorphism.

Functional studies:
-patient blood showed aberrant genome wide methylation profile - potential episignature
-HEK293T cells showed altered subcellular localisation of KDM2A
-Drosophila models showed variants caused neurotoxicity
Sources: Other
Mendeliome v1.1005 PIP5K1C Chirag Patel reviewed gene: PIP5K1C: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder and microcephaly; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v1.991 CYHR1 Chirag Patel gene: CYHR1 was added
gene: CYHR1 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: CYHR1 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: CYHR1 were set to Neurodevelopmental disorder and microcephaly
Review for gene: CYHR1 was set to AMBER
Added comment: ESHG 2023:
5 individuals from 3 families with biallelic LOF variants in CYHR1 (aka ZTRAF1). Presentation with microcephaly, hypotonia, DD, and ID. Expression studies showed mislocalisation of CYHR1. Mutant fibroblasts showed increased lysosomal markers and upregulated lysosomal proteins, leading to impaired autophagy. Zebrafish KO however did not show a phenotype.
Sources: Other
Mendeliome v1.985 GPATCH11 Chirag Patel gene: GPATCH11 was added
gene: GPATCH11 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: GPATCH11 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: GPATCH11 were set to Leber congenital amaurosis and developmental delay
Review for gene: GPATCH11 was set to GREEN
gene: GPATCH11 was marked as current diagnostic
Added comment: ESHG 2023:
3 families with 8 individuals with leber congenital amaurosis, developmental delay, language disorder, and behavioural issues.
GPATCH11 localises to nucleus and basal body of primary cilium (similar to other LCA genes).
Biallelic variants found in GPATCH11 - 1 splice variant common to all 3 families (1 other variant in 3rd family). Splice variant leads to loss of exon 4 (mRNA studies).
Mouse models showed i) abnormal rod/cone responses on ERG; ii) decreased outer nuclear layer in retina, and iii) abnormal associate/episodic memory
Sources: Other
Mendeliome v1.982 KCNA3 Chirag Patel gene: KCNA3 was added
gene: KCNA3 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: KCNA3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: KCNA3 were set to Neurodevelopmental disorder
Review for gene: KCNA3 was set to GREEN
gene: KCNA3 was marked as current diagnostic
Added comment: ESHG 2023:
10 individuals with de novo missense variants in KCNA3 (K+ channel)
Variable electrophysiology studies of effect of variants (5 x LOF, 4 x GOF, 1 no change)
Presentation: abnormal speech development (8/8), ID (6/8), epilepsy (5/8), and ASD (7/8)
Sources: Other
Mendeliome v1.980 FSD1L Chirag Patel gene: FSD1L was added
gene: FSD1L was added to Mendeliome. Sources: Other
Mode of inheritance for gene: FSD1L was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: FSD1L were set to Neurodevelopmental disorder
Review for gene: FSD1L was set to GREEN
gene: FSD1L was marked as current diagnostic
Added comment: ESHG 2023:
8 families with biallelic missense/nonsense variants
Presentation only described 1 family/2 affecteds with DD, ID, spastic paraparesis, epilepsy, corpus callosum hypoplasia, and optic nerve hypoplasia

Functional assays:
-reduced expression of FSD1L in mature neurons (RNA studies)
-very low % mature neurons (neuronal differentiation)
-reduced neuronal migration
Sources: Other
Mendeliome v1.978 DENND5B Chirag Patel gene: DENND5B was added
gene: DENND5B was added to Mendeliome. Sources: Other
Mode of inheritance for gene: DENND5B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: DENND5B were set to Neurodevelopmental disorder with white matter anomalies
Review for gene: DENND5B was set to GREEN
gene: DENND5B was marked as current diagnostic
Added comment: ESHG 2023:
7 patients/7 families with de novo DENND5B variants (6 missense, 1 splice)
DD/ID (mod/profound)(7/7), white matter anomalies (6/7) hypotonia, epilepsy (3/7)

DENND5B acts as:
-GEF for activation of RAB proteins which are involved in membrane trafficking and neurotransmitter release
-regulator of lipid absorption and homeostasis

Functional studies showed loss of expression of DENND5B in fibroblasts, abnormal vesicle trafficking, and impaired lipid uptake and intracellular distribution
Sources: Other
Mendeliome v1.976 DMAP1 Chirag Patel gene: DMAP1 was added
gene: DMAP1 was added to Mendeliome. Sources: Other
Mode of inheritance for gene: DMAP1 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: DMAP1 were set to Neurodevelopmental disorder
Review for gene: DMAP1 was set to GREEN
gene: DMAP1 was marked as current diagnostic
Added comment: ESHG 2023:
9 patients/8 families with bilallelic variants in DMAP1 (3 missense, 7 LOF)
All with DD, speech delay, hypotonia, and ID
Some with epilepsy (4/6), FTT (4/5), and brain malformations (3/5)
Drosophila showed abnormal behaviour pattern and bang sensitivity
Specific methylation episignature also seen
Sources: Other
Mendeliome v1.972 ZMYM3 Zornitza Stark Phenotypes for gene: ZMYM3 were changed from Neurodevelopmental disorder, MONDO:0700092, ZMYM3-related to Intellectual developmental disorder, X-linked 112, MIM# 301111
Mendeliome v1.971 ZMYM3 Zornitza Stark reviewed gene: ZMYM3: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual developmental disorder, X-linked 112, MIM# 301111; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v1.965 SART3 Daniel Flanagan gene: SART3 was added
gene: SART3 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: SART3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SART3 were set to PMID: 37296101
Phenotypes for gene: SART3 were set to Neurodevelopmental disorder (MONDO#0700092), SART3-related; 46,XY disorder of sex development (MONDO:0020040), SART3-related
Review for gene: SART3 was set to GREEN
Added comment: Nine individuals from six families presenting with intellectual disability, global developmental delay, a subset of brain anomalies, together with gonadal dysgenesis in 46,XY individuals. Additionally, two individuals had seizures and two had epileptiform activity reported on EEG.

Human induced pluripotent stem cells carrying patient variants in SART3 show disruption to multiple signalling pathways, upregulation of spliceosome components and demonstrate aberrant gonadal and neuronal differentiation in vitro.
Sources: Expert list
Mendeliome v1.958 DCAF13 Michelle Torres gene: DCAF13 was added
gene: DCAF13 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DCAF13 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DCAF13 were set to 36797467
Phenotypes for gene: DCAF13 were set to Neuromuscular disease (MONDO#0019056), DCAF13-related
Review for gene: DCAF13 was set to RED
Added comment: One consanguineous family, 4x individuals homozygous NM_015420.7(DCAF13)c.907 G > A; p.(Asp303Asn) (3x via WES and 1x via Sanger) with a neuromuscular disorder characterized by a waddling gait, limb deformities, muscular weakness and facial palsy.

In silicos analysis of mutant DCAF13 suggests that the amino acid change is deleterious and affects a ß-hairpin turn, within a WD40 domain of the protein which may decrease protein stability. Functional studies were not performed.

Previously, a heterozygous variant in DCAF13 with or without a heterozygous missense variant in CCN3, was suggested to cause inherited cortical myoclonic tremor with epilepsy. In addition, a heterozygous DCAF13 variant has been associated with autism spectrum disorder.
Sources: Literature
Mendeliome v1.956 RAB34 Sarah Pantaleo gene: RAB34 was added
gene: RAB34 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RAB34 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RAB34 were set to PMID: 37384395
Phenotypes for gene: RAB34 were set to Clefting; corpus callosum; short bones; hypertelorism; polydactyly; cardiac defects; anorectal anomalies
Penetrance for gene: RAB34 were set to Complete
Review for gene: RAB34 was set to GREEN
Added comment: Oral-facial-digital syndromes (OFDS) are a group of clinically and genetically heterogenous disorders characterised by defects in the development of the face and oral cavity along with digit anomalies. Pathogenic variants in >20 genes encoding ciliary proteins have been found to cause OFDS.

Identified by WES biallelic missense variants in a novel disease-causing ciliary gene RAB34 in four individuals from three unrelated families (aided by GeneMatcher).

Affected individuals presented a novel form of OFDS accompanied by cardiac, cerebral, skeletal (eg. Shortening of long bones), and anorectal defects.

RAB34 encodes a member of the Lab GTPase superfamily and was recently identified as a key mediator of ciliary membrane formation. Protein products of pathogenic variants clustered near the RAB34 C-terminus exhibit a strong loss of function.

Onset is prenatal (multiple developmental defects including short femur, polydactyly, heart malformations, kidney malformations, brain malformations), resulting in medical termination for three probands.

In the fourth, the only one alive at birth, proband born at 39+5 weeks, normal growth parameters after pregnancy with polyhydramnios, corpus callosum agenesis and polydactyly. Respiratory distress at birth.

All four probands presented typical features of ciliopathy disorders, overlapping with oral, facial and digital abnormalities.

All with homozygous missense variants. All absent in gnomAD (in homozygous state). Sanger sequencing confirmed mode of inheritance.
Sources: Literature
Mendeliome v1.956 DRG1 Dean Phelan gene: DRG1 was added
gene: DRG1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DRG1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DRG1 were set to PMID: 37179472
Phenotypes for gene: DRG1 were set to Neurodevelopmental disorder (MONDO:0700092), DRG1-related
Review for gene: DRG1 was set to GREEN
Added comment: PMID: 37179472
- Biallelic variants were identified in four affected individuals from three distinct families with neurodevelopmental disorder with global developmental delay, primary microcephaly, short stature and craniofacial anomalies. Functional studies show the variants result in a loss of function.
Sources: Literature
Mendeliome v1.956 RPH3A Lucy Spencer gene: RPH3A was added
gene: RPH3A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RPH3A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RPH3A were set to 37403762; 29441694
Phenotypes for gene: RPH3A were set to Neurodevelopmental disorder (MONDO#0700092), RPH3A-related
Review for gene: RPH3A was set to GREEN
Added comment: PMID: 37403762- 6 patients with RPH3A variant. All 6 have ID, 4 have epilepsy, 2 with obesity, 1 with dysmorphic features. All 6 have missense variants, 3 shown to be de novo, the other 3 parents were not available for testing. I patient also had language and motor impairment, breathing issues and mixed hypo/hypertonia- he also had variants in CUL4B, PRKAG2, SCN4A, none of these genes cause seizures (which he had).

Patch clamp studies on 2 of the missense showed they increased either the number of NMDA receptors on neuron membrane surface or increased their conductance. Study suggests that the variants interrupt the normal role of RPH3A activity at the synaptic NMDAR complex which is needed for the induction of synaptic plasticity and NMDAR-dependant behaviours

Previously this gene was reported in PMID: 29441694- 1 girl with learning disabilities, tremors, ataxia, hyperglycemia and muscle fatigability. Chet for 2 RPH3A missense. Functional analysis showed strong and marginal impairment of protein binding for each variant. this is the only biallelic report currently.
Sources: Literature
Mendeliome v1.950 INTS11 Zornitza Stark Phenotypes for gene: INTS11 were changed from intellectual disability, MONDO:0001071 to Neurodevelopmental disorder with motor and language delay, ocular defects, and brain abnormalities, MIM# 620428
Mendeliome v1.949 SRRM2 Zornitza Stark Phenotypes for gene: SRRM2 were changed from Neurodevelopmental disorder MONDO:0700092 SRRM2-related to Intellectual developmental disorder, autosomal dominant 72, MIM# 620439
Mendeliome v1.946 AUTS2 Achchuthan Shanmugasundram reviewed gene: AUTS2: Rating: AMBER; Mode of pathogenicity: None; Publications: 31788251, 37010288; Phenotypes: Intellectual developmental disorder, autosomal dominant 26, OMIM:615834; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.946 ZC4H2 Achchuthan Shanmugasundram changed review comment from: There are ten unrelated patients reported with cleft palate. Hence, this gene should be added with green rating to 'clefting disorders' panel.

PMID:31206972 - Of 42 families identified with variants in de novo and inherited heterozygous variants in ZC4H2 gene, eight patients had cleft palate in addition to several other clinical presentations. These included one patient with cleft palate from the DDD study (DECIPHER database)

DECIPHER database - Of 13 patients with monoallelic sequence variants, three patients had cleft palate.

Cleft palate has been recorded as one of the clinical presentations of female-restricted Wieacker-Wolff syndrome (MIM #301041) in OMIM.; to: There are ten unrelated patients reported with cleft palate. Hence, this gene should be added with green rating to 'clefting disorders' panel.

PMID:31206972 - Of 42 families identified with de novo and inherited variants in ZC4H2 gene, eight patients had cleft palate in addition to several other clinical presentations. These included one patient with cleft palate from the DDD study (DECIPHER database)

DECIPHER database - Of 13 patients with sequence variants, three patients had cleft palate.

Cleft palate has been recorded as one of the clinical presentations of female-restricted Wieacker-Wolff syndrome (MIM #301041) in OMIM.
Mendeliome v1.946 GCSH Zornitza Stark Phenotypes for gene: GCSH were changed from Glycine encephalopathy MIM#605899; neurodevelopmental disorder MONDO#0700092, GCHS-related to Multiple mitochondrial dysfunctions syndrome 7, MIM# 620423
Mendeliome v1.945 EWSR1 Bryony Thompson Added comment: Comment on list classification: Disputed gene-disease validity assessment by ClinGen ALS spectrum disorders GCEP - 11/10/2022
Mendeliome v1.943 POGZ Achchuthan Shanmugasundram changed review comment from: Although there are more than three unrelated cases reported with either cleft palate or bifid uvula in total, this phenotype is not consistently present in patients with monoallelic variants in POGZ gene. Hence, this gene should only be added with amber rating in 'Clefting disorders panel'.

PMID:26739615 - Five unrelated individuals were identified with de novo truncating variants in POGZ gene, of which one individual had cleft palate and another one had bifid uvula.

PMID:31782611 - In this cohort of 22 individuals with 21 different loss of function variants in POGZ, two patients were reported with bifid uvula.

DECIPHER database - Of 42 patients with heterozygous sequence variants, one had cleft palate and another one had bifid uvula (PMID:37010288).

The OMIM entry for White-Sutton syndrome (MIM #616364) does not currently include cleft lip/ palate as one of the clinical manifestations of this syndrome.; to: Although there are more than three unrelated cases reported with either cleft palate or bifid uvula in total, this phenotype is not consistently present in patients with monoallelic variants in POGZ gene. Hence, this gene should only be added with amber rating in 'Clefting disorders' panel.

PMID:26739615 - Five unrelated individuals were identified with de novo truncating variants in POGZ gene, of which one individual had cleft palate and another one had bifid uvula.

PMID:31782611 - In this cohort of 22 individuals with 21 different loss of function variants in POGZ, two patients were reported with bifid uvula.

DECIPHER database - Of 42 patients with heterozygous sequence variants, one had cleft palate and another one had bifid uvula (PMID:37010288).

The OMIM entry for White-Sutton syndrome (MIM #616364) does not currently include cleft lip/ palate as one of the clinical manifestations of this syndrome.
Mendeliome v1.941 ARID1B Achchuthan Shanmugasundram changed review comment from: There are at least three unrelated cases with monoallelic variants in ARID1B gene reported with either cleft palate, cleft uvula or bifid uvula. Hence, this gene can be added with green rating in the Clefting disorders panel.

PMID:30349098 - On this web-based survey based on previously reported features of patients with variants in ARID1B gene (143 patients in total), which also included submissions to DECIPHER database, two patients were identified with cleft palate, one with cleft uvula, two with bifid uvula and three with sub mucous cleft. Although variants identified in these patients are reported in this publication, there is no association of individual patients to phenotypes available.

One patient with ARID1B variant (c.3183_3184​insT/ p.Tyr1062LeufsTer10) was reported with submucous cleft soft palate and two patients with ARID1B variants (c.4155_4156​insA/ p.Asn1386LysfsTer18 & c.2620+5G​>A) were reported with bifid uvula in DECIPHER database.; to: Although there are more than three unrelated cases with ARID1B monoallelic variants reported with either cleft palate, cleft uvula or bifid uvula, clefting isn not consistently present in patients with ARID1B variants. Hence, this gene can be added with amber rating in the Clefting disorders panel.

PMID:30349098 - On this web-based survey based on previously reported features of patients with variants in ARID1B gene (143 patients in total), which also included submissions to DECIPHER database, two patients were identified with cleft palate, one with cleft uvula, two with bifid uvula and three with sub mucous cleft. Although variants identified in these patients are reported in this publication, there is no association of individual patients to phenotypes available.

Of >100 patients with ARID1B variants in the DECIPHER database, only one patient (c.3183_3184​insT/ p.Tyr1062LeufsTer10) was reported with submucous cleft soft palate and two patients (c.4155_4156​insA/ p.Asn1386LysfsTer18 & c.2620+5G​>A) were reported with bifid uvula.
Mendeliome v1.941 CHD4 Achchuthan Shanmugasundram changed review comment from: This gene should be added to the Clefting disorders panel with a green rating as there are four unrelated cases presenting with either cleft palate and/or bifid uvula.

PMID:3138819 reported a patient with heterozygous variant (p.Gln715Ter) in CHD4 that had cleft palate and pierre robin. In addition, another patient identified with heterozygous variant p.Arg1127Gln was reported with bifid uvula.

In addition, DDD study reported two patients with likely pathogenic heterozygous variants who had cleft palate in addition to several other clinical presentations including global developmental delay (PMID:37010288); to: Although there are four unrelated cases presenting with either cleft palate and/or bifid uvula, this phenotype is not consistent among patients identified with monoallelic variants in CHD4 gene. Hence, this gene should be added to the Clefting disorders panel with amber rating.

PMID:31388190 reported 32 patients with heterozygous variants in CHD4 gene, of which one patient (p.Gln715Ter) had cleft palate and pierre robin. In addition, another patient identified with heterozygous variant p.Arg1127Gln was reported with bifid uvula.

In addition, 2 out of 10 patients with pathogenic/ likely pathogenic heterozygous variants from the DDD study were reported with cleft palate in addition to several other clinical presentations including global developmental delay (PMID:37010288).
Mendeliome v1.921 MOS Zornitza Stark Phenotypes for gene: MOS were changed from Early embryonic arrest and fragmentation; infertility to Infertility disorder, MONDO:0005047, MOS-related; Early embryonic arrest and fragmentation
Mendeliome v1.914 UNC79 Zornitza Stark Phenotypes for gene: UNC79 were changed from Neurodevelopmental disorder (MONDO:0700092), UNC70-related to Neurodevelopmental disorder (MONDO:0700092), UNC79-related
Mendeliome v1.910 RNH1 Ain Roesley Phenotypes for gene: RNH1 were changed from Neurodevelopmental disorder, MONDO:0700092, RNH1-related to Neurodevelopmental disorder, MONDO:0700092, RNH1-related; encephalopathy, acute, infection-induced (MONDO:0000166), RNH1-related
Mendeliome v1.908 UNC79 Elena Savva Phenotypes for gene: UNC79 were changed from Neurodevelopmental disorderMONDO:0700092 to Neurodevelopmental disorder (MONDO:0700092), UNC70-related
Mendeliome v1.906 NSUN6 Michelle Torres gene: NSUN6 was added
gene: NSUN6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NSUN6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NSUN6 were set to 37226891
Phenotypes for gene: NSUN6 were set to neurodevelopmental disorder MONDO:0700092, NSUN6-related
Review for gene: NSUN6 was set to AMBER
Added comment: Three unrelated consanguineous families with developmental delay, intellectual disability, motor delay, and behavioral anomalies. WES detected homozygous variants:
- p.(Leu9Glufs*3): even though authors say is is predicted to cause NMD, it actually is NMD escape. No further studies were performed. A deceased affected sibling and parents were NOT tested.
- p.(Asp323Asn): Shown to result in a misfolded protein. Methylation assay showed mutant could not catalyze m5C deposition in transcribed tRNACys and tRNAThr substrates in vitro. One of the parents and both unaffected siblings were shown to be carriers.
- p.(Glu441Profs*15): truncation (full protein is 470aa) which would result in loss of residues involved in recognition and methylation. Shown to result in a misfolded protein. Parents were shown carriers.
Sources: Literature
Mendeliome v1.906 UNC79 Krithika Murali gene: UNC79 was added
gene: UNC79 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UNC79 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: UNC79 were set to PMID:37183800
Phenotypes for gene: UNC79 were set to Neurodevelopmental disorderMONDO:0700092
Review for gene: UNC79 was set to AMBER
Added comment: PMID:37183800 Bayat et al 2023 report 6 unrelated patients with heterozygous NMD-predicted LoF variants in UNC79 - x1 canonical splice site variant, x5 nonsense/frameshift. 5 were confirmed de novo, 1 not identified in mother - father unavailable for testing. All variants absent in gnomAD and v2 pLI score for UNC79 is 1.

Patients with UNC79 variants were identified through GeneMatcher or an international network of Epilepsy and Genetics departments. x1 patient underwent duo exome sequencing, remaining had trio exome sequencing - no other causative variants identified.

Phenotypic features included:
- 4/6 autistic features
- 5/6 patients mild-moderate ID
- 4/6 behavioural issues (aggression, stereotypies)
- 4/6 epilepsy (focal to bilateral tonic-clonic seizures)
- 5/6 hypotonia

unc79 knockdown drosophila flies exhibited significantly higher rate of seizure-like behaviour than controls. unc79 haploinsufficiency shown to lead to significant reduction in protein levels of both unc79 and unc80 in mouse brains. Unc79 haploinsufficiency associated with deficiency in hippocampal-dependent learning and memory in mice.

Authors have reviewed their own evidence in relation to the gene-disease criteria detailed by Strande et al 2017 and note that their clinical and experimental data provides moderate-level evidence supporting the association between UNC79 and a neurodevelopment disorder including ASD.

Amber association favoured due to clinical phenotypic range reported between affected individuals and their lack of specificity.
Sources: Literature
Mendeliome v1.901 POU3F2 Ain Roesley Phenotypes for gene: POU3F2 were changed from Autism spectrum disorder, NDD, and adolescent-onset obesity to Autism spectrum disorder, NDD, and adolescent-onset obesity; neurodevelopmental disorder MONDO:0700092, POU3F2-related
Mendeliome v1.900 MCM6 Zornitza Stark Phenotypes for gene: MCM6 were changed from Lactase persistence/nonpersistence 223100 to Neurodevelopmental disorder, MONDO:0700092, MCM6-related; Lactase persistence/nonpersistence 223100
Mendeliome v1.898 POU3F2 Sarah Pantaleo gene: POU3F2 was added
gene: POU3F2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: POU3F2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: POU3F2 were set to PMID: 37207645
Phenotypes for gene: POU3F2 were set to Autism spectrum disorder, NDD, and adolescent-onset obesity
Penetrance for gene: POU3F2 were set to unknown
Mode of pathogenicity for gene: POU3F2 was set to Other
Review for gene: POU3F2 was set to GREEN
Added comment: We associate ultra-rare variants in POU3F2, encoding a central nervous system transcription factor, with syndromic obesity and neurodevelopment delay in 12 individuals. Demonstrate variant pathogenicity through in vitro analysis. Used exome sequencing, GeneMatcher and Genomics England 100,000 Genomes Project rare disease database.

Both truncating and missense variants in over 10 individuals sharing autism spectrum disorder, NDD, and adolescent-onset obesity (may have had other features eg. CAKUT in 2 individuals, diabetes in two) . Affected individuals presented with low-to-normal birth weight and infantile feeding difficulties but developed insulin resistance and hyperplasia during childhood. With the exception of an early truncating variant, the variants showed adequate nuclear translocation but overall disturbed DNA-binding ability and promoter activation.

Variants absent from population and clinical databases. Almost all constituted putatively non-inherited de novo variants (8/10).

Functional studies provide evidence for loss of function in eight and gain of function in one obesity-associated POU3F2 variant. One variant did not impact POU3F2-promoter activation, leaving the possibility for further path-mechanisms.
Sources: Literature
Mendeliome v1.897 ACBD6 Lucy Spencer gene: ACBD6 was added
gene: ACBD6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ACBD6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ACBD6 were set to 36457943; 21937992; 35446914
Phenotypes for gene: ACBD6 were set to Neurodevelopmental disorder (MONDO#0700092), ACBD6-related
Review for gene: ACBD6 was set to GREEN
Added comment: PMID: 36457943
2 siblings with a neurodevelopmental disorder: severely delayed development, obesity, pancytopenia, diabetes, liver cirrhosis, intravertebral disc herniation, mild brain atrophy. Consanguineous family both siblings found to have a homozygous frameshift.

This paper also mentioned 3 other reported variants in 6 individuals (only 3 unrelated) all homozygous, 2 frameshift, 1 canonical splice. All reported to have a neurodevelopmental disorder, some with limited information but one family also has obesity, spasticity, and dysmorphism. PMIDs: 21937992, 35446914
Sources: Literature
Mendeliome v1.896 U2AF2 Paul De Fazio reviewed gene: U2AF2: Rating: GREEN; Mode of pathogenicity: None; Publications: 34112922, 37092751, 36747105, 37134193; Phenotypes: Neurodevelopmental disorder, U2AF2-related (MONDO:0700092); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v1.895 MCM6 Suliman Khan reviewed gene: MCM6: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 37198333; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, MCM6-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.895 TPR Zornitza Stark Phenotypes for gene: TPR were changed from Multiple congenital anomalies/dysmorphic syndrome, MONDO:0019042, TPR-related to Intellectual developmental disorder, autosomal recessive 79, MIM# 620393
Mendeliome v1.894 TPR Zornitza Stark edited their review of gene: TPR: Changed phenotypes: Intellectual developmental disorder, autosomal recessive 79, MIM# 620393
Mendeliome v1.885 UNC13A Ain Roesley Phenotypes for gene: UNC13A were changed from Congenital myasthenia; dyskinesia; autism; developmental delay to Congenital myasthenia; dyskinesia; autism; developmental delay; neurodevelopmental disorder MONDO#0700092, UNC13A-related
Mendeliome v1.883 UNC13A Ain Roesley reviewed gene: UNC13A: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: neurodevelopmental disorder MONDO#0700092, UNC13A-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v1.879 GATAD2A Bryony Thompson changed review comment from: https://doi.org/10.1016/j.xhgg.2023.100198 - Five unrelated individuals with a neurodevelopmental disorder identified with 3 missense & 2 LoF (4 de novo & 1 unknown inheritance). The shared clinical features with variable expressivity include global developmental delay (4/4), craniofacial dysmorphism (3/5), structural brain defects (2/3), musculoskeletal anomalies (3/5), vision/hearing defects (2/3), gastrointestinal/renal defects (2/3). Loss of function is the expected mechanism of disease. In vitro assays of one of the missense variants (p.Cys420Tyr) demonstrates disruption of GATAD2A integration with CHD3, CHD4, and CHD5
PMID: 17565372 - null mouse model is embryonic lethal.
Sources: Literature; to: PMID: 37181331 - Five unrelated individuals with a neurodevelopmental disorder identified with 3 missense & 2 LoF (4 de novo & 1 unknown inheritance). The shared clinical features with variable expressivity include global developmental delay (4/4), craniofacial dysmorphism (3/5), structural brain defects (2/3), musculoskeletal anomalies (3/5), vision/hearing defects (2/3), gastrointestinal/renal defects (2/3). Loss of function is the expected mechanism of disease. In vitro assays of one of the missense variants (p.Cys420Tyr) demonstrates disruption of GATAD2A integration with CHD3, CHD4, and CHD5
PMID: 17565372 - null mouse model is embryonic lethal.
Sources: Literature
Mendeliome v1.878 ZNF292 Michelle Torres reviewed gene: ZNF292: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual developmental disorder, autosomal dominant 64, MIM#619188; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.878 ESAM Zornitza Stark Phenotypes for gene: ESAM were changed from Neurodevelopmental disorder (MONDO#0700092), ESAM-related to Neurodevelopmental disorder with intracranial haemorrhage, seizures, and spasticity, MIM# 620371
Mendeliome v1.877 ESAM Zornitza Stark reviewed gene: ESAM: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with intracranial haemorrhage, seizures, and spasticity, MIM# 620371; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.870 SLITRK2 Zornitza Stark Phenotypes for gene: SLITRK2 were changed from Neurodevelopmental disorder, SLITRK2-related MONDO:0700092 to Intellectual developmental disorder, X-linked 111, MIM# 301107
Mendeliome v1.869 SLITRK2 Zornitza Stark reviewed gene: SLITRK2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual developmental disorder, X-linked 111, MIM# 301107; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v1.854 DNAH7 Zornitza Stark Phenotypes for gene: DNAH7 were changed from non-syndromic male infertility due to sperm motility disorder (MONDO#0017173), DNAH7-related to Primary ciliary dyskinesia, MONDO:0016575, DNAH7-related
Mendeliome v1.850 PMEPA1 Zornitza Stark Phenotypes for gene: PMEPA1 were changed from Familial thoracic aortic aneurysm disease (FTAAD); Loeys-Dietz syndrome to Hereditary disorder of connective tissue, MONDO:0023603, PMEPA1-related
Mendeliome v1.849 PMEPA1 Zornitza Stark reviewed gene: PMEPA1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Hereditary disorder of connective tissue, MONDO:0023603, PMEPA1-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.842 LHX2 Manny Jacobs gene: LHX2 was added
gene: LHX2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LHX2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: LHX2 were set to PMID: 37057675
Phenotypes for gene: LHX2 were set to Neurodevelopmental disorder (MONDO: 0700092)
Review for gene: LHX2 was set to GREEN
Added comment: PMID: 37057675

Case series of 19 individuals across 18 families.
1 whole gene deletion, 7 missense, 10 predicted LoF variants.
Proposed loss-of-function mechanism.
Variable phenotype, with variable intellectual disability and behavioural (ASD/ADHD) features.
Microcephaly in 7 individuals.
1 variant inherited from a mildly affected parent, all other variants with parental genotype available shown to be de novo.
Sources: Literature
Mendeliome v1.839 CBX1 Daniel Flanagan gene: CBX1 was added
gene: CBX1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: CBX1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CBX1 were set to PMID: 37087635
Phenotypes for gene: CBX1 were set to Neurodevelopmental disorder (MONDO#0700092), CBX1-related
Review for gene: CBX1 was set to GREEN
Added comment: Three different de novo missense variants identified in three unrelated individuals with developmental delay, hypotonia, autistic features, and variable dysmorphic features such as broad forehead and head circumference above average. Mutant mice displayed increased latency-to-peak response, suggesting the possibility of synaptic delay or myelination deficits. Functional studies confirmed the reduction of mutant HP1β binding to heterochromatin.
Sources: Expert list
Mendeliome v1.838 CNOT9 Karina Sandoval gene: CNOT9 was added
gene: CNOT9 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CNOT9 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: CNOT9 were set to PMID: 37092538
Phenotypes for gene: CNOT9 were set to neurodevelopmental disorder, MONDO:0700092
Review for gene: CNOT9 was set to GREEN
Added comment: 7 individuals with de novo variants. In silico predictions of functional relevance. All affected persons have DD/ID, with five of them showing seizures. Other symptoms include.

Symptoms: Neuro dev disorder. ID, Epilepsy. All affected persons have DD/ID, with five of them showing seizures. Other symptoms include muscular hypotonia, facial dysmorphism, and behavioral abnormalities.
Sources: Literature
Mendeliome v1.837 DNAH7 Chern Lim gene: DNAH7 was added
gene: DNAH7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DNAH7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DNAH7 were set to 34476482; 35543642
Phenotypes for gene: DNAH7 were set to non-syndromic male infertility due to sperm motility disorder (MONDO#0017173), DNAH7-related
Review for gene: DNAH7 was set to GREEN
gene: DNAH7 was marked as current diagnostic
Added comment: PMID: 34476482 (Wei et al 2021):
- Hom/chet missense DNAH7 variants in three unrelated infertile patients with idiopathic asthenozoospermia, presented with primary ciliary dyskinesia (PCD)-associated symptoms.
- Functional studies showed expression of DNAH7 in the spermatozoa from the DNAH7-defective patients was significantly decreased.

PMID: 35543642 (Gao et al 2022):
- One proband with idiopathic asthenozoospermia, presented a history of PCD-like symptoms. Hom frameshift variant predicted to cause NMD, both parents are heterozygous.
- Immunofluorescent staining showed DNAH7 signal significantly decreased or was even completely absent in the sperm from the investigated patient.
Sources: Literature
Mendeliome v1.836 SRSF1 Paul De Fazio gene: SRSF1 was added
gene: SRSF1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SRSF1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: SRSF1 were set to 37071997
Phenotypes for gene: SRSF1 were set to Neurodevelopmental disorder, SRSF1-related MONDO:0700092
Review for gene: SRSF1 was set to GREEN
gene: SRSF1 was marked as current diagnostic
Added comment: 17 individuals from 16 families reported with mostly de novo variants. Variants were a mixture of missense, nonsense/frameshift (both NMD-predicted and not NMD-predicted) and microdeletions. In one family, only one parent was available for testing. In another family, 2 affected siblings had the variant but the variant was not identified in either parent suggesting germline mosaicism.

Functional testing of a subset of variants in Drosophila supported pathogenicity in most, but 2 missense variants showed no functional effect and were classified VUS. Episignature analysis (EpiSign) on patient DNA from blood showed a specific DNA methylation signature in patients with the variants classified pathogenic but not those classified VUS.

Phenotypes included mainly neurological abnormalities (mild to moderate ID/dev delay, motor delay, speech delay, and behavioural disorders) and facial dysmorphisms.

Other features included hypotonia (11/16), variable brain abnormalities on MRI (6/12), variable cardiac malformations (6/14). urogenital malformations e.g. hypospadias, cryptorchidism (6/13), scoliosis (5/17) and/or variable other skeletal abnormalities (10/17).
Sources: Literature
Mendeliome v1.834 SLC30A9 Lucy Spencer gene: SLC30A9 was added
gene: SLC30A9 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC30A9 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC30A9 were set to 37041080
Phenotypes for gene: SLC30A9 were set to Birk-Landau-Perez syndrome (MIM#617595)
Review for gene: SLC30A9 was set to GREEN
Added comment: PMID:37041080 - 2 families previously reported and this paper describes 4 more with biallelic SLC30A9 variants. Original 2 families: 6 affected members all hom for Ala350del, and 1 affected member chet for 2 frameshifts. 4 families from this paper: 2 families have the same homozygous missense (Gly418Val), family 3 has 4 affected sibs hom for Ala350del, family 4 1 affected chet for a frameshift and a synonymous. So 2 fams homs for Ala350del and 2 fams hom for Gly418Val.
All have Brik-Landau-Perez syndrome: all with ID, movement disorder and dystonia, and many with oculomotor apraxia, renal abnormalitie, ptosis, some had hearing impairment.
Sources: Literature
Mendeliome v1.830 GATAD2A Bryony Thompson gene: GATAD2A was added
gene: GATAD2A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GATAD2A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GATAD2A were set to https://doi.org/10.1016/j.xhgg.2023.100198; 17565372
Phenotypes for gene: GATAD2A were set to Neurodevelopmental disorder, MONDO:0700092, GATAD2A-related
Review for gene: GATAD2A was set to GREEN
Added comment: https://doi.org/10.1016/j.xhgg.2023.100198 - Five unrelated individuals with a neurodevelopmental disorder identified with 3 missense & 2 LoF (4 de novo & 1 unknown inheritance). The shared clinical features with variable expressivity include global developmental delay (4/4), craniofacial dysmorphism (3/5), structural brain defects (2/3), musculoskeletal anomalies (3/5), vision/hearing defects (2/3), gastrointestinal/renal defects (2/3). Loss of function is the expected mechanism of disease. In vitro assays of one of the missense variants (p.Cys420Tyr) demonstrates disruption of GATAD2A integration with CHD3, CHD4, and CHD5
PMID: 17565372 - null mouse model is embryonic lethal.
Sources: Literature
Mendeliome v1.826 YWHAE Zornitza Stark gene: YWHAE was added
gene: YWHAE was added to Mendeliome. Sources: Literature
SV/CNV tags were added to gene: YWHAE.
Mode of inheritance for gene: YWHAE was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: YWHAE were set to 36999555
Phenotypes for gene: YWHAE were set to Neurodevelopmental disorder, MONDO:0700092
Review for gene: YWHAE was set to GREEN
Added comment: PMID 36999555 reports 10 patients with YWHAE variants (1 intragenic deletion and 5 large deletions encompassing YWHEA but not PAFAH1B1) who have mild to severe intellectual disability. 3 individuals with SNVs. Mouse model supports gene-disease association.
Sources: Literature
Mendeliome v1.824 KPNA7 Zornitza Stark Phenotypes for gene: KPNA7 were changed from Epilepsy; intellectual disability to Oocyte/zygote/embryo maturation arrest 17, MIM# 620319; Neurodevelopmental disorder
Mendeliome v1.818 RFX7 Zornitza Stark Phenotypes for gene: RFX7 were changed from ID, ASD, ADHD to Intellectual developmental disorder, autosomal dominant 71, with behavioral abnormalities, MIM# 620330
Mendeliome v1.817 RFX7 Zornitza Stark edited their review of gene: RFX7: Changed phenotypes: Intellectual developmental disorder, autosomal dominant 71, with behavioral abnormalities, MIM# 620330
Mendeliome v1.817 MED11 Zornitza Stark Phenotypes for gene: MED11 were changed from neurodevelopmental disorder MONDO#0700092, MED11-related to Neurodegeneration with developmental delay, early respiratory failure, myoclonic seizures, and brain abnormalities, MIM# 620327
Mendeliome v1.814 WARS Zornitza Stark Phenotypes for gene: WARS were changed from Neuronopathy, distal hereditary motor, type IX (OMIM:617721); juvenile to adult onset (15-23 years); Neurodevelopmental disorder (MONDO:0700092), WARS-related to Neuronopathy, distal hereditary motor, type IX (OMIM:617721); juvenile to adult onset (15-23 years); Neurodevelopmental disorder withmicrocephaly and speech delay, with or without brain abnormalities, MIM# 620317
Mendeliome v1.807 TSPAN7 Ain Roesley reviewed gene: TSPAN7: Rating: AMBER; Mode of pathogenicity: None; Publications: 26350204, 36625203; Phenotypes: Intellectual developmental disorder, X-linked 58, MIM #300210, MONDO:0010266; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes
Mendeliome v1.807 KDM5A Achchuthan Shanmugasundram gene: KDM5A was added
gene: KDM5A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KDM5A was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: KDM5A were set to 21937992; 33350388
Phenotypes for gene: KDM5A were set to autism spectrum disorder, MONDO:0005258; intellectual disability, MONDO:0001071
Review for gene: KDM5A was set to GREEN
Added comment: PMID:21937992 reported a family with recessive missense KDM5A variant presenting with an undefined developmental disorder characterised with intellectual disability and facial dysmorphisms.

PMID:33350388 reported nine patients from seven unrelated families identified with variants in KDM5A, of which three unrelated patients harboured heterozygous variants, while six patients from four unrelated families had homozygous variants. These patients presented with autism spectrum disorder (ASD) and a spectrum of neurodevelopmental phenotypes including intellectual disability, lack of speech, developmental delay and motor impairment.

In addition, loss of KDM5A has resulted in repetitive behaviors, sociability deficits, cognitive dysfunction, and abnormal dendritic morphogenesis in mice.

This gene has already been associated with phenotype in Gene2Phenotype (biallelic inheritance with 'limited' rating), but not in OMIM.
Sources: Literature
Mendeliome v1.803 CAMSAP1 Zornitza Stark Phenotypes for gene: CAMSAP1 were changed from lissencephaly spectrum disorders (MONDO:0018838), CAMSAP1-related to Cortical dysplasia, complex, with other brain malformations 12, MIM# 620316
Mendeliome v1.789 RNH1 Zornitza Stark Phenotypes for gene: RNH1 were changed from RNH1-related disorder to Neurodevelopmental disorder, MONDO:0700092, RNH1-related
Mendeliome v1.788 RNH1 Zornitza Stark reviewed gene: RNH1: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, RNH1-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.781 MKL2 Dean Phelan gene: MKL2 was added
gene: MKL2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MKL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MKL2 were set to PMID: 37013900
Phenotypes for gene: MKL2 were set to Neurodevelopmental disorder (MONDO:0700092), MKL2-related
Mode of pathogenicity for gene: MKL2 was set to Other
Review for gene: MKL2 was set to AMBER
Added comment: PMID: 37013900
- de novo missense variants in MKL2 (now known as MRTFB) were identified in two patients with mild dysmorphic features, intellectual disability, global developmental delay, speech apraxia, and impulse control issues. Functional studies in a Drosophila model suggest a gain of function disease mechanism.
Sources: Literature
Mendeliome v1.775 ESAM Chern Lim gene: ESAM was added
gene: ESAM was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ESAM was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ESAM were set to 36996813
Phenotypes for gene: ESAM were set to Neurodevelopmental disorder (MONDO#0700092), ESAM-related
Review for gene: ESAM was set to GREEN
gene: ESAM was marked as current diagnostic
Added comment: PMID 36996813
- Thirteen affected individuals, including four fetuses, from eight unrelated families, with homozygous loss-of-function-type variants in ESAM – 2 of the variants are frameshifts, 1x nonsense, 1x canonical splice.
- Affected individuals have profound global developmental delay/unspecified intellectual disability, epilepsy, absent or severely delayed speech, varying degrees of spasticity, ventriculomegaly, and ICH/cerebral calcifications, the latter being also observed in the fetuses.
- One of the frameshift variant c.115del (p.Arg39Glyfs*33), was detected in six individuals from four unrelated families from the same geographic region in Turkey (southeastern Anatolia), suggesting a founder effect.
- The c.451+1G>A variant was detected in three individuals from two independent families with the same ethnic origin (Arab Bedouin)
Sources: Literature
Mendeliome v1.774 SNAPC4 Ee Ming Wong changed review comment from: - Ten individuals from eight families with neurodevelopmental disorder found to be compound heterozygous for variants in SNAPC4
- Identified variants included 6x missense, 1x nonsense, 1x frameshift and 6x splice
- Depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing, similarly observed in patient fibroblasts
Sources: Literature; to: - Ten individuals from eight families with neurodevelopmental disorder found to be biallelic for variants in SNAPC4
- Identified variants included 6x missense, 1x nonsense, 1x frameshift and 6x splice
- Depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing, similarly observed in patient fibroblasts
Sources: Literature
Mendeliome v1.774 SNAPC4 Ee Ming Wong gene: SNAPC4 was added
gene: SNAPC4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SNAPC4 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SNAPC4 were set to 36965478
Phenotypes for gene: SNAPC4 were set to Neurodevelopmental disorder (MONDO#0700092), SNAPC4-related
Review for gene: SNAPC4 was set to GREEN
gene: SNAPC4 was marked as current diagnostic
Added comment: - Ten individuals from eight families with neurodevelopmental disorder found to be compound heterozygous for variants in SNAPC4
- Identified variants included 6x missense, 1x nonsense, 1x frameshift and 6x splice
- Depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing, similarly observed in patient fibroblasts
Sources: Literature
Mendeliome v1.773 RNH1 Krithika Murali gene: RNH1 was added
gene: RNH1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RNH1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RNH1 were set to PMID: 36935417
Phenotypes for gene: RNH1 were set to RNH1-related disorder
Review for gene: RNH1 was set to AMBER
Added comment: PMID: 36935417 report two siblings from a consanguineous Somali family with homozygous RNH1 splice site variant (c.615-2A>C) with congenital cataracts, global developmental delay, hypotonia, seizures (focal and generalised) and regression in the context of infection. RT-PCR and RNASeq of skeletal muscle supported exon 7 skipping with an in-frame deletion involving 57 amino acids with reduced expression on Western blot analysis.
Sources: Literature
Mendeliome v1.757 RNF212B Sangavi Sivagnanasundram gene: RNF212B was added
gene: RNF212B was added to Mendeliome. Sources: Other
Mode of inheritance for gene: RNF212B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RNF212B were set to https://doi.org/10.1016/j.xhgg.2023.100189
Phenotypes for gene: RNF212B were set to Infertility disorder, MONDO:0005047
Review for gene: RNF212B was set to AMBER
Added comment: Homozygous nonsense mutation (R150X) causative of oligoasthenotheratozoospermia (OAT) identified in three unrelated individuals (two of Jewish decent from the same consanguineous family).

Drosophila ZIP3/RNF212 related gene paralogs (vilya, narya, nenya) showed loss of function in the RNF212B protein and promoted formation of DNA double-stand breaks. The mutant was shown to result in a reduction in fertility in the Drosophila paralogs.

Note: RNF212B is reported to be exclusively expressed in the testes only compared to RNF212 which is reported in both the testes and ovaries.
Sources: Other
Mendeliome v1.757 SLC31A1 Zornitza Stark Phenotypes for gene: SLC31A1 were changed from Neurodevelopmental disorder, SLC31A1-related (MONDO#0700092) to Neurodegeneration and seizures due to copper transport defect, MIM# 620306
Mendeliome v1.754 AGO1 Zornitza Stark Phenotypes for gene: AGO1 were changed from Neurodevelopmental disorder MONDO:0700092, AGO1-related; non-syndromic ID and seizures to Neurodevelopmental disorder with language delay and behavioral abnormalities, with or without seizures, MIM# 620292
Mendeliome v1.753 AGO1 Zornitza Stark edited their review of gene: AGO1: Changed phenotypes: Neurodevelopmental disorder with language delay and behavioral abnormalities, with or without seizures, MIM# 620292
Mendeliome v1.743 THAP11 Zornitza Stark gene: THAP11 was added
gene: THAP11 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: THAP11 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: THAP11 were set to 28449119
Phenotypes for gene: THAP11 were set to Inborn disorder of cobalamin metabolism and transport, MONDO:0019220, THAP11-related
Review for gene: THAP11 was set to RED
Added comment: Single individual reported with homozygous missense variant, supportive functional data.
Sources: Expert Review
Mendeliome v1.741 UBE3C Zornitza Stark Phenotypes for gene: UBE3C were changed from Neurodevelopmental disorder, MONDO:0700092, UBE3C-related to Neurodevelopmental disorder with absent speech and movement and behavioral abnormalities, MIM# 620270
Mendeliome v1.740 UBE3C Zornitza Stark edited their review of gene: UBE3C: Changed phenotypes: Neurodevelopmental disorder with absent speech and movement and behavioral abnormalities, MIM# 620270
Mendeliome v1.734 HECTD4 Zornitza Stark Phenotypes for gene: HECTD4 were changed from Neurodevelopmental disorder overlapping Angelman syndrome, no OMIM# to Neurodevelopmental disorder with seizures, spasticity, and complete or partial agenesis of the corpus callosum, MIM# 620250
Mendeliome v1.733 HECTD4 Zornitza Stark reviewed gene: HECTD4: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with seizures, spasticity, and complete or partial agenesis of the corpus callosum, MIM# 620250; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.732 SPTLC1 Zornitza Stark Phenotypes for gene: SPTLC1 were changed from Neuropathy, hereditary sensory and autonomic, type IA, MIM# 162400; Serine palmitoyl transferase deficiency (Disorders of complex lipid synthesis) to Juvenile amyotrophic lateral sclerosis-27, MIM#620285; Neuropathy, hereditary sensory and autonomic, type IA, MIM# 162400; Serine palmitoyl transferase deficiency (Disorders of complex lipid synthesis)
Mendeliome v1.731 SPTLC1 Zornitza Stark edited their review of gene: SPTLC1: Changed phenotypes: Juvenile amyotrophic lateral sclerosis-27, MIM#620285, Neuropathy, hereditary sensory and autonomic, type IA, MIM# 162400, Serine palmitoyl transferase deficiency (Disorders of complex lipid synthesis)
Mendeliome v1.711 OXR1 Achchuthan Shanmugasundram reviewed gene: OXR1: Rating: AMBER; Mode of pathogenicity: None; Publications: 36130215; Phenotypes: sensorineural hearing loss disorder, MONDO:0020678; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.701 CYB561 Zornitza Stark gene: CYB561 was added
gene: CYB561 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: CYB561 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CYB561 were set to 29343526; 31822578
Phenotypes for gene: CYB561 were set to Orthostatic hypotension 2, MIM# 618182
Review for gene: CYB561 was set to GREEN
Added comment: Three families reported.

Severe orthostatic hypotension, recurrent hypoglycemia, and low norepinephrine levels. The disorder has onset in infancy or early childhood.

Treatment: L-threo-3,4-dihydroxyphenylserine (droxidopa)
Sources: Expert Review
Mendeliome v1.694 HMGB1 Ain Roesley Phenotypes for gene: HMGB1 were changed from Mirror image foot polydactyly; Neurodevelopmental disorder MONDO:0700092, HMGB1-related to brachyphalangy, polydactyly, and tibial aplasia/hypoplasia MIM#163905; Neurodevelopmental disorder MONDO:0700092, HMGB1-related
Mendeliome v1.686 ATG4D Zornitza Stark Phenotypes for gene: ATG4D were changed from neurodevelopmental disorder; Abnormal facial shape to Neurodevelopmental disorder, MONDO:0700092, ATG4D-related
Mendeliome v1.684 ATG4D Zornitza Stark reviewed gene: ATG4D: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, ATG4D-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.684 NLGN4X Elena Savva reviewed gene: NLGN4X: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 36747195; Phenotypes: Intellectual developmental disorder, X-linked MIM#300495; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v1.684 ATG4D Suliman Khan gene: ATG4D was added
gene: ATG4D was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATG4D was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ATG4D were set to PMID: 36765070
Phenotypes for gene: ATG4D were set to neurodevelopmental disorder; Abnormal facial shape
Penetrance for gene: ATG4D were set to unknown
Review for gene: ATG4D was set to GREEN
Added comment: PMID: 36765070 reported three individuals from two unrelated families with a neurodevelopmental disorder characterized by speech and motor impairment with a similar facial gestalt comprising almond-shaped eyes, depressed nasal bridge, and a prominent Cupid’s bow with variable disease severity and progression. NGS analysis revealed bi-allelic loss-of-function variants in ATG4D gene. Based on the clinical, bioinformatic, and functional data, the author concluded that bi-allelic loss-of-function variants in ATG4D contribute to the pathogenesis of syndromic neurodevelopmental disorder.
Sources: Literature
Mendeliome v1.684 TRPM3 Zornitza Stark Phenotypes for gene: TRPM3 were changed from Neurodevelopmental disorder with hypotonia, dysmorphic facies, and skeletal anomalies, with or without seizures, MIM# 620224 to Neurodevelopmental disorder with hypotonia, dysmorphic facies, and skeletal anomalies, with or without seizures, MIM# 620224; Cataract 50 with or without glaucoma, MIM#620253
Mendeliome v1.682 TRPM3 Zornitza Stark edited their review of gene: TRPM3: Added comment: Publications 25090642; 33484482: Single multi-generational family reported with a missense variant in this gene and cataract. Mouse model of same variant supports association. Amber for this association.; Changed publications: 31278393, 25090642, 33484482; Changed phenotypes: Neurodevelopmental disorder with hypotonia, dysmorphic facies, and skeletal anomalies, with or without seizures, MIM# 620224, Cataract 50 with or without glaucoma, MIM#620253
Mendeliome v1.680 ARHGAP35 Zornitza Stark Phenotypes for gene: ARHGAP35 were changed from neurodevelopmental disorder, ARHGAP35-related MONDO#0700092; Developmental defect of the eye (MONDO:0020145), ARHGAP35-related to Hypogonadotropic hypogonadism, MONDO:0015770, ARHGAP35-related; neurodevelopmental disorder, ARHGAP35-related MONDO#0700092; Developmental defect of the eye (MONDO:0020145), ARHGAP35-related
Mendeliome v1.675 JPH3 Zornitza Stark Phenotypes for gene: JPH3 were changed from Intellectual disability; dystonia to Neurodevelopmental disorder, MONDO:0700092, JPH3-related; Intellectual disability; dystonia
Mendeliome v1.671 JPH3 Zornitza Stark reviewed gene: JPH3: Rating: AMBER; Mode of pathogenicity: None; Publications: 36273396; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, JPH3-related; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.664 ATP9A Zornitza Stark Phenotypes for gene: ATP9A were changed from Neurodevelopmental delay; Postnatal microcephaly; Failure to thrive; Gastrointestinal symptoms to Neurodevelopmental disorder with poor growth and behavioural abnormalities, MIM# 620242
Mendeliome v1.663 ATP9A Zornitza Stark edited their review of gene: ATP9A: Changed phenotypes: Neurodevelopmental disorder with poor growth and behavioural abnormalities, MIM# 620242
Mendeliome v1.663 ATP9A Zornitza Stark edited their review of gene: ATP9A: Changed phenotypes: NeurodevNeurodevelopmental disorder with poor growth and behavioral abnormalities, MIM# 620242
Mendeliome v1.663 GOLGA2 Zornitza Stark Phenotypes for gene: GOLGA2 were changed from Neuromuscular disorder to Developmental delay with hypotonia, myopathy, and brain abnormalities, MIM 620240
Mendeliome v1.659 WDR11 Zornitza Stark Phenotypes for gene: WDR11 were changed from Intellectual disability; Hypogonadotropic hypogonadism 14 with or without anosmia MIM #614858 to Intellectual developmental disorder, autosomal recessive 78, MIM# 620237; Hypogonadotropic hypogonadism 14 with or without anosmia MIM #614858
Mendeliome v1.658 WDR11 Zornitza Stark edited their review of gene: WDR11: Changed phenotypes: Intellectual developmental disorder, autosomal recessive 78, MIM# 620237, Hypogonadotropic hypogonadism 14 with or without anosmia MIM #614858
Mendeliome v1.658 TRPM3 Zornitza Stark Phenotypes for gene: TRPM3 were changed from Neurodevelopmental disorder, MONDO:0700092, TRPM3-related to Neurodevelopmental disorder with hypotonia, dysmorphic facies, and skeletal anomalies, with or without seizures, MIM# 620224
Mendeliome v1.657 TRPM3 Zornitza Stark edited their review of gene: TRPM3: Changed phenotypes: Neurodevelopmental disorder with hypotonia, dysmorphic facies, and skeletal anomalies, with or without seizures, MIM# 620224
Mendeliome v1.642 CAMLG Seb Lunke Phenotypes for gene: CAMLG were changed from Congenital disorder of glycosylation type IIz, 620201 to Congenital disorder of glycosylation type IIz, OMIM# 620201
Mendeliome v1.635 TTI1 Zornitza Stark Phenotypes for gene: TTI1 were changed from Intellectual disability to Neurodevelopmental disorder, MONDO:0700092, TTI1-related
Mendeliome v1.632 CAMLG Manny Jacobs gene: CAMLG was added
gene: CAMLG was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CAMLG was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CAMLG were set to PMID: 35262690
Phenotypes for gene: CAMLG were set to Congenital disorder of glycosylation type IIz, 620201
Penetrance for gene: CAMLG were set to unknown
Review for gene: CAMLG was set to RED
Added comment: PMID: 35262690 (2022)
Report one patient with hom splice variant. No other reported patients.
GDD, seizures, contractures, hypotonia and brain malformations.
Sources: Literature
Mendeliome v1.629 HTR2C Zornitza Stark gene: HTR2C was added
gene: HTR2C was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HTR2C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: HTR2C were set to 36536256
Phenotypes for gene: HTR2C were set to Obesity disorder, MONDO:0011122, HTR2C-related
Review for gene: HTR2C was set to GREEN
Added comment: Exome sequencing of 2,548 people with severe obesity and 1,117 control individuals without obesity identified 13 rare variants in the gene encoding 5-HT2CR (HTR2C) in 19 unrelated people (3 males and 16 females). Eleven variants caused a loss of function in HEK293 cells. All people who carried variants had hyperphagia and some degree of maladaptive behavior. Obesity was severe, childhood-onset. Knock-in male mice harboring a human loss-of-function HTR2C variant developed obesity and reduced social exploratory behavior; female mice heterozygous for the same variant showed similar deficits with reduced severity.
Sources: Literature
Mendeliome v1.628 TTI1 Ee Ming Wong reviewed gene: TTI1: Rating: GREEN; Mode of pathogenicity: None; Publications: DOI:https://doi.org/10.1016/j.ajhg.2023.01.006; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, TTI1-related to; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.624 GET4 Elena Savva gene: GET4 was added
gene: GET4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GET4 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GET4 were set to 32395830
Phenotypes for gene: GET4 were set to ?Congenital disorder of glycosylation,, type IIy MIM#620200
Review for gene: GET4 was set to RED
Added comment: PMID: 32395830
- chet patient (missense x2), functionally shown to result in downregulation of three TRC proteins in patient cell lines.
- patient phenotype included ID, DD, seizures, dysmorphism and delayed bone age.
- functional studies on missense themselves not performed
Sources: Literature
Mendeliome v1.622 NAE1 Zornitza Stark Phenotypes for gene: NAE1 were changed from Neurodevelopmental disorder, MONDO:0700092, NAE1-related to Neurodevelopmental disorder with dysmorphic facies and ischiopubic hypoplasia, MIM# 620210
Mendeliome v1.621 NAE1 Zornitza Stark edited their review of gene: NAE1: Changed phenotypes: Neurodevelopmental disorder with dysmorphic facies and ischiopubic hypoplasia, MIM# 620210
Mendeliome v1.621 AGR2 Zornitza Stark Phenotypes for gene: AGR2 were changed from CF-like disorder to Recurrent respiratory infections and failure to thrive with or without diarrhea (RIFTD), MIM#620233
Mendeliome v1.619 SARS Zornitza Stark Phenotypes for gene: SARS were changed from neurodevelopmental disorder MONDO#070009, SARS1-related to neurodevelopmental disorder MONDO#070009, SARS1-related; Genetic peripheral neuropathy MONDO#0020127, SARS1-related
Mendeliome v1.615 TCEAL1 Zornitza Stark Phenotypes for gene: TCEAL1 were changed from Neurodevelopmental disorder, MONDO:0700092, TCEAL1-related; hypotonia, abnormal gait, developmental delay, intellectual disability, autism, dysmorphic facial features. to Neurodevelopmental disorder with gait disturbance, dysmorphic facies and behavioral abnormalities, X-linked, MIM# 301094
Mendeliome v1.614 TCEAL1 Zornitza Stark reviewed gene: TCEAL1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with gait disturbance, dysmorphic facies and behavioral abnormalities, X-linked, MIM# 301094; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v1.613 FGF13 Zornitza Stark Phenotypes for gene: FGF13 were changed from Developmental and epileptic encephalopathy 90, MIM# 301058; Intellectual disability; epilepsy to Developmental and epileptic encephalopathy 90, MIM# 301058; Intellectual developmental disorder, X-linked 110, MIM# 301095
Mendeliome v1.611 FGF13 Zornitza Stark edited their review of gene: FGF13: Changed phenotypes: Developmental and epileptic encephalopathy 90, MIM# 301058, Intellectual developmental disorder, X-linked 110, MIM# 301095
Mendeliome v1.611 ZNF668 Zornitza Stark Phenotypes for gene: ZNF668 were changed from DNA damage repair defect; microcephaly; growth deficiency; severe global developmental delay; brain malformation; facial dysmorphism to Neurodevelopmental disorder with poor growth, large ears, and dysmorphic facies, MIM# 620194
Mendeliome v1.610 ZNF668 Zornitza Stark reviewed gene: ZNF668: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with poor growth, large ears, and dysmorphic facies, MIM# 620194; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.607 NAE1 Zornitza Stark gene: NAE1 was added
gene: NAE1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NAE1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NAE1 were set to 36608681
Phenotypes for gene: NAE1 were set to Neurodevelopmental disorder, MONDO:0700092, NAE1-related
Review for gene: NAE1 was set to GREEN
Added comment: Four individuals reported with bi-allelic variants and intellectual disability, ischiopubic hypoplasia, stress-mediated lymphopenia and neurodegeneration.
Sources: Literature
Mendeliome v1.604 TRPC5 Zornitza Stark Phenotypes for gene: TRPC5 were changed from Intellectual disability; autistic spectrum disorder to Neurodevelopmental disorder, MONDO:0700092, TRPC5-related
Mendeliome v1.601 TRPC5 Hazel Phillimore gene: TRPC5 was added
gene: TRPC5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TRPC5 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: TRPC5 were set to PMID: 36323681; 24817631; 23033978; 33504798; 28191890
Phenotypes for gene: TRPC5 were set to Intellectual disability; autistic spectrum disorder
Review for gene: TRPC5 was set to AMBER
Added comment: PMID: 36323681; Leitão E. et al. (2022) Nat Commun.13(1):6570:
Missense variant NM_012471.2:c.523C>T, p.(Arg175Cys in three brothers with intellectual disability (ID) and autistic spectrum disorder (ASD), inherited from an asymptomatic mother and absent in the maternal grandparents.
Whole cell patch clamp studies of HEK293 created by site-directed mutagenesis showed increased current of this calcium channel (constitutively opened).
(This variant is absent in gnomAD v2.1.1).

Also, the nonsense variant, c.965G> A, p.(Trp322*) was found in a high functioning ASD male (maternally inherited), NMD-predicted.

Other papers and TRPC5 variants that were cited to associate this gene with X-linked ID and/or ASD include:
PMID: 24817631; Mignon-Ravix, C. et al. (2014) Am. J.Med. Genet. A 164A: 1991–1997: A hemizygous 47-kb deletion in Xq23 including exon 1 of the TRPC5 gene. He had macrocephaly, delayed psychomotor development, speech delay, behavioural problems, and autistic features. Maternally inherited, and a family history compatible with X-linked inheritance (i.e., maternal great uncle was also affected, although not tested).

In addition, PMID: 36323681; Leitão E. et al. (2022) cites papers with the variants p.(Pro667Thr), p.(Arg71Gln) and p.(Trp225*).
NB. p.(Pro667Thr) is absent in gnomAD (v2.1.1), p.(Arg71Gln) is also absent (the alternative variant p.(Arg71Trp) is present once as heterozygous only). p.(Trp225*) is absent, and it should be noted that PTCs / LoF variants are very rare (pLI = 1).

However, looking further into the three references, the evidence is not as clear or as accurate as was stated.

The missense variant c.1999C>A, p.(Pro667Thr), was stated as de novo, but was actually maternally inherited but was still considered a candidate for severe intellectual disability (shown in the Appendix, Patient 93, with severe speech delay, autism spectrum disorder and Gilles de la Tourette). This patient also has a de novo MTF1 variant. Reference: PMID: 23033978; de Ligt, J. et al. (2012) N. Engl. J. Med. 367: 1921–1929).

Missense variant (de novo): c.212G>A, p.(Arg71Gln), was found as part of the Deciphering Developmental Disorders (DDD) study and is shown in individual 164 in Supplementary Table 2 of PMID: 33504798; Martin, HC. et al. (2021) Nat. Commun.12: 627. Also displayed in DECIPHER (DDD research variant) with several phenotype traits, but ID and ASD are not specifically mentioned.

Nonsense variant: c.674G>A. p.(Trp225*) was stated as de novo but was inherited (reference PMID: 28191890; Kosmicki, JA. et al. (2017) Nat. Genet. 49: 504–510. Supplement Table 7). This was a study of severe intellectual delay, developmental delay / autism. (NB. The de novo p.(Arg71Gln) variant from the DDD study is also listed (subject DDD 342 in Supplement 4 / Table 2).
Sources: Literature
Mendeliome v1.597 SLC31A1 Zornitza Stark reviewed gene: SLC31A1: Rating: AMBER; Mode of pathogenicity: None; Publications: 36562171; Phenotypes: Neurodevelopmental disorder, SLC31A1-related (MONDO#0700092); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.595 ARHGAP35 Zornitza Stark Phenotypes for gene: ARHGAP35 were changed from neurodevelopmental disorder, ARHGAP35-related MONDO#0700092 to neurodevelopmental disorder, ARHGAP35-related MONDO#0700092; Developmental defect of the eye (MONDO:0020145), ARHGAP35-related
Mendeliome v1.588 EIF4A2 Dean Phelan gene: EIF4A2 was added
gene: EIF4A2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EIF4A2 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: EIF4A2 were set to PMID: 36528028
Phenotypes for gene: EIF4A2 were set to Neurodevelopmental disorder (MONDO:0700092), EIF4A2-related
Mode of pathogenicity for gene: EIF4A2 was set to Other
Review for gene: EIF4A2 was set to GREEN
Added comment: PMID: 36528028
- EIF4A2 variants were observed in 15 individuals from 14 families. Affected individuals had a range of symptoms including global developmental delay (9/15), ID (7/15), epilepsy (11/15) and structural brain alterations (10/15). Monoallelic and biallelic variants were reported and functional studies showed both LOF and GOF disease mechanisms.
Sources: Literature
Mendeliome v1.585 CDK16 Alison Yeung Phenotypes for gene: CDK16 were changed from Intellectual disability to Neurodevelopmental disorder (MONDO#0700092) CDK16-related
Mendeliome v1.583 CDK16 Alison Yeung reviewed gene: CDK16: Rating: GREEN; Mode of pathogenicity: None; Publications: 36323681, 31981491, 25644381; Phenotypes: Neurodevelopmental disorder (MONDO#0700092) CDK16-related; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v1.580 TRA2B Seb Lunke Phenotypes for gene: TRA2B were changed from Neurodevelopmental disorder, TRA2B-related (MONDO#0700092) to Neurodevelopmental disorder, TRA2B-related, MONDO# 0700092
Mendeliome v1.577 ZMYM3 Zornitza Stark Phenotypes for gene: ZMYM3 were changed from Neurodevelopmental disorders (NDDs) to Neurodevelopmental disorder, MONDO:0700092, ZMYM3-related
Mendeliome v1.576 TRA2B Elena Savva gene: TRA2B was added
gene: TRA2B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TRA2B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: TRA2B were set to PMID: 36549593
Phenotypes for gene: TRA2B were set to Neurodevelopmental disorder, TRA2B-related (MONDO#0700092)
Review for gene: TRA2B was set to GREEN
Added comment: PMID: 36549593
- 12 individuals with ID and dev delay. Additional features include infantile spams 6/12, hypotonia 12/12, dilated brain ventricles 6/12, microcephaly 5/12
- All variants result in the loss of 1/2 transcripts (start-losses or PTCs upstream of a second translation start position). Shorter transcript expression is increased, longer transcript expression is decreased.
- Apparently het mice K/O are normal, but complete K/O cannot develop embryonically.
- DN mechanism suggested
Sources: Literature
Mendeliome v1.572 ZMYM3 Belinda Chong gene: ZMYM3 was added
gene: ZMYM3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZMYM3 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: ZMYM3 were set to 36586412; 24721225
Phenotypes for gene: ZMYM3 were set to Neurodevelopmental disorders (NDDs)
Review for gene: ZMYM3 was set to GREEN
Added comment: PMID: 36586412
Using the MatchMaker Exchange - Described 27 individuals with rare, variation in the ZMYM3. Most individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) with de novo variants.
Overlapping features included developmental delay, intellectual disability, behavioural abnormalities, and a specific facial gestalt in a subset of males.
Variants in almost all individuals are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441 (R441W), a site at which variation has been previously seen in NDD-affected siblings (24721225), and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T).
ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect.
Sources: Literature
Mendeliome v1.571 BUB1 Zornitza Stark Phenotypes for gene: BUB1 were changed from Neurodevelopmental disorder, BUB1-related MONDO:0700092 to Primary microcephaly-30 (MCPH30), MIM#620183
Mendeliome v1.563 WDFY3 Zornitza Stark Phenotypes for gene: WDFY3 were changed from Microcephaly 18, primary, autosomal dominant, MIM#617520 to Microcephaly 18, primary, autosomal dominant, MIM#617520; Neurodevelopmental disorder with macrocephaly
Mendeliome v1.562 PTPN4 Zornitza Stark Phenotypes for gene: PTPN4 were changed from Intellectual disability; developmental delay to Neurodevelopmental disorder, MONDO:0700092, PTPN4-related
Mendeliome v1.561 CLDN5 Zornitza Stark Phenotypes for gene: CLDN5 were changed from alternating hemiplegia, MONDO:0016210, CLDN5-related to Syndromic disorder, MONDO:0002254, CLDN5-related
Mendeliome v1.557 SETD2 Zornitza Stark Phenotypes for gene: SETD2 were changed from Luscan-Lumish syndrome, MIM#616831; Luscan-Lumish syndrome, MIM#616831; Rabin-Pappas syndrome,MIM# 620155; Intellectual developmental disorder, autosomal dominant 70, MIM# 620157 to Luscan-Lumish syndrome, MIM#616831; Rabin-Pappas syndrome,MIM# 620155; Intellectual developmental disorder, autosomal dominant 70, MIM# 620157
Mendeliome v1.556 SETD2 Zornitza Stark Phenotypes for gene: SETD2 were changed from Luscan-Lumish syndrome, MIM#616831 to Luscan-Lumish syndrome, MIM#616831; Luscan-Lumish syndrome, MIM#616831; Rabin-Pappas syndrome,MIM# 620155; Intellectual developmental disorder, autosomal dominant 70, MIM# 620157
Mendeliome v1.554 SETD2 Zornitza Stark edited their review of gene: SETD2: Added comment: PMID 32710489: 12 unrelated patients, ranging from 1 month to 12 years of age, with a multisystemic neurodevelopmental disorder associated with a specific de novo heterozygous mutation in the SETD2 gene (R1740W).

Key clinical features: severely impaired global development apparent from infancy, feeding difficulties with failure to thrive, small head circumference, and dysmorphic facial features. Affected individuals have impaired intellectual development and hypotonia; they do not achieve walking or meaningful speech. Other neurologic findings may include seizures, hearing loss, ophthalmologic defects, and brain imaging abnormalities. There is variable involvement of other organ systems, including skeletal, genitourinary, cardiac, and possibly endocrine.

Further 3 unrelated patients identified with mild to moderately impaired intellectual development associated with a specific de novo heterozygous mutation in the SETD2 gene (R1740Q).

These are distinct clinically from Luscan-Lumish syndrome, which is characterised by overgrowth.; Changed publications: 29681085, 32710489; Changed phenotypes: Luscan-Lumish syndrome, MIM#616831, Rabin-Pappas syndrome,MIM# 620155, Intellectual developmental disorder, autosomal dominant 70, MIM# 620157
Mendeliome v1.547 CACNA2D1 Zornitza Stark Phenotypes for gene: CACNA2D1 were changed from Developmental and epileptic encephalopathy disorder MONDO:0100062 CACNA2D1-related to Developmental and epileptic encephalopathy 110, MIM# 620149
Mendeliome v1.532 NLGN4X Krithika Murali reviewed gene: NLGN4X: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID:26350204, PMID:14963808, PMID:12669065, PMID:23352163, PMID:28263302, PMID:16648374; Phenotypes: Intellectual developmental disorder, X-linked - MIM#300495; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v1.526 LEMD2 Seb Lunke Phenotypes for gene: LEMD2 were changed from Marbach-Rustad progeroid syndrome, OMIM# 619322; progeroid disorder to Marbach-Rustad progeroid syndrome, OMIM# 619322; arrhythmogenic right ventricular cardiomyopathy, MONDO:0016587; Cataract 46, juvenile-onset, OMIM# 212500
Mendeliome v1.512 ARF3 Dean Phelan reviewed gene: ARF3: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 36369169, 34346499; Phenotypes: Neurodevelopmental disorder (MONDO:0700092), ARF3-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.507 TCEAL1 Zornitza Stark Phenotypes for gene: TCEAL1 were changed from hypotonia, abnormal gait, developmental delay, intellectual disability, autism, dysmorphic facial features. to Neurodevelopmental disorder, MONDO:0700092, TCEAL1-related; hypotonia, abnormal gait, developmental delay, intellectual disability, autism, dysmorphic facial features.
Mendeliome v1.504 FEM1C Paul De Fazio gene: FEM1C was added
gene: FEM1C was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FEM1C was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: FEM1C were set to 36336956; 28135719; 33398170; 33398168
Phenotypes for gene: FEM1C were set to Neurodevelopmental disorder, FEM1C-related MONDO:0700092
Review for gene: FEM1C was set to GREEN
gene: FEM1C was marked as current diagnostic
Added comment: PMID:36336956 describes a 9-year-old boy with severe DD, lack of speech, pyramidal signs, and limb ataxia who had a de novo missense variant Asp126His in FEM1C ascertained by WES. The equivalent variant introduced into the nematode C.elegans resulted in disabled locomotion caused by synaptic abnormalities and not muscle dysfunction.

An alternate change Asp126Val was reported in the DDD study de novo in a patient with uncharacterised developmental delay (PMID:28135719).

The Asp126 residue (but not either of the variants above specifically) was shown to be functionally important by in vitro studies (PMID:33398170;33398168). The residue is highly conserved and located in a region of missense constraint.

Borderline green, 2 patients and an animal model. Note all evidence points to the Asp126 residue being of specific importance.
Sources: Literature
Mendeliome v1.503 KDM2B Ain Roesley gene: KDM2B was added
gene: KDM2B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KDM2B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KDM2B were set to 36322151
Phenotypes for gene: KDM2B were set to neurodevelopmental disorder MONDO#070009, KDM2B-related
Review for gene: KDM2B was set to GREEN
gene: KDM2B was marked as current diagnostic
Added comment: 27 individuals from 22 families were recruited
12 SNV classified LP/P, all de novo except 2 familial cases
5 variants were classified as VUS if more than 1 het is present in gnomAD or does result in a KDM2B-specific episignature (therefore suggesting normal function)
Sources: Literature
Mendeliome v1.502 MAN2A2 Zornitza Stark gene: MAN2A2 was added
gene: MAN2A2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MAN2A2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MAN2A2 were set to 36357165
Phenotypes for gene: MAN2A2 were set to Congenital disorder of glycosylation, MONDO:0015286, MAN2A2-reated
Review for gene: MAN2A2 was set to RED
Added comment: Single consanguineous family reported with homozygous truncating variant in two brothers with ID. Supportive biochemical data only.
Sources: Literature
Mendeliome v1.501 ARPC4 Zornitza Stark Phenotypes for gene: ARPC4 were changed from Neurodevelopmental disorder, ARPC4-related MONDO#0700092 to Developmental delay, language impairment, and ocular abnormalities, MIM# 620141
Mendeliome v1.499 UBE3C Zornitza Stark Phenotypes for gene: UBE3C were changed from Neurodevelopmental disorder overlapping Angelman syndrome, no OMIM# to Neurodevelopmental disorder, MONDO:0700092, UBE3C-related
Mendeliome v1.498 UBE3C Zornitza Stark reviewed gene: UBE3C: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, UBE3C-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.495 UBE3C Chirag Patel gene: UBE3C was added
gene: UBE3C was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UBE3C was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UBE3C were set to PMID: 36401616
Phenotypes for gene: UBE3C were set to Neurodevelopmental disorder overlapping Angelman syndrome, no OMIM#
Review for gene: UBE3C was set to GREEN
Added comment: 3 patients/2 families with syndromic neurodevelopmental, seizure, and movement disorders and neurobehavioral phenotypes. WES found bi-allelic variants in UBE3C. The RNA studies in some patients with LoF variants provided evidence for the LoF effect.
Sources: Literature
Mendeliome v1.493 HECTD4 Chirag Patel gene: HECTD4 was added
gene: HECTD4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HECTD4 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HECTD4 were set to PMID: 36401616
Phenotypes for gene: HECTD4 were set to Neurodevelopmental disorder overlapping Angelman syndrome, no OMIM#
Review for gene: HECTD4 was set to GREEN
Added comment: 7 patients/5 families with syndromic neurodevelopmental, seizure, and movement disorders and neurobehavioral phenotypes. WES found bi-allelic variants in HECTD4. The RNA studies in some patients with LoF variants provided evidence for the LoF effect.
Sources: Literature
Mendeliome v1.490 TAMM41 Zornitza Stark Phenotypes for gene: TAMM41 were changed from inborn mitochondrial metabolism disorder MONDO:0004069; hypotonia; developmental delay; myopathy; ptosis to Combined oxidative phosphorylation deficiency-56 (COXPD56), MIM#620139; hypotonia; developmental delay; myopathy; ptosis
Mendeliome v1.476 ARPC4 Zornitza Stark Phenotypes for gene: ARPC4 were changed from Microcephaly; mild motor delays; significant speech impairment to Neurodevelopmental disorder, ARPC4-related MONDO#0700092
Mendeliome v1.475 ARPC4 Zornitza Stark reviewed gene: ARPC4: Rating: GREEN; Mode of pathogenicity: None; Publications: 35047857; Phenotypes: Neurodevelopmental disorder, ARPC4-related MONDO#0700092; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.468 SMC5 Zornitza Stark gene: SMC5 was added
gene: SMC5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SMC5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SMC5 were set to 36333305
Phenotypes for gene: SMC5 were set to Multiple congenital anomalies/dysmorphic syndrome, MONDO:0019042, SLF2-related; Atelis syndrome; microcephaly; short stature; ID
Review for gene: SMC5 was set to GREEN
Added comment: Four individuals from three families with a chromosome breakage disorder and bi-allelic variants in this gene. However, three of the individuals had the same homozygous missense variant. Evidence for functional impact of the variant was limited. However, zebrafish model recapitulated the phenotype and was not rescued by the introduction of this variant, arguing for functional effect. Borderline Amber/Green
Sources: Literature
Mendeliome v1.466 SLF2 Zornitza Stark gene: SLF2 was added
gene: SLF2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLF2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLF2 were set to 36333305
Phenotypes for gene: SLF2 were set to Multiple congenital anomalies/dysmorphic syndrome, MONDO:0019042, SLF2-related; Atelis syndrome; microcephaly; short stature; ID
Review for gene: SLF2 was set to GREEN
Added comment: Seven individuals from 6 families with a chromosome breakage disorder and bi-allelic variants in this gene (LoF). Functional data including zebrafish model.
Sources: Literature
Mendeliome v1.460 CACNA1I Zornitza Stark Phenotypes for gene: CACNA1I were changed from Neurodevelopmental disorder to Neurodevelopmental disorder with variable intellectual disability and speech impairment, with or without seizures (NEDISS), MIM#620114
Mendeliome v1.459 CACNA1I Zornitza Stark reviewed gene: CACNA1I: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with variable intellectual disability and speech impairment, with or without seizures (NEDISS), MIM#620114; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.459 HK1 Zornitza Stark edited their review of gene: HK1: Added comment: PMID 36333503: 14 non-coding de novo variants affecting a 42-bp conserved region encompassed by a regulatory element in intron 2 of the hexokinase 1 gene (HK1) identified in individuals with hyperinsulinism.; Changed publications: 19536174, 30778173, 25316723, 25190649, 31621442, 32814480, 7655856, 12393545, 33361148, 31119733, 27282571, 36333503; Changed phenotypes: Hyperinsulinism MONDO:0002177, HK1-related, Neuropathy, hereditary motor and sensory, Russe type , MIM#605285, Haemolytic anaemia due to hexokinase deficiency, MIM# 235700, Neurodevelopmental disorder with visual defects and brain anomalies, MIM# 618547, Retinitis pigmentosa 79, MIM# 617460
Mendeliome v1.459 FRA10AC1 Zornitza Stark Phenotypes for gene: FRA10AC1 were changed from Neurodevelopmental disorder, MONDO:0700092, FRA10AC1-related to Neurodevelopmental disorder with growth retardation, dysmorphic facies, and corpus callosum abnormalities, MIM# 620113
Mendeliome v1.458 FRA10AC1 Zornitza Stark edited their review of gene: FRA10AC1: Changed phenotypes: Neurodevelopmental disorder with growth retardation, dysmorphic facies, and corpus callosum abnormalities, MIM# 620113
Mendeliome v1.452 WDR5 Bryony Thompson gene: WDR5 was added
gene: WDR5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: WDR5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: WDR5 were set to DOI:https://doi.org/10.1016/j.xhgg.2022.100157
Phenotypes for gene: WDR5 were set to Neurodevelopmental disorder MONDO:0700092, WDR5-related
Mode of pathogenicity for gene: WDR5 was set to Other
Review for gene: WDR5 was set to GREEN
Added comment: Six different missense variants were identified (de novo) in 11 affected individuals with neurodevelopmental disorders, with a broad spectrum of additional features, including epilepsy, aberrant growth parameters, skeletal and cardiac abnormalities. In vivo and in vitro functional suggest that loss-of-function is not the mechanism of disease. The mechanism of disease is yet to be established.
Sources: Literature
Mendeliome v1.449 PI4K2A Zornitza Stark Phenotypes for gene: PI4K2A were changed from Cutis laxa, intellectual disability, movement disorder to complex neurodevelopmental disorder with motor features, PI4K2A-related, MONDO:0100516; Cutis laxa, intellectual disability, movement disorder
Mendeliome v1.444 PI4K2A Seb Lunke reviewed gene: PI4K2A: Rating: GREEN; Mode of pathogenicity: None; Publications: 30564627, 35880319, 19581584; Phenotypes: complex neurodevelopmental disorder with motor features, PI4K2A-related, MONDO:0100516; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.442 CAMSAP1 Naomi Baker gene: CAMSAP1 was added
gene: CAMSAP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CAMSAP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CAMSAP1 were set to 36283405
Phenotypes for gene: CAMSAP1 were set to lissencephaly spectrum disorders (MONDO:0018838), CAMSAP1-related
Review for gene: CAMSAP1 was set to GREEN
Added comment: Five unrelated families with bi-allelic loss-of-function variants. Clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, lissencephaly, agenesis or severe hypogenesis of the corpus callosum, severe neurodevelopmental delay, cortical visual impairment, and seizures.
Sources: Literature
Mendeliome v1.442 MYCBP2 Suliman Khan gene: MYCBP2 was added
gene: MYCBP2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MYCBP2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MYCBP2 were set to PMID: 36200388
Phenotypes for gene: MYCBP2 were set to Neurodevelopmental disorder, MONDO:0700092, MYCBP2-related; corpus callosum abnormalities
Penetrance for gene: MYCBP2 were set to Complete
Review for gene: MYCBP2 was set to GREEN
Added comment: PMID: 36200388 reported eight patients with neurodevelopmental disorder including corpus callosum abnormalities, developmental delay, intellectual disability, epilepsy, and autistic features. Each patient harbored a de novo LOF variant in MYCBP2 gene. Functional study supported a direct link between MYCBP2 and neurodevelopmental spectrum disorder specifically corpus callosum defects.
Sources: Literature
Mendeliome v1.441 KLHL20 Dean Phelan gene: KLHL20 was added
gene: KLHL20 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KLHL20 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KLHL20 were set to PMID: 36214804
Phenotypes for gene: KLHL20 were set to Neurodevelopmental disorder (MONDO:0700092), KLHL20-related
Review for gene: KLHL20 was set to GREEN
Added comment: PMID: 36214804
- 14 patients with de novo missense variants in KLHL20. The patients had mild to severe ID, febrile seizures or epilepsy, autism spectrum disorder, hyperactivity and subtle dysmorphic facial features.
Sources: Literature
Mendeliome v1.429 FRMD5 Zornitza Stark Phenotypes for gene: FRMD5 were changed from Neurodevelopmental disorder MONDO:0700092, FRMD5-related to Neurodevelopmental disorder with eye movement abnormalities and ataxia, MIM# 620094
Mendeliome v1.428 FRMD5 Zornitza Stark edited their review of gene: FRMD5: Changed phenotypes: Neurodevelopmental disorder with eye movement abnormalities and ataxia, MIM# 620094
Mendeliome v1.421 CLCN7 Zornitza Stark changed review comment from: Two individuals reported with same missense variant and hypopigmentation, organomegaly, and delayed myelination and development. Variant is GoF. No osteopetrosis, biopsy findings from skin and other organs are consistent with a lysosomal storage disorder. IUGR, prematurity and polyhydramnios are features.

Bi-allelic variants in this gene are associated with osteopetrosis.; to: Two individuals reported with same missense variant and hypopigmentation, organomegaly, and delayed myelination and development. Variant is GoF. No osteopetrosis, biopsy findings from skin and other organs are consistent with a lysosomal storage disorder. IUGR, prematurity and polyhydramnios are features.

Mono- and bi-allelic variants in this gene are associated with osteopetrosis.
Mendeliome v1.421 HNRNPH1 Zornitza Stark Phenotypes for gene: HNRNPH1 were changed from HNRNPH1‐related syndromic intellectual disability; early onset high myopia, MONDO:0001384 to Neurodevelopmental disorder with craniofacial dysmorphism and skeletal defects, MIM# 620083
Mendeliome v1.420 HNRNPH1 Zornitza Stark edited their review of gene: HNRNPH1: Changed phenotypes: Neurodevelopmental disorder with craniofacial dysmorphism and skeletal defects, MIM# 620083
Mendeliome v1.417 TMEM147 Zornitza Stark Phenotypes for gene: TMEM147 were changed from Neurodevelopmental disorder (MONDO:0700092), TMEM147-related to Neurodevelopmental disorder with facial dysmorphism, absent language, and pseudo-Pelger-Huet anomaly, MIM# 620075
Mendeliome v1.416 TMEM147 Zornitza Stark reviewed gene: TMEM147: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with facial dysmorphism, absent language, and pseudo-Pelger-Huet anomaly, MIM# 620075; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.411 PSMC1 Zornitza Stark Phenotypes for gene: PSMC1 were changed from 35861243; spastic paraplegia; severe developmental delay; severe intellectual disability; hearing loss; micropenis; undescended testes to Neurodevelopmental disorder with poor growth, spastic tetraplegia, and hearing loss , MIM# 620071
Mendeliome v1.410 PSMC1 Zornitza Stark edited their review of gene: PSMC1: Changed phenotypes: Neurodevelopmental disorder with poor growth, spastic tetraplegia, and hearing loss , MIM# 620071
Mendeliome v1.409 HNRNPR Zornitza Stark Phenotypes for gene: HNRNPR were changed from Intellectual disability; seizures to Neurodevelopmental disorder with dysmorphic facies and skeletal and brain abnormalities, MIM# 620073
Mendeliome v1.408 HNRNPR Zornitza Stark edited their review of gene: HNRNPR: Changed phenotypes: Neurodevelopmental disorder with dysmorphic facies and skeletal and brain abnormalities, MIM# 620073
Mendeliome v1.408 FGF14 Zornitza Stark Phenotypes for gene: FGF14 were changed from Vestibulocerebellar disorder with predominant ocular signs, MIM# 193003 to Spinocerebellar ataxia 27, MIM# 609307; Vestibulocerebellar disorder with predominant ocular signs, MIM# 193003
Mendeliome v1.407 FGF14 Zornitza Stark edited their review of gene: FGF14: Changed phenotypes: Spinocerebellar ataxia 27, MIM# 609307, Vestibulocerebellar disorder with predominant ocular signs, MIM# 193003
Mendeliome v1.407 FGF14 Zornitza Stark Phenotypes for gene: FGF14 were changed from Spinocerebellar ataspinocerebellar ataxia type 27 MONDO:0012247; hereditary episodic ataxia MONDO:0016227 to Vestibulocerebellar disorder with predominant ocular signs, MIM# 193003
Mendeliome v1.406 FGF14 Zornitza Stark reviewed gene: FGF14: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Vestibulocerebellar disorder with predominant ocular signs, MIM# 193003; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.401 FRMD5 Zornitza Stark gene: FRMD5 was added
gene: FRMD5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FRMD5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FRMD5 were set to 36206744
Phenotypes for gene: FRMD5 were set to Neurodevelopmental disorder MONDO:0700092, FRMD5-related
Review for gene: FRMD5 was set to GREEN
Added comment: Eight individuals reported with missense variants in this gene, de novo in 6 where parents were available. Clinical presentation was with ID, seizures, ataxia. Fly model.
Sources: Literature
Mendeliome v1.399 GIGYF1 Elena Savva Phenotypes for gene: GIGYF1 were changed from Developmental disorder to Autism, Intellectual disability, GIGYF1-related (MONDO#0001071)
Mendeliome v1.397 TOMM7 Zornitza Stark Phenotypes for gene: TOMM7 were changed from growth retardation, intellectual developmental disorder, hypotonia, and hepatopathy MONDO:0014911 to Inborn mitochondrial disorder MONDO:0004069, TOMM7-related
Mendeliome v1.396 TOMM7 Zornitza Stark reviewed gene: TOMM7: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Inborn mitochondrial disorder MONDO:0004069, TOMM7-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.395 TOMM7 Bryony Thompson gene: TOMM7 was added
gene: TOMM7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TOMM7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TOMM7 were set to DOI:https://doi.org/10.1016/j.xhgg.2022.100148
Phenotypes for gene: TOMM7 were set to growth retardation, intellectual developmental disorder, hypotonia, and hepatopathy MONDO:0014911
Review for gene: TOMM7 was set to AMBER
Added comment: A single case identified with a homozygous variant in TOMM7 (c.73T>C, p.Trp25Arg) that presented with syndromic short stature, skeletal abnormalities, muscle hypotonia, microvesicular liver steatosis, and developmental delay. A mouse model of the missense variant demonstrated a bioenergetic defect and a phenotype of mitochondrial diseases. It also strongly suggested that the variant is hypomorphic because mice homozygous for this variant showed a milder phenotype than those with a homozygous Tomm7 deletion.
Sources: Literature
Mendeliome v1.393 HECW2 Bryony Thompson reviewed gene: HECW2: Rating: AMBER; Mode of pathogenicity: None; Publications: 35753050, 35487419; Phenotypes: Neurodevelopmental disorder with hypotonia, seizures, and absent language MONDO:0014995; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.384 DPH5 Zornitza Stark gene: DPH5 was added
gene: DPH5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DPH5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DPH5 were set to 35482014
Phenotypes for gene: DPH5 were set to Neurodevelopmental disorder with short stature, prominent forehead, and feeding difficulties, MIM# 620070
Review for gene: DPH5 was set to GREEN
Added comment: 5 individuals from 3 unrelated families reported with severe ID, feeding difficulties, dysmorphic features and congenital anomalies, though there was no consistent pattern to these.
Sources: Literature
Mendeliome v1.383 VPS33A Bryony Thompson reviewed gene: VPS33A: Rating: GREEN; Mode of pathogenicity: None; Publications: 28013294, 27547915, 31936524, 36153662; Phenotypes: Mucopolysaccharidosis-like syndrome with congenital heart defects and hematopoietic disorders MONDO:0015012; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.382 ADGRL1 Zornitza Stark Phenotypes for gene: ADGRL1 were changed from Neurodevelopmental disorder, ADGRL1-related (MONDO#0700092) to Developmental delay, behavioral abnormalities, and neuropsychiatric disorders, MIM# 620065
Mendeliome v1.381 ADGRL1 Zornitza Stark reviewed gene: ADGRL1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Developmental delay, behavioral abnormalities, and neuropsychiatric disorders, MIM# 620065; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.374 DEPDC5 Dean Phelan reviewed gene: DEPDC5: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 36067010, 32848577; Phenotypes: Neurodevelopmental disorder, DEPDC5-related, MONDO:0700092; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.371 GABBR1 Zornitza Stark gene: GABBR1 was added
gene: GABBR1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GABBR1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GABBR1 were set to 36103875
Phenotypes for gene: GABBR1 were set to Neurodevelopmental disorder, GABBR1-related, MONDO:0700092
Review for gene: GABBR1 was set to GREEN
Added comment: Four individuals with de novo variants in this gene and varying severity of DD/ID, seizures and hypotonia.
Sources: Literature
Mendeliome v1.366 MED11 Ain Roesley gene: MED11 was added
gene: MED11 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MED11 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MED11 were set to 36001086
Phenotypes for gene: MED11 were set to neurodevelopmental disorder MONDO#0700092, MED11-related
Review for gene: MED11 was set to GREEN
gene: MED11 was marked as current diagnostic
Added comment: 7 affected from 5 families (3x consang) with the same recurrent variant of p.(Arg109*).

Protein truncating, NOT NMD as proven by RT-PCR and western blot. Zebrafish knockout model recapitulates key clinical phenotypes

NO evidence of founder effect from haplotype analysis

7/7 cerebral dysgyria, cortical atrophy
5/7 limb contracture
4/7 epilepsy
3/7 families with IUGR
3/7 GDD
3/7 hearing loss
3/7 undescended testis
2/7 nystagmus
1/7 congenital cataract
Sources: Literature
Mendeliome v1.365 ATP6V0C Naomi Baker reviewed gene: ATP6V0C: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID:36074901; Phenotypes: neurodevelopmental disorder (MONDO:0700092), ATP6V0C-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.364 ATP6V0C Alison Yeung reviewed gene: ATP6V0C: Rating: GREEN; Mode of pathogenicity: None; Publications: 36074901; Phenotypes: neurodevelopmental disorder (MONDO:0700092), ATP6V0C-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.364 SLC13A1 Lucy Spencer gene: SLC13A1 was added
gene: SLC13A1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC13A1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC13A1 were set to 36175384
Phenotypes for gene: SLC13A1 were set to sulfation-related bone disorder MONDO:0019688, SLC13A1-related
Review for gene: SLC13A1 was set to RED
Added comment: PMID: 36175384- 1 patient with a homozygous nonsense variant in SLC13A1. Patient has enlargements of the joints, and spondylo-epi-metaphyseal radiological abnormalities in early childhood, which improved with age. Also autistic features and hyposulfatemia and hypersulfaturia, and reduced serum cholesterol sulfate. However the variant in this individual (Arg12Ter) has 569 hets and 1 hom in gnomad.

Also this patient was homozygous for CFTR Ala455Gly which is a known pathogenic variant associated with a less severe CF phenotype.
Sources: Literature
Mendeliome v1.355 RABGAP1 Zornitza Stark gene: RABGAP1 was added
gene: RABGAP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RABGAP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RABGAP1 were set to 36083289
Phenotypes for gene: RABGAP1 were set to Neurodevelopmental disorder, RABGAP1-related,MONDO:0700092
Review for gene: RABGAP1 was set to GREEN
Added comment: 5 individuals from three families reported with ID, microcephaly, SNHL and seizures. Mouse model recapitulated the phenotype.
Sources: Literature
Mendeliome v1.354 GCSH Ain Roesley Phenotypes for gene: GCSH were changed from Glycine encephalopathy, MIM# 605899 to Glycine encephalopathy MIM#605899; neurodevelopmental disorder MONDO#0700092, GCHS-related
Mendeliome v1.352 GCSH Ain Roesley edited their review of gene: GCSH: Changed phenotypes: Glycine encephalopathy MIM#605899, neurodevelopmental disorder MONDO#0700092, GCHS-related
Mendeliome v1.351 GCSH Ain Roesley reviewed gene: GCSH: Rating: GREEN; Mode of pathogenicity: None; Publications: 36190515; Phenotypes: glycine encephalopathy MONDO#0011612, GCSH-related, neurodevelopmental disorder MONDO#0700092, GCHS-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v1.350 NSD2 Zornitza Stark Phenotypes for gene: NSD2 were changed from Rauch-Steindl syndrome, MIM# 619695; Microcephaly; intellectual disability to Rauch-Steindl syndrome, MIM# 619695; Microcephaly; intellectual disability; Neurodevelopmental disorder, NSD2-associated, GoF, MONDO:0700092
Mendeliome v1.348 NSD2 Zornitza Stark edited their review of gene: NSD2: Added comment: PMID 36189577: two individuals reported with a GoF variant, p.Glu1099Lys, and a distinct phenotype: intellectual disability, coarse/ square facial gestalt, abnormalities of the hands, and organomegaly.; Changed phenotypes: Rauch-Steindl syndrome, MIM# 619695, Microcephaly, intellectual disability, Neurodevelopmental disorder, NSD2-associated, GoF, MONDO:0700092
Mendeliome v1.348 FOSL2 Krithika Murali gene: FOSL2 was added
gene: FOSL2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FOSL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FOSL2 were set to 36197437
Phenotypes for gene: FOSL2 were set to Neurodevelopmental disorder, MONDO:0700092, FOSL2-related
Review for gene: FOSL2 was set to GREEN
Added comment: PMID 36197437 Cospain et al 2022 report 11 individuals from 10 families with heterozygous PTC variants in exon 4/4 of the FOSL2 gene. All variants were predicted to escape NMD resulting in a truncated protein, with the truncation occurring proximal to the C-terminal domain (supportive functional studies).

In 10/11 families the variant occurred de novo in a single affected proband. In one family with 2 affected siblings, the variant was present in the siblings but absent in the unaffected parent likely due to gonadal mosaicism.

Clinical features included:
- Cutis aplasia congenital of the scalp (10/11)
- Tooth enamel hypoplasia and discolouration (8/9)
- Multiple other ectodermal features also noted e.g. small brittle nails, hypotrichosis/hypertrichosis, lichen sclerosis
- 5 individuals had cataracts (mostly bilateral, congenital/early childhood onset)
- 6/9 IUGR
- 5/9 postnatal growth restriction
- 7/9 developmental delay/ID
- 5/7 ADHD/ASD
- 2/9 seizures
Sources: Literature
Mendeliome v1.346 KCNK3 Krithika Murali reviewed gene: KCNK3: Rating: GREEN; Mode of pathogenicity: None; Publications: 36195757; Phenotypes: eurodevelopmental disorder, MONDO:0700092, KCNK3-related, developmental delay with sleep apnoea (DDSA), Pulmonary hypertension, primary, 4-MIM#615344; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.346 COQ4 Zornitza Stark changed review comment from: Primary coenzyme Q10 deficiency-7 (COQ10D7) is an autosomal recessive disorder resulting from mitochondrial dysfunction. Most patients have onset of severe cardiac or neurologic symptoms soon after birth. IUGR reported. At least 9 unrelated families reported.; to: Primary coenzyme Q10 deficiency-7 (COQ10D7) is an autosomal recessive disorder resulting from mitochondrial dysfunction. Most patients have onset of severe cardiac or neurologic symptoms soon after birth. IUGR reported. At least 9 unrelated families reported.

Treatment: CoQ10 supplementation can limit disease progression and reverse some clinical manifestations.
Mendeliome v1.345 DOHH Zornitza Stark Phenotypes for gene: DOHH were changed from Neurodevelopmental disorder, DOHH-related (MONDO#0700092) to Neurodevelopmental disorder with microcephaly, cerebral atrophy, and visual impairment, MIM# 620066
Mendeliome v1.344 DOHH Zornitza Stark reviewed gene: DOHH: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with microcephaly, cerebral atrophy, and visual impairment, MIM# 620066; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.342 ATP7A Zornitza Stark changed review comment from: ATP7A-related copper transport disorders are classically separated in three pathologies according to their severity, all inherited in an X-linked recessive manner: Menkes disease (MD, OMIM #309400) which represent more than 90% of cases; occipital Horn Syndrome (OHS, OMIM #304150) and ATP7A-related distal motor neuropathy also named X-linked distal spinal muscular atrophy-3 (SMAX3, OMIM #300489). Although there is no clear cut correlation between Cu and ceruloplasmin levels in ATP7A related disorders, these three entities probably represent a continuum partly depending on residual functional ATP7A protein.; to: ATP7A-related copper transport disorders are classically separated in three pathologies according to their severity, all inherited in an X-linked recessive manner: Menkes disease (MD, OMIM #309400) which represent more than 90% of cases; occipital Horn Syndrome (OHS, OMIM #304150) and ATP7A-related distal motor neuropathy also named X-linked distal spinal muscular atrophy-3 (SMAX3, OMIM #300489). Although there is no clear cut correlation between Cu and ceruloplasmin levels in ATP7A related disorders, these three entities probably represent a continuum partly depending on residual functional ATP7A protein.

Treatment for Menkes disease: subcutaneous injections of copper histidine or copper chloride

ClinGen has assessed as moderate evidence for actionability.

Neonatal treatment with subcutaneous copper-histidine (initiated before 30 days of life) is recommended for asymptomatic males with a diagnosis of MD, but is not recommended for symptomatic boys or after 30 days of life. Treatment should be continued indefinitely. In an open-label clinical trial, 12 patients with MD treated with copper-histidine within 22 days of life had 92% survival after a mean follow-up of 4.6 years compared to 13% in a historical control group of 15 patients treated after a late diagnosis (mean age at diagnosis: 163 ± 113 days, range: 42 to 390). Two of the 12 patients with earlier treatment had normal neurological development. A second open-label trial of 35 presymptomatic patients receiving copper-histidine at less than a month of age reported significant improvement of four major neurodevelopmental (gross motor, fine motor/adaptive, personal/social, and language) domains and a non-significant lower mortality (28.5% vs 50%) at age of 3 years (or age of death) compared to 22 patients treated later and after onset of symptoms.
Mendeliome v1.341 PDCD6IP Zornitza Stark Phenotypes for gene: PDCD6IP were changed from Neurodevelopmental disorder MONDO:0700092; Microcephaly; intellectual disability to Microcephaly 29, primary, autosomal recessive, MIM# 620047; Microcephaly; intellectual disability
Mendeliome v1.338 APRT Zornitza Stark changed review comment from: APRT deficiency is an autosomal recessive metabolic disorder that can lead to accumulation of the insoluble purine 2,8-dihydroxyadenine (DHA) in the kidney, which results in crystalluria and the formation of urinary stones. Clinical features include renal colic, hematuria, urinary tract infection, dysuria, and, in some cases, renal failure. The age at onset can range from 5 months to late adulthood; however, as many as 50% of APRT-deficient individuals may be asymptomatic.; to: APRT deficiency is an autosomal recessive metabolic disorder that can lead to accumulation of the insoluble purine 2,8-dihydroxyadenine (DHA) in the kidney, which results in crystalluria and the formation of urinary stones. Clinical features include renal colic, hematuria, urinary tract infection, dysuria, and, in some cases, renal failure. The age at onset can range from 5 months to late adulthood; however, as many as 50% of APRT-deficient individuals may be asymptomatic.

Treatable: allopurinol or febuxostat, low purine diet.
Mendeliome v1.335 ABCC6 Zornitza Stark edited their review of gene: ABCC6: Added comment: GACI is a treatable disorder.; Changed rating: GREEN; Changed publications: 33005041, 34355424; Changed phenotypes: Arterial calcification, generalized, of infancy, 2, MIM# 614473; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.332 PTPA Zornitza Stark gene: PTPA was added
gene: PTPA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PTPA was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PTPA were set to 36073231
Phenotypes for gene: PTPA were set to Intellectual disability, MONDO: 36073231, PTPA-related
Review for gene: PTPA was set to AMBER
Added comment: Biallelic PTPA pathogenic variants lead to a form of ID with later-onset parkinsonism based on 4 individuals from 2 families in the literature. Affected individuals were homozygous for missense variants demonstrated to result to reduced mRNA and protein levels as well as PP2A complex activation. Drosophila studies support an age-dependent locomotor dysfunction. Variants in other PP2A-complex-related genes also lead to NDDs. Summary provided below.

There is currently no associated phenotype in OMIM, G2P, PanelApp UK or SysID.

Consider inclusion in relevant panels (ID, Parkinsonism/movement disorders, etc) with amber rating pending further reports.

------

Fevga, Tesson et al (2022 - PMID: 36073231) describe the features of 4 individuals, from 2 unrelated families, with biallelic pathogenic PTPA variants.

These presented with normal or delayed early milestones, learning disability and ID (mild to moderate) followed by progressive signs of parkinsonism (at the age of 11 yrs in 2 sibs, 15 yrs in another individual). Motor symptoms were responsive to levodopa and later to deep brain stimulation.

Linkage analysis in one consanguineous family followed by exome revealed homozygosity for a missense PTPA variant (NM_178001:c.893T>G/p.Met298Arg). Exome sequencing in affected subjects from the 2nd family revealed homozygosity for a further missense variant (c.512C>A/p.Ala171Asp). There were no other candidate variants for the phenotype following parental / segregation studies.

Role of the gene:
As the authors discuss, PTPA (or PPP2R4) is ubiquitously expressed in all tissues incl. brain and encodes a phosphotyrosyl phosphatase activator of the dimeric form of protein phosphatase-2A (PP2A). PP2A in turn, is the major Ser/Thr phosphatase in brain targeting a large number of proteins involved in diverse functions. Activation of PP2A is dependent on its methylation, which is negatively regulated by the PP2A-specific methylesterase (PME-1). By binding to PME-1, PTPA counteracts the negative influence of the former on PP2A. Pathogenic variants in genes encoding subunits/regulators of the PP2A complex (e.g. PPP2R1A or PPP2CA) are associated with neurodevelopmental disorders.

Variant studies:
Upon overexpression of wt and both variants in a HEK-293 cell line the authors demonstrated that both variants resulted in significantly reduced mRNA and protein levels (which for Ala171Asp were attributed to increased proteasomal degradation). Both variants were shown to result in impaired PP2A complex activation compared to wt.

Drosophila / animal models:
Pan-neuronal RNAi-mediated knockdown of ptpa in Drosophila resulted in an age-dependent locomotor dysfunction, reversible with L-DOPA treatment.
Previous studies in mice suggest cognitive/electrophysiological impairments upon downregulation of PP2A activity in transgenic mice.
Sources: Literature
Mendeliome v1.328 PPP2R5C Zornitza Stark Phenotypes for gene: PPP2R5C were changed from macrocephaly; intellectual disability to Neurodevelopmental disorder, PPP2R5C-related (MONDO:070092); macrocephaly; intellectual disability
Mendeliome v1.325 PPP2R5C Teresa Zhao reviewed gene: PPP2R5C: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 25972378; Phenotypes: Neurodevelopmental disorder, PPP2R5C-related (MONDO:070092); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v1.323 NODAL Zornitza Stark edited their review of gene: NODAL: Added comment: NODAL is a good biological candidate for heterotaxy disorders, and this is supported by animal models. The gene is depleted for LoF variants in gnomad.

The missense variants reported in PMIDs 9354794 and 19064609 are present at a high population frequency in gnomad, including some in homozygous case: their association with disease is DISPUTED.

A total of at least 7 families reported with severe CHD and high impact variants (stop gain, frameshift and canonical splice site). However, almost invariably these were inherited from unaffected or questionably affected parents (e.g. self reports of heart murmur in childhood), raising questions about whether these variants contribute to disease under a monogenic or polygenic model and/or about penetrance.

Discussed at GenCC on 13/9/2022 and agreed on MODERATE assessment.; Changed rating: AMBER; Changed publications: 9354794, 19064609, 29368431, 19933292, 11311163, 30293987
Mendeliome v1.320 UFSP2 Zornitza Stark Phenotypes for gene: UFSP2 were changed from Neurodevelopmental disorder; Hip dysplasia, Beukes type, MIM#142669; Spondyloepimetaphyseal dysplasia, Di Rocco type, MIM# 617974 to Developmental and epileptic encephalopathy 106, MIM# 620028; Hip dysplasia, Beukes type, MIM#142669; Spondyloepimetaphyseal dysplasia, Di Rocco type, MIM# 617974
Mendeliome v1.319 TRAPPC10 Zornitza Stark Phenotypes for gene: TRAPPC10 were changed from neurodevelopmental disorder (MONDO:0700092), TRAPPC10-related to Neurodevelopmental disorder with microcephaly, short stature, and speech delay, MIM# 620027
Mendeliome v1.318 TRAPPC10 Zornitza Stark reviewed gene: TRAPPC10: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with microcephaly, short stature, and speech delay, MIM# 620027; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.317 UBAP2L Zornitza Stark gene: UBAP2L was added
gene: UBAP2L was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UBAP2L was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: UBAP2L were set to 35977029
Phenotypes for gene: UBAP2L were set to Neurodevelopmental disorder, MONDO:0700092, UBAP2L-related
Review for gene: UBAP2L was set to GREEN
Added comment: Based on Jia et al (2022 - PMID: 35977029) speech, motor delay as well as ID are observed in individuals harboring de novo pLoF variants in UBAP2L. The gene encodes a regulator of the stress granule (SG) assembly. Extensive evidence is provided on the effect of variants as well as the role of UBAP2L and other genes for components and/or regulation of SG in pathogenesis of NDDs. Among others a Ubap2l htz deletion mouse model (behavioral and cognitive impairment, abnormal cortical development due to impaired SG assembly, etc). Data from 26 previous studies, aggregating 40,853 probands with NDDs (mostly DD/ID, also ASD) suggest enrichment for DNMs in UBAP2L or other genes previously known and further shown to be important for SG formation (incl. G3BP1/G3BP2, CAPRIN1).
Sources: Literature
Mendeliome v1.315 CHKA Zornitza Stark Phenotypes for gene: CHKA were changed from Neurodevelopmental disorder, MONDO:0700092; Abnormal muscle tone; Global developmental delay; Intellectual disability; Seizures; Microcephaly; Abnormality of movement; Abnormality of nervous system morphology; Short stature to Neurodevelopmental disorder with microcephaly, movement abnormalities, and seizures, MIM#620023
Mendeliome v1.314 CHKA Zornitza Stark reviewed gene: CHKA: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with microcephaly, movement abnormalities, and seizures, MIM#620023; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.313 PPFIBP1 Zornitza Stark Phenotypes for gene: PPFIBP1 were changed from Neurodevelopmental disorder, MONDO:0700092, PPFIBP1-related to Neurodevelopmental disorder with seizures, microcephaly, and brain abnormalities, MIM# 620024
Mendeliome v1.312 PPFIBP1 Zornitza Stark edited their review of gene: PPFIBP1: Changed phenotypes: Neurodevelopmental disorder with seizures, microcephaly, and brain abnormalities, MIM# 620024
Mendeliome v1.311 PDZD8 Zornitza Stark gene: PDZD8 was added
gene: PDZD8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PDZD8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PDZD8 were set to 35227461
Phenotypes for gene: PDZD8 were set to Intellectual developmental disorder with autism and dysmorphic facies, MIM# 620021
Review for gene: PDZD8 was set to GREEN
Added comment: Four individuals from two unrelated families, Drosophila and mouse models support gene-disease association.
Sources: Literature
Mendeliome v1.310 SLC31A1 Daniel Flanagan gene: SLC31A1 was added
gene: SLC31A1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: SLC31A1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC31A1 were set to PMID: 35913762
Phenotypes for gene: SLC31A1 were set to Neurodevelopmental disorder, SLC31A1-related (MONDO#0700092)
Review for gene: SLC31A1 was set to RED
Added comment: SLC31A1 is also referred to as CTR1.
Monozygotic twins with hypotonia, global developmental delay, seizures, and rapid brain atrophy, consistent with profound central nervous system copper deficiency. Homozygous for a novel missense variant (p.(Arg95His)) in copper transporter CTR1, both parents heterozygous. A mouse knock-out model of CTR1 deficiency resulted in prenatal lethality.
Sources: Expert list
Mendeliome v1.295 CEP104 Zornitza Stark Phenotypes for gene: CEP104 were changed from Joubert syndrome 25, MIM# 616781; MONDO:0014770 to Joubert syndrome 25, MIM# 616781; MONDO:0014770; Neurodevelopmental disorder; MONDO:0014770, CEP104-related
Mendeliome v1.291 LGI3 Zornitza Stark Phenotypes for gene: LGI3 were changed from Global developmental delay; Intellectual disability; Distal deformities; Diminished reflexes; Facial myokymia; Hyporeflexia/areflexi to Neurodevelopmental disorder, MONDO:0700092, LGI3-related; Global developmental delay; Intellectual disability; Distal deformities; Diminished reflexes; Facial myokymia; Hyporeflexia/areflexi
Mendeliome v1.289 LGI3 Zornitza Stark reviewed gene: LGI3: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, LGI3-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.289 TMEM147 Naomi Baker gene: TMEM147 was added
gene: TMEM147 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TMEM147 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMEM147 were set to PMID: 36044892
Phenotypes for gene: TMEM147 were set to Neurodevelopmental disorder (MONDO:0700092), TMEM147-related
Review for gene: TMEM147 was set to GREEN
Added comment: PMID: 36044892; Twelve different variants reported in 23 affected individuals from 15 unrelated families with biallelic variants. All individuals had global developmental delay and intellectual disability. Consistent facial dysmorphisms included coarse facies, prominent forehead, board depressed nasal root, tented mouth, long smooth philtrum, and low-set ears. In vitro studies of missense variants demonstrated accelerated protein degradation via the autophagy-lysosomal pathway, while analysis of primary fibroblasts and granulocytes provided functional evidence of ER and nuclear envelope dysfunction.
Sources: Literature
Mendeliome v1.289 SARS Ee Ming Wong reviewed gene: SARS: Rating: RED; Mode of pathogenicity: Other; Publications: 36041817; Phenotypes: neurodevelopmental disorder, MONDO#070009, SARS1-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v1.285 CEP104 Belinda Chong reviewed gene: CEP104: Rating: GREEN; Mode of pathogenicity: None; Publications: 34196201, 35359234; Phenotypes: CEP104 Neurodevelopmental disorder, MONDO:0014770; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.276 CAPRIN1 Paul De Fazio gene: CAPRIN1 was added
gene: CAPRIN1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CAPRIN1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: CAPRIN1 were set to 35979925
Phenotypes for gene: CAPRIN1 were set to Neurodevelopmental disorder, CAPRIN1-related MONDO:0700092
Review for gene: CAPRIN1 was set to GREEN
gene: CAPRIN1 was marked as current diagnostic
Added comment: 12 individuals reported with ID and language impairment. Other features included seizures (4 individuals), hands and feet malformations (5 individuals), breathing problems (6 individuals), ocular problems (4 individuals) and hearing problems (3 individuals).

All of the variants were nonsense (NMD-predicted) or splicing variants. 10 were de novo, 1 was inherited from an affected father. Functional studies supported pathogenicity.
Sources: Literature
Mendeliome v1.275 GRIN2A Teresa Zhao reviewed gene: GRIN2A: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 35983985; Phenotypes: Epilepsy, focal, with speech disorder and with or without impaired intellectual development (MIM#245570); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.270 CCDC82 Zornitza Stark Phenotypes for gene: CCDC82 were changed from Intellectual disability and spastic paraparesis, no OMIM # to Neurodevelopmental disorder, MONDO:0700092, CCDC82-related
Mendeliome v1.268 CCDC82 Zornitza Stark reviewed gene: CCDC82: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, CCDC82-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.262 LNPK Chirag Patel reviewed gene: LNPK: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 35599435; Phenotypes: Neurodevelopmental disorder with epilepsy and hypoplasia of the corpus callosum, MIM# 618090; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.256 FBXW7 Zornitza Stark Phenotypes for gene: FBXW7 were changed from neurodevelopmental disorder MONDO:0700092; FBXW7-related neurodevelopmental syndrome; Wilms tumor MONDO:0006058 to Developmental delay, hypotonia, and impaired language, MIM# 620012; Wilms tumour predisposition
Mendeliome v1.251 TAF4 Zornitza Stark Phenotypes for gene: TAF4 were changed from Neurodevelopmental disorder to Neurodevelopmental disorder, MONDO:0700092, TAF4-related
Mendeliome v1.248 TAF4 Zornitza Stark edited their review of gene: TAF4: Changed rating: GREEN; Changed publications: 33875846, 28191890, 35904126; Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, TAF4-related
Mendeliome v1.247 ZMYND8 Zornitza Stark gene: ZMYND8 was added
gene: ZMYND8 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: ZMYND8 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ZMYND8 were set to 35916866; 32530565
Phenotypes for gene: ZMYND8 were set to Neurodevelopmental disorder, MONDO:0700092, ZMYND8-related; Delayed speech and language development; Motor delay; Intellectual disability; Abnormality of cardiovascular system morphology; Hearing abnormality; Abnormality of vision; Abnormality of the face; Seizures
Review for gene: ZMYND8 was set to GREEN
Added comment: Dias et al (2022 - PMID: 35916866) describe the phenotype of 11 unrelated individuals with monoallelic de novo (or suspected de novo) missense (N=9) or truncating (N=2) ZMYND8 variants. One of these subjects was previously reported by Suzuki et al (2020 - PMID: 32530565).

Features included speech delay/language difficulties (9/11), motor delay (9/11), ID (in 10/11 - profound in 1, moderate in 2), CHD (7/11 - PDA, VSD, ASD, pulmonary stenosis, etc), hearing or vision impairment (7/11). Seizures were reported in few (in text 5/11, table 2/11). Variable non-familial facial features were present in (9/11).

As the authors discuss, ZMYND8 encodes a multidomain protein playing a role in transcription regulation, chromatin remodeling, regulation of super enhancers, DNA damage response/tumor suppression.

The protein is broadly expressed in brain and shows highest expression in early development.

Molecular modeling and/or a yeast two-hybrid system were suggestive of disrupted interaction of ZMYND8 with Drebrin (missense variants in PWWP domain) or GATAD2A (variants in MYND domain).

Neuronal Zmynd8 knockdown in Drosophila resulted in deficits in habituation learning.
Sources: Expert Review
Mendeliome v1.245 PAX5 Zornitza Stark Phenotypes for gene: PAX5 were changed from Neurodevelopmental disorder MONDO:0700092, PAX5-related to Neurodevelopmental disorder MONDO:0700092, PAX5-related; Hypogammaglobulinaemia
Mendeliome v1.242 PAX5 Zornitza Stark reviewed gene: PAX5: Rating: AMBER; Mode of pathogenicity: None; Publications: 35947077; Phenotypes: Neurodevelopmental disorder MONDO:0700092, PAX5-related, Hypogammaglobulinaemia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.241 SMG9 Zornitza Stark Phenotypes for gene: SMG9 were changed from Heart and brain malformation syndrome, MIM# 616920 to Heart and brain malformation syndrome, MIM# 616920; Neurodevelopmental disorder with intention tremor, pyramidal signs, dyspraxia, and ocular anomalies, MIM# 619995
Mendeliome v1.239 SMG9 Zornitza Stark edited their review of gene: SMG9: Added comment: PMID 35087184: 5 individuals from 3 unrelated Finnish families reported with same homozygous missense variant (founder effect) and predominantly neurological phenotype. Uncertain if this is a distinct disorder or part of a spectrum with the previously reported cases.; Changed publications: 27018474, 31390136, 35087184; Changed phenotypes: Heart and brain malformation syndrome, MIM# 616920, Neurodevelopmental disorder with intention tremor, pyramidal signs, dyspraxia, and ocular anomalies, MIM# 619995
Mendeliome v1.239 THUMPD1 Zornitza Stark Phenotypes for gene: THUMPD1 were changed from Syndromic disease, MONDO:0002254, THUMPD1-related to Neurodevelopmental disorder with speech delay and variable ocular anomalies, MIM# 619989
Mendeliome v1.238 THUMPD1 Zornitza Stark reviewed gene: THUMPD1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with speech delay and variable ocular anomalies, MIM# 619989; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.237 TAF4 Ee Ming Wong reviewed gene: TAF4: Rating: GREEN; Mode of pathogenicity: None; Publications: 33875846, 28191890, 35904126; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, TAF4-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v1.237 SPTBN5 Zornitza Stark Phenotypes for gene: SPTBN5 were changed from Sacral agenesis; congenital anomalies to Neurodevelopmental disorder, MONDO:0700092, SPTBN5-related; Sacral agenesis; congenital anomalies
Mendeliome v1.233 SPTBN5 Zornitza Stark edited their review of gene: SPTBN5: Added comment: Monoallelic variants:
- Four probands from unrelated families (1x Pakistani and 3x Italian) with de novo heterozygous SPTBN5 variants
- 3x missense variants and 1x LoF variant were reported
- Phenotypes include intellectual disability (mild to severe), aggressive tendencies and variable features such as craniofacial and physical dysmorphisms, autistic behavior, and gastroesophageal reflux; Changed rating: GREEN; Changed publications: 35782384, 32732226, 28007035; Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, SPTBN5-related, Sacral agenesis, congenital anomalies; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.228 OTULIN Zornitza Stark changed review comment from: Autoinflammatory disorder presenting in the newborn period with recurrent fever, erythematous rash with painful nodules, painful joints, diarrhoea and lipodystrophy.; to: Bi-allelic variants: Autoinflammatory disorder presenting in the newborn period with recurrent fever, erythematous rash with painful nodules, painful joints, diarrhoea and lipodystrophy.
Mendeliome v1.228 NOX1 Zornitza Stark gene: NOX1 was added
gene: NOX1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NOX1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: NOX1 were set to 29091079; 32064493
Phenotypes for gene: NOX1 were set to Inflammatory bowel disease, MONDO:0005265, NOX1-related
Review for gene: NOX1 was set to AMBER
Added comment: 8 IBD patients with early onset of IBD with progressive and severe colonic disease, refractory to conventional therapy and functional studies suggesting variant-dependent loss of NOX1-mediated superoxide generation. However, high frequency of nonsynonymous mutations in NOX1 suggests that NOX1 is not a highly penetrant Mendelian disorder and that other genetic modifiers or environmental factors may contribute to disease pathogenesis.

The variant reported in PMID 32064493 is present in 6 hets in gnomad.
Sources: Literature
Mendeliome v1.227 BICD2 Zornitza Stark Phenotypes for gene: BICD2 were changed from Spinal muscular atrophy, lower extremity-predominant, 2A, autosomal dominant, MIM# 615290; MONDO:0014121; Spinal muscular atrophy, lower extremity-predominant, 2B, autosomal dominant, MIM# 618291 to Neurodevelopmental disorder (MONDO#0700092), BICD2-related; Spinal muscular atrophy, lower extremity-predominant, 2A, autosomal dominant, MIM# 615290; MONDO:0014121; Spinal muscular atrophy, lower extremity-predominant, 2B, autosomal dominant, MIM# 618291
Mendeliome v1.222 SARS Ain Roesley Phenotypes for gene: SARS were changed from Intellectual disability to neurodevelopmental disorder MONDO#070009, SARS1-related
Mendeliome v1.220 SARS Ain Roesley reviewed gene: SARS: Rating: GREEN; Mode of pathogenicity: None; Publications: 35790048; Phenotypes: neurodevelopmental disorder MONDO#070009, SARS1-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.217 WARS Seb Lunke Phenotypes for gene: WARS were changed from Neuronopathy, distal hereditary motor, type IX (OMIM:617721); juvenile to adult onset (15-23 years); distal wasting; distal weakness; length-dependent motor axonal degeneration to Neuronopathy, distal hereditary motor, type IX (OMIM:617721); juvenile to adult onset (15-23 years); Neurodevelopmental disorder (MONDO:0700092), WARS-related
Mendeliome v1.213 BICD2 Lucy Spencer reviewed gene: BICD2: Rating: GREEN; Mode of pathogenicity: None; Publications: 35896821; Phenotypes: Neurodevelopmental disorder (MONDO#0700092), BICD2-related; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.213 WARS Anna Ritchie reviewed gene: WARS: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 35815345, PMID: 35790048; Phenotypes: Neurodevelopmental disorder (MONDO:0700092), WARS-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.208 DOHH Daniel Flanagan gene: DOHH was added
gene: DOHH was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: DOHH was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DOHH were set to PMID: 35858628
Phenotypes for gene: DOHH were set to Neurodevelopmental disorder, DOHH-related (MONDO#0700092)
Review for gene: DOHH was set to GREEN
Added comment: Bi-allelic missense and truncating DOHH variants segregating with disease in five affected individuals from four unrelated families. Clinical features were developmental delay and/or intellectual disability (5/5), microcephaly (5/5), visual impairment (nystagmus (3/5), strabismus (3/5), and cortical visual impairment (1/5)) and congenital heart malformations (3/5 individuals).
Sources: Expert list
Mendeliome v1.208 PPFIBP1 Ee Ming Wong reviewed gene: PPFIBP1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 35830857; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, PPFIBP1-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v1.208 SLITRK2 Paul De Fazio gene: SLITRK2 was added
gene: SLITRK2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLITRK2 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: SLITRK2 were set to 35840571
Phenotypes for gene: SLITRK2 were set to Neurodevelopmental disorder, SLITRK2-related MONDO:0700092
Review for gene: SLITRK2 was set to GREEN
gene: SLITRK2 was marked as current diagnostic
Added comment: 6 missense variants and 1 nonsense variant (NOT NMD-predicted, single-exon gene) reported in 7 males and 1 female with neurodevelopmental disorders. Phenotypes included dev delay, mild to severe ID, delayed or absent speech, seizures and brain MRI anomalies (in some patients).

The nonsense variant was identified in two affected brothers but not in the mother, suggesting it was de novo in the maternal germline. The variant in the one affected female was de novo. All other variants in hemizygous males were inherited from an unaffected mother. In one case, the variant was also identified in the unaffected grandmother.

Functional studies showed some but not all variants displayed impaired membrane transport and impaired excitatory synapse-promoting effects. Conditional knockout mice exhibited impaired long-term memory and abnormal gait.
Sources: Literature
Mendeliome v1.206 C18orf32 Naomi Baker gene: C18orf32 was added
gene: C18orf32 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: C18orf32 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: C18orf32 were set to PMID:35107634
Phenotypes for gene: C18orf32 were set to Neurodevelopmental disorder (MONDO:0700092), C18orf32-related
Review for gene: C18orf32 was set to RED
Added comment: Two siblings reported as affected, although sequencing only performed in one sibling, with homozygous loss-of-function variant identified. Clinical presentation included developmental delay, recurrent lower respiratory tract infections, sparse rough hair, roving eye movements, hypotonia, bilateral ankle contractures and inverted nipples.
Sources: Literature
Mendeliome v1.204 ADGRL1 Elena Savva gene: ADGRL1 was added
gene: ADGRL1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ADGRL1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ADGRL1 were set to PMID: 35907405
Phenotypes for gene: ADGRL1 were set to Neurodevelopmental disorder, ADGRL1-related (MONDO#0700092)
Review for gene: ADGRL1 was set to GREEN
Added comment: PMID: 35907405 - 9 patients w/ ADHD (3/9), autism (4/9), mild-moderate ID (5/9) and epilepsy (2/9) and facial dysmorphism (7/9). Variants include missense (4) and PTCs (5), and were either de novo (7/9) or inherited from parents with learning difficulties/ID (2/9).

Functional studies on both PTCs and missense variants show significant reductions in calcium signalling and surface protein.

Het null mouse model shows neurological and developmental abnormalities, with hom null mice non-viable.
Sources: Literature
Mendeliome v1.195 TAF8 Zornitza Stark Phenotypes for gene: TAF8 were changed from Neurodevelopmental disorder, MONDO:0700092, TAF8-related to Neurodevelopmental disorder with severe motor impairment, absent language, cerebral hypomyelination, and brain atrophy, MIM# 619972
Mendeliome v1.194 TAF8 Zornitza Stark edited their review of gene: TAF8: Changed phenotypes: Neurodevelopmental disorder with severe motor impairment, absent language, cerebral hypomyelination, and brain atrophy, MIM# 619972
Mendeliome v1.175 PMM2 Zornitza Stark Phenotypes for gene: PMM2 were changed from Congenital disorder of glycosylation, type Ia (MIM#212065) to Congenital disorder of glycosylation, type Ia (MIM#212065); Hyperinsulinaemic Hypoglycaemia and Polycystic Kidney Disease (HIPKD), MONDO:0020642, PMM2-related
Mendeliome v1.173 PMM2 Zornitza Stark edited their review of gene: PMM2: Added comment: Association with HIPKD:
Cabezas et al (2017) reported co-occurrence of hyperinsulinaemic hypoglycaemia and polycystic kidney disease (HIPKD in 17 children from 11 unrelated families. Patients presented with hyperinsulinaemic hypoglycaemia in infancy and enlarged kidneys with multiple kidney cysts. Some progressed to ESKD and some had liver cysts. Whole-genome linkage analysis in 5 informative families identified a single significant locus on chromosome 16p13.2. Sequencing of the coding regions of all linked genes failed to identify biallelic mutations. Instead, they found in all patients a promoter mutation (c.-167G>T) in PMM2, either homozygous or in trans with PMM2 coding mutations. They found deglycosylation in cultured pancreatic β cells altered insulin secretion. In vitro, the PMM2 promoter mutation associated with decreased transcriptional activity in patient kidney cells and impaired binding of the transcription factor ZNF143. In silico analysis suggested an important role of ZNF143 for the formation of a chromatin loop including PMM2. They proposed that the PMM2 promoter mutation alters tissue-specific chromatin loop formation, with consequent organ-specific deficiency of PMM2 leading to the restricted phenotype of HIPKD. None of the patients exhibited the typical clinical or diagnostic features of CDG1A. Serum transferrin glycosylation was normal in 11 patients who had assessment.; Changed publications: 28108845, 28373276, 32595772; Changed phenotypes: Congenital disorder of glycosylation, type Ia (MIM#212065), Hyperinsulinaemic Hypoglycaemia and Polycystic Kidney Disease (HIPKD), MONDO:0020642, PMM2-related
Mendeliome v1.171 CTR9 Zornitza Stark Phenotypes for gene: CTR9 were changed from Neurodevelopmental disorder (MONDO:0700092), CTR9 related to Neurodevelopmental disorder (MONDO:0700092), CTR9 related; Familial Wilms tumour, MONDO:0006058, CTR9-related
Mendeliome v1.162 PPP1R13L Krithika Murali reviewed gene: PPP1R13L: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Multiple congenital anomalies/dysmorphic syndrome, MONDO:0019042 - PPP1R13L-related disorder; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.157 HIST1H4E Zornitza Stark Phenotypes for gene: HIST1H4E were changed from Neurodevelopmental disorder, HIST1H4E-related MONDO:0700092 to Tessadori-van Haaften neurodevelopmental syndrome 3, MIM# 619950
Mendeliome v1.155 KMT2B Zornitza Stark edited their review of gene: KMT2B: Added comment: Nine individuals reported in PMID 33150406 with heterozygous variants in this gene and intellectual disability, speech delay, microcephaly, growth delay, feeding problems, and dysmorphic features, including epicanthic folds, posteriorly rotated ears, syndactyly/clinodactyly of toes, and fifth finger clinodactyly, normal MRIs and NO dystonia.; Changed publications: 27839873, 27992417, 33150406; Changed phenotypes: Dystonia 28, childhood-onset 617284, MONDO:0015004, Intellectual developmental disorder, autosomal dominant 68, MIM# 619934
Mendeliome v1.155 LMAN2L Zornitza Stark Phenotypes for gene: LMAN2L were changed from Mental retardation, autosomal recessive, 52; OMIM #616887 to Mental retardation, autosomal recessive, 52 OMIM #616887; Intellectual developmental disorder, autosomal dominant 69 , MIM# 617863
Mendeliome v1.154 LMAN2L Zornitza Stark edited their review of gene: LMAN2L: Changed phenotypes: Mental retardation, autosomal recessive, 52 OMIM #616887, Intellectual developmental disorder, autosomal dominant 69 , MIM# 617863
Mendeliome v1.154 CDH2 Zornitza Stark edited their review of gene: CDH2: Changed phenotypes: Intellectual disability, corpus callosum abnormalities, congenital abnormalities, Agenesis of corpus callosum, cardiac, ocular, and genital syndrome, MIM# 618929, Attention deficit-hyperactivity disorder 8 , MIM# 619957
Mendeliome v1.154 CDH2 Zornitza Stark Phenotypes for gene: CDH2 were changed from Intellectual disability; corpus callosum abnormalities; congenital abnormalities; Agenesis of corpus callosum, cardiac, ocular, and genital syndrome, MIM# 618929 to Intellectual disability; corpus callosum abnormalities; congenital abnormalities; Agenesis of corpus callosum, cardiac, ocular, and genital syndrome, MIM# 618929; Attention deficit-hyperactivity disorder 8 , MIM# 619957
Mendeliome v1.152 CDH2 Zornitza Stark edited their review of gene: CDH2: Added comment: PMID 34702855: three sibs with homozygous missense and strikingly severe ADHD. Mouse model of same variant recapitulated the phenotype. AMBER for bi-allelic association (segregation and functional data).; Changed publications: 31585109, 34702855; Changed phenotypes: Intellectual disability, corpus callosum abnormalities, congenital abnormalities, Agenesis of corpus callosum, cardiac, ocular, and genital syndrome, MIM# 618929:Attention deficit-hyperactivity disorder 8 , MIM# 619957; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.152 PLXNA1 Zornitza Stark Phenotypes for gene: PLXNA1 were changed from Neurodevelopmental disorder with cerebral and eye anomalies to Dworschak-Punetha neurodevelopmental syndrome, MIM# 619955
Mendeliome v1.137 NFATC2 Paul De Fazio gene: NFATC2 was added
gene: NFATC2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NFATC2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NFATC2 were set to 35789258
Phenotypes for gene: NFATC2 were set to Skeletal system disorder MONDO:0005172
Review for gene: NFATC2 was set to RED
gene: NFATC2 was marked as current diagnostic
Added comment: Patient born to consanguineous parents homozygous for a frameshift variant. No other (unaffected) members of the family were homozygous. Family history of recurrent childhood deaths.

After a healthy birth the patient developed painless decreased range of motion at 1.5yrs leading to difficulty with ambulation at 3yrs. Formal orthopedic assessment at age 15 years
demonstrated a neurodevelopmentally normal young man with marked bilateral fixed flexion contractures of knees, hips, and ankles. The main musculoskeletal findings were painless contractures of the large and small joints of the upper and lower limbs, osteochondromas, and osteopenia. Patient was diagnosed with B-cell lymphoma at age 18.

Patient CD8+ T-cells show impaired polyfunctionality, and the patient had an accumulation of non-functional memory CD4+ T-cells. TFH cell function was also impaired.
Sources: Literature
Mendeliome v1.136 CCDC155 Zornitza Stark Phenotypes for gene: CCDC155 were changed from Non-obstructive azoospermia; Premature ovarian insufficiency to Non-obstructive azoospermia; Premature ovarian insufficiency; Infertility disorder, MONDO:0005047, CCDC155-related
Mendeliome v1.128 PABPC1 Elena Savva gene: PABPC1 was added
gene: PABPC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PABPC1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PABPC1 were set to PMID: 35511136
Phenotypes for gene: PABPC1 were set to Neurodevelopmental disorder, PABPC1-related (MONDO#0700092)
Review for gene: PABPC1 was set to GREEN
Added comment: PMID: 35511136 - 4 probands with an overlapping phenotype of DD, expressive speech delay, and autistic features and heterozygous de novo variants that cluster in the PABP domain of PABPC1.
Electroporation of mouse embryo brains showed that Pabpc1 knockdown decreases the proliferation of neural progenitor cells. Wild-type Pabpc1 could rescue this disturbance, whereas 3 of the 4 variants did not.
Sources: Literature
Mendeliome v1.126 WNK3 Lucy Spencer gene: WNK3 was added
gene: WNK3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: WNK3 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: WNK3 were set to 35678782
Phenotypes for gene: WNK3 were set to Neurodevelopmental disorder, WNK3-related (MONDO#0700092)
Added comment: 6 maternally inherited hemizygous variants, 3 missense, 2 canonical splice, and a nonsense. Seen in 14 individuals from 6 families, all 14 are male who inherited hemizygous variants from their unaffected heterozygous mothers. The variants cosegregated with disease in 3 families with multiple affected individuals. All 14 patients have ID, 11 have speech delay, 10 have facial abnormalities, 5 have seizures, 6 with microcephaly and 7 with anomalies in brain imaging.
Sources: Literature
Mendeliome v1.118 TAF8 Zornitza Stark gene: TAF8 was added
gene: TAF8 was added to Mendeliome. Sources: Literature
founder tags were added to gene: TAF8.
Mode of inheritance for gene: TAF8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TAF8 were set to 29648665; 35759269
Phenotypes for gene: TAF8 were set to Neurodevelopmental disorder, MONDO:0700092, TAF8-related
Review for gene: TAF8 was set to GREEN
Added comment: 8 individuals reported from 5 families, four of which were consanguineous. Clinical features included severe psychomotor retardation with almost absent development, feeding problems, microcephaly, growth retardation, spasticity and epilepsy. Six had the c.781-1G > A variant in homozygous state. This is likely to be a founder variant. One family with different compound heterozygous variants.
Sources: Literature
Mendeliome v1.114 PNPT1 Zornitza Stark edited their review of gene: PNPT1: Added comment: Three families reported with heterozygous variants and SCA25. Incomplete penetrance in one of the families. In the third family, the variant was inherited from an asymptomatic 80+ year old. Note bi-allelic variants in this gene cause a mitochondrial disorder. Exact mechanism through which mono-allelic variants cause SCA25 not elucidated: authors speculate abnormal accumulation of mitochondrial RNA with subsequent leakage into the cytosol that may trigger a type 1 interferon response leading to neuroinflammation with neuronal dysfunction or neuronal loss.; Changed rating: AMBER; Changed publications: 35411967; Changed phenotypes: Spinocerebellar ataxia 25, MIM# 608703; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.90 TRPM3 Zornitza Stark Phenotypes for gene: TRPM3 were changed from Intellectual disability; epilepsy to Neurodevelopmental disorder, MONDO:0700092, TRPM3-related
Mendeliome v1.85 GRIA1 Zornitza Stark edited their review of gene: GRIA1: Changed phenotypes: Intellectual developmental disorder, autosomal dominant 67, MIM# 619927, Intellectual developmental disorder, autosomal recessive 76, MIM# 619931
Mendeliome v1.85 GRIA1 Zornitza Stark Phenotypes for gene: GRIA1 were changed from Intellectual developmental disorder, autosomal dominant 67, MIM# 619927 to Intellectual developmental disorder, autosomal dominant 67, MIM# 619927; Intellectual developmental disorder, autosomal recessive 76, MIM# 619931
Mendeliome v1.82 GRIA1 Zornitza Stark Phenotypes for gene: GRIA1 were changed from Intellectual disability; autism to Intellectual developmental disorder, autosomal dominant 67, MIM# 619927
Mendeliome v1.81 GRIA1 Zornitza Stark edited their review of gene: GRIA1: Changed phenotypes: Intellectual developmental disorder, autosomal dominant 67, MIM# 619927
Mendeliome v1.77 SHQ1 Zornitza Stark Phenotypes for gene: SHQ1 were changed from Dystonia; Neurodegeneration to Dystonia 35, childhood-onset , MIM# 619921; Neurodevelopmental disorder with dystonia and seizures, MIM# 619922
Mendeliome v1.76 SHQ1 Zornitza Stark edited their review of gene: SHQ1: Changed phenotypes: Dystonia 35, childhood-onset , MIM# 619921, Neurodevelopmental disorder with dystonia and seizures, MIM# 619922
Mendeliome v1.74 GATA1 Zornitza Stark edited their review of gene: GATA1: Added comment: Variants in GATA1 are associated with a number of haematological disorders, which probably represent a spectrum rather than distinct entities.; Changed phenotypes: Thrombocytopaenia, X-linked, with or without dyserythropoietic anaemia, MIM# 300367, Haemolytic anaemia due to elevated adenosine deaminase, MIM# 301083, Anemia, X-linked, with/without neutropenia and/or platelet abnormalities, MIM# 300835
Mendeliome v1.74 NR4A2 Zornitza Stark Phenotypes for gene: NR4A2 were changed from Intellectual disability; epilepsy to Intellectual developmental disorder with language impairment and early-onset DOPA-responsive dystonia-parkinsonism, MIM# 619911
Mendeliome v1.73 NR4A2 Zornitza Stark edited their review of gene: NR4A2: Changed phenotypes: Intellectual developmental disorder with language impairment and early-onset DOPA-responsive dystonia-parkinsonism, MIM# 619911
Mendeliome v1.69 ATP2B1 Zornitza Stark Phenotypes for gene: ATP2B1 were changed from Neurodevelopmental disorder, MONDO:0700092, ATP2B1-related to Intellectual developmental disorder, autosomal dominant 66, MIM# 619910
Mendeliome v1.68 ATP2B1 Zornitza Stark reviewed gene: ATP2B1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual developmental disorder, autosomal dominant 66, MIM# 619910; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v1.66 PRDM13 Zornitza Stark edited their review of gene: PRDM13: Added comment: Note only single family reported with Cerebellar dysfunction, impaired intellectual development, and hypogonadotropic hypogonadism, MIM# 61976 -- this likely lies on the same spectrum as Pontocerebellar hypoplasia, type 17, MIM# 619909 rather than being a distinct disorder.; Changed publications: 30710461, 34730112; Changed phenotypes: Retinal dystrophy, Chorioretinal atrophy, progressive bifocal, MIM# 600790, Pontocerebellar hypoplasia, type 17, MIM# 619909, Cerebellar dysfunction, impaired intellectual development, and hypogonadotropic hypogonadism, MIM# 61976; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v1.66 TIAM1 Zornitza Stark Phenotypes for gene: TIAM1 were changed from Neurodevelopmental disorder, TIAM1-related, MONDO:0700092 to Neurodevelopmental disorder with language delay and seizures, MIM# 619908
Mendeliome v1.65 RBFOX2 Chern Lim changed review comment from: - PMID: 26785492: Analysed CHD (1213 congenital heart disease trios) and control (autism spectrum disorder) trios for de novo mutations. Found RBFOX2 gene had significantly more damaging de novo variants than expected: 3 de novo LoF variants (eg. nonsense, frameshift, or canonical splice disruptions). All 3 probands have hypoplastic left heart syndrome (HLHS). No further patient-specific clinical or variant info were available. Same cohort later included in PMID: 32368696, listed 4 de novo variants in this gene, in patients with left ventricular outflow tract obstruction (LVOTO) or conotruncal defects (CTDs).

- PMID: 27670201: RNA expression study showed the silenced allele harbours a nonsense RBFOX2 variant (Arg287*), CHD patient heart tissue sample, same patient published in PMID: 26785492.
- PMID: 27485310: Functional studies using heart tissue sample from HLHS patient with NM_001031695.2:c.859C>T p.(Arg287*) showed subcellular mislocalisation, impacting its nuclear function in RNA splicing.

- PMID: 25205790: De novo 111.3kb del chr22:36038076-36149338 (hg19) which includes APOL5,APOL6,RBFOX2, in a patient with HLHS.

- PMID: 35137168: Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS.; to: - PMID: 26785492: Analysed CHD (1213 congenital heart disease trios) and control (autism spectrum disorder) trios for de novo mutations. Found RBFOX2 gene had significantly more damaging de novo variants than expected: 3 de novo LoF variants (1x nonsense, 1x frameshift, 1x canonical splice variants). All 3 probands have hypoplastic left heart syndrome (HLHS) and no extra-cardiac features. Same cohort later included in PMID: 32368696, listed one additional de novo variant in this gene (missense variant) in a patient with conotruncal defects (CTDs).

- PMID: 27670201: RNA expression study showed the silenced allele harbours a nonsense RBFOX2 variant (Arg287*), CHD patient heart tissue sample, same patient published in PMID: 26785492.
- PMID: 27485310: Functional studies using heart tissue sample from HLHS patient with NM_001031695.2:c.859C>T p.(Arg287*) showed subcellular mislocalisation, impacting its nuclear function in RNA splicing.

- PMID: 25205790: De novo 111.3kb del chr22:36038076-36149338 (hg19) which includes APOL5,APOL6,RBFOX2, in a patient with HLHS.

- PMID: 35137168: Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS.
Mendeliome v1.61 SLC5A6 Zornitza Stark changed review comment from: Two unrelated families reported, functional data and some evidence of response to treatment.
Sources: Literature; to: Complex neurodegenerative disorder: Two unrelated families reported, functional data and some evidence of response to treatment.
Sources: Literature
Mendeliome v1.59 BUB1 Zornitza Stark reviewed gene: BUB1: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder, BUB1-related MONDO:0700092; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v1.55 PAN2 Zornitza Stark Phenotypes for gene: PAN2 were changed from Neurodevelopmental disorder, MONDO:0700092, PAN2-related to Syndromic disease MONDO:0002254, PAN2-related
Mendeliome v1.54 PRPF8 Zornitza Stark Phenotypes for gene: PRPF8 were changed from Retinitis pigmentosa 13, MIM#600059 to Retinitis pigmentosa 13, MIM#600059; Neurodevelopmental disorder MONDO:0700092, PRPF8-related
Mendeliome v1.52 BUB1 Zornitza Stark Phenotypes for gene: BUB1 were changed from Intellectual disability and microcephaly to Neurodevelopmental disorder, BUB1-related MONDO:0700092
Mendeliome v1.47 PAN2 Naomi Baker gene: PAN2 was added
gene: PAN2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PAN2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PAN2 were set to PMID:35304602; 29620724
Phenotypes for gene: PAN2 were set to Neurodevelopmental disorder, MONDO:0700092, PAN2-related
Review for gene: PAN2 was set to GREEN
Added comment: PMID:35304602 reports five individuals from 3 families with biallelic (homozygous) loss-of-function variants. Clinical presentation incudes mild-moderate intellectual disability, hypotonia, sensorineural hearing loss, EEG abnormalities, congenital heart defects (tetralogy of Fallot, septal defects, dilated aortic root), urinary tract malformations, ophthalmological anomalies, short stature with other skeletal anomalies, and craniofacial features including flat occiput, ptosis, long philtrum, and short neck.

PMID:29620724 reports one individual with biallelic (homozygous) loss-of-function variant who presented with global developmental delay, mild hypotonia, craniosynostosis, severe early-onset scoliosis, imperforate anus, and double urinary collecting system.
Sources: Literature
Mendeliome v1.44 BUB1 Paul De Fazio edited their review of gene: BUB1: Changed phenotypes: Neurodevelopmental disorder, BUB1-related MONDO:0700092, Intellectual disability and microcephaly
Mendeliome v1.43 SRRM2 Zornitza Stark Phenotypes for gene: SRRM2 were changed from Developmental disorders to Neurodevelopmental disorder MONDO:0700092 SRRM2-related
Mendeliome v1.36 SRRM2 Michelle Torres reviewed gene: SRRM2: Rating: GREEN; Mode of pathogenicity: None; Publications: 35567594; Phenotypes: neurodevelopmental disorder MONDO:0700092 SRRM2-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v1.28 U2AF2 Zornitza Stark Phenotypes for gene: U2AF2 were changed from Developmental disorders to Neurodevelopmental disorder MONDO:0700092, U2AF2-related
Mendeliome v1.27 MMGT1 Zornitza Stark Phenotypes for gene: MMGT1 were changed from Developmental disorders to Neurodevelopmental disorder MONDO:0700092, MMGT1-related
Mendeliome v1.14 MYO9A Zornitza Stark edited their review of gene: MYO9A: Added comment: This gene-disease association has been reviewed as part of GenCC discordance resolution: note at least two of the variants reported have homozygotes with gnomad, which would be out of keeping for a severe paediatric disorder.; Changed rating: AMBER
Mendeliome v1.3 PCDHGC4 Zornitza Stark Phenotypes for gene: PCDHGC4 were changed from Intellectual disability; Seizures to Neurodevelopmental disorder with poor growth and skeletal anomalies, MIM# 619880
Mendeliome v1.2 PCDHGC4 Zornitza Stark edited their review of gene: PCDHGC4: Changed phenotypes: Neurodevelopmental disorder with poor growth and skeletal anomalies, MIM# 619880
Mendeliome v0.14755 ADD1 Zornitza Stark Phenotypes for gene: ADD1 were changed from Intellectual disability, corpus callosum dysgenesis, and ventriculomegaly; no OMIM # to Neurodevelopmental disorder MONDO:0700092, ADD1-related
Mendeliome v0.14726 GALNT2 Zornitza Stark Phenotypes for gene: GALNT2 were changed from Congenital disorder of glycosylation to Congenital disorder of glycosylation MONDO:0015286
Mendeliome v0.14722 GALT Zornitza Stark Phenotypes for gene: GALT were changed from to Galactosaemia MIM#230400; Disorders of galactose metabolism
Mendeliome v0.14719 GAMT Zornitza Stark Phenotypes for gene: GAMT were changed from to Cerebral creatine deficiency syndrome 2 MIM#612736; Disorders of creatinine metabolism
Mendeliome v0.14683 GEMIN4 Zornitza Stark Phenotypes for gene: GEMIN4 were changed from to Neurodevelopmental disorder with microcephaly, cataracts, and renal abnormalities, MIM# 617913
Mendeliome v0.14677 GIF Zornitza Stark Phenotypes for gene: GIF were changed from to Intrinsic factor deficiency MIM#261000; Disorders of cobalamin absorption, transport and metabolism
Mendeliome v0.14666 FRA12A Elena Savva Phenotypes for STR: FRA12A were changed from Mental retardation, FRA12A type MIM#136630 to Intellectual developmental disorder, autosomal dominant, FRA12A type MIM#136630
Mendeliome v0.14663 DMGDH Elena Savva Phenotypes for gene: DMGDH were changed from to Dimethylglycine dehydrogenase deficiency MIM#605850; Disorders and variants of other enzymes that oxidise xenobiotics
Mendeliome v0.14651 LRP2 Chirag Patel commented on gene: LRP2: Donnai-Barrow syndrome (DBS) was first described as a distinct disorder characterized by diaphragmatic hernia, exomphalos, absent corpus callosum, myopia, agenesis of the corpus callosum and proteinuria, and sensorineural deafness.

Kantarci et al. (2007) identified biallelic LRP2 mutations in 6 families with Donnai-Barrow syndrome and one family with facio-oculo-acoustico-renal syndrome.
Mendeliome v0.14651 LINS1 Chirag Patel reviewed gene: LINS1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 32802957, 34450347, 32499722, 31922598; Phenotypes: Intellectual developmental disorder, autosomal recessive 27, MIM# 614340; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14647 GEMIN4 Chirag Patel reviewed gene: GEMIN4: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 25558065, 30237576, 27878435; Phenotypes: Neurodevelopmental disorder with microcephaly, cataracts, and renal abnormalities, MIM# 617913; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14640 GNB5 Chirag Patel reviewed gene: GNB5: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 27523599, 27677260, 28697420, 29368331; Phenotypes: Intellectual developmental disorder with cardiac arrhythmia, OMIM #617173, Language delay and ADHD/cognitive impairment with or without cardiac arrhythmia, OMIM # 617182, Early infantile epileptic encephalopathy (EIEE); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14634 GK Zornitza Stark Phenotypes for gene: GK were changed from to Glycerol kinase deficiency MIM#307030; Disorders of glycerol metabolism
Mendeliome v0.14622 GLUL Zornitza Stark Phenotypes for gene: GLUL were changed from to Glutamine deficiency, congenital MIM#610015; disorder of amino acid metabolism
Mendeliome v0.14619 GLYCTK Zornitza Stark Phenotypes for gene: GLYCTK were changed from to D-glyceric aciduria MIM#220120; Disorders of serine, glycine or glycerate metabolism
Mendeliome v0.14603 GNMT Zornitza Stark Phenotypes for gene: GNMT were changed from to Glycine N-methyltransferase deficiency MIM#606664; Disorders of the metabolism of sulphur amino acids
Mendeliome v0.14582 PDCD6IP Zornitza Stark Phenotypes for gene: PDCD6IP were changed from Microcephaly; intellectual disability to Neurodevelopmental disorder MONDO:0700092; Microcephaly; intellectual disability
Mendeliome v0.14532 ATP6AP2 Elena Savva Phenotypes for gene: ATP6AP2 were changed from ?Parkinsonism with spasticity, X-linked MIM#300911; Congenital disorder of glycosylation, type IIr MIM#301045; Intellectual developmental disorder, X-linked, syndromic, Hedera type MIM#300423 to ?Parkinsonism with spasticity, X-linked MIM#300911; Congenital disorder of glycosylation, type IIr MIM#301045; Intellectual developmental disorder, X-linked, syndromic, Hedera type MIM#300423
Mendeliome v0.14531 ATP6AP2 Elena Savva Phenotypes for gene: ATP6AP2 were changed from to ?Parkinsonism with spasticity, X-linked MIM#300911; Congenital disorder of glycosylation, type IIr MIM#301045; Intellectual developmental disorder, X-linked, syndromic, Hedera type MIM#300423
Mendeliome v0.14530 ATP6AP2 Elena Savva reviewed gene: ATP6AP2: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 23595882; Phenotypes: ?Parkinsonism with spasticity, X-linked MIM#300911, Congenital disorder of glycosylation, type IIr MIM#301045, Intellectual developmental disorder, X-linked, syndromic, Hedera type MIM#300423; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.14530 MMADHC Zornitza Stark Phenotypes for gene: MMADHC were changed from to Homocystinuria, cblD type, variant 1 MIM#277410; Methylmalonic aciduria and homocystinuria, cblD type MIM#277410; Methylmalonic aciduria, cblD type, variant 2 MIM#277410; Disorders of cobalamin absorption, transport and metabolism
Mendeliome v0.14527 MMACHC Zornitza Stark Phenotypes for gene: MMACHC were changed from to Methylmalonic aciduria and homocystinuria, cblC type MIM#277400; Disorders of cobalamin absorption, transport and metabolism
Mendeliome v0.14509 CPSF3 Zornitza Stark Phenotypes for gene: CPSF3 were changed from Neurodevelopmental disorder, CPSF3-related, MONDO:0700092 to Neurodevelopmental disorder with microcephaly, hypotonia, and seizures (NEDMHS), MIM#619876
Mendeliome v0.14508 CPSF3 Zornitza Stark reviewed gene: CPSF3: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with microcephaly, hypotonia, and seizures (NEDMHS), MIM#619876; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14491 METTL23 Zornitza Stark Phenotypes for gene: METTL23 were changed from to Intellectual developmental disorder, autosomal recessive 44, MIM# 615942
Mendeliome v0.14488 METTL23 Zornitza Stark reviewed gene: METTL23: Rating: GREEN; Mode of pathogenicity: None; Publications: 24501276, 24626631; Phenotypes: Intellectual developmental disorder, autosomal recessive 44, MIM# 615942; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14465 MED23 Zornitza Stark Phenotypes for gene: MED23 were changed from to Intellectual developmental disorder, autosomal recessive 18, with or without epilepsy, MIM# 614249
Mendeliome v0.14462 MED23 Zornitza Stark reviewed gene: MED23: Rating: GREEN; Mode of pathogenicity: None; Publications: 21868677, 25845469, 27311965, 30847200, 31164858; Phenotypes: Intellectual developmental disorder, autosomal recessive 18, with or without epilepsy, MIM# 614249; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14462 MED13 Zornitza Stark Phenotypes for gene: MED13 were changed from to Intellectual developmental disorder, autosomal dominant 61, MIM# 618009
Mendeliome v0.14459 MED13 Zornitza Stark reviewed gene: MED13: Rating: GREEN; Mode of pathogenicity: None; Publications: 29740699; Phenotypes: Intellectual developmental disorder, autosomal dominant 61, MIM# 618009; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.14459 MECP2 Zornitza Stark Phenotypes for gene: MECP2 were changed from to Rett syndrome, MIM# 312750; Intellectual developmental disorder, X-linked, syndromic 13, MIM# 300055; Encephalopathy, neonatal severe, MIM# 300673
Mendeliome v0.14456 MECP2 Zornitza Stark reviewed gene: MECP2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Rett syndrome, MIM# 312750, Intellectual developmental disorder, X-linked, syndromic 13, MIM# 300055, Encephalopathy, neonatal severe, MIM# 300673; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.14413 MAGT1 Zornitza Stark Phenotypes for gene: MAGT1 were changed from to Congenital disorder of glycosylation, type Icc (MIM# 301031); Immunodeficiency, X-linked, with magnesium defect, Epstein-Barr virus infection and neoplasia (MIM# 300853)
Mendeliome v0.14410 MAGT1 Zornitza Stark changed review comment from: PMID: 31036665;
- 3 affecteds (males; 2x CDG and 1x XMEN)
- All 3 patients have an N-glycosylation defect

PMID: 31714901;
- 23 XMEN patients from 17 families
- glycoproteomic analysis on T cells from 3 patients with XMEN showed defective glycosylation; to: PMID: 31036665;
- 3 affecteds (males; 2x CDG and 1x XMEN)
- All 3 patients have an N-glycosylation defect

PMID: 31714901;
- 23 XMEN patients from 17 families
- glycoproteomic analysis on T cells from 3 patients with XMEN showed defective glycosylation

These likely represent a single disorder.
Mendeliome v0.14410 MAGT1 Zornitza Stark reviewed gene: MAGT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 31036665, 31714901; Phenotypes: Congenital disorder of glycosylation, type Icc (MIM# 301031), Immunodeficiency, X-linked, with magnesium defect, Epstein-Barr virus infection and neoplasia (MIM# 300853); Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.14404 PAH Zornitza Stark Phenotypes for gene: PAH were changed from to Phenylketonuria MIM#261600; Disorders of phenylalanine or tyrosine metabolism
Mendeliome v0.14398 PEPD Zornitza Stark Phenotypes for gene: PEPD were changed from to Prolidase deficiency MIM#170100; disorders of peptide metabolism
Mendeliome v0.14395 PEX10 Zornitza Stark Phenotypes for gene: PEX10 were changed from to Peroxisome biogenesis disorder 6A (Zellweger) (MIM#614870); Peroxisome biogenesis disorder 6B (MIM#614871)
Mendeliome v0.14392 PCK1 Zornitza Stark Phenotypes for gene: PCK1 were changed from to Phosphoenolpyruvate carboxykinase deficiency, cytosolic MIM#261680; Disorders of gluconeogenesis
Mendeliome v0.14379 RBFOX2 Chern Lim edited their review of gene: RBFOX2: Added comment: - PMID: 26785492: Analysed CHD (1213 congenital heart disease trios) and control (autism spectrum disorder) trios for de novo mutations. Found RBFOX2 gene had significantly more damaging de novo variants than expected: 3 de novo LoF variants (eg. nonsense, frameshift, or canonical splice disruptions). All 3 probands have hypoplastic left heart syndrome (HLHS). No further patient-specific clinical or variant info were available. Same cohort later included in PMID: 32368696, listed 4 de novo variants in this gene, in patients with left ventricular outflow tract obstruction (LVOTO) or conotruncal defects (CTDs).

- PMID: 27670201: RNA expression study showed the silenced allele harbours a nonsense RBFOX2 variant (Arg287*), CHD patient heart tissue sample, same patient published in PMID: 26785492.
- PMID: 27485310: Functional studies using heart tissue sample from HLHS patient with NM_001031695.2:c.859C>T p.(Arg287*) showed subcellular mislocalisation, impacting its nuclear function in RNA splicing.

- PMID: 25205790: De novo 111.3kb del chr22:36038076-36149338 (hg19) which includes APOL5,APOL6,RBFOX2, in a patient with HLHS.

- PMID: 35137168: Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS.; Changed publications: PMID: 26785492, 27670201, 27485310, 25205790, 35137168, 26785492
Mendeliome v0.14346 ATP6V0A1 Bryony Thompson Phenotypes for gene: ATP6V0A1 were changed from Developmental disorder; Rett syndrome-like to Neurodevelopmental disorder MONDO:0700092, ATP6V0A1-associated
Mendeliome v0.14345 RBFOX2 Chern Lim gene: RBFOX2 was added
gene: RBFOX2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RBFOX2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RBFOX2 were set to PMID: 26785492; 27670201; 27485310; 25205790; 35137168
Phenotypes for gene: RBFOX2 were set to Hypoplastic left heart syndrome (HLHS)
Review for gene: RBFOX2 was set to AMBER
gene: RBFOX2 was marked as current diagnostic
Added comment: - PMID: 26785492: Analysed CHD (1213 congenital heart disease trios) and control (autism spectrum disorder) trios for de novo mutations. Found RBFOX2 gene had significantly more damaging de novo variants than expected: 3 de novo LoF variants (eg. nonsense, frameshift, or canonical splice disruptions). All 3 probands have hypoplastic left heart syndrome (HLHS).
No further patient-specific clinical or variant info were available.

- PMID: 27670201: RNA expression study showed the silenced allele harbours a nonsense RBFOX2 variant (Arg287*), CHD patient heart tissue sample, same patient published in PMID: 26785492.
- PMID: 27485310: Functional studies using heart tissue sample from HLHS patient with NM_001031695.2:c.859C>T p.(Arg287*) showed subcellular mislocalisation, impacting its nuclear function in RNA splicing.

- PMID: 25205790: De novo 111.3kb del chr22:36038076-36149338 (hg19) which includes APOL5,APOL6,RBFOX2, in a patient with HLHS.

- PMID: 35137168: Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS.
Sources: Literature
Mendeliome v0.14345 GRIA4 Ain Roesley Phenotypes for gene: GRIA4 were changed from to Neurodevelopmental disorder with or without seizures and gait abnormalities MIM#617864
Mendeliome v0.14344 GRIA4 Ain Roesley reviewed gene: GRIA4: Rating: GREEN; Mode of pathogenicity: None; Publications: 35518358, 29220673; Phenotypes: Neurodevelopmental disorder with or without seizures and gait abnormalities MIM#617864; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.14341 UGT1A1 Zornitza Stark Phenotypes for gene: UGT1A1 were changed from to Bilirubin UDP-glucuronosyltransferase 1 deficiency (Disorders of bile acid metabolism and transport); Crigler-Najjar syndrome, type I 218800; Crigler-Najjar syndrome, type II 606785
Mendeliome v0.14305 MTHFR Zornitza Stark Phenotypes for gene: MTHFR were changed from to Homocystinuria due to MTHFR deficiency MIM#236250; Disorders of folate metabolism and transport
Mendeliome v0.14291 DSCAM Krithika Murali edited their review of gene: DSCAM: Added comment: No OMIM gene disease association. Variants predominantly identified from large cohort studies with limited phenotypic information. Associations with ID, ASD, Hirschsprung disease reported. One homozygous splice site variant reported with no parental phenotypes provided.

PMID 34253863 Lim et al 2021 - 12 yo proband with severe autism spectrum disorder diagnosed age 3, de novo heterozygous c.2051 del p.(L684X) variant identified (absent from gnomAD). Skin fibroblast human iPSC cells generated from proband and healthy controls. Forebrain-like induced neuronal cells showed reduced mRNA expression for NMDA-R subunits.

PMID 28600779 Monies et al 2017 - Homozygous splice site variant identified in proband from consanguineous Saudi family. Proband had growth restriction, microcephaly, developmental delay. Parental phenotype not provided.

PMID 30095639 and PMID 23671607 - report association between DSCAM polymorphisms and Hirschsprung disease in Chinese and European populations.

PMID 27824329 Wang et al 2016 - 2 denovo mutations in mixed ID/ASD cohort of 1,045; including comparison of previously published cases 6 LOF out of 4,998 cases.

PMID 28191889 2 denovo LOF in 13,407 mixed ID/ASD cases plus 4 previosly published cases our ot 6158; conclude denovo LOF enriched in cases vs controls

PMID 21904980; mouse model – het LOF mice show hydrocephalus, decreased motor function and impaired motor learning ability,

Evidence for missense lacking currently; Changed publications: 34253863, 32807774, 28600779, 21904980, 28191889, 27824329, 30095639, 23671607
Mendeliome v0.14250 WASF1 Zornitza Stark Phenotypes for gene: WASF1 were changed from to Neurodevelopmental disorder with absent language and variable seizures , MIM#618707
Mendeliome v0.14247 WASF1 Zornitza Stark reviewed gene: WASF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 29961568, 34845217, 34478686, 34356165; Phenotypes: Neurodevelopmental disorder with absent language and variable seizures , MIM#618707; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.14223 FUT8 Bryony Thompson Phenotypes for gene: FUT8 were changed from to Congenital disorder of glycosylation with defective fucosylation 1 MONDO:0020775
Mendeliome v0.14220 FUT8 Bryony Thompson reviewed gene: FUT8: Rating: GREEN; Mode of pathogenicity: None; Publications: 29304374, 34389986, 32049367, 16236725; Phenotypes: Congenital disorder of glycosylation with defective fucosylation 1 MONDO:0020775; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14208 RHEB Zornitza Stark Phenotypes for gene: RHEB were changed from to Neurodevelopmental disorder MONDO:0700092, RHEB-related; Intellectual disability; Macrocephaly; Focal cortical dysplasia
Mendeliome v0.14205 RHEB Zornitza Stark reviewed gene: RHEB: Rating: GREEN; Mode of pathogenicity: None; Publications: 31337748, 29051493; Phenotypes: Neurodevelopmental disorder MONDO:0700092, RHEB-related, Intellectual disability, Macrocephaly, Focal cortical dysplasia; Mode of inheritance: Other
Mendeliome v0.14138 RASGRP2 Zornitza Stark Phenotypes for gene: RASGRP2 were changed from to Bleeding disorder, platelet-type, 18 (MIM#615888)
Mendeliome v0.14135 RASGRP2 Crystle Lee reviewed gene: RASGRP2: Rating: GREEN; Mode of pathogenicity: None; Publications: 28762304, 27663674, 28637664, 27235135; Phenotypes: Bleeding disorder, platelet-type, 18 (MIM#615888); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14134 SCN2A Zornitza Stark changed review comment from: Classically presents with seizures and DD/ID although a range of other manifestations reported, including movement abnormalities, including ataxia.; to: Classically presents with seizures and DD/ID although a range of other manifestations reported, including movement abnormalities, including ataxia. Rather than being discrete disorders, these probably represent a continuum of manifestations of a single brain channelopathy disorder.

Multiple families reported.
Mendeliome v0.14131 SCN9A Zornitza Stark Phenotypes for gene: SCN9A were changed from to Erythermalgia, primary, MIM# 133020; Insensitivity to pain, congenital, MIM# 243000; Neuropathy, hereditary sensory and autonomic, type IID, MIM# 243000; Paroxysmal extreme pain disorder, MIM# 167400; Small fiber neuropathy,MIM# 133020
Mendeliome v0.14085 FLNB Bryony Thompson edited their review of gene: FLNB: Changed phenotypes: spondylocarpotarsal synostosis syndrome MONDO:0010094, filamin-related bone disorder MONDO:0019690
Mendeliome v0.14085 FLNB Bryony Thompson edited their review of gene: FLNB: Changed phenotypes: filamin-related bone disorder MONDO:0019690
Mendeliome v0.14085 FLNB Bryony Thompson Phenotypes for gene: FLNB were changed from spondylocarpotarsal synostosis syndrome MONDO:0010094; osteochondrodysplasia MONDO:0005516 to spondylocarpotarsal synostosis syndrome MONDO:0010094; filamin-related bone disorder MONDO:0019690
Mendeliome v0.14081 FLI1 Bryony Thompson Phenotypes for gene: FLI1 were changed from to Bleeding disorder, platelet-type, 21 MONDO:0054577
Mendeliome v0.14078 FLI1 Bryony Thompson reviewed gene: FLI1: Rating: GREEN; Mode of pathogenicity: None; Publications: 10891501, 10981960, 24100448, 28255014, 26316623; Phenotypes: Bleeding disorder, platelet-type, 21 MONDO:0054577; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.14075 ASS1 Elena Savva Phenotypes for gene: ASS1 were changed from to Citrullinemia MIM#215700; Urea cycle disorders and inherited hyperammonaemias; disorder of amino acid metabolism
Mendeliome v0.14064 GSN Zornitza Stark changed review comment from: The Finnish type of systemic amyloidosis is characterized clinically by a unique constellation of features including lattice corneal dystrophy, and cranial neuropathy, bulbar signs, and skin changes. Some patients may develop peripheral neuropathy and renal failure. The disorder is usually inherited in an autosomal dominant pattern; however, homozygotes with a more severe phenotype have also been reported.

Multiple families with same founder variant.; to: The Finnish type of systemic amyloidosis is characterized clinically by a unique constellation of features including lattice corneal dystrophy, and cranial neuropathy, bulbar signs, and skin changes. Some patients may develop peripheral neuropathy and renal failure. The disorder is usually inherited in an autosomal dominant pattern; however, homozygotes with a more severe phenotype have also been reported.

Multiple families with same founder variant, p.Asp187Asn, though other variants also reported.
Mendeliome v0.14064 GSS Zornitza Stark Phenotypes for gene: GSS were changed from to Glutathione synthetase deficiency MIM#266130; Hemolytic anemia due to glutathione synthetase deficiency MIM#231900; Disorders of the gamma-glutamyl cycle
Mendeliome v0.14061 GTF3C3 Zornitza Stark Phenotypes for gene: GTF3C3 were changed from to Neurodevelopmental disorder MONDO:0700092, GTF3C3-related
Mendeliome v0.14058 GTF3C3 Zornitza Stark reviewed gene: GTF3C3: Rating: GREEN; Mode of pathogenicity: None; Publications: 28940097, 28097321, 30552426; Phenotypes: Neurodevelopmental disorder MONDO:0700092, GTF3C3-related; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.14046 ASPA Elena Savva Phenotypes for gene: ASPA were changed from to Canavan disease MIM#271900; disorder of amino acid metabolism
Mendeliome v0.14020 FGFR3 Bryony Thompson changed review comment from: FGFR3 has many well-established gene-disease associations with various skeletal dysplasia phenotypes. Gain-of-function is the main mechanism of disease for these disorders, except camptodactyly-tall stature-scoliosis-hearing loss syndrome where bialellic loss-of-function is the expected mechanism of disease. Specific monoallelic variants cause different phenotypes: >99% achondroplasia is caused by variants leading to the missense change p.Gly380Arg; Cysteine substitutions and stop-loss protein elongation variants are highly specific for Thanatophoric dysplasia (TD) type 1; p.Lys650Glu is associated with TD type 2; p.Ala391Glu causes Crouzon syndrome with acanthosis nigricans; and p.Pro250Arg causes Muenke syndrome.; to: FGFR3 has many well-established gene-disease associations with various skeletal dysplasia phenotypes. Gain-of-function is the main mechanism of disease for these disorders, except camptodactyly-tall stature-scoliosis-hearing loss syndrome (CATSHL syndrome, see separate curation below). Specific monoallelic variants cause different phenotypes: >99% achondroplasia is caused by variants leading to the missense change p.Gly380Arg; Cysteine substitutions and stop-loss protein elongation variants are highly specific for Thanatophoric dysplasia (TD) type 1; p.Lys650Glu is associated with TD type 2; p.Ala391Glu causes Crouzon syndrome with acanthosis nigricans; and p.Pro250Arg causes Muenke syndrome.
Moderate evidence for CATSHL syndrome, AD & AR: PMID: 8630492, 17033969, 27139183, 24864036, 32641982 - 2 apparently unrelated families segregating the same missense, p.Arg621His. One consanguineous family with 2 affected brothers with homozygous p.Thr546Lys. Heterozygous individuals in the family were unaffected. No functional assays were conducted for either missense to demonstrate loss of function. Null mouse and zebrafish models are similar to the human CATSHL syndrome phenotype.
Mendeliome v0.13864 ACTL6B Zornitza Stark edited their review of gene: ACTL6B: Changed phenotypes: Epileptic encephalopathy, early infantile, 76, MIM# 618468, Intellectual developmental disorder with severe speech and ambulation defects, MIM# 618470; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.13860 KCNJ2 Ain Roesley changed review comment from: well-established association, including short QT, long QT, clefting disorders, myopathy adult onset, channelopathies. tenuous association for CPVT

Dominant-negative is the disease mechanism; to: well-established association, including short QT, long QT, clefting disorders, myopathy adult onset, channelopathies. tenuous association for CPVT

Dominant-negative and LoF is the disease mechanism for ATS and CPVT while GoF is the mechanism for short QT
Mendeliome v0.13849 CYP27A1 Ain Roesley Phenotypes for gene: CYP27A1 were changed from Cerebrotendinous xanthomatosis MIM#213700; Disorders of bile acid biosynthesis to Cerebrotendinous xanthomatosis MIM#213700; Disorders of bile acid biosynthesis
Mendeliome v0.13848 CYP27A1 Ain Roesley Phenotypes for gene: CYP27A1 were changed from to Cerebrotendinous xanthomatosis MIM#213700; Disorders of bile acid biosynthesis
Mendeliome v0.13843 DARS2 Zornitza Stark changed review comment from: Slowly progressive disorder with variable age of onset, multiple families reported.; to: Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is defined on the basis of a highly characteristic constellation of abnormalities observed by magnetic resonance imaging and spectroscopy (Scheper et al., 2007). Affected individuals develop slowly progressive cerebellar ataxia, spasticity, and dorsal column dysfunction, sometimes with a mild cognitive deficit or decline.
Mendeliome v0.13839 CYP7B1 Zornitza Stark Phenotypes for gene: CYP7B1 were changed from to Bile acid synthesis defect, congenital, 3 MIM#613812; Spastic paraplegia 5A, autosomal recessive MIM#270800; Disorders of bile acid biosynthesis
Mendeliome v0.13828 CTR9 Zornitza Stark Phenotypes for gene: CTR9 were changed from Neurodevelopmental disorder (MONDO:0700092), CTR9 related; Intellectual disability (MONDO:0001071); hypotonia (HP:0001252); joint hyperlaxity (HP:0001388); speech delay; coordination problems; tremor (HP:0001337); autism spectrum disorder (MONDO:0005258) to Neurodevelopmental disorder (MONDO:0700092), CTR9 related
Mendeliome v0.13826 DNAH14 Zornitza Stark Phenotypes for gene: DNAH14 were changed from Neurodevelopmental disorder, DNAH14-related (MONDO#0700092) to Neurodevelopmental disorder (MONDO#0700092), DNAH14-related
Mendeliome v0.13791 CTR9 Dean Phelan gene: CTR9 was added
gene: CTR9 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CTR9 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CTR9 were set to PMID: 35499524
Phenotypes for gene: CTR9 were set to Neurodevelopmental disorder (MONDO:0700092), CTR9 related; Intellectual disability (MONDO:0001071); hypotonia (HP:0001252); joint hyperlaxity (HP:0001388); speech delay; coordination problems; tremor (HP:0001337); autism spectrum disorder (MONDO:0005258)
Review for gene: CTR9 was set to GREEN
Added comment: PMID: 35499524 - Thirteen individuals with variables degrees of intellectual disability, hypotonia, joint hyperlaxity, speech delay, coordination problems, tremor, autism spectrum disorder. Mild dysmorphism and cardiac anomalies were less frequent. Eleven of the variants were shown to be de novo.
Sources: Literature
Mendeliome v0.13789 DNAH14 Chern Lim gene: DNAH14 was added
gene: DNAH14 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DNAH14 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DNAH14 were set to PMID: 35438214
Phenotypes for gene: DNAH14 were set to Neurodevelopmental disorder, DNAH14-related (MONDO#0700092)
Review for gene: DNAH14 was set to GREEN
gene: DNAH14 was marked as current diagnostic
Added comment: PMID: 35438214:
- Three previously unreported patients with compound heterozygous DNAH14 variants, including one nonsense, one frameshift, and four missense variants. A spectrum of neurological and developmental phenotypes was observed, including seizures, global developmental delay, microcephaly, and hypotonia.
Sources: Literature
Mendeliome v0.13785 KCNH5 Elena Savva Phenotypes for gene: KCNH5 were changed from Neurodevelopmental disorders to Neurodevelopmental disorder MONDO#0700092, KCNH5-related
Mendeliome v0.13784 DROSHA Lucy Spencer gene: DROSHA was added
gene: DROSHA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DROSHA was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: DROSHA were set to 35405010
Phenotypes for gene: DROSHA were set to Neurodevelopmental disorder (MONDO#0700092), DROSHA-related
Review for gene: DROSHA was set to AMBER
Added comment: 2 individuals with profound intellectual disability, epilepsy, white matter atrophy, microcephaly, and dysmorphic features, who carry damaging de novo heterozygous variants in DROSHA. Both variants are missense, absent from gnomad. Both individuals noted to have Rett-like features.

Functional studies in patient fibroblasts showed one of the missense altered the expression of mature miRNA. Fruit fly models with homozygous LOF variants die during larval stages. introduction of the missense seen in the patients was able to partially rescue this phenotype suggesting LOF is not the mechanism.
Sources: Literature
Mendeliome v0.13784 KCNH5 Elena Savva gene: KCNH5 was added
gene: KCNH5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KCNH5 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: KCNH5 were set to https://www.medrxiv.org/content/10.1101/2022.04.26.22274147v1
Phenotypes for gene: KCNH5 were set to Neurodevelopmental disorders
Mode of pathogenicity for gene: KCNH5 was set to Other
Review for gene: KCNH5 was set to GREEN
Added comment: Happ (2022), preprint: Screen of 893 patients with DEE found 17 patients with missense variants (16/17 de novo, 1/17 inherited). GOF mechanism suggested.
Patient phenotypes included focal/generalized seizures, Cognitive outcome for the ten individuals >5 years ranged from normal (3/10) to mild (3/10), moderate (2/10), severe (1/10) and profound (1/10) intellectual disability (ID)

p.Arg327His (7 probands), p.Arg333His (4 probands) were recurring
Sources: Literature
Mendeliome v0.13783 STX1A Ain Roesley Phenotypes for gene: STX1A were changed from to neurodevelopmental disorder MONDO#0700092, STX1A-related
Mendeliome v0.13783 PPFIBP1 Zornitza Stark Phenotypes for gene: PPFIBP1 were changed from Neurodevelopmental disorder, MONDO:0700092 to Neurodevelopmental disorder, MONDO:0700092, PPFIBP1-related
Mendeliome v0.13781 STX1A Ain Roesley edited their review of gene: STX1A: Changed phenotypes: neurodevelopmental disorder MONDO#0700092, STX1A-related
Mendeliome v0.13781 PPFIBP1 Zornitza Stark gene: PPFIBP1 was added
gene: PPFIBP1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: PPFIBP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PPFIBP1 were set to https://www.medrxiv.org/content/10.1101/2022.04.04.22273309v1
Phenotypes for gene: PPFIBP1 were set to Neurodevelopmental disorder, MONDO:0700092
Review for gene: PPFIBP1 was set to GREEN
Added comment: 16 individuals from 10 unrelated families reported with moderate to profound developmental delay, often refractory early-onset epilepsy and progressive microcephaly. Drosophila model.
Sources: Expert Review
Mendeliome v0.13764 HSD3B7 Zornitza Stark Phenotypes for gene: HSD3B7 were changed from to Bile acid synthesis defect, congenital, 1 MIM#607765; Disorders of bile acid biosynthesis
Mendeliome v0.13729 CRBN Ain Roesley Phenotypes for gene: CRBN were changed from to Intellectual developmental disorder, autosomal recessive 2 MIM#607417
Mendeliome v0.13727 CRBN Ain Roesley reviewed gene: CRBN: Rating: AMBER; Mode of pathogenicity: None; Publications: 15557513, 28143899; Phenotypes: Intellectual developmental disorder, autosomal recessive 2 MIM#607417; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.13699 HOXA1 Zornitza Stark changed review comment from: At least 10 families reported.

175-176insG is known as the Saudi Arabian variant, while 76C>T is known as the Native American variant.

Features include:
Conotruncal heart defects, Abnormalities of the internal carotid artery and other cerebral arteries, Abnormal skull base

Biallelic variants in this gene cause a syndrome affecting hindbrain development, with BSAS and ABDS allelic disorders.; to: Biallelic variants in this gene cause a syndrome affecting hindbrain development, with BSAS and ABDS allelic disorders.

At least 10 families reported.

175-176insG is known as the Saudi Arabian variant, while 76C>T is known as the Native American variant.

Features include:
Conotruncal heart defects, Abnormalities of the internal carotid artery and other cerebral arteries, Abnormal skull base

Mendeliome v0.13645 COG7 Ain Roesley Phenotypes for gene: COG7 were changed from to Congenital disorder of glycosylation, type IIe , MIM#608779
Mendeliome v0.13643 COG7 Ain Roesley reviewed gene: COG7: Rating: GREEN; Mode of pathogenicity: None; Publications: 15107842, 17356545, 28883096; Phenotypes: Congenital disorder of glycosylation, type IIe , MIM#608779; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.13640 HK1 Zornitza Stark Phenotypes for gene: HK1 were changed from to Neuropathy, hereditary motor and sensory, Russe type , MIM#605285; Haemolytic anaemia due to hexokinase deficiency, MIM# 235700; Neurodevelopmental disorder with visual defects and brain anomalies, MIM# 618547; Retinitis pigmentosa 79, MIM# 617460
Mendeliome v0.13637 HK1 Zornitza Stark edited their review of gene: HK1: Added comment: Mono-allelic variants and ID: PMID30778173, 7 patients from 6 unrelated families with denovo missense variants in the N-terminal half of HK1

Mono-allelic variants and RP: Seven families reported with the same heterozygous missense variant, p.Glu847Lys and RP from different ethnicities. Some supportive evidence. Variant is present in 3 hets in gnomad.

Bi-allelic variants and haemolytic anaemia: more than 10 families reported.; Changed publications: 19536174, 30778173, 25316723, 25190649, 31621442, 32814480, 7655856, 12393545, 33361148, 31119733, 27282571; Changed phenotypes: Neuropathy, hereditary motor and sensory, Russe type , MIM#605285, Haemolytic anaemia due to hexokinase deficiency, MIM# 235700, Neurodevelopmental disorder with visual defects and brain anomalies, MIM# 618547, Retinitis pigmentosa 79, MIM# 617460; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.13637 GNAI1 Zornitza Stark Phenotypes for gene: GNAI1 were changed from Intellectual disability; seizures; hypotonia to Neurodevelopmental disorder with hypotonia, impaired speech, and behavioral abnormalities, MIM# 619854
Mendeliome v0.13636 GNAI1 Zornitza Stark edited their review of gene: GNAI1: Changed phenotypes: Neurodevelopmental disorder with hypotonia, impaired speech, and behavioral abnormalities, MIM# 619854
Mendeliome v0.13607 HGD Zornitza Stark Phenotypes for gene: HGD were changed from to Alkaptonuria MIM#203500; Disorders of phenylalanine or tyrosine metabolism
Mendeliome v0.13600 CHD8 Zornitza Stark Phenotypes for gene: CHD8 were changed from {Autism, susceptibility to, 18} 615032; CHD8-related neurodevelopmental syndrome to {Autism, susceptibility to, 18} 615032; Neurodevelopmental disorder, MONDO:0700092, CHD8-associated
Mendeliome v0.13599 CHD8 Zornitza Stark edited their review of gene: CHD8: Changed phenotypes: {Autism, susceptibility to, 18} 615032, Neurodevelopmental disorder, MONDO:0700092, CHD8-associated
Mendeliome v0.13592 DNASE2 Zornitza Stark Phenotypes for gene: DNASE2 were changed from Auto-inflammatory disorder; splenomegaly; glomerulonephritis; liver fibrosis; arthritis; HLH to Autoinflammatory-pancytopaenia syndrome, MIM# 619858
Mendeliome v0.13583 LINS1 Alison Yeung Phenotypes for gene: LINS1 were changed from to Intellectual developmental disorder, autosomal recessive 27, MIM# 614340
Mendeliome v0.13507 BCKDK Zornitza Stark Phenotypes for gene: BCKDK were changed from to Branched-chain ketoacid dehydrogenase kinase deficiency MIM#614923; disorder of branched-chain amino acid metabolism
Mendeliome v0.13481 B4GALT1 Zornitza Stark Phenotypes for gene: B4GALT1 were changed from to Congenital disorder of glycosylation, type Iid, MIM#607091
Mendeliome v0.13461 PEX26 Zornitza Stark Phenotypes for gene: PEX26 were changed from to Peroxisome biogenesis disorder 7A (Zellweger) - MIM#614872; Peroxisome biogenesis disorder 7B - MIM#614873
Mendeliome v0.13458 PEX2 Zornitza Stark Phenotypes for gene: PEX2 were changed from to Peroxisome biogenesis disorder 5A (Zellweger) - MIM#614866; Peroxisome biogenesis disorder 5B - MIM#614867
Mendeliome v0.13455 PEX19 Zornitza Stark Phenotypes for gene: PEX19 were changed from to Peroxisome biogenesis disorder 12A (Zellweger) - MIM#614886
Mendeliome v0.13454 PEX16 Zornitza Stark Phenotypes for gene: PEX16 were changed from to Peroxisome biogenesis disorder 8A (Zellweger) - MIM#614876; Peroxisome biogenesis disorder 8B - MIM#614877
Mendeliome v0.13451 PEX14 Zornitza Stark Phenotypes for gene: PEX14 were changed from to Peroxisome biogenesis disorder 13A (Zellweger) - MIM#614887
Mendeliome v0.13448 PEX13 Zornitza Stark Phenotypes for gene: PEX13 were changed from to Peroxisome biogenesis disorder 11A (Zellweger) - MIM#614883; Peroxisome biogenesis disorder 11B - MIM#614885
Mendeliome v0.13446 PEX12 Zornitza Stark Phenotypes for gene: PEX12 were changed from to Peroxisome biogenesis disorder 3A (Zellweger) - MIM#614859; Peroxisome biogenesis disorder 3B - MIM#266510
Mendeliome v0.13443 ENTPD1 Zornitza Stark commented on gene: ENTPD1: PMID 35471564: 27 individuals from 17 families published, expanding the phenotype to a complex neurodevelopmental disorder characterised by ID, white matter abnormalities and spastic paraplegia.
Mendeliome v0.13429 PEX26 Krithika Murali reviewed gene: PEX26: Rating: GREEN; Mode of pathogenicity: None; Publications: 12717447, 15858711, 17336976; Phenotypes: Peroxisome biogenesis disorder 7A (Zellweger) - MIM#614872, Peroxisome biogenesis disorder 7B - MIM#614873; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13429 PEX2 Krithika Murali reviewed gene: PEX2: Rating: GREEN; Mode of pathogenicity: None; Publications: 14630978, 10528859, 23430938, 1546315; Phenotypes: Peroxisome biogenesis disorder 5A (Zellweger) - MIM#614866, Peroxisome biogenesis disorder 5B - MIM#614867; Mode of inheritance: None
Mendeliome v0.13429 PEX19 Krithika Murali reviewed gene: PEX19: Rating: GREEN; Mode of pathogenicity: None; Publications: 10051604, 20683989, 11883941, 28391327; Phenotypes: Peroxisome biogenesis disorder 12A (Zellweger) - MIM#614886; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13429 PEX16 Krithika Murali reviewed gene: PEX16: Rating: GREEN; Mode of pathogenicity: None; Publications: 20647552, 12223482, 9837814, 11890679; Phenotypes: Peroxisome biogenesis disorder 8A (Zellweger) - MIM#614876, Peroxisome biogenesis disorder 8B - MIM#614877; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13429 PEX14 Krithika Murali reviewed gene: PEX14: Rating: GREEN; Mode of pathogenicity: None; Publications: 18285423, 26627464, 21686775, 15146459; Phenotypes: Peroxisome biogenesis disorder 13A (Zellweger) - MIM#614887; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13429 PEX13 Krithika Murali reviewed gene: PEX13: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Peroxisome biogenesis disorder 11A (Zellweger) - MIM#614883, Peroxisome biogenesis disorder 11B - MIM#614885; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13429 PEX12 Krithika Murali reviewed gene: PEX12: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Peroxisome biogenesis disorder 3A (Zellweger) - MIM#614859, Peroxisome biogenesis disorder 3B - MIM#266510; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13422 NRCAM Zornitza Stark Phenotypes for gene: NRCAM were changed from neurodevelopmental disorder, NRCAM-related, MONDO:0700092 to Neurodevelopmental disorder with neuromuscular and skeletal abnormalities, MIM# 619833
Mendeliome v0.13421 NRCAM Zornitza Stark reviewed gene: NRCAM: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with neuromuscular and skeletal abnormalities, MIM# 619833; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13420 PEX3 Zornitza Stark Phenotypes for gene: PEX3 were changed from to Peroxisome biogenesis disorder 10A (Zellweger), MIM# 614882; Peroxisome biogenesis disorder 10B , MIM# 617370
Mendeliome v0.13417 PEX3 Zornitza Stark reviewed gene: PEX3: Rating: GREEN; Mode of pathogenicity: None; Publications: 10942428, 10958759, 10968777, 27557811, 33101983; Phenotypes: Peroxisome biogenesis disorder 10A (Zellweger), MIM# 614882, Peroxisome biogenesis disorder 10B , MIM# 617370; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13417 PEX5 Zornitza Stark Phenotypes for gene: PEX5 were changed from to Peroxisome biogenesis disorder 2A (Zellweger), MIM# 214110; Peroxisome biogenesis disorder 2B, MIM# 202370; Rhizomelic chondrodysplasia punctata, type 5, MIM# 616716
Mendeliome v0.13414 PEX5 Zornitza Stark reviewed gene: PEX5: Rating: GREEN; Mode of pathogenicity: None; Publications: 7719337, 26220973, 20301621; Phenotypes: Peroxisome biogenesis disorder 2A (Zellweger), MIM# 214110, Peroxisome biogenesis disorder 2B, MIM# 202370, Rhizomelic chondrodysplasia punctata, type 5, MIM# 616716; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13414 PEX7 Zornitza Stark Phenotypes for gene: PEX7 were changed from to Peroxisome biogenesis disorder 9B, MIM# 614879; Rhizomelic chondrodysplasia punctata, type 1, MIM# 215100
Mendeliome v0.13411 PEX7 Zornitza Stark edited their review of gene: PEX7: Added comment: Well established gene-disease associations.; Changed publications: 11781871, 12522768, 12325024; Changed phenotypes: Peroxisome biogenesis disorder 9B, MIM# 614879, Rhizomelic chondrodysplasia punctata, type 1, MIM# 215100
Mendeliome v0.13356 PEX11B Zornitza Stark Phenotypes for gene: PEX11B were changed from to Peroxisome biogenesis disorder 14B - MIM#614920
Mendeliome v0.13318 PEX11B Krithika Murali reviewed gene: PEX11B: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301621, 22581968; Phenotypes: Peroxisome biogenesis disorder 14B - MIM#614920; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.13312 CIC Ain Roesley Phenotypes for gene: CIC were changed from to Intellectual developmental disorder, autosomal dominant 45 MIM#617600
Mendeliome v0.13310 CIC Ain Roesley reviewed gene: CIC: Rating: GREEN; Mode of pathogenicity: None; Publications: 28288114, 21076407; Phenotypes: Intellectual developmental disorder, autosomal dominant 45 MIM#617600; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.13289 HSPG2 Zornitza Stark changed review comment from: Allelic disorders with some phenotypic overlap.

Schwartz-Jampel syndrome (SJS) is a rare autosomal recessive condition defined by the association of myotonia with chondrodysplasia; blepharophimosis is a key feature. More than 20 families reported.

Silverman-Handmaker dyssegmental dysplasia (DDSH) is a lethal autosomal recessive skeletal dysplasia with anisospondyly and micromelia. Individuals with DDSH also have a flat face, micrognathia, cleft palate and reduced joint mobility, and frequently have an encephalocele. The endochondral growth plate is short, the calcospherites (spherical calcium-phosphorus crystals produced by hypertrophic chondrocytes) are unfused, and there is mucoid degeneration of the resting cartilage. Two families reported.; to: Allelic disorders with some phenotypic overlap.

Schwartz-Jampel syndrome (SJS) is a rare autosomal recessive condition defined by the association of myotonia with chondrodysplasia; blepharophimosis is a key feature. More than 20 families reported.

Silverman-Handmaker dyssegmental dysplasia (DDSH) is a lethal autosomal recessive skeletal dysplasia with anisospondyly and micromelia. Individuals with DDSH also have a flat face, micrognathia, cleft palate and reduced joint mobility, and frequently have an encephalocele. The endochondral growth plate is short, the calcospherites (spherical calcium-phosphorus crystals produced by hypertrophic chondrocytes) are unfused, and there is mucoid degeneration of the resting cartilage. Two families reported. Appears associated with null variants.
Mendeliome v0.13245 PMPCB Zornitza Stark changed review comment from: Progressive disorder, includes ataxia. Four unrelated families reported.; to: Progressive disorder. Four unrelated families reported.
Mendeliome v0.13168 ATP11A Zornitza Stark Phenotypes for gene: ATP11A were changed from Neurological disorder; Deafness, autosomal dominant 84 MIM#619810 to Leukodystrophy, hypomyelinating, 24 , MIM# 619851Deafness, autosomal dominant 84 MIM#619810
Mendeliome v0.13153 PIDD1 Zornitza Stark Phenotypes for gene: PIDD1 were changed from Global developmental delay; Intellectual disability; Seizures; Autism; Behavioral abnormality; Psychosis; Pachygyria; Lissencephaly; Abnormality of the corpus callosum to Intellectual developmental disorder, autosomal recessive 75, with neuropsychiatric features and variant lissencephaly, MIM# 619827
Mendeliome v0.13152 PIDD1 Zornitza Stark edited their review of gene: PIDD1: Changed phenotypes: Intellectual developmental disorder, autosomal recessive 75, with neuropsychiatric features and variant lissencephaly, MIM# 619827
Mendeliome v0.13127 FBXW7 Bryony Thompson Phenotypes for gene: FBXW7 were changed from FBXW7-related neurodevelopmental syndrome; Wilms tumour predisposition to neurodevelopmental disorder MONDO:0700092; FBXW7-related neurodevelopmental syndrome; Wilms tumor MONDO:0006058
Mendeliome v0.13121 FBP1 Bryony Thompson changed review comment from: Well-established gene-disease association. Fructose-1,6-bisphosphatase (FBP1) deficiency is metabolic disorder characterised by episodic acute crises of lactic acidosis and ketotic hypoglycaemia, manifesting as hyperventilation, apneic spells, seizures, and/or coma. Both SNVs and CNVs have been reported.; to: Well-established gene-disease association. Fructose-1,6-bisphosphatase (FBP1) deficiency is a metabolic disorder characterised by episodic acute crises of lactic acidosis and ketotic hypoglycaemia, manifesting as hyperventilation, apneic spells, seizures, and/or coma. Both SNVs and CNVs have been reported.
Mendeliome v0.13119 GLRA2 Zornitza Stark gene: GLRA2 was added
gene: GLRA2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: GLRA2 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: GLRA2 were set to 26370147; 20479760; 35294868
Phenotypes for gene: GLRA2 were set to Intellectual developmental disorder, X-linked, syndromic, Pilorge type, MIM# 301076
Review for gene: GLRA2 was set to GREEN
Added comment: More than 10 unrelated families reported. Both males and females affected, though some mothers are asymptomatic or mild. Zebrafish model.
Sources: Expert list
Mendeliome v0.13017 PREPL Zornitza Stark Phenotypes for gene: PREPL were changed from to Myasthenic syndrome, congenital, 22 MIM#616224; hypotonia-cystinuria syndrome; Disorders of amino acid transport
Mendeliome v0.13011 PRICKLE2 Zornitza Stark Phenotypes for gene: PRICKLE2 were changed from Neurodevelopmental disorder, global developmental delay, behavioural difficulties ± epilepsy, autistic features, and attention deficit hyperactive disorder. to Neurodevelopmental disorder, MONDO:0700092; global developmental delay, behavioural difficulties ± epilepsy, autistic features, and attention deficit hyperactive disorder.
Mendeliome v0.12955 PSPH Zornitza Stark Phenotypes for gene: PSPH were changed from to Phosphoserine phosphatase deficiency MIM#614023; Disorders of serine, glycine or glycerate metabolism
Mendeliome v0.12922 PTRH2 Zornitza Stark commented on gene: PTRH2: Infantile-onset multisystem neurologic, endocrine, and pancreatic disease-1 (IMNEPD1) is an autosomal recessive multisystemic disorder with variable expressivity. The core features usually include global developmental delay with impaired intellectual development and speech delay, ataxia, sensorineural hearing loss, and pancreatic insufficiency. Additional features may include peripheral neuropathy, postnatal microcephaly, dysmorphic facial features, and cerebellar atrophy.

More than 5 unrelated families reported. The Q85P missense variant is reported in several families, likely founder effect.
Mendeliome v0.12920 PUM1 Zornitza Stark Phenotypes for gene: PUM1 were changed from to Spinocerebellar ataxia 47, MIM# 617931; Neurodevelopmental disorder, MONDO:0700092, PUM1-related
Mendeliome v0.12917 PUM1 Zornitza Stark reviewed gene: PUM1: Rating: GREEN; Mode of pathogenicity: None; Publications: 29474920, 25768905, 30903679, 31859446; Phenotypes: Spinocerebellar ataxia 47, MIM# 617931, Neurodevelopmental disorder, MONDO:0700092, PUM1-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12866 SET Zornitza Stark Phenotypes for gene: SET were changed from to Intellectual developmental disorder, autosomal dominant 58, MIM#618106; intellectual disability, autosomal dominant 58, MONDO:0020847
Mendeliome v0.12856 NOVA2 Zornitza Stark Phenotypes for gene: NOVA2 were changed from Intellectual disability; autism; hypotonia; spasticity; ataxia to Neurodevelopmental disorder with or without autistic features and/or structural brain abnormalities, MIM# 618859
Mendeliome v0.12855 NOVA2 Zornitza Stark edited their review of gene: NOVA2: Changed phenotypes: Neurodevelopmental disorder with or without autistic features and/or structural brain abnormalities, MIM# 618859
Mendeliome v0.12792 EXOC7 Bryony Thompson Phenotypes for gene: EXOC7 were changed from brain atrophy; seizures; developmental delay; microcephaly to Neurodevelopmental disorder with seizures and brain atrophy MIM#619072; brain atrophy; seizures; developmental delay; microcephaly
Mendeliome v0.12787 SET Samantha Ayres reviewed gene: SET: Rating: GREEN; Mode of pathogenicity: None; Publications: 29688601, 29907757, 25356899; Phenotypes: Intellectual developmental disorder, autosomal dominant 58, MIM#618106, intellectual disability, autosomal dominant 58, MONDO:0020847; Mode of inheritance: None
Mendeliome v0.12759 TTC19 Zornitza Stark edited their review of gene: TTC19: Added comment: Mitochondrial complex III deficiency nuclear type 2 is an autosomal recessive severe neurodegenerative disorder that usually presents in childhood, but may show later onset, even in adulthood. Affected individuals have motor disability, with ataxia, apraxia, dystonia, and dysarthria, associated with necrotic lesions throughout the brain. Most patients also have cognitive impairment and axonal neuropathy and become severely disabled later in life. The disorder may present clinically as spinocerebellar ataxia or Leigh syndrome, or with psychiatric disturbances.

At least 4 unrelated families reported.; Changed publications: 21278747, 23532514, 24368687, 24397319
Mendeliome v0.12756 TSFM Zornitza Stark changed review comment from: Ataxia is a reported feature of this mitochondrial disorder.; to: At least 5 families reported, however 3 had the same homozygous variant, ?founder.
Mendeliome v0.12738 PIGA Zornitza Stark changed review comment from: PIGA 34875027: variants in PIGA causing a neurodevelopment disorder and a juvenile form of hereditary hemochromatosis reported in > three unrelated patients. All patients had increased serum iron, ferritin and transferrin saturation levels, high ALP and low hepcidin. All patients had generalised seizures and intellectual disability. A subpopulation of patient blood cells showed a slight reduction of GPI-anchored proteins, suggesting that the mutations were hypomorphic and retained some residual activity. CRISPR/Cas12a-mediated knockdown of PIGA in Hep3B liver cells eliminated the cell surface expression of GPI-anchored proteins CD59 and hemojuvelin (HJV; 608374), as well as caused decreased expression of hepcidin (606464) compared to controls. These hypomorphic alleles could explain the milder neurologic phenotype, which allowed for sufficiently long survival for the iron overload phenotype to manifest.; to: PMID 34875027: variants in PIGA causing a neurodevelopment disorder and a juvenile form of hereditary hemochromatosis reported in > three unrelated patients. All patients had increased serum iron, ferritin and transferrin saturation levels, high ALP and low hepcidin. All patients had generalised seizures and intellectual disability. A subpopulation of patient blood cells showed a slight reduction of GPI-anchored proteins, suggesting that the mutations were hypomorphic and retained some residual activity. CRISPR/Cas12a-mediated knockdown of PIGA in Hep3B liver cells eliminated the cell surface expression of GPI-anchored proteins CD59 and hemojuvelin (HJV; 608374), as well as caused decreased expression of hepcidin (606464) compared to controls. These hypomorphic alleles could explain the milder neurologic phenotype, which allowed for sufficiently long survival for the iron overload phenotype to manifest.
Mendeliome v0.12738 PIGA Zornitza Stark Phenotypes for gene: PIGA were changed from Multiple congenital anomalies-hypotonia-seizures syndrome 2, MIM# 300868, MONDO:0010466 to Multiple congenital anomalies-hypotonia-seizures syndrome 2, MIM# 300868, MONDO:0010466; Neurodevelopmental disorder with epilepsy and haemochromatosis, MIM# 301072
Mendeliome v0.12737 PIGA Zornitza Stark edited their review of gene: PIGA: Added comment: PIGA 34875027: variants in PIGA causing a neurodevelopment disorder and a juvenile form of hereditary hemochromatosis reported in > three unrelated patients. All patients had increased serum iron, ferritin and transferrin saturation levels, high ALP and low hepcidin. All patients had generalised seizures and intellectual disability. A subpopulation of patient blood cells showed a slight reduction of GPI-anchored proteins, suggesting that the mutations were hypomorphic and retained some residual activity. CRISPR/Cas12a-mediated knockdown of PIGA in Hep3B liver cells eliminated the cell surface expression of GPI-anchored proteins CD59 and hemojuvelin (HJV; 608374), as well as caused decreased expression of hepcidin (606464) compared to controls. These hypomorphic alleles could explain the milder neurologic phenotype, which allowed for sufficiently long survival for the iron overload phenotype to manifest.; Changed publications: 22305531, 24357517, 24706016, 26545172, 33333793, 32694024, 34875027; Changed phenotypes: Multiple congenital anomalies-hypotonia-seizures syndrome 2, MIM# 300868, MONDO:0010466, Neurodevelopmental disorder with epilepsy and haemochromatosis, MIM# 301072
Mendeliome v0.12736 ATP11A Zornitza Stark Phenotypes for gene: ATP11A were changed from Neurological disorder to Neurological disorder; Deafness, autosomal dominant 84 MIM#619810
Mendeliome v0.12733 CACNA2D1 Alison Yeung Phenotypes for gene: CACNA2D1 were changed from developmental and epileptic encephalopathy disorder MONDO:0100062 CACNA2D1-related to Developmental and epileptic encephalopathy disorder MONDO:0100062 CACNA2D1-related
Mendeliome v0.12731 TTC21B Dean Phelan edited their review of gene: TTC21B: Added comment: Correcting typographical error; Changed phenotypes: Glomerular disorder (MONDO:0019722), TTC21B-related
Mendeliome v0.12731 CACNA2D1 Michelle Torres gene: CACNA2D1 was added
gene: CACNA2D1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CACNA2D1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CACNA2D1 were set to 35293990
Phenotypes for gene: CACNA2D1 were set to developmental and epileptic encephalopathy disorder MONDO:0100062 CACNA2D1-related
Review for gene: CACNA2D1 was set to GREEN
Added comment: PMID 35293990: WES of 2x unrelated individuals with early-onset developmental epileptic encephalopathy, microcephaly, severe hypotonia, absent speech, spasticity, choreiform movements, orofacial dyskinesia, and 2 cortical visual impairment, corpus callosum hypoplasia and progressive volume loss. Patient 2 also had a tiny patent foramen ovale.

Patient 1 is homozygous for p.(Ser275Asnfs*13). mRNA and protein expression were reduced to ~10% of WT in fibroblasts

Patient 2 is cHet for p.(Leu9Alafs*5) and p.(Gly209Asp). mRNA expression in patients fibroblasts was similar to controls, and protein expression reduced to 31-38%. Functional of the p.(Gly209Asp) showed impaired localization and mutagenesis showed complete loss of channel function.
Sources: Literature
Mendeliome v0.12731 TTC21B Dean Phelan edited their review of gene: TTC21B: Added comment: Updated to include additional publications linking glomerular disorder.; Changed rating: GREEN; Changed publications: PMID: 35289079, 26940125, 28124483, 31208513, 34805047; Changed phenotypes: Glomerular disorder (MONOD:0019722), TTC21B-related
Mendeliome v0.12729 TTC21B Zornitza Stark Phenotypes for gene: TTC21B were changed from Nephronophthisis 12, MIM# 613820; Short-rib thoracic dysplasia 4 with or without polydactyly, MIM# 613819; Joubert syndrome to Nephronophthisis 12, MIM# 613820; Short-rib thoracic dysplasia 4 with or without polydactyly, MIM# 613819; Joubert syndrome; Glomerular disorder MONDO:0019722, TTC21B-related
Mendeliome v0.12728 TRAPPC10 Naomi Baker gene: TRAPPC10 was added
gene: TRAPPC10 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TRAPPC10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TRAPPC10 were set to PMID: 35298461; 30167849
Phenotypes for gene: TRAPPC10 were set to neurodevelopmental disorder (MONDO:0700092), TRAPPC10-related
Review for gene: TRAPPC10 was set to GREEN
Added comment: PMID: 35298461 – two Pakistani families reported with homozygous variants. Family 1 has frameshift variant in 8 affected individual and family 2 has missense variant in 2 affected individuals. Patients present with microcephaly, short stature, hypotonia, severe ID and behavioural abnormalities. Seizures also reported in 4/10 individuals. Paper also reported brain abnormalities in null mouse model and other functional in transfected cell lines.

PMID: 30167849 – initial report of family 2 above.
Sources: Literature
Mendeliome v0.12722 ATP2B1 Zornitza Stark Phenotypes for gene: ATP2B1 were changed from Neurodevelopmental delay; autism; seizures; distal limb abnormalities to Neurodevelopmental disorder, MONDO:0700092, ATP2B1-related
Mendeliome v0.12713 VPS16 Ain Roesley Phenotypes for gene: VPS16 were changed from Dystonia 30, MIM#619291 to Dystonia 30, MIM#619291; mucopolysaccharidosis-like disorder, VPS16-related MONDO#0100365
Mendeliome v0.12711 MDFIC Belinda Chong gene: MDFIC was added
gene: MDFIC was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MDFIC was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MDFIC were set to 35235341
Phenotypes for gene: MDFIC were set to Central conducting lymphatic anomaly with lymphedema
Review for gene: MDFIC was set to GREEN
Added comment: Central conducting lymphatic anomaly (CCLA), characterized by the dysfunction of core collecting lymphatic vessels including the thoracic duct and cisterna chyli, and presenting as chylothorax, pleural effusions, chylous ascites, and lymphedema, is a severe disorder often resulting in fetal or perinatal demise.

Seven individuals with CCLA from six independent families. Clinical manifestations of affected fetuses and children included nonimmune hydrops fetalis (NIHF), pleural and pericardial effusions, and lymphedema. Generation of a mouse model of human MDFIC truncation variants revealed that homozygous mutant mice died perinatally exhibiting chylothorax.
Sources: Literature
Mendeliome v0.12709 VPS16 Ain Roesley reviewed gene: VPS16: Rating: GREEN; Mode of pathogenicity: None; Publications: 33938619, 34013567; Phenotypes: mucopolysaccharidosis-like disorder, VPS16-related MONDO#0100365; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.12691 TMEM106B Zornitza Stark changed review comment from: Cerebellar signs including ataxia prominent.; to: Hypomyelinating leukodystrophy-16 is an autosomal dominant neurologic disorder characterized by onset of hypotonia, nystagmus, and mildly delayed motor development in infancy. Affected individuals have motor disabilities, including ataxic or broad-based gait, hyperreflexia, intention tremor, dysmetria, and a mild pyramidal syndrome. Some patients have cognitive impairment, whereas others may have normal cognition or mild intellectual disability with speech difficulties. Brain imaging typically shows hypomyelination, leukodystrophy, and thin corpus callosum.

At least 5 unrelated individuals reported.
Mendeliome v0.12637 SPATA5 Zornitza Stark Phenotypes for gene: SPATA5 were changed from to Neurodevelopmental disorder with hearing loss, seizures, and brain abnormalities, MIM# 616577
Mendeliome v0.12634 SPATA5 Zornitza Stark reviewed gene: SPATA5: Rating: GREEN; Mode of pathogenicity: None; Publications: 30009132, 29343804; Phenotypes: Neurodevelopmental disorder with hearing loss, seizures, and brain abnormalities, MIM# 616577; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12631 SSR4 Zornitza Stark Phenotypes for gene: SSR4 were changed from to Congenital disorder of glycosylation, type Iy, MIM# 300934
Mendeliome v0.12628 SSR4 Zornitza Stark reviewed gene: SSR4: Rating: GREEN; Mode of pathogenicity: None; Publications: 24218363, 26264460, 33300232; Phenotypes: Congenital disorder of glycosylation, type Iy, MIM# 300934; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.12601 RUNX1 Zornitza Stark Phenotypes for gene: RUNX1 were changed from to Platelet disorder, familial, with associated myeloid malignancy, MIM# 601399; Leukemia, acute myeloid, MIM# 601626
Mendeliome v0.12573 RUNX1 Belinda Chong reviewed gene: RUNX1: Rating: GREEN; Mode of pathogenicity: None; Publications: 10508512, 11830488; Phenotypes: Platelet disorder, familial, with associated myeloid malignancy, MIM# 601399, Leukemia, acute myeloid, MIM# 601626; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.12523 TSPAN7 Zornitza Stark Phenotypes for gene: TSPAN7 were changed from to Intellectual developmental disorder, X-linked 58, MIM #300210, MONDO:0010266
Mendeliome v0.12519 TSPAN7 Zornitza Stark reviewed gene: TSPAN7: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual developmental disorder, X-linked 58, MIM #300210, MONDO:0010266; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.12517 AMT Elena Savva Phenotypes for gene: AMT were changed from to Glycine encephalopathy MIM#605899; disorder of glycine metabolism
Mendeliome v0.12508 ALDH18A1 Elena Savva Phenotypes for gene: ALDH18A1 were changed from Cutis laxa, autosomal recessive, type IIIA MIM#219150; Spastic paraplegia 9A, autosomal dominant MIM#601162; Spastic paraplegia 9B, autosomal recessive MIM#616586; Cutis laxa, autosomal dominant 3 MIM#616603; disorders of ornithine or proline metabolism to Cutis laxa, autosomal recessive, type IIIA MIM#219150; Spastic paraplegia 9A, autosomal dominant MIM#601162; Spastic paraplegia 9B, autosomal recessive MIM#616586; Cutis laxa, autosomal dominant 3 MIM#616603; disorders of ornithine or proline metabolism
Mendeliome v0.12507 ALDH6A1 Elena Savva Phenotypes for gene: ALDH6A1 were changed from to Methylmalonate semialdehyde dehydrogenase deficiency MIM#614105; disorder of valine and pyrimidine metabolism
Mendeliome v0.12505 ALDH18A1 Elena Savva Phenotypes for gene: ALDH18A1 were changed from to Cutis laxa, autosomal recessive, type IIIA MIM#219150; Spastic paraplegia 9A, autosomal dominant MIM#601162; Spastic paraplegia 9B, autosomal recessive MIM#616586; Cutis laxa, autosomal dominant 3 MIM#616603; disorders of ornithine or proline metabolism
Mendeliome v0.12489 TMEM199 Zornitza Stark Phenotypes for gene: TMEM199 were changed from to Congenital disorder of glycosylation, type IIp MIM# 616829
Mendeliome v0.12486 TMEM199 Zornitza Stark reviewed gene: TMEM199: Rating: GREEN; Mode of pathogenicity: None; Publications: 26833330, 29321044; Phenotypes: Congenital disorder of glycosylation, type IIp MIM# 616829; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12475 FTCD Zornitza Stark Phenotypes for gene: FTCD were changed from Glutamate formiminotransferase deficiency MIM#229100; Disorders of histidine, tryptophan or lysine metabolism to Glutamate formiminotransferase deficiency MIM#229100; Disorders of histidine, tryptophan or lysine metabolism
Mendeliome v0.12472 FTCD Zornitza Stark Phenotypes for gene: FTCD were changed from to Glutamate formiminotransferase deficiency MIM#229100; Disorders of histidine, tryptophan or lysine metabolism
Mendeliome v0.12439 SLC35A1 Zornitza Stark Phenotypes for gene: SLC35A1 were changed from to Congenital disorder of glycosylation, type IIf, MIM# 603585
Mendeliome v0.12436 SLC35A1 Zornitza Stark reviewed gene: SLC35A1: Rating: GREEN; Mode of pathogenicity: None; Publications: 28856833, 23873973, 11157507; Phenotypes: Congenital disorder of glycosylation, type IIf, MIM# 603585; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12420 SLC39A8 Zornitza Stark reviewed gene: SLC39A8: Rating: GREEN; Mode of pathogenicity: None; Publications: 26637978, 26637979; Phenotypes: Congenital disorder of glycosylation, type IIn , MIM#16721; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.12402 TSPAN7 Manny Jacobs reviewed gene: TSPAN7: Rating: AMBER; Mode of pathogenicity: None; Publications: PMID: 10449641, 12070254, 10655063, 25081361; Phenotypes: Intellectual developmental disorder, X-linked 58, MIM #300210, MONDO:0010266; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.12378 TAMM41 Bryony Thompson gene: TAMM41 was added
gene: TAMM41 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TAMM41 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TAMM41 were set to 35321494; 29253589
Phenotypes for gene: TAMM41 were set to inborn mitochondrial metabolism disorder MONDO:0004069; hypotonia; developmental delay; myopathy; ptosis
Review for gene: TAMM41 was set to GREEN
Added comment: Three unrelated individuals with mitochondrial disease that share clinical features, including lethargy at birth, hypotonia, developmental delay, myopathy, and ptosis with biallelic variants. Tissue-specific observations on OXPHOS were identified, cardiolipin levels were unchanged in subject fibroblasts but significantly decreased in the skeletal muscle of affected individuals. The missense variants identified were defective in yeast models. In an in vitro cell model knockdown of TAMM41 resulted in decreased mitochondrial CDP diacylglycerol synthase activity, decreased cardiolipin levels and a decrease in oxygen consumption.
Sources: Literature
Mendeliome v0.12373 SLC6A19 Zornitza Stark Phenotypes for gene: SLC6A19 were changed from to Hartnup disorder, MIM# 234500; Hyperglycinuria, MIM# 138500; Iminoglycinuria, MIM# 242600
Mendeliome v0.12287 RBMX Zornitza Stark gene: RBMX was added
gene: RBMX was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: RBMX was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: RBMX were set to 25256757; 34260915
Phenotypes for gene: RBMX were set to Intellectual developmental disorder, syndromic 11, Shashi type, MIM#300238
Review for gene: RBMX was set to AMBER
Added comment: Hemizygous truncating variant reported segregating in multiple affected individuals in a single family. Some supportive functional data.
Sources: Expert Review
Mendeliome v0.12139 CASK Ain Roesley Phenotypes for gene: CASK were changed from FG syndrome 4 MIM#300422; Intellectual developmental disorder and microcephaly with pontine and cerebellar hypoplasia MIM#300749; Mental retardation, with or without nystagmus MIM#300422 to FG syndrome 4 MIM#300422; Intellectual developmental disorder and microcephaly with pontine and cerebellar hypoplasia MIM#300749; Mental retardation, with or without nystagmus MIM#300422
Mendeliome v0.12138 CASK Ain Roesley Phenotypes for gene: CASK were changed from to FG syndrome 4 MIM#300422; Intellectual developmental disorder and microcephaly with pontine and cerebellar hypoplasia MIM#300749; Mental retardation, with or without nystagmus MIM#300422
Mendeliome v0.12134 CASK Ain Roesley reviewed gene: CASK: Rating: GREEN; Mode of pathogenicity: None; Publications: 24278995; Phenotypes: FG syndrome 4 MIM#300422, Intellectual developmental disorder and microcephaly with pontine and cerebellar hypoplasia MIM#300749, Mental retardation, with or without nystagmus MIM#300422; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes
Mendeliome v0.12035 SMARCE1 Zornitza Stark changed review comment from: Coffin-Siris syndrome is a rare congenital disorder characterized by delayed psychomotor development, intellectual disability, coarse facial features, and hypoplasia of the distal phalanges, particularly the fifth digit. Other features may also be observed, including congenital heart defects, hypoplasia of the corpus callosum, and poor overall growth with short stature and microcephaly.

Accounts for ~2% of Coffin Siris syndrome.; to: Coffin-Siris syndrome is a rare congenital disorder characterized by delayed psychomotor development, intellectual disability, coarse facial features, and hypoplasia of the distal phalanges, particularly the fifth digit. Other features may also be observed, including congenital heart defects, hypoplasia of the corpus callosum, and poor overall growth with short stature and microcephaly.

Accounts for ~2% of Coffin Siris syndrome.

Germline LoF variants also linked to familial meningioma.
Mendeliome v0.12028 MAT1A Zornitza Stark Phenotypes for gene: MAT1A were changed from to Hypermethioninemia, persistent, autosomal dominant, due to methionine adenosyltransferase I/III deficiency MIM#250850; Methionine adenosyltransferase deficiency, autosomal recessive MIM#250850; Disorders of the metabolism of sulphur amino acids
Mendeliome v0.12016 SNAP25 Zornitza Stark Phenotypes for gene: SNAP25 were changed from to Neurodevelopmental disorder, MONDO:0700092, SNAP25-related; Myasthenic syndrome, congenital, 18, MIM# 616330
Mendeliome v0.12013 SNAP25 Zornitza Stark reviewed gene: SNAP25: Rating: GREEN; Mode of pathogenicity: None; Publications: 25003006, 29100083, 28135719; Phenotypes: Neurodevelopmental disorder, MONDO:0700092, SNAP25-related, Myasthenic syndrome, congenital, 18, MIM# 616330; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.12009 SMS Zornitza Stark Phenotypes for gene: SMS were changed from to Intellectual developmental disorder, X-linked syndromic, Snyder-Robinson type, MIM# 309583; Syndromic X-linked intellectual disability Snyder type, MONDO:0010664
Mendeliome v0.12006 SMS Zornitza Stark reviewed gene: SMS: Rating: GREEN; Mode of pathogenicity: None; Publications: 30237987, 34177437, 32838743, 23805436; Phenotypes: Intellectual developmental disorder, X-linked syndromic, Snyder-Robinson type, MIM# 309583, Syndromic X-linked intellectual disability Snyder type, MONDO:0010664; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.12006 GRIN1 Zornitza Stark Phenotypes for gene: GRIN1 were changed from Neurodevelopmental disorder with or without hyperkinetic movements and seizures, autosomal dominant, MIM# 614254; Neurodevelopmental disorder with or without hyperkinetic movements and seizures, autosomal recessive, MIM# 617820 to Developmental and epileptic encephalopathy 101, MIM# 619814; Neurodevelopmental disorder with or without hyperkinetic movements and seizures, autosomal dominant, MIM# 614254; Neurodevelopmental disorder with or without hyperkinetic movements and seizures, autosomal recessive, MIM# 617820
Mendeliome v0.12005 GRIN1 Zornitza Stark edited their review of gene: GRIN1: Changed phenotypes: Developmental and epileptic encephalopathy 101, MIM# 619814, Neurodevelopmental disorder with or without hyperkinetic movements and seizures, autosomal dominant, MIM# 614254, Neurodevelopmental disorder with or without hyperkinetic movements and seizures, autosomal recessive, MIM# 617820
Mendeliome v0.11887 NONO Zornitza Stark Phenotypes for gene: NONO were changed from to Intellectual developmental disorder, X-linked syndromic 34 - MIM#300967
Mendeliome v0.11864 LAMB2 Alison Yeung changed review comment from: Pierson syndrome (PIERS) is an autosomal recessive disorder comprising congenital nephrotic syndrome with diffuse mesangial sclerosis and distinct ocular abnormalities, including microcoria and hypoplasia of the ciliary and pupillary muscles, as well as other anomalies. Many patients die early, and those who survive tend to show neurodevelopmental delay and visual loss.

Nephrotic syndrome type 5 is an autosomal recessive disorder characterized by very early onset of progressive renal failure manifest as proteinuria with consecutive edema starting in utero or within the first 3 months of life. A subset of patients may develop mild ocular anomalies, such as myopia, nystagmus, and strabismus.

The two disorders are likely part of a spectrum. More than 5 unrelated families reported. ; to: Pierson syndrome (PIERS) is an autosomal recessive disorder comprising congenital nephrotic syndrome with diffuse mesangial sclerosis and distinct ocular abnormalities, including microcoria and hypoplasia of the ciliary and pupillary muscles, as well as other anomalies. Many patients die early, and those who survive tend to show neurodevelopmental delay and visual loss.

Nephrotic syndrome type 5 is an autosomal recessive disorder characterized by very early onset of progressive renal failure manifest as proteinuria with consecutive edema starting in utero or within the first 3 months of life. A subset of patients may develop mild ocular anomalies, such as myopia, nystagmus, and strabismus.

More than 5 unrelated families reported.
Mendeliome v0.11864 LAMB2 Alison Yeung changed review comment from: Pierson syndrome (PIERS) is an autosomal recessive disorder comprising congenital nephrotic syndrome with diffuse mesangial sclerosis and distinct ocular abnormalities, including microcoria and hypoplasia of the ciliary and pupillary muscles, as well as other anomalies. Many patients die early, and those who survive tend to show neurodevelopmental delay and visual loss.

Nephrotic syndrome type 5 is an autosomal recessive disorder characterized by very early onset of progressive renal failure manifest as proteinuria with consecutive edema starting in utero or within the first 3 months of life. A subset of patients may develop mild ocular anomalies, such as myopia, nystagmus, and strabismus.; to: Pierson syndrome (PIERS) is an autosomal recessive disorder comprising congenital nephrotic syndrome with diffuse mesangial sclerosis and distinct ocular abnormalities, including microcoria and hypoplasia of the ciliary and pupillary muscles, as well as other anomalies. Many patients die early, and those who survive tend to show neurodevelopmental delay and visual loss.

Nephrotic syndrome type 5 is an autosomal recessive disorder characterized by very early onset of progressive renal failure manifest as proteinuria with consecutive edema starting in utero or within the first 3 months of life. A subset of patients may develop mild ocular anomalies, such as myopia, nystagmus, and strabismus.

The two disorders are likely part of a spectrum. More than 5 unrelated families reported.
Mendeliome v0.11860 NONO Krithika Murali reviewed gene: NONO: Rating: GREEN; Mode of pathogenicity: None; Publications: 26571461, 27329731, 27550220; Phenotypes: Intellectual developmental disorder, X-linked syndromic 34 - MIM#300967; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.11848 STS Zornitza Stark Phenotypes for gene: STS were changed from to Ichthyosis, X-linked 308100; Sterol metabolism disorder
Mendeliome v0.11835 NLGN3 Zornitza Stark Phenotypes for gene: NLGN3 were changed from to X-linked complex neurodevelopmental disorder MONDO:0100148; {Asperger syndrome susceptibility, X-linked 1} - MIM#300494; {Autism susceptibility, X-linked 1} - MIM#300425
Mendeliome v0.11754 ADAMTS10 Zornitza Stark changed review comment from: Weill-Marchesani syndrome is a rare connective tissue disorder characterized by short stature, brachydactyly, joint stiffness, eye anomalies, including microspherophakia, ectopia of the lenses, severe myopia, and glaucoma, and, occasionally, heart defects
Sources: Expert list; to: Weill-Marchesani syndrome is a rare connective tissue disorder characterized by short stature, brachydactyly, joint stiffness, eye anomalies, including microspherophakia, ectopia of the lenses, severe myopia, and glaucoma, and, occasionally, heart defects.

Multiple families reported.

Sources: Expert list
Mendeliome v0.11754 ADAMTS10 Zornitza Stark changed review comment from: Mild intellectual disability is described in around 10% of affected individuals.
Sources: Expert list; to: Weill-Marchesani syndrome is a rare connective tissue disorder characterized by short stature, brachydactyly, joint stiffness, eye anomalies, including microspherophakia, ectopia of the lenses, severe myopia, and glaucoma, and, occasionally, heart defects
Sources: Expert list
Mendeliome v0.11557 FRA10AC1 Zornitza Stark Phenotypes for gene: FRA10AC1 were changed from to Neurodevelopmental disorder, MONDO:0700092, FRA10AC1-related
Mendeliome v0.11537 UBA5 Zornitza Stark changed review comment from: Bi-allelic variants in UBA5 cause a range of neurological phenotypes. Ataxia has been specifically described only in one sibling pair. Multiple individuals reported with a more severe EE/ID phenotype, and non-specific movement disorders.; to: Bi-allelic variants in UBA5 cause a range of neurological phenotypes. Ataxia has been specifically described only in one sibling pair. Multiple individuals reported with a more severe EE/ID phenotype, and non-specific movement disorders.

Also note these two reports of demyelinating peripheral neuropathy: 26872069 pair of sibs with mild ataxia, one with neuropathy; 32179706 five individuals from a consanguineous family presenting in infancy with severe fatal neuropathy. Some functional data. Due to early mortality, uncertain at present whether additional features would have developed.
Mendeliome v0.11523 IL10 Zornitza Stark changed review comment from: At least two families and a mouse model.

Rare variants in this gene are also associated with susceptibility to a range of immune-related complex disorder.; to: At least two families and a mouse model.

Rare variants in this gene are also associated with susceptibility to a range of immune-related complex disorders.
Mendeliome v0.11358 C12orf4 Ain Roesley Phenotypes for gene: C12orf4 were changed from to Intellectual developmental disorder, autosomal recessive 66 MIM#618221
Mendeliome v0.11354 C12orf4 Ain Roesley reviewed gene: C12orf4: Rating: GREEN; Mode of pathogenicity: None; Publications: 34967075, 31334606, 27311568, 25558065, 28097321; Phenotypes: Intellectual developmental disorder, autosomal recessive 66 MIM#618221; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.11324 KCNK3 Zornitza Stark Phenotypes for gene: KCNK3 were changed from Pulmonary hypertension, primary, 4 MIM#615344 to Pulmonary hypertension, primary, 4 MIM#615344; Neurodevelopmental disorder, MONDO:0700092, KCNK3-related
Mendeliome v0.11304 ARHGAP35 Ain Roesley Phenotypes for gene: ARHGAP35 were changed from Developmental disorder to neurodevelopmental disorder, ARHGAP35-related MONDO#0700092
Mendeliome v0.11301 ARHGAP35 Ain Roesley reviewed gene: ARHGAP35: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: neurodevelopmental disorder, ARHGAP35-related MONDO#0700092; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.11295 KIAA1109 Zornitza Stark changed review comment from: ALKKUCS is an autosomal recessive severe neurodevelopmental disorder characterized by arthrogryposis, brain abnormalities associated with cerebral parenchymal underdevelopment, and global developmental delay. Most affected individuals die in utero or soon after birth. Additional abnormalities may include hypotonia, dysmorphic facial features, and involvement of other organ systems, such as cardiac or renal. The few patients who survive have variable intellectual disability and may have seizures.; to: ALKKUCS is an autosomal recessive severe neurodevelopmental disorder characterized by arthrogryposis, brain abnormalities associated with cerebral parenchymal underdevelopment, and global developmental delay. Most affected individuals die in utero or soon after birth. Additional abnormalities may include hypotonia, dysmorphic facial features, and involvement of other organ systems, such as cardiac or renal. The few patients who survive have variable intellectual disability and may have seizures.

More than 10 families reported.
Mendeliome v0.11286 KIF5A Zornitza Stark edited their review of gene: KIF5A: Added comment: Neonatal intractable myoclonus is a severe neurologic disorder characterized by the onset of intractable myoclonic seizures soon after birth. Affected infants have intermittent apnea, abnormal eye movements, pallor of the optic nerve, and lack of developmental progress. Brain imaging shows a progressive leukoencephalopathy. At least 3 unrelated individuals with de novo LoF variants.

SPG10/CMT: variants are generally in the motor domain.; Changed publications: 30057544, 29892902, 28902413, 26403765, 25695920, 25008398, 27463701, 27414745; Changed phenotypes: Neuropathy, Spastic paraplegia 10, autosomal dominant, MIM# 604187, Myoclonus, intractable, neonatal, MIM# 617235
Mendeliome v0.11209 NACC1 Zornitza Stark Phenotypes for gene: NACC1 were changed from to Neurodevelopmental disorder with epilepsy, cataracts, feeding difficulties, and delayed brain myelination - MIM#617393
Mendeliome v0.11206 NAA15 Zornitza Stark Phenotypes for gene: NAA15 were changed from to Intellectual developmental disorder, autosomal dominant 50, with behavioral abnormalities - MIM#617787
Mendeliome v0.11189 NACC1 Krithika Murali reviewed gene: NACC1: Rating: GREEN; Mode of pathogenicity: None; Publications: 28132692; Phenotypes: Neurodevelopmental disorder with epilepsy, cataracts, feeding difficulties, and delayed brain myelination - MIM#617393; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.11189 NAA15 Krithika Murali reviewed gene: NAA15: Rating: GREEN; Mode of pathogenicity: None; Publications: 33103328, 29656860, 31127942, 28191889, 33557580, 28990276; Phenotypes: Intellectual developmental disorder, autosomal dominant 50, with behavioral abnormalities - MIM#617787; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.11169 KYNU Zornitza Stark Phenotypes for gene: KYNU were changed from to Hydroxykynureninuria MIM#236800; Vertebral, cardiac, renal, and limb defects syndrome 2 MIM#617661; Disorders of histidine, tryptophan or lysine metabolism
Mendeliome v0.11136 MAN2C1 Zornitza Stark Phenotypes for gene: MAN2C1 were changed from neurodevelopmental disorder, MAN2C1-related, MONDO:0700092 to Congenital disorder of deglycosylation 2, MIM# 619775
Mendeliome v0.11135 MAN2C1 Zornitza Stark reviewed gene: MAN2C1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Congenital disorder of deglycosylation 2, MIM# 619775; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.11113 NSRP1 Zornitza Stark edited their review of gene: NSRP1: Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, NSRP1-related, Epilepsy, Cerebral palsy, microcephaly, Intellectual disability
Mendeliome v0.11110 RECQL Dean Phelan gene: RECQL was added
gene: RECQL was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RECQL was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RECQL were set to PMID: 35025765
Phenotypes for gene: RECQL were set to Photosensitivity; facial dysmorphism; xeropthalmia; skeletal abnormalities
Review for gene: RECQL was set to AMBER
Added comment: PMID: 35025765
- Homozygous missense variants identified in two seemingly unrelated families with a genome instability disorder. Both families had the same missense variant. Phenotype was progeroid facial features, skin photosensitivity, xeroderma, and slender elongated thumbs.
Sources: Literature
Mendeliome v0.11106 CPSF3 Alison Yeung Phenotypes for gene: CPSF3 were changed from Intellectual disability syndrome to Neurodevelopmental disorder, CPSF3-related, MONDO:0700092
Mendeliome v0.11103 HIST1H4E Paul De Fazio gene: HIST1H4E was added
gene: HIST1H4E was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HIST1H4E was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HIST1H4E were set to 35202563
Phenotypes for gene: HIST1H4E were set to Neurodevelopmental disorder, HIST1H4E-related MONDO:0700092
Review for gene: HIST1H4E was set to GREEN
gene: HIST1H4E was marked as current diagnostic
Added comment: 17 patients identified with de novo missense variants affecting Lys31, Pro32, Arg35, Leu37, Arg40 (recurrent), Arg45 (recurrent), Tyr98 (recurrent). All individuals had ID/dev delay. Additional phenotypes in some but not all individuals included epilepsy, hypotonia, facial dysmorphism. Most had reduced birth length, OFC, weight (-1 to -3SD).
A zebrafish model has developmental defects.
Sources: Literature
Mendeliome v0.11103 HIST1H4D Paul De Fazio gene: HIST1H4D was added
gene: HIST1H4D was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HIST1H4D was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HIST1H4D were set to 35202563
Phenotypes for gene: HIST1H4D were set to Neurodevelopmental disorder, HIST1H4D-related MONDO:0700092
Review for gene: HIST1H4D was set to AMBER
gene: HIST1H4D was marked as current diagnostic
Added comment: Single individual described with a de novo missense variant Arg41His (Arg40 in H4 nomenclature). Apart from language delay and moderate ID, phenotypes included facial dysmorphisms and cochlear abnormalities and arhinencephaly on MRI. Hearing was normal. Birth length, OFC, weight were all reduced (-2 to -2.5SD).
A zebrafish model has developmental defects.
Sources: Literature
Mendeliome v0.11103 HIST1H4C Paul De Fazio edited their review of gene: HIST1H4C: Changed phenotypes: Tessadori-van Haaften neurodevelopmental syndrome 1 MIM#619758, Neurodevelopmental disorder, HIST1H4C related MONDO:0700092
Mendeliome v0.11103 HIST1H4C Paul De Fazio edited their review of gene: HIST1H4C: Changed phenotypes: Tessadori-van Haaften neurodevelopmental syndrome 1 MIM#619758, Neurodevelopmental disorder,HIST1H4C related MONDO:0700092
Mendeliome v0.11102 HIST1H4F Zornitza Stark Phenotypes for gene: HIST1H4F were changed from Neurodevelopmental disorders to Neurodevelopmental disorder, MONDO:0700092, HIST1H4F-related
Mendeliome v0.11101 HIST1H4C Paul De Fazio reviewed gene: HIST1H4C: Rating: GREEN; Mode of pathogenicity: None; Publications: 35202563; Phenotypes: Tessadori-van Haaften neurodevelopmental syndrome 1 MIM#619758, Neurodevelopmental disorder MONDO:0700092; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v0.11100 NRCAM Alison Yeung Phenotypes for gene: NRCAM were changed from neurodevelopmental disorder, MONDO:0700092 to neurodevelopmental disorder, NRCAM-related, MONDO:0700092
Mendeliome v0.11099 ZBTB11 Chern Lim reviewed gene: ZBTB11: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID:35104841; Phenotypes: Intellectual developmental disorder, autosomal recessive 69 (MIM#618383), AR; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.11097 HIST1H4F Elena Savva gene: HIST1H4F was added
gene: HIST1H4F was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HIST1H4F was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HIST1H4F were set to PMID: 35202563
Phenotypes for gene: HIST1H4F were set to Neurodevelopmental disorders
Review for gene: HIST1H4F was set to AMBER
Added comment: PMID: 35202563 - single de novo missense in a patient with neurodevelopmental features of intellectual disability and motor and/or gross developmental delay.
- zebrafish studies show a significant increase in all of mild dev delay, necrosis, defective organogenesis and pre-gastrulation failure
Sources: Literature
Mendeliome v0.11095 NRCAM Ee Ming Wong gene: NRCAM was added
gene: NRCAM was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NRCAM was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NRCAM were set to PMID: 35108495
Phenotypes for gene: NRCAM were set to neurodevelopmental disorder, MONDO:0700092
Penetrance for gene: NRCAM were set to unknown
Review for gene: NRCAM was set to GREEN
gene: NRCAM was marked as current diagnostic
Added comment: -Ten individuals from 8 families with developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity.
- Affected individuals are biallelic for missense and/or LoF variants which are mainly in the fibronectin type III (Fn-III) domain
- Zebrafish mutants lacking the third Fn-III domain displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03) and a trend toward increased amounts of alpha-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections
Sources: Literature
Mendeliome v0.11092 ATP6V0A1 Chern Lim reviewed gene: ATP6V0A1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID:34909687; Phenotypes: Neurodevelopmental disorder MONDO:0700092, ATP6V0A1-associated; Mode of inheritance: None; Current diagnostic: yes
Mendeliome v0.11091 TIAM1 Alison Yeung gene: TIAM1 was added
gene: TIAM1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TIAM1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TIAM1 were set to https://doi.org/10.1016/j.ajhg.2022.01.020
Phenotypes for gene: TIAM1 were set to Neurodevelopmental disorder, TIAM1-related, MONDO:0700092
Review for gene: TIAM1 was set to GREEN
Added comment: Reported in 4 unrelated individuals. Phenotype of developmental delay/intellectual disability and seizures. Loss of ortholog in Drosophila reduces the survival rate, and the surviving adults exhibit climbing defects, are prone to severe seizures, and have a short lifespan. Functional studies in 3 variants from two probands showed loss of function.
Sources: Literature
Mendeliome v0.11074 CHKA Zornitza Stark Phenotypes for gene: CHKA were changed from Abnormal muscle tone; Global developmental delay; Intellectual disability; Seizures; Microcephaly; Abnormality of movement; Abnormality of nervous system morphology; Short stature to Neurodevelopmental disorder, MONDO:0700092; Abnormal muscle tone; Global developmental delay; Intellectual disability; Seizures; Microcephaly; Abnormality of movement; Abnormality of nervous system morphology; Short stature
Mendeliome v0.11071 CHKA Konstantinos Varvagiannis gene: CHKA was added
gene: CHKA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CHKA was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CHKA were set to 35202461
Phenotypes for gene: CHKA were set to Abnormal muscle tone; Global developmental delay; Intellectual disability; Seizures; Microcephaly; Abnormality of movement; Abnormality of nervous system morphology; Short stature
Penetrance for gene: CHKA were set to Complete
Review for gene: CHKA was set to GREEN
Added comment: Klöckner (2022 - PMID: 35202461) describe the phenotype of 6 individuals (from 5 unrelated families) harboring biallelic CHKA variants.

Shared features incl. abnormal muscle tone(6/6 - hypertonia or hypotonia, 3/6 each), DD/ID (6/6,severe in 4, severe/profound in 2), epilepsy (6/6 - onset: infancy - 3y2m | epileptic spasms or GS at onset), microcephaly (6/6), movement disorders (3/6 - incl. dyskinesia, rigidity, choreoatetotic movements). 2/5 individuals exhibited MRI abnormalities, notably hypomyelination. Short stature was observed in 4/6.

Eventual previous genetic testing was not discussed.

Exome sequencing (quattro ES for 2 sibs, trio ES for 1 individual, singleton for 3 probands) revealed biallelic CHKA variants in all affected individuals. Sanger sequencing was performed for confirmation and segregation studies.

Other variants (in suppl.) were not deemed to be causative for the neurodevelopmental phenotype.

3 different missense, 1 start-loss and 1 truncating variant were identified, namely (NM_0012772.2):
- c.421C>T/p.(Arg141Trp) [3 hmz subjects from 2 consanguineous families],
- c.580C>T/p.Pro194Ser [1 hmz individual born to consanguineous parents],
- c.2T>C/p.(Met1?) [1 hmz individual born to related parents],
- c.14dup/p.(Cys6Leufs*19) in trans with c.1021T>C/p.(Phe341Leu) in 1 individual.

CHKA encodes choline kinase alpha, an enzyme catalyzing the first step of phospholipid synthesis in the Kennedy pathway. The pathway is involved in de novo synthesis of glycerophospholipids, phosphatidylcholine and phosphatidylethanolamine being the most abundant in eukaryotic membranes.

CHKA with its paralog (CHKB) phosphorylates either choline or ethanolamine to phosphocholine or phosphoethanolamine respectively with conversion of ATP to ADP.

As the authors comment, biallelic pathogenic variants in CHKB cause a NDD with muscular dystrophy, hypotonia, ID, microcephaly and structural mitochondrial anomalies (MIM 602541). [Prominent mitochondrial patterning was observed in a single muscle biopsy available from an individual with biallelic CHKA variants].

Other disorders of the Kennedy pathway (due to biallelic PCYT2, SELENOI, PCYT1A variants) present with overlapping features incl. variable DD/ID (no-severe), microcephaly, seizures, visual impairment etc.

CHKA variants were either absent or observed once in gnomAD, affected highly conserved AAs with multiple in silico predictions in favor of a deleterious effect.

In silico modeling suggests structural effects for several of the missense variants (Arg141Trp, Pro194Ser presumably affect ADP binding, Phe341 lying close to the binding site of phosphocholine).

Each of the missense variants was expressed in yeast cells and W. Blot suggested expression at the expected molecular weight at comparative levels. The 3 aforementioned variants exhibited reduced catalytic activity (20%, 15%, 50% respectively).

NMD is thought to underly the deleterious effect of the frameshift one (not studied).

The start-loss variant is expected to result in significantly impaired expression and protein function as eventual utilization of the next possible start codon - occurring at position 123 - would remove 26% of the protein.

Chka(-/-) is embryonically lethal in mice, suggesting that complete loss is not compatible with life. Reduction of choline kinase activity by 30% in heterozygous mice did not appear to result in behavioral abnormalities although this was not studied in detail (PMID cited: 18029352). Finally, screening of 1566 mouse lines identified 198 genes whose disruption yields neuroanatomical phenotypes, Chka(+/-) mice being among these (PMID cited: 31371714).

There is no associated phenotype in OMIM, Gene2Phenotype or SysID.

Overall this gene can be considered for inclusion in the ID and epilepsy panes with green or amber rating (>3 individuals, >3 variants, variant studies, overlapping phenotype of disorders belonging to the same pathway, etc). Consider also inclusion in the microcephaly panel (where available this seemed to be of postnatal onset).
Sources: Literature
Mendeliome v0.11058 AGO1 Zornitza Stark Phenotypes for gene: AGO1 were changed from Intellectual disability; autism to Neurodevelopmental disorder MONDO:0700092, AGO1-related; non-syndromic ID and seizures
Mendeliome v0.11008 WARS2 Zornitza Stark Phenotypes for gene: WARS2 were changed from to Parkinsonism-dystonia 3, childhood-onset, MIM# 619738; Neurodevelopmental disorder, mitochondrial, with abnormal movements and lactic acidosis, with or without seizures, MIM# 617710
Mendeliome v0.11005 WARS2 Zornitza Stark reviewed gene: WARS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 29120065, 31970218, 34890876, 28236339, 28650581, 28905505, 30920170; Phenotypes: Parkinsonism-dystonia 3, childhood-onset, MIM# 619738, Neurodevelopmental disorder, mitochondrial, with abnormal movements and lactic acidosis, with or without seizures, MIM# 617710; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10993 KIAA0391 Zornitza Stark Phenotypes for gene: KIAA0391 were changed from Mitochondrial disorder to Combined oxidative phosphorylation deficiency 54, MIM# 619737
Mendeliome v0.10972 FTSJ1 Zornitza Stark Phenotypes for gene: FTSJ1 were changed from to Intellectual developmental disorder, X-linked 9 MIM#309549
Mendeliome v0.10953 FTSJ1 Ain Roesley reviewed gene: FTSJ1: Rating: GREEN; Mode of pathogenicity: None; Publications: 15342698, 18081026, 15162322, 26310293; Phenotypes: Intellectual developmental disorder, X-linked 9 MIM#309549; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes
Mendeliome v0.10952 POLRMT Zornitza Stark Phenotypes for gene: POLRMT were changed from Mitochondrial disorder; intellectual disability; hypotonia to Combined oxidative phosphorylation deficiency 55, MIM# 619743; intellectual disability; hypotonia
Mendeliome v0.10938 RAB39B Zornitza Stark Phenotypes for gene: RAB39B were changed from to Intellectual developmental disorder, X-linked 72 MIM#300271; Waisman syndrome MIM#311510
Mendeliome v0.10923 RAB39B Ain Roesley reviewed gene: RAB39B: Rating: GREEN; Mode of pathogenicity: None; Publications: 34761259, 20159109, 25434005, 27066548, 26399558, 27943471, 28851564, 28851564, 29152164, 33880059, 27448726, 32670181; Phenotypes: Intellectual developmental disorder, X-linked 72 MIM#300271, Waisman syndrome MIM#311510; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes
Mendeliome v0.10921 PAX5 Zornitza Stark Phenotypes for gene: PAX5 were changed from to Neurodevelopmental disorder MONDO:0700092, PAX5-related
Mendeliome v0.10917 ABCB4 Zornitza Stark Phenotypes for gene: ABCB4 were changed from Cholestasis, progressive familial intrahepatic 3 MIM#602347; disorder of bile acid metabolism to Cholestasis, progressive familial intrahepatic 3 MIM#602347; disorder of bile acid metabolism; Gallbladder disease 1 (MIM#600803)
Mendeliome v0.10911 PAX5 Bryony Thompson reviewed gene: PAX5: Rating: GREEN; Mode of pathogenicity: None; Publications: 35094443, 31452935, 28263302, 25418537, 8001127, 27626380; Phenotypes: neurodevelopmental disorder MONDO:0700092; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.10911 EEF1B2 Bryony Thompson Phenotypes for gene: EEF1B2 were changed from Intellectual disability to neurodevelopmental disorder MONDO:0700092; non-syndromic ID and seizures; Intellectual disability
Mendeliome v0.10908 EEF1B2 Bryony Thompson reviewed gene: EEF1B2: Rating: GREEN; Mode of pathogenicity: None; Publications: 31845318, 21937992, 35015920; Phenotypes: neurodevelopmental disorder MONDO:0700092, non-syndromic ID and seizures; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10906 SLC26A8 Bryony Thompson Phenotypes for gene: SLC26A8 were changed from to non-syndromic male infertility due to sperm motility disorder MONDO:0017173
Mendeliome v0.10903 SLC26A8 Bryony Thompson reviewed gene: SLC26A8: Rating: GREEN; Mode of pathogenicity: None; Publications: 34923715, 23582645, 22121115; Phenotypes: non-syndromic male infertility due to sperm motility disorder MONDO:0017173; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10886 PLCD1 Zornitza Stark Phenotypes for gene: PLCD1 were changed from to Nail disorder, nonsyndromic congenital, 3, (leukonychia) MIM#151600; nonsyndromic congenital nail disorder 3 MONDO:0007900
Mendeliome v0.10870 HMGB1 Zornitza Stark Phenotypes for gene: HMGB1 were changed from Mirror image foot polydactyly; Developmental delay and microcephaly, no OMIM # to Mirror image foot polydactyly; Neurodevelopmental disorder MONDO:0700092, HMGB1-related
Mendeliome v0.10852 ITSN1 Zornitza Stark Phenotypes for gene: ITSN1 were changed from Nephrotic syndrome to Nephrotic syndrome; Neurodevelopmental disorder MONDO:0700092, ITSN1-related
Mendeliome v0.10849 ITSN1 Ee Ming Wong reviewed gene: ITSN1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 34707297; Phenotypes: neurodevelopmental disorder MONDO:0700092, ITSN1-related; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.10844 BAP1 Anna Ritchie changed review comment from: 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic neurodevelopmental disorder. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. All affected individuals harboring a de novo BAP1 variant had DD or ID (11/11) characterized notably by speech (11/ 11) and motor delay (6/11). Most of them had hypotonia (7/11), seizures (6/11), and abnormal behavior (8/10), including autism spectrum disorder, attention deficit hyperactivity disorder, and hypersensitivity. Almost all individuals showed dysmorphic facial features (10/11), and more than half (6/11) had skeletal mal- formations (involving the hands [4/11], feet [3/11], or spine [2/11],). Most of the individuals had growth failure (9/11), including four individuals with a very short stature.
Sources: Literature; to: 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic neurodevelopmental disorder. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. All affected individuals harboring a de novo BAP1 variant had DD or ID (11/11) characterized notably by speech (11/ 11) and motor delay (6/11). Most of them had hypotonia (7/11), seizures (6/11), and abnormal behavior (8/10), including autism spectrum disorder, attention deficit hyperactivity disorder, and hypersensitivity. Almost all individuals showed dysmorphic facial features (10/11), and more than half (6/11) had skeletal malformations (involving the hands [4/11], feet [3/11], or spine [2/11]). Most of the individuals had growth failure (9/11), including four individuals with a very short stature.
Sources: Literature
Mendeliome v0.10844 BAP1 Anna Ritchie changed review comment from: 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic neurodevelopmental disorder. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. Patients phenotypes also included developmental delay, speech and motor delay, seizures, hypotonia, abnormal behaviour, autism, attention deficit hyperactivity disorder, and hypersensitivity.
Sources: Literature; to: 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic neurodevelopmental disorder. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. All affected individuals harboring a de novo BAP1 variant had DD or ID (11/11) characterized notably by speech (11/ 11) and motor delay (6/11). Most of them had hypotonia (7/11), seizures (6/11), and abnormal behavior (8/10), including autism spectrum disorder, attention deficit hyperactivity disorder, and hypersensitivity. Almost all individuals showed dysmorphic facial features (10/11), and more than half (6/11) had skeletal mal- formations (involving the hands [4/11], feet [3/11], or spine [2/11],). Most of the individuals had growth failure (9/11), including four individuals with a very short stature.
Sources: Literature
Mendeliome v0.10843 TMEM53 Zornitza Stark Phenotypes for gene: TMEM53 were changed from Sclerosing bone disorder, macrocephaly, impaired vision, short stature to Primary bone dysplasia MONDO:0018230, TMEM53-related; Sclerosing bone disorder, macrocephaly, impaired vision, short stature
Mendeliome v0.10842 MAN2C1 Alison Yeung Phenotypes for gene: MAN2C1 were changed from neurodevelopmental disorder MONDO:0700092 MAN2C1-related to neurodevelopmental disorder, MAN2C1-related, MONDO:0700092
Mendeliome v0.10838 BAP1 Anna Ritchie gene: BAP1 was added
gene: BAP1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: BAP1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: BAP1 were set to PMID: 35051358
Phenotypes for gene: BAP1 were set to syndromic intellectual disability MONDO:0000508
Penetrance for gene: BAP1 were set to unknown
Review for gene: BAP1 was set to GREEN
Added comment: 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic neurodevelopmental disorder. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. Patients phenotypes also included developmental delay, speech and motor delay, seizures, hypotonia, abnormal behaviour, autism, attention deficit hyperactivity disorder, and hypersensitivity.
Sources: Literature
Mendeliome v0.10836 TMEM53 Lucy Spencer gene: TMEM53 was added
gene: TMEM53 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TMEM53 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMEM53 were set to PMID: 33824347
Phenotypes for gene: TMEM53 were set to Sclerosing bone disorder, macrocephaly, impaired vision, short stature
Review for gene: TMEM53 was set to GREEN
Added comment: PMID: 33824347- Previously unknown type of sclerosing bone disorder in 4 independent families, bi-allelic LOF variants in TMEM53. 5 individuals from 4 families, all have proportional or short limbed stature, not identifiable at birth. Head deformities (macrocephaly, dolichocephaly, prominent forehead), epicanthic folds, thick vermilion of upper and lower lips. Vision diminished after early childhood due to optic nerve compression.

3 of 4 families confirmed consanguineous, and all affected members from all 4 families have homozygous variants inherited from heterozygous parents. 3 families have the same splicing variant proven to cause exon 2 skipping and an NMD frameshift by RT-PCR. The other family has a an NMD frameshift variant. So 4 families but only 2 variants.
Sources: Literature
Mendeliome v0.10835 MAN2C1 Michelle Torres gene: MAN2C1 was added
gene: MAN2C1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MAN2C1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MAN2C1 were set to 35045343
Phenotypes for gene: MAN2C1 were set to neurodevelopmental disorder MONDO:0700092 MAN2C1-related
Review for gene: MAN2C1 was set to GREEN
Added comment: Six individuals from four different families, including two fetuses, exhibiting dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Variants include PTC and missense.
Sources: Literature
Mendeliome v0.10835 FRA10AC1 Zornitza Stark edited their review of gene: FRA10AC1: Added comment: PMID 34694367: 5 individuals from 3 unrelated families reported.

Variable ID, possibly related to variant type with LoF variants associated with more severe ID. All individuals had microcephaly, hypoplasia or agenesis of the corpus callosum, growth retardation, and craniofacial dysmorphism.; Changed rating: GREEN; Changed publications: 15203205, 34694367; Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, FRA10AC1-related; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10823 PLCD1 Paul De Fazio reviewed gene: PLCD1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21665001, 22458588, 21665001, 30003652, 33786625, 31082376, 32265483, 31049339; Phenotypes: Nail disorder, nonsyndromic congenital, 3, (leukonychia) MIM#151600, nonsyndromic congenital nail disorder 3 MONDO:0007900; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.10820 PLAA Zornitza Stark Phenotypes for gene: PLAA were changed from to Neurodevelopmental disorder with progressive microcephaly, spasticity, and brain anomalies, MIM# 617527
Mendeliome v0.10817 PLAA Zornitza Stark reviewed gene: PLAA: Rating: GREEN; Mode of pathogenicity: None; Publications: 28007986, 28413018, 31322726; Phenotypes: Neurodevelopmental disorder with progressive microcephaly, spasticity, and brain anomalies, MIM# 617527; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10817 PGAP1 Zornitza Stark Phenotypes for gene: PGAP1 were changed from to Neurodevelopmental disorder with dysmorphic features, spasticity, and brain abnormalities, MIM# 615802
Mendeliome v0.10814 PGAP1 Zornitza Stark reviewed gene: PGAP1: Rating: GREEN; Mode of pathogenicity: None; Publications: 24482476, 24784135, 25823418, 25804403, 26050939; Phenotypes: Neurodevelopmental disorder with dysmorphic features, spasticity, and brain abnormalities, MIM# 615802; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10814 KCNN2 Zornitza Stark Phenotypes for gene: KCNN2 were changed from Neurodevelopmental movement disorders; Developmental Delay; Seizures to Neurodevelopmental disorder with or without variable movement or behavioural abnormalities, MIM#619725
Mendeliome v0.10813 KCNN2 Zornitza Stark edited their review of gene: KCNN2: Changed phenotypes: Neurodevelopmental disorder with or without variable movement or behavioural abnormalities, MIM#619725
Mendeliome v0.10813 KCNN2 Zornitza Stark reviewed gene: KCNN2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with or without variable movement or behavioral abnormalities, MIM#619725; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.10813 NAA20 Zornitza Stark Phenotypes for gene: NAA20 were changed from Intellectual disability; Microcephaly; Neurodevelopmental disorder MONDO:0700092 to Intellectual developmental disorder, autosomal recessive 73, MIM# 619717
Mendeliome v0.10812 NAA20 Zornitza Stark edited their review of gene: NAA20: Changed phenotypes: Intellectual developmental disorder, autosomal recessive 73, MIM# 619717
Mendeliome v0.10809 SHANK1 Zornitza Stark Phenotypes for gene: SHANK1 were changed from Neurodevelopmental disorder, no OMIM# to Neurodevelopmental disorder, MONDO:0700092, SHANK1-related
Mendeliome v0.10808 SHANK1 Zornitza Stark edited their review of gene: SHANK1: Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, SHANK1-related
Mendeliome v0.10793 CHP1 Zornitza Stark gene: CHP1 was added
gene: CHP1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: CHP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CHP1 were set to 29379881; 32787936
Phenotypes for gene: CHP1 were set to Spastic ataxia 9, autosomal recessive, MIM #618438
Review for gene: CHP1 was set to GREEN
Added comment: 2 different consanguineous families with 2 affected siblings with ataxia (1 paediatric onset, 1 adult onset). 3 of the patients had cerebellar atrophy. WES identified homozygous variants in CHP1 gene in both families (K19del and Arg91Cys), which segregated with the disorder in the family.

Decreased CHP1 protein on IHC of cerebellar tissue in family with Arg91Cys variant. In vitro functional expression studies in HEK293 cells showed that the K19del mutation resulted in decreased protein expression, with normal levels of transcript, suggesting defects in protein stability. The mutant protein formed massive protein aggregates in transfected neuronal cell bodies and neurite-like projections, whereas the wildtype protein showed a more uniform distribution. The mutant protein altered CHP1 association into functional complexes and impaired membrane localization of the Na+/H+ transporter NHE1. The findings indicated that the CHP1 mutation likely causes ataxia in an NHE1-dependent manner, resembling the mechanism observed in the Chp1 vacillator mutant mouse.
Sources: Expert Review
Mendeliome v0.10768 GDI1 Zornitza Stark Phenotypes for gene: GDI1 were changed from to Intellectual developmental disorder, X-linked 41 MIM#300849
Mendeliome v0.10760 AGR2 Zornitza Stark gene: AGR2 was added
gene: AGR2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: AGR2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: AGR2 were set to 34952832
Phenotypes for gene: AGR2 were set to CF-like disorder
Review for gene: AGR2 was set to GREEN
Added comment: 13 patients from 9 families with a CF-like phenotype consisting of recurrent lower respiratory infections (13/13), failure to thrive (13/13) and chronic diarrhoea (8/13), with high morbidity and mortality. All patients had biallelic variants in AGR2, (1) two splice-site variants, (2) gene deletion and (3) three missense variants.
Sources: Literature
Mendeliome v0.10754 GDI1 Ain Roesley reviewed gene: GDI1: Rating: GREEN; Mode of pathogenicity: None; Publications: 28863211, 22002931, 9620768, 9668174; Phenotypes: Intellectual developmental disorder, X-linked 41 MIM#300849; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes
Mendeliome v0.10741 DNHD1 Zornitza Stark Phenotypes for gene: DNHD1 were changed from Male infertility due to sperm motility disorder (MONDO:0018395) to Spermatogenic failure 65, MIM# 619712
Mendeliome v0.10740 STT3A Zornitza Stark Phenotypes for gene: STT3A were changed from Congenital disorder of glycosylation, type Iw MIM#615596 to Congenital disorder of glycosylation, type Iw, AR, OMIM #615596; Congenital disorder of glycosylation, type Iw, autosomal dominant, MIM# 619714
Mendeliome v0.10739 FMN2 Zornitza Stark Phenotypes for gene: FMN2 were changed from to Intellectual developmental disorder, autosomal recessive 47, MIM#616193
Mendeliome v0.10736 FMN2 Zornitza Stark reviewed gene: FMN2: Rating: GREEN; Mode of pathogenicity: None; Publications: 25480035, 32162566, 24161494; Phenotypes: Intellectual developmental disorder, autosomal recessive 47, MIM#616193; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10695 SYN1 Zornitza Stark Phenotypes for gene: SYN1 were changed from to Epilepsy, X-linked, with variable learning disabilities and behaviour disorders, MIM# 300491; Intellectual developmental disorder, X-linked 50, MIM# 300115
Mendeliome v0.10692 SYN1 Zornitza Stark reviewed gene: SYN1: Rating: GREEN; Mode of pathogenicity: None; Publications: 14985377, 21441247, 28973667, 21441247, 34243774; Phenotypes: Epilepsy, X-linked, with variable learning disabilities and behaviour disorders, MIM# 300491, Intellectual developmental disorder, X-linked 50, MIM# 300115; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.10683 OTUD6B Zornitza Stark Phenotypes for gene: OTUD6B were changed from to Intellectual developmental disorder with dysmorphic facies, seizures, and distal limb anomalies, OMIM #617452
Mendeliome v0.10680 OTUD6B Zornitza Stark changed review comment from: IDDFSDA is a severe multisystem disorder characterized by global developmental delay, microcephaly, absent speech, hypotonia, growth retardation with prenatal onset, feeding difficulties, structural brain abnormalities, congenital malformations including congenital heart disease, and musculoskeletal features. In 2017, 12 patients from 6 unrelated families with IDDFSDA identified with 4 homozygous mutations in the OTUD6B gene (WES and Sanger, and segregated with the disorder in the families). Other cases reported since. Suitable for fetal anomalies panel.; to: IDDFSDA is a severe multisystem disorder characterized by global developmental delay, microcephaly, absent speech, hypotonia, growth retardation with prenatal onset, feeding difficulties, structural brain abnormalities, congenital malformations including congenital heart disease, and musculoskeletal features. In 2017, 12 patients from 6 unrelated families with IDDFSDA identified with 4 homozygous mutations in the OTUD6B gene (WES and Sanger, and segregated with the disorder in the families). Other cases reported since.
Mendeliome v0.10680 OTUD6B Zornitza Stark reviewed gene: OTUD6B: Rating: GREEN; Mode of pathogenicity: None; Publications: 28343629, 32924626, 31147255; Phenotypes: Intellectual developmental disorder with dysmorphic facies, seizures, and distal limb anomalies, OMIM #617452; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10639 OGDHL Zornitza Stark Phenotypes for gene: OGDHL were changed from Neurodevelopmental disorder featuring epilepsy, hearing loss, visual impairment, and ataxia to Yoon-Bellen neurodevelopmental syndrome, MIM# 619701; Neurodevelopmental disorder featuring epilepsy, hearing loss, visual impairment, and ataxia
Mendeliome v0.10593 HNRNPH2 Zornitza Stark Phenotypes for gene: HNRNPH2 were changed from to Intellectual developmental disorder, X-linked, syndromic, Bain type MIM#300986
Mendeliome v0.10586 PRKAR1B Zornitza Stark Phenotypes for gene: PRKAR1B were changed from Global developmental delay; Intellectual disability; Autism; Attention deficit hyperactivity disorder; Aggressive behavior; Abnormality of movement; Upslanted palpebral fissure to Marbach-Schaaf neurodevelopmental syndrome MIM#619680; Global developmental delay; Intellectual disability; Autism; Attention deficit hyperactivity disorder; Aggressive behavior; Abnormality of movement; Upslanted palpebral fissure
Mendeliome v0.10573 VPS50 Zornitza Stark Phenotypes for gene: VPS50 were changed from Neonatal cholestatic liver disease; Failure to thrive; Profound global developmental delay; Postnatal microcephaly; Seizures; Abnormality of the corpus callosum to Neurodevelopmental disorder with microcephaly, seizures, and neonatal cholestasis , MIM#619685; Neonatal cholestatic liver disease; Failure to thrive; Profound global developmental delay; Postnatal microcephaly; Seizures; Abnormality of the corpus callosum
Mendeliome v0.10572 VPS50 Zornitza Stark edited their review of gene: VPS50: Changed phenotypes: Neurodevelopmental disorder with microcephaly, seizures, and neonatal cholestasis , MIM#619685, Neonatal cholestatic liver disease, Failure to thrive, Profound global developmental delay, Postnatal microcephaly, Seizures, Abnormality of the corpus callosum
Mendeliome v0.10570 HNRNPH2 Ain Roesley reviewed gene: HNRNPH2: Rating: GREEN; Mode of pathogenicity: None; Publications: 34907471, 33728377, 31670473, 31236915, 30887513; Phenotypes: Intellectual developmental disorder, X-linked, syndromic, Bain type MIM#300986; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes
Mendeliome v0.10561 CCND2 Alison Yeung Phenotypes for gene: CCND2 were changed from to Neurodevelopmental disorder, CCND2-related MONDO: 0700092; Microcephaly, MONDO: 0001149; Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome 3, MIM# 615938
Mendeliome v0.10556 SLC35F1 Seb Lunke Phenotypes for gene: SLC35F1 were changed from Rett-like syndrome to Neruodevelopmental disorder, MONDO:0700092, SLC35F1-associated; Rett-like syndrome
Mendeliome v0.10553 DNHD1 Daniel Flanagan gene: DNHD1 was added
gene: DNHD1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DNHD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DNHD1 were set to 34932939
Phenotypes for gene: DNHD1 were set to Male infertility due to sperm motility disorder (MONDO:0018395)
Review for gene: DNHD1 was set to GREEN
Added comment: Biallelic DNHD1 variants identified in 8 unrelated probands with asthenoteratozoospermia, reduced sperm motility and abnormal sperm morphology. DNHD1 knockout mice were infertile and had significantly reduced sperm concentration and motility rates, consistent with human individuals.
Sources: Literature
Mendeliome v0.10552 CCND2 Alison Yeung reviewed gene: CCND2: Rating: GREEN; Mode of pathogenicity: None; Publications: 34087052; Phenotypes: Neurodevelopmental disorder, CCND2-related MONDO# 0700092, Microcephaly, MONDO# 0001149; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.10552 GNAO1 Zornitza Stark Phenotypes for gene: GNAO1 were changed from Epileptic encephalopathy, early infantile, 17; Neurodevelopmental disorder with involuntary movements to Epileptic encephalopathy, early infantile, 17, MIM#615473; Neurodevelopmental disorder with involuntary movements, MIM# 617493
Mendeliome v0.10542 TBX2 Krithika Murali changed review comment from: Liu et al. (2018) reported 4 affected individuals from 2 unrelated families with congenital cardiac defects (ASD, PDA, double outlet right ventricle, pulmonary stenosis), skeletal abnormalities (camptodactyly, congenital fusion thoracic spine, hemivertebrae ).Thymus aplasia/hypoplasia, cleft palate also noted. Other associated features include - facial dysmorphisms, variable developmental delay, and endocrine system disorders (e.g. autoimmune hypothyroidism, hypoparathyroidism).

PMID23727221 and PMID30223900 - TBX2 gene and TBX2 gene promoter sequencing in congenital heart disease cohorts versus controls - not enough supportive evidence for variant pathogenicity, including no segregation data. Variants prevalent in population databases also included as likely pathogenic.

PMID 20635360 - de novo dup 17q23.2 encompassing TBX2 gene in boy with cognitive impairment, multiple congenital defects and prenatal onset growth restriction. Part of BCAS3 gene (associated with autosomal recessive Hengel-Maroofian-Schols syndrome) also included in duplication. No supportive evidence of TBX2 gene function impairment in the patient provided.; to: Liu et al. (2018) reported 4 affected individuals from 2 unrelated families with congenital cardiac defects (ASD, PDA, double outlet right ventricle, pulmonary stenosis), skeletal abnormalities (camptodactyly, congenital fusion thoracic spine, hemivertebrae ).Thymus aplasia/hypoplasia, cleft palate also noted. Other associated features include - facial dysmorphisms, variable developmental delay, and endocrine system disorders (e.g. autoimmune hypothyroidism, hypoparathyroidism).

PMID23727221 and PMID30223900 - TBX2 gene and TBX2 gene promoter sequencing in congenital heart disease cohorts versus controls - not enough supportive evidence for variant pathogenicity, including no segregation data. Variants prevalent in population databases also included as potentially disease causing.

PMID 20635360 - de novo dup 17q23.2 encompassing TBX2 gene in boy with cognitive impairment, multiple congenital defects and prenatal onset growth restriction. Part of BCAS3 gene (associated with autosomal recessive Hengel-Maroofian-Schols syndrome) also included in duplication. No supportive evidence of TBX2 gene function impairment in the patient provided.
Mendeliome v0.10510 NAA20 Zornitza Stark gene: NAA20 was added
gene: NAA20 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NAA20 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NAA20 were set to 34230638
Phenotypes for gene: NAA20 were set to Intellectual disability; Microcephaly; Neurodevelopmental disorder MONDO:0700092
Review for gene: NAA20 was set to GREEN
Added comment: 2 consanguineous families with 5 affected individuals with developmental delay, intellectual disability, and microcephaly (-2-4SD). Exome and genome sequencing identified 2 different homozygous variants in NAA20 gene (p.Met54Val and p.Ala80Val), and segregated with affected individuals. N-terminal acetyltransferases modify proteins by adding an acetyl moiety to the first amino acid and are vital for protein and cell function. The NatB complex acetylates 20% of the human proteome and is composed of the catalytic subunit NAA20 and the auxiliary subunit NAA25. Both NAA20-M54V and NAA20-A80V were impaired in their capacity to form a NatB complex with NAA25, and in vitro acetylation assays revealed reduced catalytic activities toward different NatB substrates.
Sources: Literature
Mendeliome v0.10493 KCNC1 Zornitza Stark Phenotypes for gene: KCNC1 were changed from to Epilepsy, progressive myoclonic 7 (MIM#616187); Intellectual disability; Movement disorders
Mendeliome v0.10491 KCNC1 Zornitza Stark changed review comment from: Additional individuals reported with different variants, causing a broad range of neurological phenotypes including ID and movement disorders.; to: Additional individuals reported with different variants, causing a broad range of neurological phenotypes including ID and movement disorders.

Likely reflects different mechanisms (LoF vs GoF).
Mendeliome v0.10491 KCNC1 Zornitza Stark reviewed gene: KCNC1: Rating: GREEN; Mode of pathogenicity: None; Publications: 28145425, 31353862; Phenotypes: Intellectual disability, Movement disorders; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.10445 FZD6 Zornitza Stark Phenotypes for gene: FZD6 were changed from to Nail disorder, nonsyndromic congenital, 1, MIM# 161050
Mendeliome v0.10442 FZD6 Zornitza Stark reviewed gene: FZD6: Rating: GREEN; Mode of pathogenicity: None; Publications: 21665003, 23374899; Phenotypes: Nail disorder, nonsyndromic congenital, 1, MIM# 161050; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10426 CCDC115 Zornitza Stark Phenotypes for gene: CCDC115 were changed from to Congenital disorder of glycosylation, type IIo (MIM# 616828)
Mendeliome v0.10423 CCDC115 Zornitza Stark reviewed gene: CCDC115: Rating: GREEN; Mode of pathogenicity: None; Publications: 26833332; Phenotypes: Congenital disorder of glycosylation, type IIo (MIM# 616828); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10415 SETBP1 Zornitza Stark changed review comment from: GoF variants cause Schinzel-Giedion syndrome, whereas LoF variants cause SETBP1-haploinsufficiency syndrome, over 40 individuals reviewed in PMID 34807554.; to: GoF variants cause Schinzel-Giedion syndrome, a severe multi-system disorder characterized by recognizable facial characteristics, severe-profound intellectual disability, intractable epilepsy, cortical visual impairment, deafness, and congenital anomalies such as cardiac defects, urogenital defects, and bone abnormalities. Causative pathogenic variants are clustered within a 12-base pair hot spot region in exon 4.

LoF variants cause SETBP1-haploinsufficiency syndrome, characterized by hypotonia and mild motor developmental delay; intellectual abilities ranging from normal to severe disability; speech and language disorder; behavioral problems (most commonly attention/concentration deficits and hyperactivity, impulsivity), and refractive errors and strabismus. Over 40 individuals reviewed in PMID 34807554.
Mendeliome v0.10407 BRWD3 Zornitza Stark Phenotypes for gene: BRWD3 were changed from to Intellectual developmental disorder, X-linked 93, MIM # 300659
Mendeliome v0.10404 BRWD3 Zornitza Stark reviewed gene: BRWD3: Rating: GREEN; Mode of pathogenicity: None; Publications: 17668385, 30628072, 24462886; Phenotypes: Intellectual developmental disorder, X-linked 93, MIM # 300659; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.10393 AUTS2 Zornitza Stark Phenotypes for gene: AUTS2 were changed from Mental retardation, autosomal dominant 26, MIM#615834 to Intellectual developmental disorder, autosomal dominant 26, MIM# 615834
Mendeliome v0.10392 AUTS2 Zornitza Stark edited their review of gene: AUTS2: Changed phenotypes: Intellectual developmental disorder, autosomal dominant 26, MIM# 615834
Mendeliome v0.10377 ASL Zornitza Stark Phenotypes for gene: ASL were changed from to Argininosuccinic aciduria MIM#207900; Urea cycle disorders and inherited hyperammonaemias; disorder of amino acid metabolism
Mendeliome v0.10375 ARG1 Zornitza Stark Phenotypes for gene: ARG1 were changed from to Argininaemia MIM#207800; Urea cycle disorders and inherited hyperammonaemias; disorder of arginine metabolism
Mendeliome v0.10366 ALDH4A1 Zornitza Stark Phenotypes for gene: ALDH4A1 were changed from to Hyperprolinemia, type II MIM#239510; disorders of ornithine or proline metabolism
Mendeliome v0.10308 AGA Zornitza Stark changed review comment from: Aspartylglucosaminuria (AGU) is a severe autosomal recessive lysosomal storage disorder that involves the central nervous system and causes skeletal abnormalities as well as connective tissue lesions. The most characteristic feature is progressive mental retardation. Multiple families and mouse model.; to: Aspartylglucosaminuria (AGU) is a severe autosomal recessive lysosomal storage disorder that involves the central nervous system and causes skeletal abnormalities as well as connective tissue lesions. The most characteristic feature is progressive ID. Multiple families and mouse model.
Mendeliome v0.10287 TNR Zornitza Stark Phenotypes for gene: TNR were changed from Spastic para- or tetraparesis; Axial muscular hypotonia; Intellectual disability; Transient opisthotonus to Neurodevelopmental disorder, nonprogressive, with spasticity and transient opisthotonus, MIM# 619653; Spastic para- or tetraparesis; Axial muscular hypotonia; Intellectual disability; Transient opisthotonus
Mendeliome v0.10286 TNR Zornitza Stark edited their review of gene: TNR: Changed phenotypes: Neurodevelopmental disorder, nonprogressive, with spasticity and transient opisthotonus, MIM# 619653, Spastic para- or tetraparesis, Axial muscular hypotonia, Intellectual disability, Transient opisthotonus
Mendeliome v0.10257 MIB1 Chern Lim changed review comment from: Luxan 2013 (PMID: 23314057):
- V943F, seg with LVNC in 1 fam, (gnomADv2: 43 hets).
- R530X, seg with LVNC in 1 fam, (gv2: 13 hets).

Li 2018 (PMID: 30322850):
- in 4 CHD patients: p.Q237H (gv2v3 absent), p.W271G (gv2v3 absent), p.S520R (v2 5 hets) and p.T312Kfs*55 (NMD-pred, absent but many comparables in gnomAD).
- HEK293T cells transfection studies showed: T312Kfs*55 and W271G strongly impaired MIB1 function on substrate ubiquitination, while Q237H and S520R had slight or no obvious changes. Interaction between MIB1 and JAG1 is severely interrupted by p.T312Kfs*55 and p.W271G, but not really in the other 2 missense.
- Overexpression of wt or mutant in zebrafish all resulted in dysmorphic pheno, therefore not informative.

DCM-association = none by Clingen (9/4/2020), ref Luxan 2013 and other pprs, and mentioned gnomAD had too many LoF variants.

De Ligt 2012 (PMID: 23033978): de novo R174H (gnomADv2: 7 hets), indvl with severe ID who also has a de novo R47* in WAC (an AD ID gene with LoF established, variant is P in ClinVar), no other pt-specific pheno provided.

Kaplanis 2021 (PMID: 33057194): Developmental disorders paper.
- 2 missense variants, de novo: 18-19383967-G-A (p.Glu491Lys, gv2 1 het, gv3 absent, GeneDx), 18-19378124-C-T (Thr391Ile, gv2v3 absent, DDD, de novo, no mention of heart pheno).
- Of 6 PTVs, 4 had at least 10 hets each in gnomADv2.; to: Luxan 2013 (PMID: 23314057):
- V943F, seg with LVNC in 1 fam, (gnomADv2: 43 hets).
- R530X, seg with LVNC in 1 fam, (gv2: 13 hets).

Li 2018 (PMID: 30322850):
- in 4 CHD patients: p.Q237H (gv2v3 absent), p.W271G (gv2v3 absent), p.S520R (v2 5 hets) and p.T312Kfs*55 (NMD-pred, absent but many comparables in gnomAD).
- HEK293T cells transfection studies showed: T312Kfs*55 and W271G strongly impaired MIB1 function on substrate ubiquitination, while Q237H and S520R had slight or no obvious changes. Interaction between MIB1 and JAG1 is severely interrupted by p.T312Kfs*55 and p.W271G, but not really in the other 2 missense.
- Overexpression of wt or mutant in zebrafish all resulted in dysmorphic pheno, therefore not informative.

DCM-association = none by Clingen (9/4/2020), ref Luxan 2013 and other pprs, and mentioned gnomAD had too many LoF variants.

De Ligt 2012 (PMID: 23033978): de novo R174H (gnomADv2: 7 hets), indvl with severe ID who also has a de novo R47* in WAC (an AD ID gene with LoF established, variant is P in ClinVar), no other pt-specific pheno provided.

Kaplanis 2021 (PMID: 33057194): Developmental disorders paper.
- 2 missense variants, de novo: 18-19383967-G-A (p.Glu491Lys, gv2 1 het, gv3 absent), 18-19378124-C-T (Thr391Ile, gv2v3 absent, DDD, de novo, no mention of heart pheno).
- Of 6 PTVs, 4 had at least 10 hets each in gnomADv2.
Mendeliome v0.10232 KCND2 Zornitza Stark Phenotypes for gene: KCND2 were changed from global developmental delay, HP:0001263; seizure, HP:0001250 to Neurodevelopmental disorder MONDO:0700092; global developmental delay, HP:0001263; seizure, HP:0001250
Mendeliome v0.10224 GALE Zornitza Stark Phenotypes for gene: GALE were changed from to Galactose epimerase deficiency MIM#230350; Disorders of galactose metabolism
Mendeliome v0.10215 GALK1 Zornitza Stark Phenotypes for gene: GALK1 were changed from to Galactokinase deficiency with cataracts MIM#230200; Disorders of galactose metabolism
Mendeliome v0.10207 UBE4A Zornitza Stark Phenotypes for gene: UBE4A were changed from Intellectual disability and global developmental delay to Neurodevelopmental disorder with hypotonia and gross motor and seech delay, MIM# 619639
Mendeliome v0.10206 UBE4A Zornitza Stark edited their review of gene: UBE4A: Changed phenotypes: Neurodevelopmental disorder with hypotonia and gross motor and seech delay, MIM# 619639
Mendeliome v0.10184 ADCY5 Zornitza Stark Phenotypes for gene: ADCY5 were changed from Dyskinesia, familial, with facial myokymia, MIM# 606703; MONDO:0011707 to Dyskinesia, familial, with facial myokymia, MIM# 606703; MONDO:0011707; Hyperkinetic movement disorder with dyskinesia, myoclonus, chorea, and dystonia-2 (HYDMCD2), MIM#619647; Neurodevelopmental disorder with hyperkinetic movements and dyskinesia (NEDHYD), MIM#619651
Mendeliome v0.10181 ADCY5 Zornitza Stark edited their review of gene: ADCY5: Added comment: Neurodevelopmental disorder with hyperkinetic movements and dyskinesia (NEDHYD) is an autosomal recessive complex neurologic disorder characterized by severe global developmental delay with axial hypotonia, impaired intellectual development, poor overall growth, and abnormal involuntary hyperkinetic movements, including dystonia, myoclonus, spasticity, and orofacial dyskinesia. It is the most severe manifestation of ADCY5-related dyskinetic disorders. Five individuals from 2 families reported.

Autosomal recessive hyperkinetic movement disorder with dyskinesia, myoclonus, chorea, and dystonia-2 (HYDMCD2) is characterized by the onset of abnormal involuntary movements, mainly affecting the limbs and causing walking difficulties, in the first decade. The severity is variable; some patients have orofacial dyskinesia, resulting in speech difficulties, or develop neuropsychiatric features, including anxiety and social withdrawal. Cardiomyopathy has rarely been described and may be a manifestation of the disorder. Eight individuals from 2 families reported.; Changed publications: 22782511, 24700542, 33051786, 32647899, 33704598, 34631954, 28971144, 30975617; Changed phenotypes: Dyskinesia, familial, with facial myokymia, MIM# 606703, MONDO:0011707, Hyperkinetic movement disorder with dyskinesia, myoclonus, chorea, and dystonia-2 (HYDMCD2), MIM#619647, Neurodevelopmental disorder with hyperkinetic movements and dyskinesia (NEDHYD), MIM#619651; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.10106 BCAS3 Zornitza Stark Phenotypes for gene: BCAS3 were changed from Syndromic neurodevelopmental disorder to Hengel-Maroofian-Schols syndrome, MIM# 619641
Mendeliome v0.10065 TAF4 Zornitza Stark gene: TAF4 was added
gene: TAF4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TAF4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TAF4 were set to 33875846; 28191890
Phenotypes for gene: TAF4 were set to Neurodevelopmental disorder
Review for gene: TAF4 was set to AMBER
Added comment: Three individuals reported with de novo LoF variants as part of large cohorts, limited phenotypic information available.
Sources: Literature
Mendeliome v0.10044 ECM1 Zornitza Stark changed review comment from: PMID: 11929856 - Hamada et al 2002 - looked at 6 different unrelated consanguineous families (from Saudi Arabia, Kuwait, Pakistan, The Netherlands, UK, and a group of South African families with a probable common ancestor) with a clinical diagnosis of Lipoid proteinosis (LP)/Urbach–Wiethe disease. They performed a genome-wide linkage analysis and identified a region and then looked at the expression of candidate genes in fibroblasts from patients compared to controls. ECM1 was found to have lower expression levels. 6 homozygous deletion variants were identified in the patients. In one family they established that the parents were heterozygous for the variant.

PMID: 28720532 - Afifi et al 2017 - studied 12 patients from 10 unrelated consanguineous Egyptian families with a clinical diagnosis of lipoid proteinosis. The patients reported progressive hoarseness of voice and easily damaged skin by minor trauma or friction. Homozygous ECM1 variants were detected in affected members in all families: 1 family had a missense variant, 5 families had splice site variants and 4 families had indels predicted to cause frameshifts. Parents were found to be heterozygous for the variants.

PMID: 33159951 - Zhu et al 2021 - a novel homozygous three-nucleotide duplication (c.506_508dupCTG) in ECM in two siblings affected with LP from a consanguineous Chinese family.; to: Lipoid proteinosis of Urbach and Wiethe is a rare autosomal recessive disorder typified by generalized thickening of skin, mucosae, and certain viscera. Classic features include beaded eyelid papules and laryngeal infiltration leading to hoarseness. The disorder is clinically heterogeneous, with affected individuals displaying differing degrees of skin scarring and infiltration, variable signs of hoarseness and respiratory distress, and in some cases neurologic abnormalities such as temporal lobe epilepsy. Histologically, there is widespread deposition of hyaline (glycoprotein) material and disruption/reduplication of basement membrane

PMID: 11929856 - Hamada et al 2002 - looked at 6 different unrelated consanguineous families (from Saudi Arabia, Kuwait, Pakistan, The Netherlands, UK, and a group of South African families with a probable common ancestor) with a clinical diagnosis of Lipoid proteinosis (LP)/Urbach–Wiethe disease. They performed a genome-wide linkage analysis and identified a region and then looked at the expression of candidate genes in fibroblasts from patients compared to controls. ECM1 was found to have lower expression levels. 6 homozygous deletion variants were identified in the patients. In one family they established that the parents were heterozygous for the variant.

PMID: 28720532 - Afifi et al 2017 - studied 12 patients from 10 unrelated consanguineous Egyptian families with a clinical diagnosis of lipoid proteinosis. The patients reported progressive hoarseness of voice and easily damaged skin by minor trauma or friction. Homozygous ECM1 variants were detected in affected members in all families: 1 family had a missense variant, 5 families had splice site variants and 4 families had indels predicted to cause frameshifts. Parents were found to be heterozygous for the variants.

PMID: 33159951 - Zhu et al 2021 - a novel homozygous three-nucleotide duplication (c.506_508dupCTG) in ECM in two siblings affected with LP from a consanguineous Chinese family.
Mendeliome v0.10039 CNKSR2 Zornitza Stark Phenotypes for gene: CNKSR2 were changed from to Intellectual developmental disorder, X-linked, syndromic, Houge type, MIM# 301008
Mendeliome v0.10036 CNKSR2 Zornitza Stark reviewed gene: CNKSR2: Rating: GREEN; Mode of pathogenicity: None; Publications: 34266427; Phenotypes: Intellectual developmental disorder, X-linked, syndromic, Houge type, MIM# 301008; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.10027 OGDHL Melanie Marty edited their review of gene: OGDHL: Changed phenotypes: Neurodevelopmental disorder featuring epilepsy, hearing loss, visual impairment and ataxia
Mendeliome v0.10027 OGDHL Melanie Marty edited their review of gene: OGDHL: Changed phenotypes: Neurodevelopmental disorder featuring epilepsy, hearing loss and visual impairment
Mendeliome v0.10024 OGDHL Melanie Marty gene: OGDHL was added
gene: OGDHL was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: OGDHL was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: OGDHL were set to PMID: 34800363
Phenotypes for gene: OGDHL were set to Neurodevelopmental disorder featuring epilepsy, hearing loss, visual impairment, and ataxia
Review for gene: OGDHL was set to GREEN
Added comment: Nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing
loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum.

Homozygous and compound heterozygous variants reported. Variant types reported include missense, PTCs and a synonymous variant that was shown to affect splicing.

Functional studies with a CRISPR-Cas9-mediated tissue knockout with cDNA rescue system showed that the missense variants result in loss-of-function.
Sources: Literature
Mendeliome v0.10018 OGDH Zornitza Stark gene: OGDH was added
gene: OGDH was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: OGDH was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: OGDH were set to 32383294
Phenotypes for gene: OGDH were set to Developmental delay; ataxia; seizure; raised lactate
Review for gene: OGDH was set to AMBER
Added comment: Two siblings reported with homozygous missense variant in this gene and global developmental delay, elevated lactate, ataxia and seizure. Fibroblast analysis and modeling of the mutation in Drosophila were used to evaluate pathogenicity of the variant. Note previous report of an individual with developmental delay, hypotonia, and movement disorders and metabolic decompensation and biochemical evidence of OGDH deficiency but genetic testing not done.
Sources: Literature
Mendeliome v0.10017 FAAH2 Ain Roesley changed review comment from: PMID: 34645488;
- 1x nonsense variant inherited from normal mother
- proband presented with a classical Zellweger syndrome phenotype including global developmental delay, seizure disorder, severe hypotonia, failure to thrive, adrenal insufficiency and elevated very long-chain fatty acids and liver enzymes
- this variant has 2 hemizygotes in gnomAD

PMID: 25885783;
- 1x missense inherited from normal mother and absent in normal brother
- presented with autistic features, anxiety, pseudoseizures, ataxia, supranuclear gaze palsy, and isolated learning disabilities
- biochemical studies on patient fibroblasts confirmed a defect in FAAH2 activity resulting in altered levels of endocannabinoid metabolites.
- BUT this variant has 30 hemizygotes in gnomoad
Sources: Literature; to: PMID: 34645488;
- 1x nonsense variant inherited from normal mother
- proband presented with a classical Zellweger syndrome phenotype including global developmental delay, seizure disorder, severe hypotonia, failure to thrive, adrenal insufficiency and elevated very long-chain fatty acids and liver enzymes
- this variant has 2 hemizygotes in gnomAD

PMID: 25885783;
- 1x missense inherited from normal mother and absent in normal brother
- presented with autistic features, anxiety, pseudoseizures, ataxia, supranuclear gaze palsy, and isolated learning disabilities
- biochemical studies on patient fibroblasts confirmed a defect in FAAH2 activity resulting in altered levels of endocannabinoid metabolites.
- BUT this variant has 30 hemizygotes in gnomAD
Sources: Literature
Mendeliome v0.10017 FAAH2 Ain Roesley gene: FAAH2 was added
gene: FAAH2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FAAH2 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: FAAH2 were set to PMID: 34645488
Penetrance for gene: FAAH2 were set to unknown
Review for gene: FAAH2 was set to RED
gene: FAAH2 was marked as current diagnostic
Added comment: PMID: 34645488;
- 1x nonsense variant inherited from normal mother
- proband presented with a classical Zellweger syndrome phenotype including global developmental delay, seizure disorder, severe hypotonia, failure to thrive, adrenal insufficiency and elevated very long-chain fatty acids and liver enzymes
- this variant has 2 hemizygotes in gnomAD

PMID: 25885783;
- 1x missense inherited from normal mother and absent in normal brother
- presented with autistic features, anxiety, pseudoseizures, ataxia, supranuclear gaze palsy, and isolated learning disabilities
- biochemical studies on patient fibroblasts confirmed a defect in FAAH2 activity resulting in altered levels of endocannabinoid metabolites.
- BUT this variant has 30 hemizygotes in gnomoad
Sources: Literature
Mendeliome v0.9979 DHCR24 Zornitza Stark Phenotypes for gene: DHCR24 were changed from to Desmosterolosis MIM#602398; Disorders of the metabolism of sterols
Mendeliome v0.9926 MOCS2 Zornitza Stark Phenotypes for gene: MOCS2 were changed from to Molybdenum cofactor deficiency B MIM#252160; Disorders of molybdenum cofactor metabolism
Mendeliome v0.9918 ACO2 Zornitza Stark edited their review of gene: ACO2: Added comment: At least 10 unrelated families reported. I am not convinced this gene causes two separate disorders, more likely a spectrum. OA has been reported as an isolated finding in one family, and a feature of a more complex and severe neurological presentation in the rest.; Changed publications: 22405087, 25351951, 30689204, 32519519, 25351951
Mendeliome v0.9779 KCNJ2 Ain Roesley commented on gene: KCNJ2: well-established association, including short QT, long QT, clefting disorders, myopathy adult onset, channelopathies. tenuous association for CPVT

Dominant-negative is the disease mechanism
Mendeliome v0.9779 COG1 Zornitza Stark Phenotypes for gene: COG1 were changed from to Congenital disorder of glycosylation, type IIg, MIM# 611209
Mendeliome v0.9776 COG1 Zornitza Stark reviewed gene: COG1: Rating: GREEN; Mode of pathogenicity: None; Publications: 16537452, 19008299, 17904886, 11980916; Phenotypes: Congenital disorder of glycosylation, type IIg, MIM# 611209; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9775 SPATA5L1 Zornitza Stark Phenotypes for gene: SPATA5L1 were changed from Intellectual disability; spastic-dystonic cerebral palsy; epilepsy; hearing loss to Neurodevelopmental disorder with hearing loss and spasticity, MIM# 619616; Deafness, autosomal recessive 119, MIM# 619615
Mendeliome v0.9774 SPATA5L1 Zornitza Stark edited their review of gene: SPATA5L1: Added comment: Note some of the affected individuals had isolated deafness, hence two OMIM phenotypes have been associated with this gene. All were of Ashkenazi Jewish origin, and had the p.Ile466Met founder variant, either hmz or compound het with another variant.; Changed publications: 34626583; Changed phenotypes: Neurodevelopmental disorder with hearing loss and spasticity, MIM# 619616, Deafness, autosomal recessive 119, MIM# 619615
Mendeliome v0.9774 SPATA5L1 Zornitza Stark reviewed gene: SPATA5L1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with hearing loss and spasticity, MIM# 619616; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9750 IL1RAPL1 Zornitza Stark Phenotypes for gene: IL1RAPL1 were changed from to Intellectual developmental disorder, X-linked 21 MIM#300143
Mendeliome v0.9737 IL1RAPL1 Ain Roesley reviewed gene: IL1RAPL1: Rating: GREEN; Mode of pathogenicity: None; Publications: 34452636, 27470653, 21484992, 18801879, 18801879; Phenotypes: Intellectual developmental disorder, X-linked 21 MIM#300143; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes
Mendeliome v0.9694 BRAT1 Zornitza Stark Phenotypes for gene: BRAT1 were changed from to Neurodevelopmental disorder with cerebellar atrophy and with or without seizures, MIM#618056; Rigidity and multifocal seizure syndrome, lethal neonatal, MIM# 614498
Mendeliome v0.9691 BRAT1 Zornitza Stark changed review comment from: At least 4 individuals reported from unrelated families and bi-allelic variants in this gene.
Sources: Expert list; to: Biallelic mutations in the BRAT1 gene, encoding BRCA1-associated ATM activator 1, result in variable phenotypes, from rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL) to neurodevelopmental disorder and cerebellar atrophy with or without seizures (NEDCAS), without obvious genotype-phenotype associations.

Multiple families reported with each.
Mendeliome v0.9691 BRAT1 Zornitza Stark edited their review of gene: BRAT1: Changed publications: 26483087, 26494257, 27282546, 22279524, 23035047, 25319849, 25500575, 34747546; Changed phenotypes: Neurodevelopmental disorder with cerebellar atrophy and with or without seizures, MIM#618056, Rigidity and multifocal seizure syndrome, lethal neonatal, MIM# 614498
Mendeliome v0.9691 SRCAP Zornitza Stark Phenotypes for gene: SRCAP were changed from Floating-Harbor syndrome MIM#136140; Neurodevelopmental disorder, non-Floating Harbor to Floating-Harbor syndrome MIM#136140; Developmental delay, hypotonia, musculoskeletal defects, and behavioral abnormalities, MIM# 619595
Mendeliome v0.9646 DDX3X Zornitza Stark Phenotypes for gene: DDX3X were changed from to Intellectual developmental disorder, X-linked, syndrome, Snijders Blok type MIM# 300958
Mendeliome v0.9643 DDX3X Zornitza Stark reviewed gene: DDX3X: Rating: GREEN; Mode of pathogenicity: None; Publications: 30266093, 26235985, 25533962, 33528536, 30936465, 31274575, 30817323; Phenotypes: Intellectual developmental disorder, X-linked, syndrome, Snijders Blok type MIM# 300958; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.9636 C9orf3 Zornitza Stark gene: C9orf3 was added
gene: C9orf3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: C9orf3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: C9orf3 were set to 34596301
Phenotypes for gene: C9orf3 were set to Dystonia 31, MIM# 619565
Review for gene: C9orf3 was set to GREEN
Added comment: Dystonia-31 (DYT31) is an autosomal recessive progressive neurologic disorder characterized by involuntary muscle twisting movements and postural abnormalities affecting the upper and lower limbs, neck, face, and trunk. Some patients may have orofacial dyskinesia resulting in articulation and swallowing difficulties. The age at onset ranges from childhood to young adulthood. There are usually no additional neurologic symptoms, although late-onset parkinsonism was reported in 1 family.

5 individuals from 4 unrelated families reported.

HGNC approved name is AOPEP.
Sources: Literature
Mendeliome v0.9607 COG6 Zornitza Stark changed review comment from: More than 5 unrelated families reported. Key features include growth retardation, developmental delay, microcephaly, liver and gastrointestinal disease, joint contractures and episodic fever. Ectodermal signs such as hypohidrosis/hyperthermia, hyperkeratosis and tooth anomalies are prominent. Note Shaheen syndrome, MIM#615328 is an allelic disorder, with overlapping clinical features, but normal transferring isoforms recorded creating confusion about whether it represents a distinct entity.; to: More than 5 unrelated families reported. Key features include growth retardation, developmental delay, microcephaly, liver and gastrointestinal disease, joint contractures and episodic fever. Ectodermal signs such as hypohidrosis/hyperthermia, hyperkeratosis and tooth anomalies are prominent. Note Shaheen syndrome, MIM#615328 is an allelic disorder, with overlapping clinical features, but normal transferrin isoforms recorded creating confusion about whether it represents a distinct entity.
Mendeliome v0.9593 ALG1 Zornitza Stark Phenotypes for gene: ALG1 were changed from to Congenital disorder of glycosylation, type Ik, MIM# 608540
Mendeliome v0.9590 ALG1 Zornitza Stark reviewed gene: ALG1: Rating: GREEN; Mode of pathogenicity: None; Publications: 26931382; Phenotypes: Congenital disorder of glycosylation, type Ik, MIM# 608540; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9590 NUP85 Eleanor Williams reviewed gene: NUP85: Rating: ; Mode of pathogenicity: None; Publications: 34170319; Phenotypes: intellectual disability, Primary autosomal recessive microcephaly and Seckel syndrome spectrum disorders (MCPH–SCKS); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9572 KIAA0391 Zornitza Stark Phenotypes for gene: KIAA0391 were changed from to Mitochondrial disorder
Mendeliome v0.9570 STT3A Zornitza Stark Phenotypes for gene: STT3A were changed from to Congenital disorder of glycosylation, type Iw MIM#615596
Mendeliome v0.9569 KIAA0391 Lucy Spencer changed review comment from: Four unrelated families with multisystem disease associated with bi-allelic variants in PRORP. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes.

-1 consanguineous family with homozygous missense in 3 affected sisters, het parents unaffected. Siblings had profound bilateral SNHL in infancy. In teens developed primary amenorrhea/Perrault syndrome, and hypergonadotropic hypogonadism.
-1 unrelated male with compound het missense, each inherited from an unaffected parent. Hearing loss noted at 3, diagnosed at 5.
-1 unrelated male compound het for a missense and a frameshift. appendicular hypertonia in infancy, mild dysmorphism. Severe global dev delay at 20 months. Normal hearing at 18 months, but at 3 years had bilateral SNHL.
-an affected mother and her 2 affected children (son and daughter), homozygous for a missense. Father is heterozygous and unaffected. Son has psychotic disorder, autistic traits. Sister had intrauterine growth retardation, global developmental delay, and seizures in the first years of life. Mother presented with retrobulbar optic neuritis and tonic pupil at 39 years of age, then with asthenia, myalgias, memory loss, and frequent headaches.

All variants are in p.400s.
Sources: Literature; to: Four unrelated families with multisystem disease associated with bi-allelic variants in PRORP. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes.

-1 consanguineous family with homozygous missense in 3 affected sisters, het parents unaffected. Siblings had profound bilateral SNHL in infancy. In teens developed primary amenorrhea/Perrault syndrome, and hypergonadotropic hypogonadism.
-1 unrelated male with compound het missense, each inherited from an unaffected parent. Hearing loss noted at 3, diagnosed at 5.
-1 unrelated male compound het for a missense and a frameshift. appendicular hypertonia in infancy, mild dysmorphism. Severe global dev delay at 20 months. Normal hearing at 18 months, but at 3 years had bilateral SNHL.
-an affected mother and her 2 affected children (son and daughter), homozygous for a missense. Father is heterozygous and unaffected. Son has psychotic disorder, autistic traits. Sister had intrauterine growth retardation, global developmental delay, and seizures in the first years of life. Mother presented with retrobulbar optic neuritis and tonic pupil at 39 years of age, then with asthenia, myalgias, memory loss, and frequent headaches.

All variants are in p.400s.
Sources: Literature
Mendeliome v0.9567 KIAA0391 Lucy Spencer gene: KIAA0391 was added
gene: KIAA0391 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KIAA0391 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: KIAA0391 were set to PMID: 34715011
Added comment: Four unrelated families with multisystem disease associated with bi-allelic variants in PRORP. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes.

-1 consanguineous family with homozygous missense in 3 affected sisters, het parents unaffected. Siblings had profound bilateral SNHL in infancy. In teens developed primary amenorrhea/Perrault syndrome, and hypergonadotropic hypogonadism.
-1 unrelated male with compound het missense, each inherited from an unaffected parent. Hearing loss noted at 3, diagnosed at 5.
-1 unrelated male compound het for a missense and a frameshift. appendicular hypertonia in infancy, mild dysmorphism. Severe global dev delay at 20 months. Normal hearing at 18 months, but at 3 years had bilateral SNHL.
-an affected mother and her 2 affected children (son and daughter), homozygous for a missense. Father is heterozygous and unaffected. Son has psychotic disorder, autistic traits. Sister had intrauterine growth retardation, global developmental delay, and seizures in the first years of life. Mother presented with retrobulbar optic neuritis and tonic pupil at 39 years of age, then with asthenia, myalgias, memory loss, and frequent headaches.

All variants are in p.400s.
Sources: Literature
Mendeliome v0.9565 STT3A Elena Savva reviewed gene: STT3A: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 34653363, 23842455, 30701557, 28424003; Phenotypes: Congenital disorder of glycosylation, type Iw MIM#615596; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.9564 SPATA5L1 Paul De Fazio gene: SPATA5L1 was added
gene: SPATA5L1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SPATA5L1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SPATA5L1 were set to 34626583
Phenotypes for gene: SPATA5L1 were set to Intellectual disability; spastic-dystonic cerebral palsy; epilepsy; hearing loss
Review for gene: SPATA5L1 was set to GREEN
gene: SPATA5L1 was marked as current diagnostic
Added comment: 47 individuals from 26 unrelated families from various ethnicities with biallelic variants reported. Phenotypes include ID, hearing impairment, movement disorder, abnormal MRI, hypotonia, visual impairment, epilepsy, and microcephaly.
Sources: Literature
Mendeliome v0.9538 GRIK2 Zornitza Stark Phenotypes for gene: GRIK2 were changed from Mental retardation, autosomal recessive, 6 MIM# 611092; Nonsyndromic neurodevelopmental disorder, autosomal dominant to Mental retardation, autosomal recessive, 6 MIM# 611092; Neurodevelopmental disorder with impaired language and ataxia and with or without seizures, MIM# 619580
Mendeliome v0.9537 GRIK2 Zornitza Stark reviewed gene: GRIK2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with impaired language and ataxia and with or without seizures, MIM# 619580; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9537 BGN Krithika Murali gene: BGN was added
gene: BGN was added to Mendeliome. Sources: Expert list,Literature
Mode of inheritance for gene: BGN was set to Other
Publications for gene: BGN were set to 27236923; 27632686
Phenotypes for gene: BGN were set to Meester-Loeys syndrome - #300989; Spondyloepimetaphyseal dysplasia, X-linked - #300106
Review for gene: BGN was set to GREEN
Added comment: Well-established gene-disease associated with X-linked spondyloepimetaphyseal dysplasia (SEMD) and Meester-Loeys syndrome (connective tissue disorder with phenotypic features including aortic dissection, aortic aneurysym, dysmorphism, joint hypermobility and mild skeletal dysplasia - with juvenile-onset reported in males)

SEMD - X-linked recessive inheritance
Meester-Loeys syndrome - hemizygous males, monoallelic mutations may cause disease in females (may be less severe, later onset than males)
Sources: Expert list, Literature
Mendeliome v0.9511 TFE3 Zornitza Stark Phenotypes for gene: TFE3 were changed from TFE3-associated neurodevelopmental disorder; Intellectual disability; Epilepsy; Coarse facial features to Intellectual developmental disorder, X-linked, syndromic, with pigmentary mosaicism and coarse facies, MIM# 301066; Intellectual disability; Epilepsy; Coarse facial features
Mendeliome v0.9510 TFE3 Zornitza Stark edited their review of gene: TFE3: Changed phenotypes: Intellectual developmental disorder, X-linked, syndromic, with pigmentary mosaicism and coarse facies, MIM# 301066, Intellectual disability, Epilepsy, Coarse facial features
Mendeliome v0.9504 MANBA Zornitza Stark changed review comment from: Variable severity. Well established gene-disease association.; to: Bi-allelic variants and lysosomal storage disorder: Variable severity. Well established gene-disease association.
Mendeliome v0.9504 MANBA Zornitza Stark changed review comment from: Two mono-allelic variants reported in association with isolated nystagmus. Note bi-allelic variants cause a lysosomal storage disorder.; to: Two mono-allelic variants reported in association with isolated nystagmus.
Mendeliome v0.9504 MANBA Zornitza Stark edited their review of gene: MANBA: Added comment: Two mono-allelic variants reported in association with isolated nystagmus. Note bi-allelic variants cause a lysosomal storage disorder.; Changed publications: 30552791, 25741867; Changed phenotypes: Mannosidosis, beta, MIM# 248510, MONDO:0009562, Nystagmus, autosomal dominant; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.9502 ETHE1 Zornitza Stark commented on gene: ETHE1: Severe metabolic disorder characterized by neurodevelopmental delay and regression, prominent pyramidal and extrapyramidal signs, recurrent petechiae, orthostatic acrocyanosis, and chronic diarrhoea. Brain MRI shows necrotic lesions in deep gray matter structures.
Mendeliome v0.9473 KCNJ13 Zornitza Stark changed review comment from: LCA and bi-allelic variants: at least 4 individuals reported. Green.

Single family reported with snowflake vitreoretinal degeneration and mono-allelic variant, supportive functional data. Amber/Red.; to: Variants in KCNJ13 are associated with two retinal disorders; Leber congenital amaurosis (LCA) and snowflake vitreoretinal degeneration (SVD), though individuals with bi-allelic variants and LCA with subsequent fibrovascular proliferation described (PMID 31647904).

LCA and bi-allelic variants: at least 4 individuals reported. Green.

Single family reported with snowflake vitreoretinal degeneration and mono-allelic variant, supportive functional data. Amber/Red.
Mendeliome v0.9452 CABP4 Zornitza Stark Phenotypes for gene: CABP4 were changed from to Cone-rod synaptic disorder, congenital nonprogressive, MIM# 610427
Mendeliome v0.9449 CABP4 Zornitza Stark reviewed gene: CABP4: Rating: GREEN; Mode of pathogenicity: None; Publications: 16960802, 19074807, 20157620; Phenotypes: Cone-rod synaptic disorder, congenital nonprogressive, MIM# 610427; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9418 TAOK1 Zornitza Stark Phenotypes for gene: TAOK1 were changed from TAOK1-related neurodevelopmental disorder to Developmental delay with or without intellectual impairment or behavioural abnormalities, MIM#619575; TAOK1-related neurodevelopmental disorder
Mendeliome v0.9417 TAOK1 Zornitza Stark edited their review of gene: TAOK1: Changed phenotypes: Developmental delay with or without intellectual impairment or behavioural abnormalities, MIM#619575, TAOK1-related neurodevelopmental disorder
Mendeliome v0.9392 OSTC Belinda Chong gene: OSTC was added
gene: OSTC was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: OSTC was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: OSTC were set to PMID: 32267060
Phenotypes for gene: OSTC were set to Oligosaccharyltransferase complex-congenital disorders of glycosylation
Review for gene: OSTC was set to RED
Added comment: A patient with microcephaly, dysmorphic facies, congenital heart defect, focal epilepsy, infantile spasms, skeletal dysplasia, and a type 1 serum transferrin isoelectrofocusing due to a novel CDG caused by a homozygous variant in the oligosaccharyltransferase complex noncatalytic subunit (OSTC) gene involved in glycosylation and confirmed by serum transferrin electrophoresis.
Patient was homozygous for a canonical splice variant (c.431 + 1G > A), mRNA from patient's fibroblast showed mRNA transcript reduced 80-90%/aberrant splicing - predicting NMD.
GnomAD - 10 hets, 0 hom
Sources: Literature
Sources: Literature
Mendeliome v0.9370 GABRD Zornitza Stark changed review comment from: Limited reports. The variant originally reported in PMID 15115768 in association with epilepsy is present in >4,000 hets in gnomad and 55 homs which is not consistent with a Mendelian disorder.; to: Susceptibility to epilepsy, MIM#613060: Limited reports. The variant originally reported in PMID 15115768 in association with epilepsy is present in >4,000 hets in gnomad and 55 homs which is not consistent with a Mendelian disorder.
Mendeliome v0.9370 GABRD Zornitza Stark edited their review of gene: GABRD: Added comment: 10 individuals with 7 unique variants reported in individuals with neurodevelopmental disorders and epilepsy. Six of the variants were demonstrated to be GoF, and those individuals with neurodevelopmental disorders with behavioural issues, various degrees of intellectual disability, generalized epilepsy with atypical absences and generalized myoclonic and/or bilateral tonic-clonic seizures. In contrast, the one individual carrying a loss-of-function variant had normal intelligence, no seizure history but has a diagnosis of autism spectrum disorder and suffering from elevated internalizing psychiatric symptoms.; Changed rating: GREEN; Changed publications: 15115768, 34633442; Changed phenotypes: Intellectual disability, Epilepsy, Susceptibility to epilepsy, MIM#613060
Mendeliome v0.9366 TNPO2 Zornitza Stark Phenotypes for gene: TNPO2 were changed from Intellectual disability, neurologic deficits and dysmorphic features to Intellectual developmental disorder with hypotonia, impaired speech, and dysmorphic facies, MIM# 619556
Mendeliome v0.9365 TNPO2 Zornitza Stark reviewed gene: TNPO2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual developmental disorder with hypotonia, impaired speech, and dysmorphic facies, MIM# 619556; Mode of inheritance: None
Mendeliome v0.9343 AP1G1 Zornitza Stark Phenotypes for gene: AP1G1 were changed from Neurodevelopmental disorder (NDD); Intellectual Disability; Epilepsy to Usmani-Riazuddin syndrome, autosomal dominant, MIM# 619467; Usmani-Riazuddin syndrome, autosomal recessive, MIM# 619548; Neurodevelopmental disorder (NDD); Intellectual Disability; Epilepsy
Mendeliome v0.9338 SHANK1 Zornitza Stark Phenotypes for gene: SHANK1 were changed from to Neurodevelopmental disorder, no OMIM#
Mendeliome v0.9335 SHANK1 Zornitza Stark reviewed gene: SHANK1: Rating: GREEN; Mode of pathogenicity: None; Publications: 34113010, 22503632, 25188300; Phenotypes: Neurodevelopmental disorder, no OMIM#; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9333 PLXNA1 Zornitza Stark gene: PLXNA1 was added
gene: PLXNA1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLXNA1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: PLXNA1 were set to 34054129
Phenotypes for gene: PLXNA1 were set to Neurodevelopmental disorder with cerebral and eye anomalies
Review for gene: PLXNA1 was set to GREEN
Added comment: Dworschak et al. (2021) via WES reported 10 patients from 7 families with biallelic (n=7) or de novo (n=3) PLXNA1 variants. Shared phenotypic features include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Seizures were predominantly reported in patients with monoallelic variants. Zebrafish studies showed an embryonic role of plxna1a in the development of the central nervous system and the eye. Biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.
Sources: Literature
Mendeliome v0.9332 HNRNPD Zornitza Stark Phenotypes for gene: HNRNPD were changed from Developmental disorders to Neurodevelopmental disorder
Mendeliome v0.9329 HNRNPD Zornitza Stark reviewed gene: HNRNPD: Rating: GREEN; Mode of pathogenicity: None; Publications: 33874999; Phenotypes: Neurodevelopmental disorder; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9328 UNC13B Zornitza Stark gene: UNC13B was added
gene: UNC13B was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: UNC13B was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: UNC13B were set to 33876820
Phenotypes for gene: UNC13B were set to Epilepsy
Review for gene: UNC13B was set to RED
Added comment: No OMIM human disease association. Gene encodes a presynaptic protein Munc13-2 highly expressed in the brain (predominantly cerebral cortex).

Variant interpretation data in human epilepsy cohort somewhat conflicting and restricted to a single study. Conflicting data esp regarding MOI, and evidence for pathogenicity of several of the variants is limited.

Wang et al, Brain, 2021 - trio-based whole-exome sequencing identified UNC13B in 12 individuals affected by partial epilepsy and/or febrile seizures from 8 unrelated families. Identified:
x1 de novo nonsense variant, absent in gnomad, damaging in silicos
x1 de novo splice site, absent in gnomad, damaging in silicos
x1 splice site variant present in unaffected mother (low frequency in gnomad)
x2 compound het in one individual - more severe phenotype postulated (x1 variant present in contro cohortl, the other variant present in low frequency in gnomad)
x1 missense variant - in Han Chinese major depressive disorders study, not in gnomad
x1 missense variant - highly conserved residue, not in gnomad
x2 other missense variant - highly conserved residue, low frequency in gnomad
Latter 4 missense variants cosegregated with affected individuals in the families

In Drosophila, seizure rate and duration were increased by Unc13b knockdown compared to wild-type flies, but these effects were less pronounced than in sodium voltage-gated channel alpha subunit 1 (Scn1a) knockdown Drosophila

De novo UNC13B variants previously reported in bipolar disorder and autism spectrum disorder
Sources: Expert Review
Mendeliome v0.9305 ZDHHC15 Zornitza Stark Phenotypes for gene: ZDHHC15 were changed from Mental retardation, X-linked 91, 300577 to Mental retardation, X-linked 91, 300577; cerebral palsy; intellectual disability; autism spectrum disorder; epilepsy
Mendeliome v0.9302 ZDHHC15 Krithika Murali reviewed gene: ZDHHC15: Rating: RED; Mode of pathogenicity: None; Publications: 34345675; Phenotypes: cerebral palsy, intellectual disability, autism spectrum disorder, epilepsy; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9297 ATP11A Elena Savva gene: ATP11A was added
gene: ATP11A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATP11A was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ATP11A were set to PMID: 34403372
Phenotypes for gene: ATP11A were set to Neurological disorder
Mode of pathogenicity for gene: ATP11A was set to Other
Review for gene: ATP11A was set to AMBER
Added comment: PMID: 34403372:
- Single de novo missense variant reported in a patient with developmental delay and neurological deterioration.
- Patient MRI showed severe cerebral atrophy, ventriculomegaly, hypomyelination leukodystrophy, thinned corpus callosum. Axonal neuropathy suggested.
- K/I heterozygous mice died perinatally.
- Functional studies on missense variant show plasma membrane lipid content impairment, reduced ATPase activity etc.

gnomAD: some NMD PTCs present, good quality variants found with 4-5 hets.
Sources: Literature
Mendeliome v0.9270 CPE Arina Puzriakova reviewed gene: CPE: Rating: GREEN; Mode of pathogenicity: None; Publications: 34383079; Phenotypes: Intellectual developmental disorder and hypogonadotropic hypogonadism, OMIM:619326; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.9244 ARFGEF1 Zornitza Stark gene: ARFGEF1 was added
gene: ARFGEF1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: ARFGEF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ARFGEF1 were set to 34113008
Phenotypes for gene: ARFGEF1 were set to Intellectual disability; Epilepsy
Review for gene: ARFGEF1 was set to GREEN
Added comment: 13 individuals reported with variants in this gene and a neurodevelopmental disorder characterised by variable ID, seizures present in around half. Variants were inherited from mildly affected parents in 40% of families.
Sources: Expert Review
Mendeliome v0.9197 HCN2 Zornitza Stark Phenotypes for gene: HCN2 were changed from Genetic epilepsy with febrile seizures plus; Other seizure disorders to Febrile seizures, familial, 2, MIM# 602477; Genetic epilepsy with febrile seizures plus; Other seizure disorders
Mendeliome v0.9196 HCN2 Zornitza Stark edited their review of gene: HCN2: Changed phenotypes: Febrile seizures, familial, 2, MIM# 602477, Genetic epilepsy with febrile seizures plus, Other seizure disorders
Mendeliome v0.9176 DDX23 Zornitza Stark Phenotypes for gene: DDX23 were changed from Developmental disorder to DDX23-associated neurodevelopmental disorder
Mendeliome v0.9173 DDX23 Zornitza Stark reviewed gene: DDX23: Rating: GREEN; Mode of pathogenicity: None; Publications: 34050707; Phenotypes: DDX23-associated neurodevelopmental disorder; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9170 ERGIC1 Zornitza Stark gene: ERGIC1 was added
gene: ERGIC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ERGIC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ERGIC1 were set to 28317099; 34037256
Phenotypes for gene: ERGIC1 were set to Arthrogryposis multiplex congenita 2, neurogenic type; OMIM # 208100
Review for gene: ERGIC1 was set to AMBER
Added comment: Reinstein et al. (2018) used WES in a large consanguineous Israeli Arab kindred consisting of 16 patients affected with the neurogenic type of arthrogryposis multiplex congenita. They identified a homozygous missense (V98E) mutation in ERGIC1 gene, which segregated with the disorder in the kindred, and was not found in the ExAC database or in 212 ethnically matched controls. Functional studies of the variant and studies of patient cells were not performed. ERGIC1 encodes a cycling membrane protein which has a possible role in transport between endoplasmic reticulum and Golgi.

Marconi et al (2021) used genome sequencing in a consanguineous family with 2 affected siblings presenting congenital arthrogryposis and some facial dysmorphism. They identified a homozygous 22.6 Kb deletion encompassing the promoter and first exon of ERGIC1. mRNA quantification showed the complete absence of ERGIC1 expression in the two affected siblings and a decrease in heterozygous parents.
Sources: Literature
Mendeliome v0.9153 FGFR2 Zornitza Stark Phenotypes for gene: FGFR2 were changed from to Antley-Bixler syndrome without genital anomalies or disordered steroidogenesis,MIM# 207410; Apert syndrome, MIM# 101200; Beare-Stevenson cutis gyrata syndrome, MIM# 123790; Bent bone dysplasia syndrome, MIM# 614592; Craniofacial-skeletal-dermatologic dysplasia, MIM# 101600; Craniosynostosis, nonspecific; Crouzon syndrome , MIM#123500; Jackson-Weiss syndrome,MIM# 123150; LADD syndrome, MIM# 149730; Pfeiffer syndrome,MIM# 101600; Saethre-Chotzen syndrome 101400
Mendeliome v0.9098 TPI1 Zornitza Stark changed review comment from: More than 10 unrelated families reported; bi-allelic (missense, nonsense, frameshift) variants; Common p.Glu104Asp variant in Northern European population

Triosephosphate isomerase deficiency (TPID) is an autosomal recessive multisystem disorder characterised by early childhood onset congenital hemolytic anaemia, and progressive neuromuscular dysfunction. Many patients die from respiratory failure in childhood. The neurological features are variable, but usually includes lower motor neuron dysfunction with hypotonia, muscle weakness and atrophy, and hyporeflexia. Other features include intracellular accumulation of dihydroxyacetone phosphate (DHAP), particularly in red blood cells and increased susceptibility to infections.; to: More than 10 unrelated families reported; bi-allelic (missense, nonsense, frameshift) variants; Common p.Glu104Asp variant in Northern European population

Triosephosphate isomerase deficiency (TPID) is an autosomal recessive multisystem disorder characterised by early childhood onset congenital haemolytic anaemia, and progressive neuromuscular dysfunction. Many patients die from respiratory failure in childhood. The neurological features are variable, but usually includes lower motor neuron dysfunction with hypotonia, muscle weakness and atrophy, and hyporeflexia. Other features include intracellular accumulation of dihydroxyacetone phosphate (DHAP), particularly in red blood cells and increased susceptibility to infections.
Mendeliome v0.9098 TPI1 Zornitza Stark edited their review of gene: TPI1: Added comment: More than 10 unrelated families reported; bi-allelic (missense, nonsense, frameshift) variants; Common p.Glu104Asp variant in Northern European population

Triosephosphate isomerase deficiency (TPID) is an autosomal recessive multisystem disorder characterised by early childhood onset congenital hemolytic anaemia, and progressive neuromuscular dysfunction. Many patients die from respiratory failure in childhood. The neurological features are variable, but usually includes lower motor neuron dysfunction with hypotonia, muscle weakness and atrophy, and hyporeflexia. Other features include intracellular accumulation of dihydroxyacetone phosphate (DHAP), particularly in red blood cells and increased susceptibility to infections.; Changed publications: 9338582, 32873690, 8503454; Changed phenotypes: Haemolytic anaemia due to triosephosphate isomerase deficiency, MIM# 615512
Mendeliome v0.9095 GCLC Zornitza Stark Phenotypes for gene: GCLC were changed from to Haemolytic anaemia due to gamma-glutamylcysteine synthetase deficiency MIM#230450; Disorders of the gamma-glutamyl cycle
Mendeliome v0.9088 PRICKLE2 Hazel Phillimore changed review comment from: Six subjects from four unrelated families with heterozygous variants (two de novo missense (c.122 C>T; p.(Pro41Leu) and c.680C>G; p.(Thr227Arg)), one de novo nonsense variant (c.214 C>T; p.(Arg72*) and one frameshift variant (c.1286_1287delGT; p.(Ser429Thrfs*56)) which segregated with the disease in three affected females.

Loss-of-function (homozygous) variants cause seizures in flies, and both heterozygous and homozygous mice showed behavioral abnormalities including altered social interaction, learning abnormalities, and behavioural inflexibility. PubMed: 21276947.; to: Six subjects from four unrelated families with neurodevelopmental delay, behavioural difficulties and epilepsy had heterozygous variants, either de novo or segregating with disease.
Two missense were de novo, c.122 C>T; p.(Pro41Leu) and c.680C>G; p.(Thr227Arg); one nonsense variant was de novo (c.214 C>T; p.(Arg72*); and one frameshift variant segregated with the disorder in three affected females (c.1286_1287delGT; p.(Ser429Thrfs*56)).

Loss-of-function (homozygous) variants have been shown to cause seizures in flies; and both heterozygous and homozygous mice have shown behavioral abnormalities including altered social interaction, learning abnormalities, and behavioral inflexibility (PubMed: 21276947).
Mendeliome v0.9085 PRICKLE2 Zornitza Stark Phenotypes for gene: PRICKLE2 were changed from to Neurodevelopmental disorder, global developmental delay, behavioural difficulties ± epilepsy, autistic features, and attention deficit hyperactive disorder.
Mendeliome v0.9082 PRICKLE2 Hazel Phillimore reviewed gene: PRICKLE2: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 34092786; Phenotypes: Neurodevelopmental disorder, global developmental delay, behavioural difficulties ± epilepsy, autistic features, and attention deficit hyperactive disorder.; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.9075 GRIK2 Zornitza Stark Phenotypes for gene: GRIK2 were changed from to Mental retardation, autosomal recessive, 6 MIM# 611092; Nonsyndromic neurodevelopmental disorder, autosomal dominant
Mendeliome v0.9068 CACNA1I Kristin Rigbye gene: CACNA1I was added
gene: CACNA1I was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CACNA1I was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CACNA1I were set to 33704440
Phenotypes for gene: CACNA1I were set to Neurodevelopmental disorder
Mode of pathogenicity for gene: CACNA1I was set to Other
Review for gene: CACNA1I was set to GREEN
Added comment: 4 different missense variants identified and shown to result in a gain of function.

2 individuals with de novo variants (a 3rd also suspected de novo but their father was unavailable for testing) - these patients all had severe neurodevelopmental disorders, involving severe global developmental delay, absence of speech, gross motor delay, muscular hypotonia, early-onset seizures, cortical visual impairment, and feeding difficulties. Variable clinical features include various brain malformations, startle response or seizures, postnatal growth retardation, gastroesophageal reflux, and gastrostomy.

1 family had three affected individuals - variable cognitive impairment in all, involving borderline intellectual functioning or mild or moderate intellectual disability as main clinical feature, with late-onset seizures in the mother and speech retardation in one of the children. This variant had a milder functional effect than the variants in sporadic cases.
Sources: Literature
Mendeliome v0.9068 GRIK2 Danielle Ariti reviewed gene: GRIK2: Rating: GREEN; Mode of pathogenicity: None; Publications: 34375587, 17847003, 25039795; Phenotypes: Mental retardation, autosomal recessive, 6 MIM# 611092, nonsyndromic neurodevelopmental disorder (NDD; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.9028 CLCN3 Zornitza Stark Phenotypes for gene: CLCN3 were changed from Neurodevelopmental disorder with hypotonia and brain abnormalities, MIM# 619512 to Neurodevelopmental disorder with hypotonia and brain abnormalities, MIM# 619512; Neurodevelopmental disorder with seizures and brain abnormalities, MIM# 619517
Mendeliome v0.9027 CLCN3 Zornitza Stark edited their review of gene: CLCN3: Changed phenotypes: Neurodevelopmental disorder with hypotonia and brain abnormalities, MIM# 619512, Neurodevelopmental disorder with seizures and brain abnormalities, MIM# 619517
Mendeliome v0.9027 CLCN3 Zornitza Stark Phenotypes for gene: CLCN3 were changed from Neurodevelopmental disorder to Neurodevelopmental disorder with hypotonia and brain abnormalities, MIM# 619512
Mendeliome v0.9026 CLCN3 Zornitza Stark reviewed gene: CLCN3: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with hypotonia and brain abnormalities, MIM# 619512; Mode of inheritance: None
Mendeliome v0.9024 GNB2 Zornitza Stark Phenotypes for gene: GNB2 were changed from intellectual disability; dysmorphic features to Neurodevelopmental disorder with hypotonia and dysmorphic facies 619503
Mendeliome v0.9023 GNB2 Zornitza Stark edited their review of gene: GNB2: Changed phenotypes: Neurodevelopmental disorder with hypotonia and dysmorphic facies, MIM# 619503
Mendeliome v0.9021 CHRM1 Bryony Thompson gene: CHRM1 was added
gene: CHRM1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CHRM1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CHRM1 were set to 34212451; 31981491; 12483218
Phenotypes for gene: CHRM1 were set to Neurodevelopmental delay; intellectual disability; autism
Review for gene: CHRM1 was set to AMBER
Added comment: PMID: 34212451 - 2 unrelated cases with de novo missense variants (p.Pro380Leu and p.Phe425Ser), one case with early-onset refractory epilepsy, severe disability, and progressive cerebral and cerebellar atrophy, and the second case with mild dysmorphism, global developmental delay, and moderate intellectual disability. In vitro biochemical analyses of p.Pro380Leu demonstrated a reduction in protein levels, impaired cellular trafficking, and defective activation of intracellular signaling pathways.
PMID: 31981491 - an autism spectrum disorder (no other information on phenotype, except ascertained to have severe neurodevelopmental delay) case with a de novo missense variant p.(Arg210Leu)
PMID: 12483218 - null mouse model assessing memory demonstrated selective cognitive dysfunction.
Sources: Literature
Mendeliome v0.9012 NPR2 Zornitza Stark changed review comment from: Over 15 unrelated families; Biallelic (missense, nonsense, frameshift, splice) NPR2 variants; loss of function; multiple mouse models.

Disorder is characterised by severe dwarfism with shortening of the middle and distal segments of the limbs (disproportionate) with skeletal growth falling off sharply after birth.; to: Bi-allelic variants: Over 15 unrelated families; Biallelic (missense, nonsense, frameshift, splice) NPR2 variants; loss of function; multiple mouse models.

Disorder is characterised by severe dwarfism with shortening of the middle and distal segments of the limbs (disproportionate) with skeletal growth falling off sharply after birth.

Mono-allelic variants have been linked to both tall stature and short stature disorders. Multiple families.
Mendeliome v0.8990 OPDM2 Bryony Thompson STR: OPDM2 was added
STR: OPDM2 was added to Mendeliome. Sources: Literature
Mode of inheritance for STR: OPDM2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: OPDM2 were set to 32413282; 33374016
Phenotypes for STR: OPDM2 were set to Oculopharyngodistal myopathy 2 MIM#618940
Review for STR: OPDM2 was set to GREEN
STR: OPDM2 was marked as clinically relevant
Added comment: NM_005716.4:c.-211GGC[X]
>15 Chinese families/probands with a heterozygous trinucleotide repeat expansion (CGG(n)) in 5'UTR exon 1 of the GIPC1 gene. The expansion was found by a combination of linkage analysis, whole-exome sequencing, long-range sequencing, and PCR analysis, and segregated with the disorder in the family. Repeat lengths in the patients ranged from 70 to 138. Normal repeat lengths ranged from 12 to 32.
Sources: Literature
Mendeliome v0.8984 PNPLA6 Zornitza Stark changed review comment from: Ataxia is part of the phenotype.
Sources: Expert list; to: Variants in this gene are associated with multiple phenotypes.

Oliver-McFarlane syndrome is a rare congenital disorder characterized by trichomegaly, severe chorioretinal atrophy and multiple pituitary hormone deficiencies, including growth hormone. At least 10 families reported.

Laurence-Moon syndrome has a clinical presentation similar to that of Oliver-McFarlane syndrome, including chorioretinopathy and pituitary dysfunction, but with childhood onset of ataxia, peripheral neuropathy, and spastic paraplegia and without trichomegaly. Single family reported.
Mendeliome v0.8940 EDEM3 Zornitza Stark Phenotypes for gene: EDEM3 were changed from Congenital disorder of glycosylation; Developmental delay to Congenital disorder of glycosylation, type 2V, MIM# 619493
Mendeliome v0.8939 EDEM3 Zornitza Stark reviewed gene: EDEM3: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Congenital disorder of glycosylation, type 2V, MIM# 619493; Mode of inheritance: None
Mendeliome v0.8932 GLI2 Zornitza Stark changed review comment from: Culler-Jones syndrome (CJS) is characterized by hypopituitarism, mainly growth hormone deficiency, and/or postaxial polydactyly. The phenotype is highly variable, and some individuals may have midline facial defects and developmental delay. The disorder shows incomplete penetrance and variable expressivity. Multiple families reported, short stature is a feature as a result of GH deficiency.

Variants in GLI2 are also associated with HPE, at least 5 families reported. Short stature is observed more rarely, as a result of midline defect.; to: Culler-Jones syndrome (CJS) is characterized by hypopituitarism, mainly growth hormone deficiency, and/or postaxial polydactyly. The phenotype is highly variable, and some individuals may have midline facial defects and developmental delay. The disorder shows incomplete penetrance and variable expressivity. Multiple families reported.

Variants in GLI2 are also associated with HPE, at least 5 families reported.
Mendeliome v0.8900 RNU4ATAC Zornitza Stark edited their review of gene: RNU4ATAC: Added comment: Lowry-Wood syndrome (LWS) is characterized by multiple epiphyseal dysplasia and microcephaly. Patients exhibit intrauterine growth retardation and short stature, as well as developmental delay and intellectual disability. Retinal degeneration has been reported in some patients.

Four unrelated families reported.

Note features between the three RNU4ATAC-related conditions overlap and they may not represent distinct disorders.; Changed rating: GREEN; Changed publications: 29265708, 12605445; Changed phenotypes: Lowry-Wood syndrome, MIM# 226960; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8889 ZNF699 Zornitza Stark gene: ZNF699 was added
gene: ZNF699 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZNF699 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNF699 were set to 33875846
Phenotypes for gene: ZNF699 were set to DEGCAGS syndrome, MIM# 619488
Review for gene: ZNF699 was set to GREEN
Added comment: DEGCAGS syndrome is a neurodevelopmental disorder characterized by global developmental delay, coarse and dysmorphic facial features, and poor growth and feeding apparent from infancy. Affected individuals have variable systemic manifestations often with significant structural defects of the cardiovascular, genitourinary, gastrointestinal, and/or skeletal systems. Additional features may include sensorineural hearing loss, hypotonia, anaemia or pancytopaenia, and immunodeficiency with recurrent infections.

12 unrelated families reported, 5 different homozygous frameshift variants.
Sources: Literature
Mendeliome v0.8861 IGF2 Zornitza Stark changed review comment from: RSS phenotype.; to: Silver-Russell syndrome-3 (SRS3) is characterized by intrauterine growth retardation with relative macrocephaly, followed by feeding difficulties and postnatal growth restriction. Dysmorphic facial features include triangular face, prominent forehead, and low-set ears. Other variable features include limb defects, genitourinary and cardiovascular anomalies, hearing impairment, and developmental delay. Disruption of any gene in the HMGA2-PLAG1-IGF2 pathway results in a decrease in IGF2 expression and produces an SRS phenotype similar to that of patients carrying 11p15.5 epigenetic defects.

Begemann et al. (2015) performed exome sequencing in 4 affected people with severe growth restriction in one family, and identified a heterozygous nonsense mutation in the IGF2 gene that segregated fully with the disorder. Affected individuals inherited the mutation from their healthy fathers, and it originated from the healthy paternal grandmother. Clinical features occurred only in those who inherited the variant allele through paternal transmission, consistent with maternal imprinting of IGF2.

Many other cases reported since with de novo mutations in IGF2 present on the paternal allele.
Mendeliome v0.8834 RNF220 Zornitza Stark gene: RNF220 was added
gene: RNF220 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RNF220 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RNF220 were set to 33964137; 10881263
Phenotypes for gene: RNF220 were set to Leukodystrophy; CNS hypomyelination; Ataxia; Intellectual disability; Sensorineural hearing impairment; Elevated hepatic transaminases; Hepatic fibrosis; Dilated cardiomyopathy; Spastic paraplegia; Dysarthria; Abnormality of the corpus callosum
Review for gene: RNF220 was set to GREEN
Added comment: Sferra et al (2021 - PMID: 33964137) provide extensive evidence that biallelic RNF220 mutations cause a disorder characterized by hypomyelinating leukodystrophy, ataxia (9/9 - onset 1-5y), borderline intellectual functioning (3/9) / intellectual disability (5/9 - in most cases mild), sensorineural deafness (9/9) with complete hearing loss in the first decade of life, hepatopathy (9/9) with associated periportal fibrosis, and dilated cardiomyopathy (9/9) which was fatal.

Other neurologic manifestations apart from ataxia incl. hyperreflexia (8/8), spastic paraplegia (9/9), dysarthria (9/9), peripheral neuropathy (4/9), seizures in one case (1/9). Upon brain MRI there was thin corpus callosum (9/9) or cerebellar atrophy in some (2/9).

The authors identified homozygosity for 2 recurrent missense RNF220 variants in affected members belonging to these 5 broad consanguineous pedigrees (7 families), namely NM_018150.4:c.1094G>A / p.Arg365Gly in 4 Roma families in the context of a shared haplotype (/founder effect) as well as c.1088G>A / p.Arg363Gly in a large pedigree from southern Italy initially reported by Leuzzi et al (2000 - PMID: 10881263).

Extensive segregation analyses were carried out including several affected and unaffected members.

RNF220 encodes ring finger protein 220, which functions as an E3 ubiquitin ligase. Previous studies have shown among others a role in modulation of Sonic hedgehog/GLI signaling and cerebellar development

Evidence for the role of RNF220 included relevant expression, localization within the cell, interaction partners (lamin B1, 20S proteasome), similarities with other laminopathies in terms of phenotype, etc :
*RNF220 has a relevant expression pattern in CNS (based on qRT-PCR analyses in human brain, cerebellum, cerebral cortex / mRNA levels in human fetal CNS with higher expression in cerebellum, spinal cord and cortex / previous GTEx data / protein levels in mouse CNS)
*The protein displays nuclear localization based on iPSC cells differentiated to motor neurons (also supported by data from the Human Protein Atlas). Transfection of COS-1 cells demonstrated localization primarily to the nucleus (as also previously demonstrated in HEK293T cells) in vesicle like structures with ASF2/SF2 colocalization suggesting enrichment in nuclear speckles. There was also partial co-distribution with the 20S proteasome. R363Q and R365Q additionally coalesced in the cytoplasm forming protein aggregates/inclusions.
*Immunofluorescence studies in patient fibroblasts also confirmed abnormal increase of the protein in the cytoplasm and increased fluorescence with the 20S proteasome.
*Proteomic identification of RNF220-interacting proteins in transfected HEK293T cells demonstrated enrichment for all members of the lamin protein family (incl . lamin B1, AC, B2).
*RNAi-mediated downregulation of RNF222 in Drosophila suggested altered subcellular localization and accumulation of the fly orthologue for human lamin B1.
*Immunoprecipitation of lamin B1 from the nuclear matrix of cerebellar cells suggested significant interaction of endogenous lamin B1 with RNF220, while transfection studies in HEK293T cells for wt/mt suggested reduced binding to endogenous lamin B1 for RNF220 mt compared to wt (more prominent for R365Q). RNF220 mutants also reduced ubiquitination of nuclear lamin B1 compared to wt.
*Patient fibroblasts immunostained with different nuclear envelope markers displayed abnormal nuclear shapes with multiple invaginations and lobulations, findings also observed in laminopathies.
Sources: Literature
Mendeliome v0.8824 PLXNA2 Zornitza Stark gene: PLXNA2 was added
gene: PLXNA2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PLXNA2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PLXNA2 were set to 34327814
Phenotypes for gene: PLXNA2 were set to Intellectual disability; Abnormality of the face; Failure to thrive; Abnormal heart morphology
Review for gene: PLXNA2 was set to AMBER
Added comment: Altuame et al (2021 - PMID: 34327814) describe 3 individuals from 2 consanguineous Arab families with biallelic PLXNA2 variants.

The index patient from the 1st family presented with CHD (hypoplastic right ventricle, ASD), DD and moderate ID (IQ of 40), failure to thrive as well as some dysmorphic features (obtuse mandibular angle, mild overbite, synophrys with downslanting p-f, strabismus, etc). There were additional features (eg. postaxial polydactyly) which were found in other affected and unaffected family members.

Exome sequencing with autozygome analysis revealed homozygosity for a PLXNA2 stopgain variant (NM_025179:c.3603C>A / p.(Cys1201*)).

Sanger confirmation was carried out and segregation analyses confirmed carrier status of the unaffected parents and a sib as well as a brother homozygous for the same variant. Clinical evaluation of the latter, following this finding revealed borderline intellectual functioning, ADHD, failure to thrive. There was no mandibular anomaly or overbite and no clinical evidence of CHD (no echo performed).

The index patient from the 2nd consanguineous family was evaluated for ID (IQ of 63), with previous borderline motor development, ADHD and some dysmorphic features (obtuse mandibular angle and overbite). There was no clinical evidence of CHD (no echo performed).

Exome sequencing with autozygosity mapping revealed a homozygous missense PLXNA2 variant (c.3073G>A / p.(Asp1025Asn), present only once in gnomAD (htz), with rather non-concordant in silico predictions SIFT 0.22, PolyPhen 0.682 and CADD 23.5. The aa was however highly conserved.

Segregation analysis confirmed carrier state of the parents and 2 unaffected sibs, with a 3rd sib homozygous for the wt allele.

As the authors discuss:
*PLXNA2 belongs to the plexin family of genes, encoding transmbembrane proteins functioning as semaphorin receptors. It has predominant expression in neural tissue. The protein is thought to bind semaphorin-3A, -3C or -5 followed by plexin A2 dimerization, activation of its GTPase-activating protein domain, negative regulation of Rap1B GTPase and initiation of a signal transduction cascade mediating axonal repulsion/guidance, dendritic guidance, neuronal migration.
*Murine Plxna2 knockout models display structural brain defects. In addition they display congenital heart defects incl. persistent truncus arteriosus and interrupted aortic arch.
*Rare CNVs in adult humans with tetralogy of Fallot have suggested a potential role of PLXNA2 in cardiac development and CHD.
*Expression and the role of PLXNA2 in human chondrocytes as well as a GWAS in 240 japanese patients with mandibular prognathism where PLXNA2 was suggested as a susceptibility locus.

Overall, the authors recognize some common features (as for cognitive functioning, some dysmorphic features incl. obtuse mandibular angle and overbite in 2 unrelated subjects, failure to thrive 3/3) and provide plausible explanations for the variability / discordance of others eg:
- Cyanotic heart disease explaining discordance in cognitive outcome among sibs
- Incomplete penetrance for CHD (and/or ID or mandibular anomaly) as for few AR disorders and/or
- Additional pathogenic variants possibly explaining the CHD in the first subject.

There is no associated phenotype in OMIM or G2P. SysID includes PLXNA2 among the candidate ID genes.
Sources: Literature
Mendeliome v0.8822 SUPT16H Zornitza Stark Phenotypes for gene: SUPT16H were changed from Intellectual disability; Abnormality of the corpus callosum to Neurodevelopmental disorder with dysmorphic facies and thin corpus callosum, MIM# 619480; Intellectual disability; Abnormality of the corpus callosum
Mendeliome v0.8821 SUPT16H Zornitza Stark edited their review of gene: SUPT16H: Changed phenotypes: Neurodevelopmental disorder with dysmorphic facies and thin corpus callosum, MIM# 619480, Intellectual disability, Abnormality of the corpus callosum
Mendeliome v0.8807 VPS50 Zornitza Stark gene: VPS50 was added
gene: VPS50 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: VPS50 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: VPS50 were set to 34037727
Phenotypes for gene: VPS50 were set to Neonatal cholestatic liver disease; Failure to thrive; Profound global developmental delay; Postnatal microcephaly; Seizures; Abnormality of the corpus callosum
Review for gene: VPS50 was set to AMBER
Added comment: Schneeberger et al (2021 - PMID: 34037727) describe the phenotype of 2 unrelated individuals with biallelic VPS50 variants.

Common features included transient neonatal cholestasis, failure to thrive, severe DD with failure to achieve milestones (last examination at 2y and 2y2m respectively), postnatal microcephaly, seizures (onset at 6m and 25m) and irritability. There was corpus callosum hypoplasia on brain imaging.

Both individuals were homozygous for variants private to each family (no/not known consanguinity applying to each case). The first individual was homozygous for a splicing variant (NM_017667.4:c.1978-1G>T) and had a similarly unaffected sister deceased with no available DNA for testing. The other individual was homozygous for an in-frame deletion (c.1823_1825delCAA / p.(Thr608del)).

VPS50 encodes a critical component of the endosome-associated recycling protein (EARP) complex, which functions in recycling endocytic vesicles back to the plasma membrane [OMIM based on Schindler et al]. The complex contains VPS50, VPS51, VPS52, VPS53, the three latter also being components of GARP (Golgi-associated-retrograde protein) complex. GARP contains VPS54 instead of VPS50 and is required for trafficking of proteins to the trans-golgi network. Thus VPS50 (also named syndetin) and VPS54 function in the EARP and GARP complexes, to define directional movement of their endocytic vesicles [OMIM based on Schindler et al]. The VPS50 subunit is required for recycling of the transferrin receptor.

As discussed by Schneeberger et al (refs provided in text):
- VPS50 has a high expression in mouse and human brain as well as throughout mouse brain development.
- Mice deficient for Vps50 have not been reported. vps50 knockdown in zebrafish results in severe developmental defects of the body axis. Knockout mice for other proteins of the EARP/GARP complex (e.g. Vps52, 53 and 54) display embryonic lethality.

Studies performed by Schneeberger et al included:
- Transcript analysis for the 1st variant demonstrated skipping of ex21 (in patient derived fabriblasts) leading to an in frame deletion of 81 bp (r.1978_2058del) with predicted loss of 27 residues (p.Leu660_Leu686del).
- Similar VPS50 mRNA levels but significant reduction of protein levels (~5% and ~8% of controls) were observed in fibroblasts from patients 1 and 2. Additionally, significant reductions in the amounts of VPS52 and VPS53 protein levels were observed despite mRNA levels similar to controls. Overall, this suggested drastic reduction of functional EARP complex levels.
- Lysosomes appeared to have similar morphology, cellular distribution and likely unaffected function in patient fibroblasts.
- Transferrin receptor recycling was shown to be delayed in patient fibroblasts suggestive of compromise of endocytic-recycling function.

As the authors comment, the phenotype of both individuals with biallelic VPS50 variants overlaps with the corresponding phenotype reported in 15 subjects with biallelic VPS53 or VPS51 mutations notably, severe DD/ID, microcephaly and early onset epilepsy, CC anomalies. Overall, for this group, they propose the term "GARP and/or EARP deficiency disorders".

There is no VPS50-associated phenotype in OMIM or G2P. SysID includes VPS50 among the ID candidate genes.
Sources: Literature
Mendeliome v0.8745 TMEM222 Zornitza Stark Phenotypes for gene: TMEM222 were changed from Intellectual disability; Epilepsy; Microcephaly to Neurodevelopmental disorder with motor and speech delay and behavioural abnormalities, MIM# 619470; Intellectual disability; Epilepsy; Microcephaly
Mendeliome v0.8744 TMEM222 Zornitza Stark edited their review of gene: TMEM222: Changed phenotypes: Neurodevelopmental disorder with motor and speech delay and behavioural abnormalities, MIM# 619470, Intellectual disability, Epilepsy, Microcephaly
Mendeliome v0.8744 TCF7L2 Zornitza Stark Phenotypes for gene: TCF7L2 were changed from Developmental disorders to Global developmental delay; Intellectual disability; Autism; Attention deficit hyperactivity disorder; Myopia; Abnormality of skeletal system
Mendeliome v0.8741 TCF7L2 Zornitza Stark changed review comment from: 2 reviews
Konstantinos Varvagiannis (Other)
I don't know

Dias et al (2021 - PMID: 34003604) describe the phenotype of 11 unrelated individuals harboring de novo missense/truncating TCF7L2 variants.

Features included DD in childhood (motor delay in 8/11, speech delay in 11/11), intellectual abilities ranging from average cognitive functioning to mild/moderate ID (the latter observed in 5/11), myopia (6/11) , dysmorphic features, variable orthopedic findings, and neuropsychiatric comorbidities incl. ASD (4/11) / ADHD (4/11).

One additional (12th) individual was excluded from this summary due to concurrent diagnosis of hypoxic-ischemic injury.

TCF7L2 on 10q25 encodes transcription factor 7-like 2, a high mobility group (HMG) box-containing transcription factor. As the authors discuss, the protein mediates canonical Wnt signaling. Secreted Wnt proteins lead to release of beta-catenin (CTNNB1) which after translocation to the nucleus acts with DNA-binding factors incl. TCF7L2 to turn on Wnt-responsive target genes. As a result TCF7L2 acts with beta-catenin as a switch for transcriptional regulation. Multiple alternative spliced TCF7L2 transcripts mediate it's function and specificity of transcriptional repertoire in a variety of tissues and contexts.

Dias et al provide references for its role in nervous system development incl. neurogenesis and thalamic development.

Variants in all cases occurred as de novo events with pLoF (stopgain, frameshift, splicing) ones predicted to lead to NMD. Missense variants occurred in all cases in or adjacent to the HMG box domain [aa 350-417]. 5 different missense variants affecting 3 residues were reported incl. c.1142A>C, c.1143C>G (leading to Asn381Thr/Lys respectively), c.1250G>T (Trp417Leu), c.1267T>C, c.1268A>G (leading to Tyr423His/Cys) [NM_001146274.1].

The gene has a pLI of 0.99-1 gnomAD/ExAC while there is a region of missense constraint encompassing the HMG box domain (the latter is an evolutionary conserved region mediating interactions with DNA).

No phenotypic differences were observed among individuals with pLoF and missense SNVs, and haploinsufficiency is presumed to be the underlying mechanism.

There are no variant or other studies performed, nor any animal models discussed.

In supplementary table 2, the authors provide several references to previous large scale sequencing studies with brief/incomplete descriptions of individuals de novo TCF7L2 variants and neurodevelopmental disorder (ID/ASD - Iossifov, De Rubeis, Lelieveld, McRae/DDD study and many other Refs).

Heterozygous TCF7L2 variants are thought to confer susceptibility to type diabetes mellitus (MIM 125853). Individuals reported by Dias et al did not have endocrine abnormalities including DM. A study by Roychowdhury et al (2021 - PMID: 34265237) suggests that regulatory variants in TCF7L2 are associated with thoracic aneurysm.

There is no other associated phenotype (notably NDD) in OMIM.
G2P includes TCF7L2 in its DD panel (Disease : TC7L2-related DD, Confidence:confirmed, Monoallelic, LoF).
SysID includes this gene within the autism candidate genes and current primary ID genes.; to: Dias et al (2021 - PMID: 34003604) describe the phenotype of 11 unrelated individuals harboring de novo missense/truncating TCF7L2 variants.

Features included DD in childhood (motor delay in 8/11, speech delay in 11/11), intellectual abilities ranging from average cognitive functioning to mild/moderate ID (the latter observed in 5/11), myopia (6/11) , dysmorphic features, variable orthopedic findings, and neuropsychiatric comorbidities incl. ASD (4/11) / ADHD (4/11).

One additional (12th) individual was excluded from this summary due to concurrent diagnosis of hypoxic-ischemic injury.

TCF7L2 on 10q25 encodes transcription factor 7-like 2, a high mobility group (HMG) box-containing transcription factor. As the authors discuss, the protein mediates canonical Wnt signaling. Secreted Wnt proteins lead to release of beta-catenin (CTNNB1) which after translocation to the nucleus acts with DNA-binding factors incl. TCF7L2 to turn on Wnt-responsive target genes. As a result TCF7L2 acts with beta-catenin as a switch for transcriptional regulation. Multiple alternative spliced TCF7L2 transcripts mediate it's function and specificity of transcriptional repertoire in a variety of tissues and contexts.

Dias et al provide references for its role in nervous system development incl. neurogenesis and thalamic development.

Variants in all cases occurred as de novo events with pLoF (stopgain, frameshift, splicing) ones predicted to lead to NMD. Missense variants occurred in all cases in or adjacent to the HMG box domain [aa 350-417]. 5 different missense variants affecting 3 residues were reported incl. c.1142A>C, c.1143C>G (leading to Asn381Thr/Lys respectively), c.1250G>T (Trp417Leu), c.1267T>C, c.1268A>G (leading to Tyr423His/Cys) [NM_001146274.1].

The gene has a pLI of 0.99-1 gnomAD/ExAC while there is a region of missense constraint encompassing the HMG box domain (the latter is an evolutionary conserved region mediating interactions with DNA).

No phenotypic differences were observed among individuals with pLoF and missense SNVs, and haploinsufficiency is presumed to be the underlying mechanism.

There are no variant or other studies performed, nor any animal models discussed.

In supplementary table 2, the authors provide several references to previous large scale sequencing studies with brief/incomplete descriptions of individuals de novo TCF7L2 variants and neurodevelopmental disorder (ID/ASD - Iossifov, De Rubeis, Lelieveld, McRae/DDD study and many other Refs).

Heterozygous TCF7L2 variants are thought to confer susceptibility to type diabetes mellitus (MIM 125853). Individuals reported by Dias et al did not have endocrine abnormalities including DM. A study by Roychowdhury et al (2021 - PMID: 34265237) suggests that regulatory variants in TCF7L2 are associated with thoracic aneurysm.

There is no other associated phenotype (notably NDD) in OMIM.
G2P includes TCF7L2 in its DD panel (Disease : TC7L2-related DD, Confidence:confirmed, Monoallelic, LoF).
SysID includes this gene within the autism candidate genes and current primary ID genes.
Mendeliome v0.8741 TCF7L2 Zornitza Stark reviewed gene: TCF7L2: Rating: GREEN; Mode of pathogenicity: None; Publications: 34003604; Phenotypes: Global developmental delay, Intellectual disability, Autism, Attention deficit hyperactivity disorder, Myopia, Abnormality of skeletal system; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.8736 PIDD1 Zornitza Stark gene: PIDD1 was added
gene: PIDD1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: PIDD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PIDD1 were set to 28397838; 29302074; 33414379; 34163010
Phenotypes for gene: PIDD1 were set to Global developmental delay; Intellectual disability; Seizures; Autism; Behavioral abnormality; Psychosis; Pachygyria; Lissencephaly; Abnormality of the corpus callosum
Review for gene: PIDD1 was set to GREEN
Added comment: There is enough evidence to include this gene in the current panel with green rating.

Biallelic PIDD1 pathogenic variants have been reported in 26 individuals (11 families) with DD (all), variable degrees of ID (mild to severe), behavioral (eg. aggression/self-mutilation in several, ADHD) and/or psychiatric abnormalities (ASD, psychosis in 5 belonging to 3 families), well-controlled epilepsy is some (9 subjects from 6 families) and MRI abnormalities notably abnormal gyration pattern (pachygyria with predominant anterior gradient) as well as corpus callosum anomalies (commonly thinning) in several. Dysmorphic features have been reported in almost all, although there has been no specific feature suggested.

The first reports on the phenotype associated with biallelic PIDD1 mutations were made by Harripaul et al (2018 - PMID: 28397838) and Hu et al (2019 - PMID: 29302074) [both studies investigating large cohorts of individuals with ID from consanguineous families].

Sheikh et al (2021 - PMID: 33414379) provided details on the phenotype of 15 individuals from 5 families including those from the previous 2 reports and studied provided evidence on the role of PIDD1 and the effect of variants.

Zaki et al (2021 - PMID: 34163010) reported 11 additional individuals from 6 consanguineous families, summarize the features of all subjects published in the literature and review the neuroradiological features of the disorder.

PIDD1 encodes p53-induced death domain protein 1. The protein is part of the PIDDosome, a multiprotein complex also composed of the bipartite linker protein CRADD (also known as RAIDD) and the proform of caspase-2 and induces apoptosis in response to DNA damage.

There are 5 potential PIDD1 mRNA transcript variants with NM_145886.4 corresponding to the longest. Similar to the protein encoded by CRADD, PIDD1 contains a death domain (DD - aa 774-893). Constitutive post-translational processing gives PIDD1-N, PIDD1-C the latter further processed into PIDD1-CC (by auto-cleavage). Serine residues at pos. 446 and 588 are involved in this autoprocessing generating PIDD1-C (aa 446-910) and PIDD1-CC (aa 774-893). The latter is needed for caspase-2 activation.

Most (if not all) individuals belonged to consanguineous families of different origins and harbored pLoF or missense variants.

Variants reported so far include : c.2587C>T; p.Gln863* / c.1909C>T ; p.Arg637* / c.2443C>T / p.Arg815Trp / c.2275-1G>A which upon trap assay was shown to lead to skipping of ex15 with direct splicing form exon14 to the terminal exon 16 (resulting to p.Arg759Glyfs*1 with exlcusion of the entire DD) / c.2584C>T; p.Arg862Trp / c.1340G>A; p.Trp447* / c.2116_2120del; p.Val706His*, c.1564_1565del; p.Gly602fs*26

Evidence so far provided includes:
- Biallelic CRADD variants cause a NDD disorder and a highly similar gyration pattern.
- Confirmation of splicing effect (eg. for c.2275-1G>A premature stop in position 760) or poor expression (NM_145886.3:c.2587C>T; p.Gln863*). Arg815Trp did not affect autoprocessing or protein stability.
- Abnormal localization pattern, loss of interaction with CRADD and failure to activate caspase-2 (MDM2 cleavage assay) [p.Gln863* and Arg815Trp]
- Available expression data from GTEx (PIDD1 having broad expression in multiple tissues, but higher in brain cerebellum) as well as BrainSpan and PsychEncode studies suggesting high coexpression of PIDD1, CRADD and CASP2 in many regions in the developing human brain.
- Variants in other genes encoding proteins interacting with PIDD1 (MADD, FADD, DNAJ, etc) are associated with NDD.

Pidd-1 ko mice (ex3-15 removal) lack however CNS-related phenotypes. These show decreased anxiety but no motor anomalies. This has also been the case with Cradd-/- mice displaying no significant CNS phenotypes without lamination defects.

There is currently no associated phenotype in OMIM. PIDD1 is listed in the DD panel of G2P (PIDD1-related NDD / biallelic / loss of function / probable) . SysID includes PIDD1 among the current primary ID genes.
Sources: Expert Review
Mendeliome v0.8696 CD19 Zornitza Stark changed review comment from: More than 5 unrelated families reported.; to: More than 5 unrelated families reported. Clinical features include increased susceptibility to infection, hypogammaglobulinaemia, and normal numbers of mature B cells in blood, indicating a B-cell antibody-deficient immunodeficiency disorder.
Mendeliome v0.8671 SPTBN4 Zornitza Stark reviewed gene: SPTBN4: Rating: GREEN; Mode of pathogenicity: None; Publications: 33772159, 29861105; Phenotypes: Neurodevelopmental disorder with hypotonia, neuropathy, and deafness, MIM# 617519; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8641 LRBA Zornitza Stark Phenotypes for gene: LRBA were changed from to Immunodeficiency, common variable, 8, with autoimmunity MIM# 614700; Normal-decreased CD4 numbers; T cell dysregulation; Low-normal B cells; Reduced IgG and IgA; Recurrent infections; chronic diarrhoea; inflammatory bowel disease; hypogammaglobulinaemia; pneumonitis; autoimmune disorders; thrombocytopaenia
Mendeliome v0.8638 LRBA Zornitza Stark reviewed gene: LRBA: Rating: GREEN; Mode of pathogenicity: None; Publications: 22608502, 22721650, 25468195, 26206937, 33155142; Phenotypes: Immunodeficiency, common variable, 8, with autoimmunity MIM# 614700, Normal-decreased CD4 numbers, T cell dysregulation, Low-normal B cells, Reduced IgG and IgA, Recurrent infections, chronic diarrhoea, inflammatory bowel disease, hypogammaglobulinaemia, pneumonitis, autoimmune disorders, thrombocytopaenia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8606 VRK1 Zornitza Stark changed review comment from: Complex phenotype with mixed peripheral and central neurological features. Two families reported where PCH was prominent and accompanied by ataxia. At least three families also reported where peripheral neuropathy dominated the clinical picture without PCH/ataxia.; to: Complex phenotype with mixed peripheral and central neurological features. Two families reported where PCH was prominent and accompanied by ataxia. At least three families also reported where peripheral neuropathy dominated the clinical picture without PCH/ataxia.

Further delineation of phenotype 2021:
PMID 34169149: expanding spectrum of neurologic disorders associated with VRK1. Two Hispanic individuals, one homozygous (R321C: VUS and LP/P in ClinVar) and one cHet (R321C+V236M, latter P and more recently VUS in ClinVar), with slowly progressive weakness and a clinical syndrome consistent with adult-onset spinal muscular atrophy WITHOUT pontocerebellar atrophy. No hom in gnomAD and both have been reported in cHet individuals with other features: R321C in association with adult-onset amyotrophic lateral sclerosis and V236M with rapidly progressive sensorimotor polyneuropathy and microcephaly. Authors suggest PMID 26583493 and 31837156 have similar reports. PMID 26583493 reports a 32yo Hispanic individual, cHet H119R+R321C, with early-onset amyotrophic lateral sclerosis, 5 years progressive weakness. PMID 31837156 reports two patients with adult-onset length-dependent motor neuropathy from unrelated consanguineous families of Moroccan Jewish descent, both hom for R387H.
Mendeliome v0.8602 ZDHHC15 Daniel Flanagan reviewed gene: ZDHHC15: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: cerebral palsy, intellectual disability, autism spectrum disorder, epilepsy; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.8601 CLCN3 Kristin Rigbye gene: CLCN3 was added
gene: CLCN3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CLCN3 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: CLCN3 were set to PMID: 34186028
Phenotypes for gene: CLCN3 were set to Neurodevelopmental disorder
Mode of pathogenicity for gene: CLCN3 was set to Other
Review for gene: CLCN3 was set to GREEN
Added comment: 11 individuals reported, 9 that carried 8 different rare heterozygous missense variants in CLCN3, and 2 siblings that were homozygous for an NMD-predicted frameshift variant likely abolishing ClC-3 function. All missense variants were confirmed to be de novo in eight individuals for whom parental data was available.

The 11 individuals in the cohort share clinical features of variable severity. All 11 have GDD or ID and dysmorphic features, and a majority has mood or behavioural disorders and structural brain abnormalities:
- Structural brain abnormalities on MRI (9/11) included partial or full agenesis of the corpus callosum (6/9), disorganized cerebellar folia (4/9), delayed myelination (3/9), decreased white matter volume (3/9), pons hypoplasia (3/9), and dysmorphic dentate nuclei (3/9). Six of those with brain abnormalities also presented with seizures.
- Nine have abnormal vision, including strabismus in four and inability to fix or follow in the two with homozygous loss-of-function variants.
- Hypotonia ranging from mild to severe was reported in 7 of the 11 individuals.
- Six have mood or behavioural disorders, particularly anxiety (3/6).
- Consistent dysmorphic facial features included microcephaly, prominent forehead, hypertelorism, down-slanting palpebral fissures, full cheeks, and micrognathia.

The severity of disease in the two siblings with homozygous disruption of ClC-3 is consistent with the drastic phenotype seen in Clcn3 KO mice. The disease was more severe in two siblings carrying homozygous loss-of-function variants with the presence of GDD, absent speech, seizures, and salt and pepper fundal pigmentation in both individuals, with one deceased at 14 months of age. The siblings also had significant neuroanatomical findings including diffusely decreased white matter volume, thin corpora callosa, small hippocampi, and disorganized cerebellar folia. Supporting biallelic inheritance for LoF variants, disruption of mouse Clcn3 results in drastic neurodegeneration with loss of the hippocampus a few months after birth and early retinal degeneration. Clcn3−/− mice display severe neurodegeneration, whereas heterozygous Clcn3+/− mice appear normal.

Patch-clamp studies were used to investigate four of the missense variants. These suggested a gain of function in two variants with increased current in HEK cells, however they also showed reduced rectification of voltage and a loss of transient current, plus decreased current amplitude, glycosylation and surface expression when expressed in oocytes, and were suspected to interfere with channel gating and a negative feedback mechanism. These effects were also shown to vary depending on pH levels. The current of the remaining two variants did not differ from WT. For heterozygous missense variants, the disruption induced may be at least partially conferred to mutant/WT homodimers and mutant/ClC-4 heterodimers.

Both loss and gain of function in this gene resulted in the same phenotype.
Sources: Literature
Mendeliome v0.8600 AP1G1 Danielle Ariti gene: AP1G1 was added
gene: AP1G1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: AP1G1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: AP1G1 were set to 34102099
Phenotypes for gene: AP1G1 were set to Neurodevelopmental disorder (NDD); Intellectual Disability; Epilepsy
Mode of pathogenicity for gene: AP1G1 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: AP1G1 was set to GREEN
Added comment: Two bi-allelic homozygous missense variants were found in two distinct families with Italian and Pakistani origins; homozygous missense variants.

Eight de novo heterozygous variants were identified in nine isolated affected individuals from nine families; including five missense, two frameshift, and one intronic variant that disrupts the canonical splice acceptor site.

Knocking out AP1G1 Zebrafish model resulted in severe developmental abnormalities and increased lethality.

All individuals had neurodevelopmental disorder (NDD) including global developmental delay and ID, which varied in severity from mild to severe.
Sources: Literature
Mendeliome v0.8598 SPTBN4 Zornitza Stark Phenotypes for gene: SPTBN4 were changed from to Neurodevelopmental disorder with hypotonia, neuropathy, and deafness (NEDHND, OMIM #617519)
Mendeliome v0.8592 EDEM3 Seb Lunke Phenotypes for gene: EDEM3 were changed from EDEM3-congenital disorder of glycosylation to Congenital disorder of glycosylation; Developmental delay
Mendeliome v0.8586 SPTBN4 Melanie Marty reviewed gene: SPTBN4: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 33772159; Phenotypes: Neurodevelopmental disorder with hypotonia, neuropathy, and deafness (NEDHND, OMIM #617519); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8586 EDEM3 Michelle Torres gene: EDEM3 was added
gene: EDEM3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EDEM3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EDEM3 were set to 34143952
Phenotypes for gene: EDEM3 were set to EDEM3-congenital disorder of glycosylation
Review for gene: EDEM3 was set to GREEN
Added comment: PMID: 34143952: 7 families (11 individuals) with 6x PTV and 2x missense variants with neurodevelopmental delay and variable facial dysmorphisms. The unaffected parents were all heterozygous carriers. Functional show LoF of EDEM3 enzymatic activity.
Sources: Literature
Mendeliome v0.8585 ANK2 Zornitza Stark gene: ANK2 was added
gene: ANK2 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: ANK2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ANK2 were set to 31983240; 22542183; 25363768; 27479843; 28554332; 30564305; 30755392; 31981491; 33004838; 33057194
Phenotypes for gene: ANK2 were set to Long QT syndrome 4, MIM# 600919; Complex neurodevelopmental disorder, MONDO:0100038
Review for gene: ANK2 was set to GREEN
Added comment: Link with cardiac abnormalities such as LongQT is DISPUTED. More than 10 unrelated individuals reported with neurodevelopmental phenotype, comprising autism/ID and de novo truncating variants, in addition to many other individuals as part of large NDD cohorts. This association has been assessed as DEFINITIVE by ClinGen.
Sources: Expert Review
Mendeliome v0.8583 PRDX3 Hazel Phillimore changed review comment from: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex.
Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres.
The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote of a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism.
The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense.
Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity.
PRXD3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated.
Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species.
In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress.
Sources: Literature; to: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex.
Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres.
The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote with a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism.
The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense.
Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity.
PRDX3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated.
Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species.
In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress.
Sources: Literature
Mendeliome v0.8583 PRDX3 Hazel Phillimore gene: PRDX3 was added
gene: PRDX3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRDX3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PRDX3 were set to PMID: 33889951
Phenotypes for gene: PRDX3 were set to cerebellar ataxia (early onset, mild to moderate, progressive)
Penetrance for gene: PRDX3 were set to unknown
Review for gene: PRDX3 was set to GREEN
Added comment: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex.
Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres.
The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote of a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism.
The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense.
Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity.
PRXD3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated.
Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species.
In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress.
Sources: Literature
Mendeliome v0.8574 ERBB3 Zornitza Stark Phenotypes for gene: ERBB3 were changed from Lethal congenital contractural syndrome 2, MIM# 607598; Hirschsprung disease; Arthrogryposis; Neurodevelopmental disorder with gut dysmotility to Lethal congenital contractural syndrome 2, MIM# 607598; Hirschsprung disease; Arthrogryposis; Complex neurocristinopathy
Mendeliome v0.8573 ERBB3 Zornitza Stark changed review comment from: PMID 33497358: 6 individuals from 4 unrelated families reported with severe gut dysmotility and neurodevelopmental disorder. Note variants in this gene have also recently been linked to Hirschsprung's disease.; to: PMID 33497358: 6 individuals from 4 unrelated families reported with severe gut dysmotility and other features of neurocristinopathy including short-segment HSCR, progressive axonal peripheral neuropathy, dysautonomia, hypopigmentation, deafness. Note variants in this gene have also recently been linked to Hirschsprung's disease.
Mendeliome v0.8573 ERBB3 Zornitza Stark Phenotypes for gene: ERBB3 were changed from Lethal congenital contractural syndrome 2, MIM# 607598; Hirschsprung disease; Arthrogryposis to Lethal congenital contractural syndrome 2, MIM# 607598; Hirschsprung disease; Arthrogryposis; Neurodevelopmental disorder with gut dysmotility
Mendeliome v0.8571 ERBB3 Zornitza Stark changed review comment from: Two families reported with contractures, positional approach used in gene discovery (2007). Another family reported more recently with a multi-system disorder but without contractures.; to: Lethal congenital contractual syndrome: Two families reported with contractures, positional approach used in gene discovery (2007). Another family reported more recently with a multi-system disorder but without contractures.
Mendeliome v0.8571 ERBB3 Zornitza Stark edited their review of gene: ERBB3: Added comment: PMID 33497358: 6 individuals from 4 unrelated families reported with severe gut dysmotility and neurodevelopmental disorder. Note variants in this gene have also recently been linked to Hirschsprung's disease.; Changed rating: GREEN; Changed publications: 17701904, 31752936, 33497358; Changed phenotypes: Lethal congenital contractural syndrome 2, MIM# 607598, Neurodevelopmental disorder with gut dysmotility
Mendeliome v0.8522 SYNCRIP Zornitza Stark gene: SYNCRIP was added
gene: SYNCRIP was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SYNCRIP was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SYNCRIP were set to 34157790; 30504930; 27479843; 23020937
Phenotypes for gene: SYNCRIP were set to Global developmental delay; Intellectual disability; Autism; Myoclonic atonic seizures; Abnormality of nervous system morphology
Review for gene: SYNCRIP was set to GREEN
Added comment: Semino et al (2021 - PMID: 34157790) provide clinical details on 3 unrelated individuals with de novo SYNCRIP variants and provide a review of 5 additional subjects previously identified within large cohorts in the literature and databases.

Features included DD, ID (7/7 for whom this information was available), ASD or autistic features (4/7). MRI abnormalities were observed in 3 (widening of CSF spaces, periventricular nodular heterotopia, prominent lat. ventricles). Epilepsy (myoclonic-astatic epilepsy / Doose syndrome) was reported for 2(/8) individuals.

The 3 patients here reported were identified following trio/singleton exome with Sanger confirmation of the variants and their de novo occurrence.

Variants are in almost all cases de novo (7/7 for whom this was known) and in 5/8 cases were pLoF, in 2/8 missense SNVs while a case from DECIPHER had a 77.92 kb whole gene deletion not involving other genes with unknown inheritance.

Overall the variants reported to date include [NM_006372.5]:
1 - c.858_859del p.(Gly287Leufs*5)
2 - c.854dupA p.(Asn285Lysfs*8)
3 - c.734T>C p.(Leu245Pro)
4 - chr6:85605276-85683190 deletion (GRCh38)
5 - c.629T>C p.(Phe210Ser)
6 - c.1573_1574delinsTT p.(Gln525Leu)
7 - c.1247_1250del p.(Arg416Lysfs*145)
8 - c.1518_1519insC p.(Ala507Argfs*14)

[P1-3: this report, P4: DECIPHER 254774, P5-6: Guo et al 2019 - PMID: 30504930, P7: Lelieveld et al 2016 - PMID: 27479843, P8: Rauch et al 2012 - PMID: 23020937 / all other Refs not here reviewed, clinical details summarized by Semino et al in table 1]

SYNCRIP (also known as HNRNPQ) encodes synaptotagmin‐binding cytoplasmic RNA‐interacting protein. As the authors note, this RNA-binding protein is involved in multiple pathways associated with neuronal/muscular developmental disorders. Several references are provided for its involvement in regulation of RNA metabolism, among others sequence recognition, pre-mRNA splicing, translation, transport and degradation.

Mutations in other RNA-interacting proteins and hnRNP members (e.g. HNRNPU, HNRNPD) are associated with NDD.

The missense variant (p.Leu245Pro) is within RRM2 one of the 3 RNA recognition motif (RRM) domains of the protein. These 3 domains, corresponding to the central part of the protein (aa 150-400), are relatively intolerant to variation (based on in silico predictions and/or variation in gnomAD). Leu245 localizes within an RNA binding pocket and in silico modeling suggests alteration of the tertiary structure and RNA-binding capacity of RRM2.

There are no additional studies performed.

Overall haploinsufficiency appears to be the underlying disease mechanism based on the truncating variants and the gene deletion. [pLI in gnomAD : 1, %HI : 2.48%]

Animal models are not discussed.

There is no associated phenotype in OMIM. This gene is included in the DD panel of G2P (monoallelic LoF variants / SYNCRIP-related developmental disorder). SysID also lists SYNCRIP within the current primary ID genes.
Sources: Literature
Mendeliome v0.8511 CAMK4 Zornitza Stark gene: CAMK4 was added
gene: CAMK4 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: CAMK4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CAMK4 were set to 30262571; 33098801; 33211350
Phenotypes for gene: CAMK4 were set to Intellectual disability; Autism; Behavioral abnormality; Abnormality of movement; Dystonia; Ataxia; Chorea; Myoclonus
Review for gene: CAMK4 was set to GREEN
Added comment: 3 publications by Zech et al (2018, 2020 - PMIDs : 30262571, 33098801, 33211350) provide clinical details on 3 individuals, each harboring a private de novo CAMK4 variant.

Overlapping features included DD, ID, behavoral issues, autism and abnormal hyperkinetic movements. Dystonia and chorea in all 3 appeared 3-20 years after initial symptoms.

CAMK4 encodes Calcium/Calmodulin-dependent protein kinase IV, an important mediator of calcium-mediated activity and dynamics, particularly in the brain. It is involved in neuronal transmission, synaptic plasticity, and neuronal gene expression required for brain development and neuronal homeostasis (summary by OMIM based on Zech et al, 2018).

The 473 aa enzyme has a protein kinase domain (aa 46-300) and a C-terminal autoregulatory domain (aa 305-341) the latter comprising an autoinhibitory domain (AID / aa 305-321) and a calmodulin-binding domain (CBD / aa 322-341) [NP_001735.1 / NM_001744.4 - also used below].

Variants in all 3 subjects were identified following trio-WES and were in all cases protein-truncating, mapping to exon 10 or exon 10-intron 10 junction, expected to escape NMD and cause selective abrogation of the autoinhibitory domain (aa 305-321) leading overall to gain-of-function.

Variation databases include pLoF CAMK4 variants albeit in all cases usptream or downstream of this region (pLI of this gene in gnomAD: 0.51). Variants leading to selective abrogation of the autoregulatory domain have not been reported.

Extensive evidence for the GoF effect of the variant has been provided in the first publication. Several previous studies have demonstrated that abrogation of the AID domain leads to consitutive activation (details below).

Mouse models - though corresponding to homozygous loss of function - support a role for CAMKIV in cognitive and motor symptoms. Null mice display tremulous and ataxic movements, deficiencies in balance and sensorimotor performance associated with reduced number of Purkinje neurons (Ribar et al 2000, PMID: 11069976 - not reviewed). Wei et al (2002, PMID: 12006982 - not reviewed) provided evidence for alteration in hippocampal physiology and memory function.

Heterozygous mutations in other genes for calcium/calmodulin-dependent protein kinases (CAMKs) e.g. CAMK2A/CAMK2B (encoding subunits of CAMKII) have been reported in individuals with ID.

---

The proband in the first publication (PMID: 30262571) was a male with DD, ID, behavioral difficulties (ASD, autoaggression, stereotypies) and hyperkinetic movement disorder (myoclonus, chorea, ataxia) with severe generalized dystonia (onset at the age of 13y). Brain MRI demonstrated cerebellar atrophy.

Extensive work-up incl. karyotyping, CMA, DYT-TOR1A, THAP1, GCH1, SCA1/2/3/6/7/8/12/17, Friedreich's ataxia and FMR1 analysis was negative.F

Trio WES identified a dn splice site variant (c.981+1G>A) in the last exon-intron junction. RT-PCR followed by gel electrophoresis and Sanger in fibroblasts from an affected and control subject revealed that the proband had - as predicted by the type/location of the variant - in equal amount 2 cDNA products, a normal as well as a truncated one.

Sequencing of the shortest revealed utilization of a cryptic donor splice site upstream of the mutated donor leading to a 77bp out-of-frame deletion and introduction of a premature stop codon in the last codon (p.Lys303Serfs*28). Western blot in fibroblast cell lines revealed 2 bands corresponding to the normal protein product as well as to the p.Lys303Serfs*28 although expression of the latter was lower than that of the full length protein.

Several previous studies have shown that mutant CAMKIV species that lack the autoinhibitory domain are consitutively active (several Refs provided). Among others Chatila et al (1996, PMID: 8702940) studied an in vitro-engineered truncation mutant (Δ1-317 - truncation at position 317 of the protein) with functionally validated gain-of-function effect.

To prove enhanced activity of the splicing variant, Zech et al assessed phosphorylation of CREB (cyclic AMP-responsive element binding protein), a downstream substrate of CAMKIV. Immunobloting revealed significant increase of CREB phosphorylation in patient fibroblasts compared to controls. Overactivation of CAMKIV signaling was reversed when cells were treated with STO-609 an inhibitor of CAMKK, the ustream activator of CAMKIV.

Overall the authors demonstrated that loss of CAMKIV autoregulatory domain due to this splice variant had a gain-of-function effect.

----

Following trio-WES, Zech et al (2020 - PMID: 33098801) identified another relevant subject within cohort of 764 individuals with dystonia. This 12-y.o. male, harboring a different variant affecting the same donor site (c.981+1G>T), presented DD, ID, dystonia (onset at 3y) and additional movement disorders (myoclonus, ataxia) as well as similar behavior (ASD, autoaggression, stereotypies). [Details in suppl. p20].

----

Finally Zech et al (2020 - PMID: 33211350) reported on a 24-y.o. woman with adolescence onset choreodystonia. Other features included DD, moderate ID, absence seizures in infancy, OCD with anxiety and later diagnosis of ASD. Trio WES revealed a dn stopgain variant (c.940C>T; p.Gln314*).
Sources: Expert Review
Mendeliome v0.8497 DPYSL5 Zornitza Stark Phenotypes for gene: DPYSL5 were changed from Neurodevelopmental disorder with corpus callosum agenesis and cerebellar abnormalities to Ritscher-Schinzel syndrome 4, MIM# 619435; Neurodevelopmental disorder with corpus callosum agenesis and cerebellar abnormalities
Mendeliome v0.8462 ABCD1 Zornitza Stark changed review comment from: Ataxia is a feature of this progressive disorder.
Sources: Expert list; to: Well established gene-disease association.
Sources: Expert list
Mendeliome v0.8449 RAC3 Natalie Tan gene: RAC3 was added
gene: RAC3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RAC3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RAC3 were set to PMID: 30293988; 29276006
Phenotypes for gene: RAC3 were set to Neurodevelopmental disorder with structural brain anomalies and dysmorphic facies, MIM#618577
Review for gene: RAC3 was set to GREEN
Added comment: Multiple unrelated individuals with heterozygous missense variants and a concordant phenotype (severe intellectual disability with brain malformations). No functional studies to date.
Sources: Literature
Mendeliome v0.8415 PMM2 Zornitza Stark Phenotypes for gene: PMM2 were changed from to Congenital disorder of glycosylation, type Ia (MIM#212065)
Mendeliome v0.8345 ARHGAP42 Zornitza Stark gene: ARHGAP42 was added
gene: ARHGAP42 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ARHGAP42 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ARHGAP42 were set to 34232960
Phenotypes for gene: ARHGAP42 were set to Interstitial lung disease; systemic hypertension; immunological abnormalities
Review for gene: ARHGAP42 was set to RED
Added comment: Single individual reported with homozygous LoF variant, chILD disorder, systemic hypertension, and immunological findings.
Sources: Literature
Mendeliome v0.8337 IMPDH2 Zornitza Stark Phenotypes for gene: IMPDH2 were changed from Dystonia to Neurodevelopmental disorder with dystonia
Mendeliome v0.8335 LINGO4 Laura Raiti gene: LINGO4 was added
gene: LINGO4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LINGO4 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LINGO4 were set to PMID: 33098801
Phenotypes for gene: LINGO4 were set to Developmental Delay, Intellectual disability, speech disorder
Review for gene: LINGO4 was set to GREEN
Added comment: 3 unrelated individuals
1 x individual compound heterozygous for 2x missense variants:
c.679C>A; c.1262G>A p.Leu227Met; p.Arg421Gln comp het. Phenotype: infancy-onset
generalized dystonia; DD/hypo, ID, speech disorder (isolated plus non-MD symptoms) NDD

1 x individual homozygous for missense variant: c.679C>A p.Leu227Met Phenotype: DD/hypo, ID, speech disorder

1 x individual homozygous for missense variant: c.1673G>A p.Ser558Asn Phenotype: DD/hypo, ID, speech disorder
Sources: Literature
Mendeliome v0.8335 IMPDH2 Laura Raiti gene: IMPDH2 was added
gene: IMPDH2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: IMPDH2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: IMPDH2 were set to PMID: 33098801
Phenotypes for gene: IMPDH2 were set to Dystonia
Review for gene: IMPDH2 was set to GREEN
Added comment: 6 unrelated individuals
1x individual in a dystonia cohort index case with infancy-onset dystonia and other neurological manifestations with a de-novo missense variant, c.338G>A (p.Gly113Glu) in IMPDH2, predicted to disrupt an invariant residue within the cystathionine-β-synthase (CBS) domain pair of the encoded protein.
IMPDH2 encodes IMPDH2, a key enzyme in the purine biosynthetic pathway, expressed throughout the brain and not linked previously to any human Mendelian condition.
1x individual with a de-novo substitution, c.337G>A (p.Gly113Arg), was found in in-house whole-exome sequencing data from 500 individuals with neurodevelopmental disorders. Through GeneMatcher, de novo variants identified:
3 x missense: c.729G>C (p.Gln243His), c.619G>C (p.Gly207Arg), and c.619G>A (p.Gly207Arg)
1 x deletion: c.478_480delTCC (p.Ser160del)
The six variants were predicted to be deleterious and none of them seen in control databases. All affected conserved amino acids and resided in and around the cystathionine-β-synthase domain pair.
The described variants are situated in and around the CBS domain pair, a regulatory element in which clustering of pathogenic missense variants has already been shown for the homologue of IMPDH2, IMPDH1.

The variant carriers shared similar neurodevelopmental phenotypes. Apart from the dystonia cohort index case, one participant had evidence of dystonic posturing. Modelling of the variants on 3D protein structures revealed spatial clustering near specific functional sites, predicted to result in deregulation of IMPDH2 activity. Additionally, thermal-shift assays showed that the c.619G>A (p.Gly207Arg) variant, identified as within the CBS domain pair, and c.729G>C (p.Gln243His), which is in close vicinity, affected the stability or folding behaviour of IMPDH2.
Sources: Literature
Mendeliome v0.8326 TMEM126A Zornitza Stark Phenotypes for gene: TMEM126A were changed from to Optic atrophy 7, MIM# 612989; MONDO:0013069; Syndromic auditory neuropathy spectrum disorder
Mendeliome v0.8323 TMEM126A Zornitza Stark reviewed gene: TMEM126A: Rating: GREEN; Mode of pathogenicity: None; Publications: 19327736, 20405026, 22815638, 33879611, 31119195, 30961538; Phenotypes: Optic atrophy 7, MIM# 612989, MONDO:0013069, Syndromic auditory neuropathy spectrum disorder; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.8318 ATG7 Zornitza Stark changed review comment from: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The ore severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature; to: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The more severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature
Mendeliome v0.8318 ATG7 Zornitza Stark changed review comment from: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The ore severely affected individuals had spastic paraplegia and inability to walk.
Sources: Literature; to: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The ore severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature
Mendeliome v0.8317 ATG7 Zornitza Stark gene: ATG7 was added
gene: ATG7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATG7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ATG7 were set to 34161705
Phenotypes for gene: ATG7 were set to Spinocerebellar ataxia, SCAR31, MIM#619422
Review for gene: ATG7 was set to GREEN
Added comment: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The ore severely affected individuals had spastic paraplegia and inability to walk.
Sources: Literature
Mendeliome v0.8292 IRX5 Eleanor Williams changed review comment from: Associated with Hamamy syndrome #611174 (AR) in OMIM. Hamamy syndrome is characterised by craniofacial dysmorphism, hearing loss, skeletal anomalies, microcytic hypochromic anemia and congenital heart defects. Severe myopia has also been reported. Homozygous missense variants in IRX5 were reported in 2 families with this condition.

Cone dystrophy
-------------------
PMID: 33891002 - Khol et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments.

Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected.

They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.; to: Associated with Hamamy syndrome #611174 (AR) in OMIM. Hamamy syndrome is characterised by craniofacial dysmorphism, hearing loss, skeletal anomalies, microcytic hypochromic anemia and congenital heart defects. Severe myopia has also been reported. Homozygous missense variants in IRX5 were reported in 2 families with this condition (PMID: 22581230;17230486)

Duplication of gene
-------------------
PMID: 33891002 - Kohl et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments.

Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected.

They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.

Loss of function/gene
---------
PMID: 28041643 - Carss et al 2017 - screened a cohort of 722 individuals with inherited retinal disease using WES/WGS. 1 case reported with a biallelic deletion in IRX5 reported which leads to a frameshift ENST00000394636.4; c.1362_1366delTAAAG, p.Lys455ProfsTer19 in a patient with retinitis pigmentosa.

PMID: 32045705 - Apuzzo et al 2020 - report 2 cases of loss of a region in 16q12.1q21 which encompasses IRX5 and IRX6 and many other genes, which together with 3 other previous reports of deletions in this region help define a syndrome with features that include dysmorphic features, short stature, microcephaly, global developmental delay/intellectual disability, autism spectrum disorder (ASD) and ocular abnormalities (nystagmus and strabismus).
Mendeliome v0.8292 IRX6 Eleanor Williams changed review comment from: Not associated with any disorder in OMIM or Gene2Phenotype.

PMID: 33891002 - Khol et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments.

Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected.

They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.
Sources: Literature; to: Not associated with any disorder in OMIM or Gene2Phenotype.

PMID: 33891002 - Kohl et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments.

Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected.

They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.
Sources: Literature
Mendeliome v0.8265 VPS41 Zornitza Stark Phenotypes for gene: VPS41 were changed from Dystonia; intellectual disability to Spinocerebellar ataxia-29 (SCAR29), MIM#619389; Progressive neurodevelopmental disorder with ataxia, hypotonia, dystonia, intellectual disability and speech delay
Mendeliome v0.8264 IRX6 Eleanor Williams gene: IRX6 was added
gene: IRX6 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: IRX6 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: IRX6 were set to 33891002
Phenotypes for gene: IRX6 were set to cone dystrophy, MONDO:0000455
Mode of pathogenicity for gene: IRX6 was set to Other
Review for gene: IRX6 was set to GREEN
Added comment: Not associated with any disorder in OMIM or Gene2Phenotype.

PMID: 33891002 - Khol et al 2021 - report 3 unrelated families with duplications of a region covering the genes IRX5 and IRX6 completely, and the proximal exons of MMP2 and cone dystrophy. They propose that overexpression of IRX5 and IRX6 may be the cause of the disease, and this is supported by expression analysis in patient-derived fibroblasts and zebrafish experiments.

Initial family is a large 5 generation German family with 14 members with autosomal dominant cone dystrophy in which a 600kb duplicated region covering IRX5/IRX6 and part of MMP2 was identified. 2 additional families of Chinese and Dutch descent with copy number gains of ~700 and ~850 kb, covering the same region were then identified. The smallest region of overlap is 608kb. In addition another family of German decent is reported with adCD and the same duplication as the first German family. It is not known if they are distantly related. Segregation analysis on available members of all families showed the duplication in affected members and not in unaffected.

They find that IRX5, IRX6 and MMP2 are expressed in human adult retina. Several lincRNA within the locus are also expressed. In patient derived fibroblasts IRX5 and IRX6 showed increased expression levels. Over expression of IRX5 and IRX6 results in impaired visual performance in zebrafish larvae.
Sources: Literature
Mendeliome v0.8263 EPHA7 Zornitza Stark gene: EPHA7 was added
gene: EPHA7 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: EPHA7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: EPHA7 were set to 34176129
Phenotypes for gene: EPHA7 were set to Intellectual disability
Review for gene: EPHA7 was set to AMBER
Added comment: Lévy et al (2021 - PMID: 34176129) provide evidence that haploinssuficiency of EPHA7 results in a neurodevelopmental disorder.

The authors report on 12 individuals belonging to 9 unrelated families, all harboring with 6q microdeletions spanning EPHA7.

Overlapping features included DD (13/13), ID (10/10 - mild in most cases, individuals with larger CNVs/additional variants had more severe phenotype), speech delay and behavioral disorders. Variable other features incl. hypotonia (70%), non specific facial features, eye abnormalities (40%) and cardiac defects (25%).

The CNVs ranged from 152 kb to few Mb in size but in 4 subjects (P5-8) were only minimal, involving only EPHA7.

9 out of 12 individuals had inherited the deletion (5 subjects paternal, 4 maternal), in 1 subject (P12) this occured de novo, while for 2 others inheritance was not specified. Most deletions were inherited from an unaffected parent (in 6/7 families), with unclear contribution in a further one.

The authors discuss on previous studies suggesting an important role for EphA7 in brain development (modulation of cell-cell adhesion and repulsion, regulation of dendrite morphogenesis in early corticogenesis, role in dendritic spine formation later in development. EphA7 has also been proposed to drive neuronal maturation and synaptic function).

Haploinsufficiency for other ephrins or ephrin receptors has been implicated in other NDDs.

Overall Lévy et al promote incomplete penetrance and variable expressivity with haploinsufficiency of this gene being a risk factor for NDD. [The gene has also an %HI of 2.76% and a pLI of 1].
Sources: Expert Review
Mendeliome v0.8229 ATP2C2 Eleanor Williams gene: ATP2C2 was added
gene: ATP2C2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATP2C2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ATP2C2 were set to 33864365; 28440294
Phenotypes for gene: ATP2C2 were set to language impairment, HP:0002463
Review for gene: ATP2C2 was set to RED
Added comment: PMID: 33864365 - Martinelli et al 2021 - report a family with a missense variant NM_001286527.2:c.304G>A, p.(Val102Met) in ATP2C2 in a father and two siblings with specific language impairment. However two other affected siblings did not have this variant. This variant was also reported by Chen et al. They found that the variant had a higher frequency in language cases (1.8%, N = 360) compared with cohorts selected for dyslexia (0.8%, N = 520) and ADHD (0.7%, N = 150), which presented frequencies comparable to reference databases (0.9%, N = 24 046 gnomAD controls). They postulate that variant is not sufficient on its own to cause a disorder but is a susceptibility factor which increases the risk for language impairment.

PMID: 28440294 - Chen et al 2017 - report 2 probands with severe learning impairment, and missense variants in ATP2C2 (NM_001286527: c.G304A:p.V102M and NM_001291454:exon21: c.C1936T:p.R646W).
Sources: Literature
Mendeliome v0.8161 PPP1R21 Zornitza Stark Phenotypes for gene: PPP1R21 were changed from Hypotonia; intellectual disability; white matter abnormalities to Neurodevelopmental disorder with hypotonia, facial dysmorphism, and brain abnormalities, MIM# 619383; Hypotonia; intellectual disability; white matter abnormalities
Mendeliome v0.8160 PPP1R21 Zornitza Stark edited their review of gene: PPP1R21: Changed phenotypes: Neurodevelopmental disorder with hypotonia, facial dysmorphism, and brain abnormalities, MIM# 619383, Hypotonia, intellectual disability, white matter abnormalities
Mendeliome v0.8094 ABCB4 Zornitza Stark Phenotypes for gene: ABCB4 were changed from to Cholestasis, progressive familial intrahepatic 3 MIM#602347; disorder of bile acid metabolism
Mendeliome v0.8079 POPDC3 Zornitza Stark changed review comment from: 5 affected individuals from 3 unrelated families reported, supportive animal model data.
Sources: Literature; to: 5 affected individuals from 3 unrelated families reported, supportive animal model data. Presentation was between adolescence and 40s with proximal muscle weakness primarily affecting the lower limbs, resulting in increased falls and difficulty running. The disorder was slowly progressive, with later involvement of the upper limbs. MRI showed fatty replacement of the thigh muscles and medial gastrocnemius, with some paraspinal muscles also affected. Some patients had calf hypertrophy. Serum CK was markedly elevated.
Sources: Literature
Mendeliome v0.8057 NCDN Zornitza Stark Phenotypes for gene: NCDN were changed from neurodevelopmental delay, intellectual disability, and epilepsy to Neurodevelopmental disorder with infantile epileptic spasms (NEDIES), MIM#619373
Mendeliome v0.8056 NCDN Zornitza Stark reviewed gene: NCDN: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with infantile epileptic spasms (NEDIES), MIM#619373; Mode of inheritance: None
Mendeliome v0.8011 ADA2 Zornitza Stark commented on gene: ADA2: Vasculitis, autoinflammation, immunodeficiency, and haematologic defects syndrome (VAIHS) is an autosomal recessive multisystem disorder with onset in childhood. The phenotype is highly variable, but most patients have features of a systemic vascular inflammatory disorder with skin ulceration and recurrent strokes affecting the small vessels of the brain resulting in neurologic dysfunction. Other features may include recurrent fever, elevated acute-phase proteins, myalgias, lesions resembling polyarteritis nodosa, and/or livedo racemosa or reticularis with an inflammatory vasculitis on biopsy. Some patients may have renal and/or gastrointestinal involvement, hypertension, aneurysms, or ischemic necrosis of the digits. Some affected individuals have immunodeficiency. At least 10 unrelated families reported, the p.Gly47Arg variant is a common founder variant in the Jewish population.
Mendeliome v0.7999 DLG4 Zornitza Stark Phenotypes for gene: DLG4 were changed from Intellectual disability; Marfanoid habitus to Intellectual developmental disorder 62, MIM# 618793
Mendeliome v0.7997 DLG4 Zornitza Stark edited their review of gene: DLG4: Added comment: PMID 33597769: 53 patients (42 previously unpublished) with DLG4 variants. The clinical picture predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit–hyperactivity disorder.; Changed publications: 27479843, 25123844, 19617690, 29460436, 23020937, 28135719, 33597769; Changed phenotypes: Intellectual developmental disorder 62, MIM# 618793
Mendeliome v0.7932 SLC37A4 Zornitza Stark Phenotypes for gene: SLC37A4 were changed from to Glycogen storage disease Ib 232220; Glycogen storage disease Ic 232240; Congenital disorder of glycosylation
Mendeliome v0.7929 SLC37A4 Zornitza Stark reviewed gene: SLC37A4: Rating: GREEN; Mode of pathogenicity: None; Publications: 33964207, 9675154, 9758626; Phenotypes: Glycogen storage disease Ib 232220, Glycogen storage disease Ic 232240, Congenital disorder of glycosylation; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7924 BCAS3 Zornitza Stark Phenotypes for gene: BCAS3 were changed from to Syndromic neurodevelopmental disorder
Mendeliome v0.7920 SRCAP Zornitza Stark Phenotypes for gene: SRCAP were changed from to Floating-Harbor syndrome MIM#136140; Neurodevelopmental disorder, non-Floating Harbor
Mendeliome v0.7917 SRCAP Zornitza Stark reviewed gene: SRCAP: Rating: GREEN; Mode of pathogenicity: None; Publications: 33909990; Phenotypes: Floating-Harbor syndrome MIM#136140, Neurodevelopmental disorder, non-Floating Harbor; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7905 PLG Zornitza Stark changed review comment from: Association between mono-allelic variants and HAE: Over 20 families reported with a recurrent variant, p.Lys330Glu. Single family reported with a different variant. Note bi-allelic variants are associated with a separate disorder.

Bi-allelic variants and plasminogen deficiency: congenital plasminogen deficiency is characterised clinically by chronic mucosal pseudomembranous lesions consisting of subepithelial fibrin deposition and inflammation. The most common clinical manifestation is ligneous ('wood-like') conjunctivitis, a redness and subsequent formation of pseudomembranes mostly on the palpebral surfaces of the eye that progress to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa. The lesions may be triggered by local injury and/or infection and often recur after local excision. Pseudomembranous lesions of other mucous membranes often occur in the mouth, nasopharynx, trachea, and female genital tract. Some affected children also have congenital occlusive hydrocephalus. At least 3 unrelated families reported.; to: Association between mono-allelic variants and HAE: Over 20 families reported with a recurrent variant, p.Lys330Glu. Single family reported with a different variant. Note bi-allelic variants are associated with a separate disorder.

Bi-allelic variants and plasminogen deficiency: congenital plasminogen deficiency is characterised clinically by chronic mucosal pseudomembranous lesions consisting of subepithelial fibrin deposition and inflammation. The most common clinical manifestation is ligneous ('wood-like') conjunctivitis, a redness and subsequent formation of pseudomembranes mostly on the palpebral surfaces of the eye that progress to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa. The lesions may be triggered by local injury and/or infection and often recur after local excision. Pseudomembranous lesions of other mucous membranes often occur in the mouth, nasopharynx, trachea, and female genital tract. Some affected children also have congenital occlusive hydrocephalus. Over 20 unrelated families reported.
Mendeliome v0.7891 PGM2L1 Chern Lim reviewed gene: PGM2L1: Rating: GREEN; Mode of pathogenicity: None; Publications: 33979636; Phenotypes: Neurodevelopmental disorder; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.7891 BCAS3 Paul De Fazio reviewed gene: BCAS3: Rating: GREEN; Mode of pathogenicity: None; Publications: 34022130; Phenotypes: Syndromic neurodevelopmental disorder; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.7860 BRPF1 Zornitza Stark Phenotypes for gene: BRPF1 were changed from to Intellectual developmental disorder with dysmorphic facies and ptosis, MIM# 617333; MONDO:0015022
Mendeliome v0.7857 BRPF1 Zornitza Stark reviewed gene: BRPF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 27939640, 27939639; Phenotypes: Intellectual developmental disorder with dysmorphic facies and ptosis, MIM# 617333, MONDO:0015022; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7817 TBXA2R Zornitza Stark Phenotypes for gene: TBXA2R were changed from to {Bleeding disorder, platelet-type, 13, susceptibility to}, MIM# 614009
Mendeliome v0.7813 TBXA2R Zornitza Stark reviewed gene: TBXA2R: Rating: AMBER; Mode of pathogenicity: None; Publications: 7929844, 19828703, 22517902; Phenotypes: {Bleeding disorder, platelet-type, 13, susceptibility to}, MIM# 614009; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7813 P2RY12 Zornitza Stark Phenotypes for gene: P2RY12 were changed from to Bleeding disorder, platelet-type, 8, MIM# 609821; MONDO:0012354
Mendeliome v0.7810 P2RY12 Zornitza Stark reviewed gene: P2RY12: Rating: GREEN; Mode of pathogenicity: None; Publications: 11196645, 12578987, 29117459, 19237732; Phenotypes: Bleeding disorder, platelet-type, 8, MIM# 609821, MONDO:0012354; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7804 ITGA2B Zornitza Stark Phenotypes for gene: ITGA2B were changed from to Bleeding disorder, platelet-type, 16, MIM# 187800; MONDO:000855; Glanzmann thrombasthaenia 1, MIM# 273800
Mendeliome v0.7801 ITGA2B Zornitza Stark reviewed gene: ITGA2B: Rating: GREEN; Mode of pathogenicity: None; Publications: 1638023, 21454453, 8282784, 16463284; Phenotypes: Bleeding disorder, platelet-type, 16, MIM# 187800, MONDO:000855, Glanzmann thrombasthaenia 1, MIM# 273800; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7780 GP6 Zornitza Stark Phenotypes for gene: GP6 were changed from to Bleeding disorder, platelet-type, 11, MIM# 614201; MONDO:0013623
Mendeliome v0.7777 GP6 Zornitza Stark reviewed gene: GP6: Rating: GREEN; Mode of pathogenicity: None; Publications: 19549989, 19552682, 23815599; Phenotypes: Bleeding disorder, platelet-type, 11, MIM# 614201, MONDO:0013623; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7767 FGB Zornitza Stark changed review comment from: Inherited disorders of fibrinogen affect either the quantity (afibrinogenaemia and hypofibrinogenaemia) or the quality (dysfibrinogenemia) of the circulating fibrinogen or both.

Afibrinogenaemia is characterized by the complete absence of immunoreactive fibrinogen. Bleeding due to afibrinogenaemia usually manifests in the neonatal period, with 85% of cases presenting umbilical cord bleeding, but a later age of onst is not unusual. Bleeding may occur in the skin, gastrointestinal tract, genitourinary tract, or the central nervous system, with intracranial haemorrhage being reported as the major cause of death. Patients are susceptible to spontaneous rupture of the spleen. First-trimester pregnancy loss is common. Both arterial and venous thromboembolic complications have been reported. Hypofibrinogenaemia is a milder disorder. Well established gene-disease association.; to: Inherited disorders of fibrinogen affect either the quantity (afibrinogenaemia and hypofibrinogenaemia) or the quality (dysfibrinogenemia) of the circulating fibrinogen or both.

Afibrinogenaemia is characterized by the complete absence of immunoreactive fibrinogen. Bleeding due to afibrinogenaemia usually manifests in the neonatal period, with 85% of cases presenting umbilical cord bleeding, but a later age of onst is not unusual. Bleeding may occur in the skin, gastrointestinal tract, genitourinary tract, or the central nervous system, with intracranial haemorrhage being reported as the major cause of death. Patients are susceptible to spontaneous rupture of the spleen. First-trimester pregnancy loss is common. Both arterial and venous thromboembolic complications have been reported. Hypofibrinogenaemia is a milder disorder.

Well established gene-disease association.
Mendeliome v0.7749 MCM7 Arina Puzriakova gene: MCM7 was added
gene: MCM7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MCM7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MCM7 were set to 33654309; 34059554
Phenotypes for gene: MCM7 were set to Meier-Gorlin syndrome; Microcephaly; Intellectual disability; Lipodystrophy; Adrenal insufficiency
Review for gene: MCM7 was set to AMBER
Added comment: MCM7 is a component of the MCM complex, a DNA helicase which is essential for DNA replication. Other components have been linked to disease with phenotypes including microcephaly and ID. MCM7 is not associated with any phenotype in OMIM or G2P at present.
------
Currently there are 3 unrelated pedigrees in literature with different biallelic MCM7 variants associated with disease (see below). Although there is some functional data in support of variant-level deleteriousness or gene-level pathogenicity, the clinical gestalt is very different between the 3 families.

- PMID: 33654309 (2021) - Two unrelated individuals with different compound het variants in MCM7 but disparate clinical features. One patient had typical Meier-Gorlin syndrome (including growth retardation, microcephaly, congenital lung emphysema, absent breast development, microtia, facial dysmorphism) whereas the second case had a multi-system disorder with neonatal progeroid appearance, lipodystrophy and adrenal insufficiency. While small at birth, the second patient did not demonstrate reduced stature or microcephaly at age 14.5 years. Both individuals had normal neurodevelopment.
Functional studies using patient-derived fibroblasts demonstrate that the identified MCM7 variants were deleterious at either transcript or protein levels and through interfering with MCM complex formation, impact efficiency of S phase progression.

- PMID: 34059554 (2021) - Homozygous missense variant identified in three affected individuals from a consanguineous family with severe primary microcephaly, severe ID and behavioural abnormalities. Knockdown of Mcm7 in mouse neuroblastoma cells lead to reduced cell viability and proliferation with increased apoptosis, which were rescued by overexpression of wild-type but not mutant MCM7.
Sources: Literature
Mendeliome v0.7734 GEMIN5 Zornitza Stark gene: GEMIN5 was added
gene: GEMIN5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GEMIN5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GEMIN5 were set to 33963192
Phenotypes for gene: GEMIN5 were set to Neurodevelopmental disorder with cerebellar atrophy and motor dysfunction, MIM# 619333
Review for gene: GEMIN5 was set to GREEN
Added comment: Neurodevelopmental disorder with cerebellar atrophy and motor dysfunction (NEDCAM) is an autosomal recessive disorder characterized by global developmental delay with prominent motor abnormalities, mainly axial hypotonia, gait ataxia, and appendicular spasticity. Affected individuals have cognitive impairment and speech delay; brain imaging shows cerebellar atrophy. 30 individuals from 22 unrelated families reported.
Sources: Literature
Mendeliome v0.7706 RAB11B Zornitza Stark commented on gene: RAB11B: NDAGSCW is a neurodevelopmental disorder characterized by severely delayed psychomotor development apparent from infancy. Affected individuals have delayed and difficulty walking, intellectual disability, absent speech, and variable additional features, including hip dysplasia, tapering fingers, and seizures. Brain imaging shows decreased cortical white matter, often with decreased cerebellar white matter, thin corpus callosum, and thin brainstem.
Mendeliome v0.7706 RAB11B Zornitza Stark Phenotypes for gene: RAB11B were changed from to Neurodevelopmental disorder with ataxic gait, absent speech, and decreased cortical white matter 617807
Mendeliome v0.7703 RAB11B Zornitza Stark reviewed gene: RAB11B: Rating: GREEN; Mode of pathogenicity: None; Publications: 29106825; Phenotypes: Neurodevelopmental disorder with ataxic gait, absent speech, and decreased cortical white matter 617807; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7703 UFSP2 Zornitza Stark Phenotypes for gene: UFSP2 were changed from to Neurodevelopmental disorder; Hip dysplasia, Beukes type, MIM#142669; Spondyloepimetaphyseal dysplasia, Di Rocco type, MIM# 617974
Mendeliome v0.7670 UFSP2 Zornitza Stark reviewed gene: UFSP2: Rating: AMBER; Mode of pathogenicity: None; Publications: 33473208, 26428751, 28892125; Phenotypes: Neurodevelopmental disorder, Hip dysplasia, Beukes type, MIM#142669, Spondyloepimetaphyseal dysplasia, Di Rocco type, MIM# 617974; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7667 FAR1 Zornitza Stark Phenotypes for gene: FAR1 were changed from Peroxisomal fatty acyl-CoA reductase 1 disorder, MIM#616154; spastic paraparesis and bilateral cataracts to Peroxisomal fatty acyl-CoA reductase 1 disorder, MIM#616154; Cataracts, spastic paraparesis, and speech delay, MIM#619338
Mendeliome v0.7666 FAR1 Zornitza Stark edited their review of gene: FAR1: Changed phenotypes: Peroxisomal fatty acyl-CoA reductase 1 disorder, MIM#616154, Cataracts, spastic paraparesis, and speech delay, MIM#619338
Mendeliome v0.7665 BICRA Zornitza Stark Phenotypes for gene: BICRA were changed from Developmental delay, intellectual disability, autism spectrum disorder,behavioral abnormalities, dysmorphic features to Coffin-Siris syndrome-12, MIM#619325; Developmental delay, intellectual disability, autism spectrum disorder,behavioral abnormalities, dysmorphic features
Mendeliome v0.7652 TBC1D2B Zornitza Stark Phenotypes for gene: TBC1D2B were changed from Global developmental delay; Intellectual disability; Seizures; Gingival overgrowth; Behavioral abnormality; Abnormality of the mandible; Abnormality of brain morphology; Abnormality of the eye; Hearing abnormality to Neurodevelopmental disorder with seizures and gingival overgrowth (NEDSGO), MIM#619323; Global developmental delay; Intellectual disability; Seizures; Gingival overgrowth; Behavioral abnormality; Abnormality of the mandible; Abnormality of brain morphology; Abnormality of the eye; Hearing abnormality
Mendeliome v0.7651 TBC1D2B Zornitza Stark edited their review of gene: TBC1D2B: Changed phenotypes: Neurodevelopmental disorder with seizures and gingival overgrowth (NEDSGO), MIM#619323, Global developmental delay, Intellectual disability, Seizures, Gingival overgrowth, Behavioral abnormality, Abnormality of the mandible, Abnormality of brain morphology, Abnormality of the eye, Hearing abnormality
Mendeliome v0.7647 KDM4B Zornitza Stark Phenotypes for gene: KDM4B were changed from Global developmental delay, intellectual disability and neuroanatomical defects to Intellectual developmental disorder, autosomal dominant 65, MIM# 619320; Global developmental delay, intellectual disability and neuroanatomical defects
Mendeliome v0.7646 KDM4B Zornitza Stark reviewed gene: KDM4B: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual developmental disorder, autosomal dominant 65, MIM# 619320; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7630 CPE Zornitza Stark gene: CPE was added
gene: CPE was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: CPE was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CPE were set to 26120850; 32936766
Phenotypes for gene: CPE were set to Intellectual developmental disorder and hypogonadotropic hypogonadism, MIM# 619326
Review for gene: CPE was set to AMBER
Added comment: Four affected individuals from two unrelated families reported, bi-allelic LoF variants.
Sources: Expert Review
Mendeliome v0.7626 SLCO1B1 Zornitza Stark Added comment: Comment when marking as ready: Not a monogenic disorder.
Mendeliome v0.7621 SMARCA5 Zornitza Stark gene: SMARCA5 was added
gene: SMARCA5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SMARCA5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SMARCA5 were set to 33980485
Phenotypes for gene: SMARCA5 were set to Neurodevelopmental disorder; microcephaly; dysmorphic features
Review for gene: SMARCA5 was set to GREEN
Added comment: 12 individuals reported with either de novo or appropriately segregating variants in this gene and mild developmental delay, frequent postnatal short stature and microcephaly, and recurrent dysmorphic features. Functional data supports gene-disease association.
Sources: Literature
Mendeliome v0.7620 FBXW7 Zornitza Stark Phenotypes for gene: FBXW7 were changed from Developmental disorder to FBXW7-related neurodevelopmental syndrome
Mendeliome v0.7618 LEMD2 Zornitza Stark Phenotypes for gene: LEMD2 were changed from progeroid disorder to Marbach-Rustad progeroid syndrome, OMIM# 619322; progeroid disorder
Mendeliome v0.7605 SPTLC1 Zornitza Stark Phenotypes for gene: SPTLC1 were changed from to Neuropathy, hereditary sensory and autonomic, type IA, MIM# 162400; Serine palmitoyl transferase deficiency (Disorders of complex lipid synthesis)
Mendeliome v0.7602 SPTLC2 Zornitza Stark Phenotypes for gene: SPTLC2 were changed from to Neuropathy, hereditary sensory and autonomic, type IC, 613640; MONDO:0013337; Serine palmitoyl transferase deficiency (Disorders of complex lipid synthesis)
Mendeliome v0.7561 SLC25A46 Zornitza Stark changed review comment from: Hereditary motor and sensory neuropathy type VIB is an autosomal recessive complex progressive neurologic disorder characterized mainly by early-onset optic atrophy resulting in progressive visual loss and peripheral axonal sensorimotor neuropathy with highly variable age at onset and severity. Affected individuals also have cerebellar or pontocerebellar atrophy on brain imaging, and they show abnormal movements, such as ataxia, dysmetria, and myoclonus.

At least 10 unrelated families reported, supportive functional data.; to: Hereditary motor and sensory neuropathy type VIB is an autosomal recessive complex progressive neurologic disorder characterized mainly by early-onset optic atrophy resulting in progressive visual loss and peripheral axonal sensorimotor neuropathy with highly variable age at onset and severity. Affected individuals also have cerebellar or pontocerebellar atrophy on brain imaging, and they show abnormal movements, such as ataxia, dysmetria, and myoclonus. New disease entity added by OMIM in 2021 to reflect this more severe end of the spectrum.

At least 10 unrelated families reported, supportive functional data.
Mendeliome v0.7559 EXOC2 Zornitza Stark Phenotypes for gene: EXOC2 were changed from Global developmental delay; Intellectual disability; Abnormality of the face; Abnormality of brain morphology to Neurodevelopmental disorder with dysmorphic facies and cerebellar hypoplasia, MIM# 619306; Global developmental delay; Intellectual disability; Abnormality of the face; Abnormality of brain morphology
Mendeliome v0.7558 EXOC2 Zornitza Stark edited their review of gene: EXOC2: Changed phenotypes: Neurodevelopmental disorder with dysmorphic facies and cerebellar hypoplasia, MIM# 619306, Global developmental delay, Intellectual disability, Abnormality of the face, Abnormality of brain morphology
Mendeliome v0.7509 PTPN4 Bryony Thompson gene: PTPN4 was added
gene: PTPN4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PTPN4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PTPN4 were set to 17953619; 25424712; 30238967; DOI: https://doi.org/10.1016/j.xhgg.2021.100033
Phenotypes for gene: PTPN4 were set to Intellectual disability; developmental delay
Review for gene: PTPN4 was set to GREEN
Added comment: >3 unrelated probands and supporting mouse model
PMID: 17953619 - knockout mouse model has impaired motor learning and cerebellar synaptic plasticity
PMID: 25424712 - twins with a de novo whole gene deletion and a Rett-like neurodevelopmental disorder
PMID: 30238967 - mosaic de novo variant (p.Leu72Ser) identified in a child with developmental delay, autistic features, hypotonia, increased immunoglobulin E and dental problems. Also supporting mouse assays demonstrating loss of protein expression in dendritic spines
DOI: https://doi.org/10.1016/j.xhgg.2021.100033 - missense and truncating variants in six unrelated individuals with varying degrees of intellectual disability or developmental delay. 5 were able to undergo segregation analysis and found to be de novo.
Sources: Literature
Mendeliome v0.7502 YWHAG Zornitza Stark Added comment: Comment when marking as ready: Developmental and epileptic encephalopathy-56 (DEE56) is a neurodevelopmental disorder characterized by early-onset seizures in most patients, followed by impaired intellectual development, variable behavioral abnormalities, and sometimes additional neurologic features, such as ataxia
Mendeliome v0.7493 PDGFRB Zornitza Stark Phenotypes for gene: PDGFRB were changed from Premature aging syndrome, Penttinen type, 601812 to Basal ganglia calcification, idiopathic, 4, MIM# 615007; Kosaki overgrowth syndrome, MIM# 616592; Myeloproliferative disorder with eosinophilia, MIM# 131440; Myofibromatosis, infantile, 1, MIM# 228550; Premature ageing syndrome, Penttinen type, MIM# 601812
Mendeliome v0.7491 PDGFRB Zornitza Stark reviewed gene: PDGFRB: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Basal ganglia calcification, idiopathic, 4, MIM# 615007, Kosaki overgrowth syndrome, MIM# 616592, Myeloproliferative disorder with eosinophilia, MIM# 131440, Myofibromatosis, infantile, 1, MIM# 228550, Premature ageing syndrome, Penttinen type, MIM# 601812; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7485 MED25 Zornitza Stark changed review comment from: Basel-Vanagaite-Smirin-Yosef syndrome is an autosomal recessive multiple congenital anomaly disorder characterized by severely delayed psychomotor development resulting in mental retardation, as well as variable eye, brain, cardiac, and palatal abnormalities.

7 individuals from 4 families reported initially, founder variant p.Tyr39Cys. Over 20 individuals reported since, including other variants.; to: Basel-Vanagaite-Smirin-Yosef syndrome is an autosomal recessive multiple congenital anomaly disorder characterized by severely delayed psychomotor development resulting in intellectual disability, as well as variable eye, brain, cardiac, and palatal abnormalities.

7 individuals from 4 families reported initially, founder variant p.Tyr39Cys. Over 20 individuals reported since, including other variants.
Mendeliome v0.7464 VPS41 Kristin Rigbye edited their review of gene: VPS41: Changed phenotypes: Progressive neurodevelopmental disorder with ataxia, hypotonia, dystonia, intellectual disability and speech delay
Mendeliome v0.7464 VPS41 Kristin Rigbye changed review comment from: "Five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function."; to: "Five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function."

"Affected individuals were born after uneventful pregnancies and presented in most cases early in life with developmental delay. Various degrees of ataxia, hypotonia, and dystonia were present in all affected individuals, preventing independent ambulation. Likewise, nystagmus was commonly described. In addition, all affected individuals displayed intellectual disability and speech delay. Two siblings further presented with therapy-resistant epilepsy. No major dysmorphic features were found. In two individuals, retinal pigment alterations were noticed. Brain MRI revealed mild cerebellar atrophy and vermian atrophy without other major structural abnormalities in most affected individuals while in one case (Subject 9) bilateral hyperintensities at the nucleus caudatus area were noted. No hearing or vision problems were noted and in cases where nerve conduction studies were performed, these were normal. Transmission electron microscopy (TEM) on peripheral blood lymphocytes from Subject 2 and lymphoblastoid cells from Subject 3 revealed more multilayered vesicles compared to control cells."
Mendeliome v0.7464 SIN3B Elena Savva gene: SIN3B was added
gene: SIN3B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SIN3B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: SIN3B were set to PMID: 33811806
Phenotypes for gene: SIN3B were set to Syndromic intellectual disability/autism spectrum disorder
Review for gene: SIN3B was set to GREEN
Added comment: PMID: 33811806
- 9 affected patients, all de novo (2 PTCs, 2 missense, multigenic CNVs)
- syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant ASD, congenital malformations, corpus callosum defects, and impaired growth.
- CNVs encompassing the gene have been found
Sources: Literature
Mendeliome v0.7464 DPYSL5 Michelle Torres gene: DPYSL5 was added
gene: DPYSL5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DPYSL5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DPYSL5 were set to 33894126
Phenotypes for gene: DPYSL5 were set to Neurodevelopmental disorder with corpus callosum agenesis and cerebellar abnormalities
Review for gene: DPYSL5 was set to GREEN
Added comment: Nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. The recurrent de novo p.Glu41Lys was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Both impaired DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and βIII-tubulin, ultimately leading to abnormal brain development
Sources: Literature
Mendeliome v0.7464 VPS41 Kristin Rigbye reviewed gene: VPS41: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 33764426; Phenotypes: Progressive neurodevelopmental disorder; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7374 KCNJ6 Zornitza Stark changed review comment from: Keppen-Lubinsky syndrome characterised by severely delayed psychomotor development, hypertonia, hyperreflexia, generalized lipodystrophy giving an aged appearance, and distinctive dysmorphic features, including microcephaly, prominent eyes, narrow nasal bridge, and open mouth.

Three unrelated individuals reported with de novo variants in this gene (one recurred in 2), mouse model.; to: Keppen-Lubinsky syndrome characterised by severely delayed psychomotor development, hypertonia, hyperreflexia, generalized lipodystrophy giving an aged appearance, and distinctive dysmorphic features, including microcephaly, prominent eyes, narrow nasal bridge, and open mouth.

Four unrelated individuals reported with de novo variants in this gene (one recurred in 2), mouse model. One of the individuals did not have lipodystrophy but had a prominent hyperkinetic movement disorder.
Mendeliome v0.7360 HNRNPDL Bryony Thompson gene: HNRNPDL was added
gene: HNRNPDL was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: HNRNPDL was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: HNRNPDL were set to 24647604; 31267206; 31995753; 32407983; 32904822; 32367994
Phenotypes for gene: HNRNPDL were set to Muscular dystrophy, limb-girdle, autosomal dominant 3 MIM#609115
Review for gene: HNRNPDL was set to GREEN
gene: HNRNPDL was marked as current diagnostic
Added comment: At least 5 families reported with either D378H/N, and supporting functional assays demonstrating that these variants affect protein function. No other pathogenic variants have been reported. A VUS has been reported (along with another SETX variant) in an individual with a multi-system disorder, including a metabolic myopathy.
Sources: Expert list
Mendeliome v0.7345 VPS4A Zornitza Stark Phenotypes for gene: VPS4A were changed from Neurodevelopmental disorder to CIMDAG syndrome MIM# 619273
Mendeliome v0.7344 MED27 Zornitza Stark Phenotypes for gene: MED27 were changed from Intellectual disability; cerebellar hypoplasia; dystonia to Neurodevelopmental disorder with spasticity, cataracts, and cerebellar hypoplasia, MIM# 619286
Mendeliome v0.7343 MED27 Zornitza Stark reviewed gene: MED27: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with spasticity, cataracts, and cerebellar hypoplasia, MIM# 619286; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7289 MRE11 Zornitza Stark Phenotypes for gene: MRE11 were changed from to Ataxia-telangiectasia-like disorder 1, MIM# 604391; MONDO:0024557
Mendeliome v0.7286 MRE11 Zornitza Stark reviewed gene: MRE11: Rating: GREEN; Mode of pathogenicity: None; Publications: 10612394, 11371508, 15269180, 22863007, 24332946, 21227757; Phenotypes: Ataxia-telangiectasia-like disorder 1, MIM# 604391, MONDO:0024557; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7249 NDUFB11 Kristin Rigbye changed review comment from: Variable syndromic features have been observed in affected individuals, however anaemia and cardiomyopathy appear to be consistent features in males and females, respectively (PMID: 28050600, PMID: 30423443, PMID: 27488349).

Affected females have previously been reported with inherited pathogenic variants from their unaffected mothers. It has been suggested that this may be due to patterns of somatic X-chromosome inactivation, mosaicism or additional genetic or external factors (PMID: 28050600).

Affected females have been reported with null alleles, whereas affected males have only been identified with missense variants or a recurrent single residue in-frame deletion, suggesting that some residual enzyme activity is required for males to be viable, whereas complete loss of function variants may be lethal when hemizygous (PMID: 30423443).
Note: female carriers of missense variants have not been reported as clinically affected.

Western blots from cells of male patients with the recurrent F93del variant showed reduced protein levels, and recombinant cells demonstrated a proliferation defect, consistent with the anaemia phenotype (PMID: 27488349).; to: Variable syndromic features have been observed in affected individuals, however anaemia and cardiomyopathy appear to be consistent features in males and females, respectively (PMID: 28050600, PMID: 30423443, PMID: 27488349).

It has been suggested that heterozygous females do not display the severe phenotype associated with mitochondrial complex 1 deficiency due to highly skewed XCI favouring expression of the wild type allele, whereas these null variants result in a severe lethal disorder in hemizygous males (PMID: 25772934).

Affected females have previously been reported with inherited pathogenic variants from their unaffected mothers. It has been suggested that this may be due to patterns of somatic X-chromosome inactivation, mosaicism or additional genetic or external factors (PMID: 28050600).

Affected females have been reported with null alleles, whereas affected males have only been identified with missense variants or a recurrent single residue in-frame deletion, suggesting that some residual enzyme activity is required for males to be viable, whereas complete loss of function variants may be lethal when hemizygous (PMID: 30423443).
Note: female carriers of missense variants have not been reported as clinically affected.

Western blots from cells of male patients with the recurrent F93del variant showed reduced protein levels, and recombinant cells demonstrated a proliferation defect, consistent with the anaemia phenotype (PMID: 27488349).
Mendeliome v0.7201 EMC10 Zornitza Stark Phenotypes for gene: EMC10 were changed from Intellectual disability to Neurodevelopmental disorder with dysmorphic facies and variable seizures, MIM# 619264
Mendeliome v0.7199 EMC10 Zornitza Stark edited their review of gene: EMC10: Added comment: Additional 12 individuals from 7 Middle Eastern families reported. Same variant in all, suggestive of founder effect (but different to the previously reported family).; Changed rating: GREEN; Changed publications: 32869858, 33531666; Changed phenotypes: Neurodevelopmental disorder with dysmorphic facies and variable seizures, MIM# 619264
Mendeliome v0.7199 ITGB3 Zornitza Stark Phenotypes for gene: ITGB3 were changed from to Bleeding disorder, platelet-type, 24, MIM#619271; MONDO:0008552
Mendeliome v0.7196 ITGB3 Zornitza Stark reviewed gene: ITGB3: Rating: GREEN; Mode of pathogenicity: None; Publications: 18065693, 19336737, 20081061, 23253071; Phenotypes: Bleeding disorder, platelet-type, 24, MIM#619271, MONDO:0008552; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.7182 UBE4A Zornitza Stark gene: UBE4A was added
gene: UBE4A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UBE4A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UBE4A were set to 33420346
Phenotypes for gene: UBE4A were set to Intellectual disability and global developmental delay
Review for gene: UBE4A was set to GREEN
Added comment: 8 individuals, from 4 unrelated families, with syndromic intellectual disability and global developmental delay (other clinical features included hypotonia, short stature, seizures, and behaviour disorder. Exome sequencing identified biallelic loss-of-function variants in UBE4A in the 4 families, with variants segregating with disease and parents carriers. They demonstrated that UBE4A loss-of-function variants reduced RNA expression and protein levels in clinical samples. Mice generated to mimic patient-specific Ube4a loss-of-function variant exhibited muscular and neurological/behavioural abnormalities, some of which are suggestive of the clinical abnormalities seen in the affected individuals.
Sources: Literature
Mendeliome v0.7179 FAR1 Zornitza Stark Phenotypes for gene: FAR1 were changed from Peroxisomal fatty acyl-CoA reductase 1 disorder, MIM#616154 to Peroxisomal fatty acyl-CoA reductase 1 disorder, MIM#616154; spastic paraparesis and bilateral cataracts
Mendeliome v0.7175 FAR1 Zornitza Stark edited their review of gene: FAR1: Added comment: PMID33239752: 12 patients with paediatric onset spastic paraparesis and bilateral congenital/juvenile cataracts. Most also had speech and gross motor developmental delay and truncal hypotonia. Exome sequencing identified de novo variants affecting the Arg480 residue in FAR1 (p.Arg480Cys/His/Leu). Further functional studies in fibroblasts showed that these variants cause a disruption of the plasmalogen-dependent feedback regulation of FAR1 protein levels leading to uncontrolled ether lipid production.; Changed rating: GREEN; Changed publications: 25439727, 33239752; Changed phenotypes: Peroxisomal fatty acyl-CoA reductase 1 disorder, MIM#616154, spastic paraparesis and bilateral cataracts; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.7175 GRIA3 Zornitza Stark Phenotypes for gene: GRIA3 were changed from to Intellectual developmental disorder, X-linked, syndromic, Wu type (MIM#300699)
Mendeliome v0.7172 GRIA3 Zornitza Stark reviewed gene: GRIA3: Rating: GREEN; Mode of pathogenicity: None; Publications: 32977175, 17989220; Phenotypes: Intellectual developmental disorder, X-linked, syndromic, Wu type (MIM#300699); Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.7172 SLC17A5 Zornitza Stark Phenotypes for gene: SLC17A5 were changed from to Salla disease 604369; MONDO:0011449; Sialic acid storage disorder, infantile 269920; MONDO:0010027
Mendeliome v0.7169 SLC17A5 Zornitza Stark edited their review of gene: SLC17A5: Added comment: Sialic acid storage diseases are autosomal recessive neurodegenerative disorders that may present as a severe infantile form or a slowly progressive adult form, which is prevalent in Finland and referred to as Salla disease. p.Arg39Cys is a founder Finnish variant. Multiple families reported.; Changed publications: 10581036, 10947946; Changed phenotypes: Salla disease 604369, MONDO:0011449, Sialic acid storage disorder, infantile 269920, MONDO:0010027
Mendeliome v0.7166 SMPD1 Zornitza Stark changed review comment from: Well established gene-disease association.; to: Niemann-Pick disease (NPD) refers to a group of disorders that present with varying degrees of lipid storage and foam cell infiltration in tissues, as well as overlapping clinical features including hepatosplenomegaly, pulmonary insufficiency and/or central nervous system (CNS) involvement. Type A NPD patients exhibit hepatosplenomegaly in infancy and profound CNS involvement. They rarely survive beyond 2-3years of age. Type B patients also have hepatosplenomegaly and pathologic alterations of their lungs, but there are usually no CNS signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Intermediate patients also have been reported with mild to moderate neurological findings.

Well established gene-disease association.
Mendeliome v0.7135 LAMP2 Zornitza Stark changed review comment from: XLD. Vacuolar cardiomyopathy and myopathy. Gene encodes lysosome-associated membrane protein-2.; to: XLD. Gene encodes lysosome-associated membrane protein-2.

Danon disease is an X-linked dominant disorder predominantly affecting cardiac muscle. Skeletal muscle involvement and mental retardation are variable features. The accumulation of glycogen in muscle and lysosomes originally led to the classification of Danon disease as a variant of glycogen storage disease II (Pompe disease) with 'normal acid maltase' or alpha-glucosidase, however, it may be more accurately classified as a lysosomal disorder.
Mendeliome v0.7121 CLDN11 Melanie Marty gene: CLDN11 was added
gene: CLDN11 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CLDN11 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CLDN11 were set to 33313762
Phenotypes for gene: CLDN11 were set to Hypomyelinating leukodystrophy
Review for gene: CLDN11 was set to GREEN
Added comment: In three unrelated individuals with early-onset spastic movement disorder, expressive speech disorder and eye abnormalities including hypermetropia, 2 different heterozygous de novo stop-loss variants were identified. One of the variants did not lead to a loss of CLDN11 expression on RNA level in fibroblasts indicating this transcript is not subject to nonsense-mediated decay and most likely translated into an extended protein.
Sources: Literature
Mendeliome v0.7118 SLC45A1 Zornitza Stark Phenotypes for gene: SLC45A1 were changed from to Intellectual developmental disorder with neuropsychiatric features, MIM# 617532
Mendeliome v0.7114 SLC45A1 Zornitza Stark reviewed gene: SLC45A1: Rating: AMBER; Mode of pathogenicity: None; Publications: 28434495; Phenotypes: Intellectual developmental disorder with neuropsychiatric features, MIM# 617532; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7032 AGA Zornitza Stark edited their review of gene: AGA: Added comment: Aspartylglucosaminuria (AGU) is a severe autosomal recessive lysosomal storage disorder that involves the central nervous system and causes skeletal abnormalities as well as connective tissue lesions. The most characteristic feature is progressive mental retardation. Multiple families and mouse model.; Changed publications: 1703489, 1904874, 8064811, 8946839; Changed phenotypes: Aspartylglucosaminuria, MIM# 208400, MONDO:0008830
Mendeliome v0.7011 AP2S1 Zornitza Stark Phenotypes for gene: AP2S1 were changed from Hypocalciuric hypercalcemia, type III MIM#600740; Developmental disorder to Hypocalciuric hypercalcaemia, type III, MIM# 600740; MONDO:0010926; Developmental disorder
Mendeliome v0.7004 PRIM1 Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature
Mendeliome v0.7003 PRIM1 Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature
Mendeliome v0.7003 PRIM1 Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature
Mendeliome v0.7003 PRIM1 Zornitza Stark gene: PRIM1 was added
gene: PRIM1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRIM1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PRIM1 were set to 33060134
Phenotypes for gene: PRIM1 were set to Microcephalic primordial dwarfism, MONDO:0017950
Review for gene: PRIM1 was set to AMBER
Added comment: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant.
Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD).

Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections.

Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype.
Sources: Literature
Mendeliome v0.7001 TTC5 Zornitza Stark Phenotypes for gene: TTC5 were changed from Central hypotonia; Global developmental delay; Intellectual disability; Abnormality of nervous system morphology; Microcephaly; Abnormality of the face; Behavioral abnormality; Abnormality of the genitourinary system to Neurodevelopmental disorder with cerebral atrophy and variable facial dysmorphism , MIM#619244; Central hypotonia; Global developmental delay; Intellectual disability; Abnormality of nervous system morphology; Microcephaly; Abnormality of the face; Behavioral abnormality; Abnormality of the genitourinary system
Mendeliome v0.7000 TTC5 Zornitza Stark edited their review of gene: TTC5: Changed phenotypes: Neurodevelopmental disorder with cerebral atrophy and variable facial dysmorphism , MIM#619244, Central hypotonia, Global developmental delay, Intellectual disability, Abnormality of nervous system morphology, Microcephaly, Abnormality of the face, Behavioral abnormality, Abnormality of the genitourinary system
Mendeliome v0.6977 RAD50 Zornitza Stark Phenotypes for gene: RAD50 were changed from Nijmegen breakage syndrome-like disorder, MIM# 613078 to Nijmegen breakage syndrome-like disorder, MIM# 613078; MONDO:0013118
Mendeliome v0.6975 RAD50 Arina Puzriakova reviewed gene: RAD50: Rating: GREEN; Mode of pathogenicity: None; Publications: 33378670; Phenotypes: Nijmegen breakage syndrome-like disorder, OMIM:613078; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6963 MSMO1 Zornitza Stark Phenotypes for gene: MSMO1 were changed from to Microcephaly, congenital cataract, and psoriasiform dermatitis, MIM# 616834; MONDO:0014793; Disorders of the metabolism of sterols
Mendeliome v0.6928 CUL3 Zornitza Stark Phenotypes for gene: CUL3 were changed from Pseudohypoaldosteronism, type IIE 614496; Intellectual disability; Autism; Seizures to Pseudohypoaldosteronism, type IIE 614496; Neurodevelopmental disorder with or without autism or seizures, MIM# 619239
Mendeliome v0.6927 CUL3 Zornitza Stark edited their review of gene: CUL3: Changed phenotypes: Pseudohypoaldosteronism, type IIE 614496, Neurodevelopmental disorder with or without autism or seizures 619239
Mendeliome v0.6878 CLDN2 Zornitza Stark changed review comment from: Numerous publications linking common variants at this locus with susceptibility to pancreatitis. KO mice do not have a pancreatic phenotype. Likely polygenic susceptibility rather than Mendelian disorder.; to: Pancreatitis: Numerous publications linking common variants at this locus with susceptibility to pancreatitis. KO mice do not have a pancreatic phenotype. Likely polygenic susceptibility rather than Mendelian disorder.
Mendeliome v0.6860 SLC35A2 Zornitza Stark Phenotypes for gene: SLC35A2 were changed from to Congenital disorder of glycosylation, type IIm (MIM #300896) 30817854; Mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE)
Mendeliome v0.6857 SLC35A2 Zornitza Stark reviewed gene: SLC35A2: Rating: GREEN; Mode of pathogenicity: None; Publications: 23561849, 24115232, 27743886, 25778940, 33407896; Phenotypes: Congenital disorder of glycosylation, type IIm (MIM #300896) 30817854, Mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE); Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.6850 PEX10 Teresa Zhao reviewed gene: PEX10: Rating: GREEN; Mode of pathogenicity: None; Publications: 30640048; Phenotypes: Peroxisome biogenesis disorder 6A (Zellweger) (MIM#614870), Peroxisome biogenesis disorder 6B (MIM#614871); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6809 SATB1 Zornitza Stark Phenotypes for gene: SATB1 were changed from Developmental delay with dysmorphic facies and dental anomalies, MIM# 619228; Neurodevelopmental disorder; intellectual disability; epilepsy; microcephaly to Kohlschutter-Tonz syndrome-like, MIM# 619229; Developmental delay with dysmorphic facies and dental anomalies, MIM# 619228; Neurodevelopmental disorder; intellectual disability; epilepsy; microcephaly
Mendeliome v0.6808 SATB1 Zornitza Stark edited their review of gene: SATB1: Added comment: Kohlschutter-Tonz syndrome-like (KTZSL) is characterized by global developmental delay with moderately to severely impaired intellectual development, poor or absent speech, and delayed motor skills. Although the severity of the disorder varies, many patients are nonverbal and have hypotonia with inability to sit or walk. Early-onset epilepsy is common and may be refractory to treatment, leading to epileptic encephalopathy and further interruption of developmental progress. Most patients have feeding difficulties with poor overall growth and dysmorphic facial features, as well as significant dental anomalies resembling amelogenesis imperfecta. This phenotype was reported in 28 patients (patients 13 to 40, PMID 33513338), including 9 patients from 3 families. Most variants were de novo, though some were inherited, suggestive of incomplete penetrance and variable expressivity.; Changed phenotypes: Developmental delay with dysmorphic facies and dental anomalies, MIM# 619228, Kohlschutter-Tonz syndrome-like, MIM# 619229
Mendeliome v0.6808 SATB1 Zornitza Stark commented on gene: SATB1: Developmental delay with dysmorphic facies and dental anomalies (DEFDA) is characterized by generally mild global developmental delay with variably impaired intellectual development, walking by 2 to 3 years, and slow language acquisition. The severity of the disorder ranges from moderate cognitive deficits to mild learning difficulties or behavioral abnormalities. Most patients have dysmorphic facial features, often with abnormal dentition and nonspecific visual defects, such as myopia, astigmatism, and strabismus. Although rare, involvement of other systems, such as skeletal, cardiac, and gastrointestinal, may be present. 12 individuals from 11 families reported (one inherited variant, affected parent).
Mendeliome v0.6808 SATB1 Zornitza Stark Phenotypes for gene: SATB1 were changed from Neurodevelopmental disorder; intellectual disability; epilepsy; microcephaly to Developmental delay with dysmorphic facies and dental anomalies, MIM# 619228; Neurodevelopmental disorder; intellectual disability; epilepsy; microcephaly
Mendeliome v0.6793 MPEG1 Zornitza Stark gene: MPEG1 was added
gene: MPEG1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: MPEG1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MPEG1 were set to 33224153; 33692780; 28422754
Phenotypes for gene: MPEG1 were set to Immunodeficiency 77, MIM# 619223
Review for gene: MPEG1 was set to GREEN
Added comment: Immunodeficiency-77 (IMD77) is an immunologic disorder characterized by recurrent and persistent polymicrobial infections with multiple unusual organisms. Skin and pulmonary infections are the most common, consistent with increased susceptibility to epithelial cell infections. The age at onset is highly variable: some patients have recurrent infections from childhood, whereas others present in late adulthood. The limited number of reported patients are all female, suggesting incomplete penetrance or a possible sex-influenced trait. Patient cells, mainly macrophages, show impaired killing of intracellular bacteria and organisms, including nontubercular mycobacteria, although there is also impaired killing of other organisms, such as Pseudomonas, Candida, and Aspergillus.

Four individuals reported, functional data, including animal model.
Sources: Expert list
Mendeliome v0.6739 KDM5B Elena Savva reviewed gene: KDM5B: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 29276005, 30217758, 30409806; Phenotypes: Mental retardation, autosomal recessive 65 MIM#618109, autosomal dominant autism spectrum disorder or intellectual disability; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Mendeliome v0.6718 WDR45B Zornitza Stark Phenotypes for gene: WDR45B were changed from to Neurodevelopmental disorder with spastic quadriplegia and brain abnormalities with or without seizures, MIM# 617977
Mendeliome v0.6715 WDR45B Zornitza Stark reviewed gene: WDR45B: Rating: GREEN; Mode of pathogenicity: None; Publications: 21937992, 28503735, 27431290; Phenotypes: Neurodevelopmental disorder with spastic quadriplegia and brain abnormalities with or without seizures, MIM# 617977; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6684 CYP2U1 Zornitza Stark edited their review of gene: CYP2U1: Added comment: SPG56 is an autosomal recessive neurodegenerative disorder characterized by early-onset progressive lower-limb spasticity resulting in walking difficulties. Upper limbs are often also affected, and some patients may have a subclinical axonal neuropathy. Onset is typically in the first decade. More than 5 unrelated families reported.; Changed rating: GREEN; Changed publications: 23176821, 32006740, 29034544
Mendeliome v0.6636 SQOR Zornitza Stark Phenotypes for gene: SQOR were changed from Leigh-like disorder to Leigh-like disorder; Sulfide:quinone oxidoreductase deficiency (SQORD), MIM#619221
Mendeliome v0.6634 SQOR Zornitza Stark edited their review of gene: SQOR: Changed phenotypes: Leigh-like disorder, Sulfide:quinone oxidoreductase deficiency (SQORD), MIM#619221
Mendeliome v0.6630 PGM1 Zornitza Stark Phenotypes for gene: PGM1 were changed from to Congenital disorder of glycosylation, type It 614921; Glycogen storage disorder XIV
Mendeliome v0.6627 PGM1 Zornitza Stark reviewed gene: PGM1: Rating: GREEN; Mode of pathogenicity: None; Publications: 19625727, 24499211; Phenotypes: Congenital disorder of glycosylation, type It 614921, Glycogen storage disorder XIV; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6572 CLCN4 Zornitza Stark Phenotypes for gene: CLCN4 were changed from to Raynaud-Claes syndrome, MIM#300114; intellectual disability; epilepsy; autistic features; mood disorders; cerebral white matter changes; progressive appendicular spasticity
Mendeliome v0.6569 CLCN4 Zornitza Stark reviewed gene: CLCN4: Rating: GREEN; Mode of pathogenicity: None; Publications: 27550844; Phenotypes: Raynaud-Claes syndrome, MIM#300114, intellectual disability, epilepsy, autistic features, mood disorders, cerebral white matter changes, progressive appendicular spasticity; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.6565 EEF2 Zornitza Stark Phenotypes for gene: EEF2 were changed from Neurodevelopmental disorder; macrocephaly; hydrocephalus; Spinocerebellar ataxia 26, MIM#609306 to Neurodevelopmental disorder, macrocephaly, hydrocephalus; Spinocerebellar ataxia 26, MIM#609306
Mendeliome v0.6564 EEF2 Zornitza Stark Phenotypes for gene: EEF2 were changed from Neurodevelopmental disorder, hydrocephalus; Spinocerebellar ataxia 26, MIM#609306 to Neurodevelopmental disorder; macrocephaly; hydrocephalus; Spinocerebellar ataxia 26, MIM#609306
Mendeliome v0.6563 EEF2 Zornitza Stark edited their review of gene: EEF2: Added comment: Phenotype reported in PMID 33355653 is distinct from the adult-onset SCA reported in PMID: 23001565. Evidence for association with SCA remains limited.; Changed rating: GREEN; Changed publications: 33355653; Changed phenotypes: Neurodevelopmental disorder, macrocephaly, hydrocephalus
Mendeliome v0.6563 EEF2 Zornitza Stark Phenotypes for gene: EEF2 were changed from Spinocerebellar ataxia 26, MIM#609306 to Neurodevelopmental disorder, hydrocephalus; Spinocerebellar ataxia 26, MIM#609306
Mendeliome v0.6536 POLRMT Zornitza Stark gene: POLRMT was added
gene: POLRMT was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: POLRMT was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: POLRMT were set to 33602924
Phenotypes for gene: POLRMT were set to Mitochondrial disorder; intellectual disability; hypotonia
Review for gene: POLRMT was set to GREEN
Added comment: 8 individuals from 7 families reported. 5 families with bi-allelic variants and 2 with heterozygous variants. Affected individuals presented with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype.
Sources: Literature
Mendeliome v0.6508 SPEN Zornitza Stark Phenotypes for gene: SPEN were changed from Developmental disorders to Intellectual disability; autism; congenital anomalies
Mendeliome v0.6495 SPEN Chern Lim reviewed gene: SPEN: Rating: GREEN; Mode of pathogenicity: None; Publications: 33596411; Phenotypes: Developmental delay/intellectual disability, autism spectrum disorder, anxiety, aggressive behavior, attention deficit disorder, hypotonia, brain and spine anomalies, congenital heart defects, high/narrow palate, facial dysmorphisms, and obesity/increased BMI; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v0.6478 FOXP2 Zornitza Stark Phenotypes for gene: FOXP2 were changed from to Speech-language disorder-1, MIM# 602081
Mendeliome v0.6475 FOXP2 Zornitza Stark reviewed gene: FOXP2: Rating: GREEN; Mode of pathogenicity: None; Publications: 15877281, 15983371, 27336128; Phenotypes: Speech-language disorder-1, MIM# 602081; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.6416 ZNF292 Zornitza Stark Phenotypes for gene: ZNF292 were changed from Intellectual disability; Autism; ADHD to Intellectual developmental disorder, autosomal dominant 63, MIM# 619188; Intellectual disability; Autism; ADHD
Mendeliome v0.6415 ZNF292 Zornitza Stark edited their review of gene: ZNF292: Changed phenotypes: Intellectual developmental disorder, autosomal dominant 63, MIM# 619188, Intellectual disability, Autism, ADHD
Mendeliome v0.6398 MVD Zornitza Stark gene: MVD was added
gene: MVD was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: MVD was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MVD were set to 30942823; 33491095
Phenotypes for gene: MVD were set to Porokeratosis 7, multiple types, MIM# 614714
Review for gene: MVD was set to GREEN
Added comment: Porokeratoses are a heterogeneous group of keratinization disorders. For linear porokeratosis and disseminated superficial actinic porokeratosis, a heterozygous pathogenic germline variant in a mevalonate pathway gene and a postzygotic second hit mutation present in affected skin have been shown to be the patho-genetic mechanism for the development of the lesions. At least 5 individuals reported.
Sources: Expert list
Mendeliome v0.6311 OTUD5 Zornitza Stark edited their review of gene: OTUD5: Added comment: PMID 33523931: Another 10 individuals from 7 families reported, promote to Green. X-linked multiple congenital anomalies-neurodevelopmental syndrome (MCAND) is an X-linked recessive congenital multisystemic disorder characterized by poor growth, global developmental delay with impaired intellectual development, and variable abnormalities of the cardiac, skeletal, and genitourinary systems. Most affected individuals also have hypotonia and dysmorphic craniofacial features. Brain imaging typically shows enlarged ventricles and thin corpus callosum; some have microcephaly, whereas others have hydrocephalus. The severity of the disorder is highly variable, ranging from death in early infancy to survival into the second or third decade.; Changed rating: GREEN; Changed publications: 33131077, 33523931; Changed phenotypes: Multiple congenital anomalies-neurodevelopmental syndrome, X-linked, MIM# 301056
Mendeliome v0.6307 CETP Bryony Thompson Phenotypes for gene: CETP were changed from to Hyperalphalipoproteinemia MIM#143470; Disorders of high density lipoprotein metabolism
Mendeliome v0.6303 CETP Bryony Thompson reviewed gene: CETP: Rating: ; Mode of pathogenicity: None; Publications: 12070157, 2586614, 27604308, 2215607, 2390095; Phenotypes: Hyperalphalipoproteinemia MIM#143470, Disorders of high density lipoprotein metabolism; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6301 DMGDH Bryony Thompson reviewed gene: DMGDH: Rating: ; Mode of pathogenicity: None; Publications: 11231903, 18937046, 28881522, 27604308; Phenotypes: Dimethylglycine dehydrogenase deficiency MIM#605850, Disorders and variants of other enzymes that oxidise xenobiotics; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6301 CD320 Bryony Thompson Phenotypes for gene: CD320 were changed from to Methylmalonic aciduria, transient, due to transcobalamin receptor defect MIM#613646; Disorders of cobalamin absorption, transport and metabolism
Mendeliome v0.6298 CD320 Bryony Thompson reviewed gene: CD320: Rating: ; Mode of pathogenicity: None; Publications: 29663633, 27604308, 30303736; Phenotypes: Methylmalonic aciduria, transient, due to transcobalamin receptor defect MIM#613646, Disorders of cobalamin absorption, transport and metabolism; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6298 SHPK Bryony Thompson Added comment: Comment on list classification: Likely benign disorder
Mendeliome v0.6297 SHPK Bryony Thompson gene: SHPK was added
gene: SHPK was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SHPK was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SHPK were set to 25647543; 27604308
Phenotypes for gene: SHPK were set to Sedoheptulokinase deficiency MIM#617213
Review for gene: SHPK was set to AMBER
Added comment: 2 unrelated cases reported, with elevated excretion of erythritol and sedoheptulose, and each had a homozygous nonsense variant. The first patient presented with neonatal cholestasis, hypoglycemia, and anemia, while the second patient presented with congenital arthrogryposis multiplex, multiple contractures, and dysmorphisms. Due to inconsistency in phenotypes, likely SHPK deficiency is a benign disorder.
Sources: Literature
Mendeliome v0.6295 PNLIP Bryony Thompson gene: PNLIP was added
gene: PNLIP was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PNLIP was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PNLIP were set to 31977950; 25862608; 24262094; 27604308
Phenotypes for gene: PNLIP were set to Pancreatic lipase deficiency MIM#614338; disorders of lipid and lipoprotein metabolism
Review for gene: PNLIP was set to GREEN
Added comment: 4 cases from 2 unrelated families, with supporting biochemical assays in patient cells and cellular-based assays. The cases have decreased absorption of dietary fat and greasy voluminous stools, but apparent normal development and an overall good state of health.
Sources: Literature
Mendeliome v0.6294 TDO2 Zornitza Stark gene: TDO2 was added
gene: TDO2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: TDO2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TDO2 were set to 28285122; 27604308
Phenotypes for gene: TDO2 were set to Hypertryptophanemia MIM#600627; Disorders of histidine, tryptophan or lysine metabolism
Review for gene: TDO2 was set to RED
Added comment: Single case reported, biochemical phenotype of hypertryptophanemia and hyperserotoninemia does not appear to have significant clinical consequences
Sources: Expert list
Mendeliome v0.6289 SLC36A2 Zornitza Stark Phenotypes for gene: SLC36A2 were changed from to Hyperglycinuria MIM#138500; Iminoglycinuria, digenic MIM#242600; Disorders of amino acid transport
Mendeliome v0.6285 SLC36A2 Zornitza Stark reviewed gene: SLC36A2: Rating: AMBER; Mode of pathogenicity: None; Publications: 19033659, 26141664, 27604308; Phenotypes: Hyperglycinuria MIM#138500, Iminoglycinuria, digenic MIM#242600, Disorders of amino acid transport; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6285 SARDH Zornitza Stark Phenotypes for gene: SARDH were changed from to Sarcosinemia MIM#268900; Disorders of serine, glycine or glycerate metabolism
Mendeliome v0.6281 SARDH Zornitza Stark reviewed gene: SARDH: Rating: AMBER; Mode of pathogenicity: None; Publications: 22825317, 27604308; Phenotypes: Sarcosinemia MIM#268900, Disorders of serine, glycine or glycerate metabolism; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6281 OPLAH Zornitza Stark Phenotypes for gene: OPLAH were changed from to 5-oxoprolinase deficiency MIM#260005; Disorders of the gamma-glutamyl cycle
Mendeliome v0.6277 OPLAH Zornitza Stark reviewed gene: OPLAH: Rating: AMBER; Mode of pathogenicity: None; Publications: 27604308, 27477828; Phenotypes: 5-oxoprolinase deficiency MIM#260005, Disorders of the gamma-glutamyl cycle; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6277 KHK Zornitza Stark Phenotypes for gene: KHK were changed from to Fructosuria MIM#229800; Disorders of fructose metabolism
Mendeliome v0.6273 KHK Zornitza Stark reviewed gene: KHK: Rating: AMBER; Mode of pathogenicity: None; Publications: 7833921, 27604308, 29870677; Phenotypes: Fructosuria MIM#229800, Disorders of fructose metabolism; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6273 HAL Zornitza Stark Phenotypes for gene: HAL were changed from to Histidinemia MIM#235800; Disorders of histidine, tryptophan or lysine metabolism
Mendeliome v0.6269 HAL Zornitza Stark reviewed gene: HAL: Rating: AMBER; Mode of pathogenicity: None; Publications: 27604308, 15806399, 20156889; Phenotypes: Histidinemia MIM#235800, Disorders of histidine, tryptophan or lysine metabolism; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.6266 DCXR Zornitza Stark gene: DCXR was added
gene: DCXR was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: DCXR was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DCXR were set to 22042873
Phenotypes for gene: DCXR were set to Pentosuria MIM#260800; Disorders of pentose metabolism
Review for gene: DCXR was set to AMBER
Added comment: At least 9 Ashkenazi Jewish probands reported. The condition is clinically benign.
Sources: Expert list
Mendeliome v0.6228 SLC46A1 Zornitza Stark changed review comment from: Hereditary folate malabsorption is an autosomal recessive disorder characterized by signs and symptoms of folate deficiency that appear within a few months after birth. Infants exhibit low blood and cerebrospinal fluid folate levels with megaloblastic anemia, diarrhea, immune deficiency, infections, and neurologic deficits. Treatment with folate supplementation results in resolution of the signs and symptoms. The disorder is caused by impaired intestinal folate absorption and impaired transport of folate into the central nervous system. More than 5 unrelated families reported.; to: Hereditary folate malabsorption is an autosomal recessive disorder characterized by signs and symptoms of folate deficiency that appear within a few months after birth. Infants exhibit low blood and cerebrospinal fluid folate levels with megaloblastic anemia, diarrhoea, immune deficiency, infections, and neurologic deficits. Treatment with folate supplementation results in resolution of the signs and symptoms. The disorder is caused by impaired intestinal folate absorption and impaired transport of folate into the central nervous system. More than 5 unrelated families reported.
Mendeliome v0.6215 SIX1 Zornitza Stark changed review comment from: DEFINITIVE by ClinGen. Variable expressivity, some families reported with isolated deafness, however this likely represents a spectrum rather than a separate disorder.; to: Deafness/BOS: DEFINITIVE by ClinGen. Variable expressivity, some families reported with isolated deafness, however this likely represents a spectrum rather than a separate disorder.
Mendeliome v0.6207 PRUNE1 Eleanor Williams reviewed gene: PRUNE1: Rating: GREEN; Mode of pathogenicity: None; Publications: 33105479; Phenotypes: Neurodevelopmental disorder with microcephaly, hypotonia, and variable brain anomalies , MIM#617481; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6184 HIRA Paul De Fazio gene: HIRA was added
gene: HIRA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HIRA was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HIRA were set to 33417013; 28135719; 25363760
Phenotypes for gene: HIRA were set to Neurodevelopmental disorder
Review for gene: HIRA was set to GREEN
gene: HIRA was marked as current diagnostic
Added comment: Two unrelated patients with different de novo loss of function variants identified in PMID 33417013:

Individual 1: intragenic deletion, phenotype included psychomotor retardation, ID, growth retardation, microcephaly, and facial features reminiscent of 22q deletion syndrome.
Individual 2: canonical splice variant, phenotype mostly confined to ASD

Another two de novo variants were identified in the literature by the authors of that paper, one stop-gain (DDD study, PMID 28135719) and one missense (large autism cohort, PMID 25363760).

PMID 33417013 also showed that HIRA knockdown in mice results in neurodevelopmental abnormalities.

Rated Green due to 4 unrelated individuals (albeit 2 in large cohort studies) and a mouse model. NB: HIRA is within the common 22q deletion region.
Sources: Literature
Mendeliome v0.6172 BCAT2 Bryony Thompson gene: BCAT2 was added
gene: BCAT2 was added to Mendeliome. Sources: NHS GMS
Mode of inheritance for gene: BCAT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BCAT2 were set to 14755340; 25653144
Phenotypes for gene: BCAT2 were set to Hypervalinemia or hyperleucine-isoleucinemia MIM#618850; disorder of branched-chain amino acid metabolism
Review for gene: BCAT2 was set to AMBER
Added comment: A single case reported with compound heterozygous variants with functional studies demonstrating that the two variants resulted in decreased BCAT2 enzyme activity. Also, a null mouse model has a phenotype similar to human maple syrup urine disease.
Sources: NHS GMS
Mendeliome v0.6171 SATB1 Zornitza Stark Phenotypes for gene: SATB1 were changed from Developmental disorders to Neurodevelopmental disorder; intellectual disability; epilepsy; microcephaly
Mendeliome v0.6170 KCNN2 Sebastian Lunke Phenotypes for gene: KCNN2 were changed from neurodevelopmental movement disorders to Neurodevelopmental movement disorders; Developmental Delay; Seizures
Mendeliome v0.6166 SATB1 Elena Savva reviewed gene: SATB1: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 33513338; Phenotypes: Neurodevelopmental disorders; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.6164 KCNN2 Ain Roesley gene: KCNN2 was added
gene: KCNN2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KCNN2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: KCNN2 were set to 33242881
Phenotypes for gene: KCNN2 were set to neurodevelopmental movement disorders
Penetrance for gene: KCNN2 were set to unknown
Review for gene: KCNN2 was set to GREEN
Added comment: - 11 probands all de novo except for 1 mother-daughter pair.
- a mix of null and missense variants
- 2/11 with microcephaly, 10/11 motor delay, 7/11 language delay (excluding 2 with regression), all with varying degrees of ID, 3/11 seizures, 7/11 movement disorder, 4/11 cerebellar ataxia, 6/11 MRI anomalies

additional variants were noted in 2 patients: 1x cHet for variants in MED12L and 1x de novo TNK2 variant

patch clamp functional studies were also done
Sources: Literature
Mendeliome v0.6164 SQOR Zornitza Stark gene: SQOR was added
gene: SQOR was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SQOR was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SQOR were set to 32160317
Phenotypes for gene: SQOR were set to Leigh-like disorder
Review for gene: SQOR was set to AMBER
Added comment: Two unrelated families and some functional data.
Sources: Literature
Mendeliome v0.6155 PDE2A Zornitza Stark Phenotypes for gene: PDE2A were changed from Paroxysmal dyskinesia to Paroxysmal dyskinesia; Intellectual developmental disorder with paroxysmal dyskinesia or seizures, MIM# 619150Intellectual developmental disorder with paroxysmal dyskinesia or seizures, MIM# 619150
Mendeliome v0.6153 PDE2A Zornitza Stark edited their review of gene: PDE2A: Changed phenotypes: Paroxysmal dyskinesia, Intellectual developmental disorder with paroxysmal dyskinesia or seizures, MIM# 619150Intellectual developmental disorder with paroxysmal dyskinesia or seizures, MIM# 619150
Mendeliome v0.6149 NBEA Zornitza Stark Phenotypes for gene: NBEA were changed from Intellectual disability; Seizures to Neurodevelopmental disorder with or without early-onset generalized epilepsy, MIM# 619157; Intellectual disability; Seizures
Mendeliome v0.6148 NBEA Zornitza Stark edited their review of gene: NBEA: Changed phenotypes: Neurodevelopmental disorder with or without early-onset generalized epilepsy, MIM# 619157, Intellectual disability, Seizures
Mendeliome v0.6141 NDUFC2 Zornitza Stark gene: NDUFC2 was added
gene: NDUFC2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: NDUFC2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NDUFC2 were set to 32969598
Phenotypes for gene: NDUFC2 were set to Mitochondrial complex I deficiency, nuclear type 36, MIM# 619170
Review for gene: NDUFC2 was set to AMBER
Added comment: Mitochondrial complex I deficiency nuclear type 36 (MC1DN36) is an autosomal recessive metabolic disorder characterized by global developmental delay, hypotonia, and failure to thrive apparent from infancy or early childhood. Affected individuals usually do not acquire ambulation, show progressive spasticity, and have impaired intellectual development with absent speech. More variable features may include pale optic discs, poor eye contact, seizures, and congenital heart defects. Laboratory studies show increased serum lactate; metabolic acidosis may occur during stress or infection. Brain imaging shows T2-weighted abnormalities in the basal ganglia and brainstem, consistent with a clinical diagnosis of Leigh syndrome. Two unrelated families reported, some functional data.
Sources: Expert list
Mendeliome v0.6119 FOXF1 Zornitza Stark changed review comment from: Congenital alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is characterized histologically by failure of formation and ingrowth of alveolar capillaries that then do not make contact with alveolar epithelium, medial muscular thickening of small pulmonary arterioles with muscularization of the intraacinar arterioles, thickened alveolar walls, and anomalously situated pulmonary veins running alongside pulmonary arterioles and sharing the same adventitial sheath. Less common features include a reduced number of alveoli and a patchy distribution of the histopathologic changes. The disorder is associated with persistent pulmonary hypertension of the neonate and shows varying degrees of lability and severity. Affected infants present with respiratory distress resulting from pulmonary hypertension in the early postnatal period, and the disease is uniformly fatal within the newborn period. Additional features of ACDMPV include multiple congenital anomalies affecting the cardiovascular, gastrointestinal, genitourinary, and musculoskeletal systems, as well as disruption of the normal right-left asymmetry of intrathoracic or intraabdominal organs.; to: Congenital alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is characterized histologically by failure of formation and ingrowth of alveolar capillaries that then do not make contact with alveolar epithelium, medial muscular thickening of small pulmonary arterioles with muscularization of the intraacinar arterioles, thickened alveolar walls, and anomalously situated pulmonary veins running alongside pulmonary arterioles and sharing the same adventitial sheath. Less common features include a reduced number of alveoli and a patchy distribution of the histopathologic changes. The disorder is associated with persistent pulmonary hypertension of the neonate and shows varying degrees of lability and severity. Affected infants present with respiratory distress resulting from pulmonary hypertension in the early postnatal period, and the disease is uniformly fatal within the newborn period. Additional features of ACDMPV include multiple congenital anomalies affecting the cardiovascular, gastrointestinal, genitourinary, and musculoskeletal systems, as well as disruption of the normal right-left asymmetry of intrathoracic or intraabdominal organs.

Over 50 families reported.
Mendeliome v0.6107 CREB3L3 Bryony Thompson gene: CREB3L3 was added
gene: CREB3L3 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: CREB3L3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CREB3L3 were set to 32580631; 29954705; 27982131; 27291420; 26427795; 21666694
Phenotypes for gene: CREB3L3 were set to Hyperlipidaemia; hypertriglyceridemia
Review for gene: CREB3L3 was set to AMBER
Added comment: PMID: 26427795 - a loss of function variant (c.359delG p.K120fsX20) was identified in 2 affected adult siblings and a 13 yo normotriglyceridemic daughter of one of the siblings.
PMID: 21666694 - Lipoprotein profiles of the families of 4 individuals with CREB3L3 nonsense mutations showed a significantly elevated mean plasma TG level in 11 mutation carriers compared with 5 non-carrier first-degree relatives (9.67 ± 4.70 vs. 1.66 ± 0.55 mM, P = 0.021, Wilcoxon test). 3 of those families have the same variant - Lys245GlufsTer130, which has 126 (281,946 alleles) hets in gnomAD v2.1.
PMID: 32580631 - case-control analysis of nonmonogenic severe hypertriglyceridemia cases (N=265) vs normolipidemic controls (N=477), identified 5 cases with LoF variants (3 of whom had the Lys245GlufsTer130 frameshift) and none in controls. OR 20.2 (95% CI 1.11–366.1) p = 0.002, adjusted p = 0.03.
The frequency of Lys245GlufsTer130 is higher than expected for a dominant disorder, but other loss of function variants have been identified. The gene may be associated with variable penetrance. There are multiple supporting null mouse models with hyperlipidaemia.
Sources: Expert list
Mendeliome v0.6035 SCAMP5 Zornitza Stark edited their review of gene: SCAMP5: Added comment: PMID 33390987: Four unrelated individuals reported with same de novo missense variant, p. Gly180Trp. The onset age of seizures was ranged from 6 to 15 months. Patients had different types of seizures, including focal seizures, generalized tonic-clonic seizures and tonic seizure. One patient showed typical autism spectrum disorder (ASD) symptoms. Electroencephalogram (EEG) findings presented as focal or multifocal discharges, sometimes spreading to generalization. Brain magnetic resonance imaging (MRI) abnormalities were present in each patient. Severe intellectual disability and language and motor developmental disorders were found in our patients, with all patients having poor language development and were nonverbal at last follow-up. All but one of the patients could walk independently in childhood, but the ability to walk independently in one patient had deteriorated with age. All patients had abnormal neurological exam findings, mostly signs of extrapyramidal system involvement. Dysmorphic features were found in 2/4 patients, mainly in the face and trunk.; Changed publications: 31439720, 33390987
Mendeliome v0.6019 BRPF1 Elena Savva reviewed gene: BRPF1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 32652122, 27939640; Phenotypes: Intellectual developmental disorder with dysmorphic facies and ptosis MIM#617333; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.6002 RABL2A Eleanor Williams gene: RABL2A was added
gene: RABL2A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RABL2A was set to Unknown
Publications for gene: RABL2A were set to 33075816
Phenotypes for gene: RABL2A were set to male infertility; ciliopathy
Review for gene: RABL2A was set to RED
Added comment: PMID: 33075816 - Ding et al 2020 - with the aim of identifying variants that affect male fertility, the authors report on mice expressing two RABL2A SNPs found to be rare (MAF between 2% and 0.02% in gnomAD, with a deleterious prediction from SIFT and PolyPhen-2, and to affect protein stability. Mice homozygous for these variants (p.L119F and p.V158F) were found to be show ciliopathy-associated disorders including male infertility, early growth retardation, excessive weight gain in adulthood, heterotaxia, pre-axial polydactyly, neural tube defects and hydrocephalus.
Sources: Literature
Mendeliome v0.5917 RALGAPB Elena Savva gene: RALGAPB was added
gene: RALGAPB was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RALGAPB was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: RALGAPB were set to PMID: 32853829
Phenotypes for gene: RALGAPB were set to Neurodevelopmental disorders, autism
Review for gene: RALGAPB was set to GREEN
Added comment: PMID: 32853829 - 2 patients with de novo missense variants, 1 patient with a de novo PTC with autism spectrum disorder from a large cohort.
Reviews previous publications and identifies 10 de novo variants (5 PTCs, 5 missense) in patients with ASD (7/10), epilepsy (2/10) and developmental delay (1/10).
Functional studies of patient cells show reduced mRNA expression (PTC).
Sources: Literature
Mendeliome v0.5904 CPA6 Zornitza Stark edited their review of gene: CPA6: Added comment: Homozygous p.A270V variant reported in four siblings with Febrile seizures, familial, 11 (MIM 614418)(PMID:21922598), some functional data. Present in gnomad as hets but no homs. Also note one of the heterozygous individuals initially reported was subsequently found to have a second missense variant, PMID 23105115.

Disputed association between mono allelic variants and disease: variants reported have high frequency in gnomad, not in keeping with Mendelian disorder.; Changed rating: AMBER; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5834 RERE Zornitza Stark Phenotypes for gene: RERE were changed from to Neurodevelopmental disorder with or without anomalies of the brain, eye, or heart, MIM# 616975
Mendeliome v0.5831 RERE Zornitza Stark reviewed gene: RERE: Rating: GREEN; Mode of pathogenicity: None; Publications: 27087320, 23451234, 30896913, 30061196; Phenotypes: Neurodevelopmental disorder with or without anomalies of the brain, eye, or heart, MIM# 616975; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5769 TUSC3 Zornitza Stark Phenotypes for gene: TUSC3 were changed from to Mental retardation, autosomal recessive 7, MIM# 611093, MONDO:0012615; TUSC3-CDG (Disorders of protein N-glycosylation)
Mendeliome v0.5766 TUSC3 Zornitza Stark reviewed gene: TUSC3: Rating: GREEN; Mode of pathogenicity: None; Publications: 18452889, 18455129, 21739581, 27148795, 31606977; Phenotypes: Mental retardation, autosomal recessive 7, MIM# 611093, MONDO:0012615, TUSC3-CDG (Disorders of protein N-glycosylation); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5766 TMEM165 Zornitza Stark Phenotypes for gene: TMEM165 were changed from to Congenital disorder of glycosylation, type IIk, MIM# 614727; TMEM165-CDG, MONDO:0013870
Mendeliome v0.5763 TMEM165 Zornitza Stark reviewed gene: TMEM165: Rating: GREEN; Mode of pathogenicity: None; Publications: 22683087, 28323990, 27401145, 27008884, 26238249, 25609749; Phenotypes: Congenital disorder of glycosylation, type IIk, MIM# 614727, TMEM165-CDG, MONDO:0013870; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5763 SLC35D1 Zornitza Stark Phenotypes for gene: SLC35D1 were changed from Schneckenbecken dysplasia, MIM 269250 to Schneckenbecken dysplasia, MIM 269250, MONDO:0010013; O-xylosyl/N-acetylgalactosaminylglycan synthesis deficiencies (Disorders of protein O-glycosylation)
Mendeliome v0.5761 SLC35D1 Zornitza Stark reviewed gene: SLC35D1: Rating: GREEN; Mode of pathogenicity: None; Publications: 17952091, 19508970, 31423530; Phenotypes: Schneckenbecken dysplasia 269250, O-xylosyl/N-acetylgalactosaminylglycan synthesis deficiencies (Disorders of protein O-glycosylation); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5761 SLC35C1 Zornitza Stark Phenotypes for gene: SLC35C1 were changed from to Congenital disorder of glycosylation, type IIc, MIM# 266265, MONDO:0009953
Mendeliome v0.5758 SLC35C1 Zornitza Stark reviewed gene: SLC35C1: Rating: GREEN; Mode of pathogenicity: None; Publications: 11326279, 12116250, 33098347, 32313197, 24403049; Phenotypes: Congenital disorder of glycosylation, type IIc, MIM# 266265, MONDO:0009953; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5756 GNE Zornitza Stark Phenotypes for gene: GNE were changed from to Nonaka myopathy 605820; Sialuria MIM#269921; ADUDP-GlcNAc epimerase/kinase deficiency (Disorders of multiple glycosylation and other glycosylation pathways)
Mendeliome v0.5753 GNE Zornitza Stark reviewed gene: GNE: Rating: GREEN; Mode of pathogenicity: None; Publications: 12177386, 12473753, 32053088, 29923088, 10356312, 11326336, 11486897, 27142465; Phenotypes: Nonaka myopathy 605820, Sialuria MIM#269921, ADUDP-GlcNAc epimerase/kinase deficiency (Disorders of multiple glycosylation and other glycosylation pathways); Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.5751 CHSY1 Zornitza Stark edited their review of gene: CHSY1: Changed phenotypes: Temtamy preaxial brachydactyly syndrome, MIM# 605282, MONDO:0011533, CHSY1-CDG (Disorders of protein O-glycosylation, O-mannosylglycan synthesis deficiencies)
Mendeliome v0.5751 CHSY1 Zornitza Stark Phenotypes for gene: CHSY1 were changed from to Temtamy preaxial brachydactyly syndrome, MIM# 605282, MONDO:0011533; CHSY1-CDG (Disorders of protein O-glycosylation, O-mannosylglycan synthesis deficiencies)
Mendeliome v0.5748 CHSY1 Zornitza Stark reviewed gene: CHSY1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21129728, 21129727, 24269551; Phenotypes: VTemtamy preaxial brachydactyly syndrome, MIM# 605282, MONDO:0011533, CHSY1-CDG (Disorders of protein O-glycosylation, O-mannosylglycan synthesis deficiencies); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5748 DHDDS Zornitza Stark Phenotypes for gene: DHDDS were changed from to Developmental delay and seizures with or without movement abnormalities, MIM#617836; Congenital disorder of glycosylation, type 1bb, MIM# 613861
Mendeliome v0.5745 DHDDS Zornitza Stark reviewed gene: DHDDS: Rating: GREEN; Mode of pathogenicity: None; Publications: 27343064, 29100083, 21295283; Phenotypes: Developmental delay and seizures with or without movement abnormalities, MIM#617836, Congenital disorder of glycosylation, type 1bb, MIM# 613861; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5739 ST3GAL5 Zornitza Stark Phenotypes for gene: ST3GAL5 were changed from to Salt and pepper developmental regression syndrome 609056; GM3 synthase deficiency, MONDO:0018274; Lactosylceramide alpha-2,3-sialyltransferase deficiency (Disorders of glycosphingolipid and glycosylphosphatidylinositol anchor glycosylation)
Mendeliome v0.5736 ST3GAL5 Zornitza Stark reviewed gene: ST3GAL5: Rating: GREEN; Mode of pathogenicity: None; Publications: 23436467, 22990144, 15502825, 27232954, 30691927, 30688114, 30576498; Phenotypes: Salt and pepper developmental regression syndrome 609056, GM3 synthase deficiency, MONDO:0018274, Lactosylceramide alpha-2,3-sialyltransferase deficiency (Disorders of glycosphingolipid and glycosylphosphatidylinositol anchor glycosylation); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5733 RFT1 Zornitza Stark Phenotypes for gene: RFT1 were changed from to Congenital disorder of glycosylation, type In, MIM# 612015; RFT1-CDG, MONDO:0012783
Mendeliome v0.5730 RFT1 Zornitza Stark reviewed gene: RFT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 18313027, 19701946, 19856127, 23111317, 30071302, 29923091, 27927990, 26892341; Phenotypes: Congenital disorder of glycosylation, type In, MIM# 612015, RFT1-CDG, MONDO:0012783; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5727 MGAT2 Zornitza Stark Phenotypes for gene: MGAT2 were changed from to Congenital disorder of glycosylation, type IIa, MIM# 212066; MGAT2-CDG, MONDO:0008908
Mendeliome v0.5724 MGAT2 Zornitza Stark reviewed gene: MGAT2: Rating: GREEN; Mode of pathogenicity: None; Publications: 8808595, 11228641, 22105986, 33044030, 31420886; Phenotypes: Congenital disorder of glycosylation, type IIa, MIM# 212066, MGAT2-CDG, MONDO:0008908; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5724 MPI Zornitza Stark Phenotypes for gene: MPI were changed from to Congenital disorder of glycosylation, type Ib, MIM# 602579; MPI-CDG MONDO:0011257
Mendeliome v0.5721 MPI Zornitza Stark reviewed gene: MPI: Rating: GREEN; Mode of pathogenicity: None; Publications: 12414827, 9585601, 10980531, 33098580, 33204592, 32905087, 32266963, 30242110; Phenotypes: Congenital disorder of glycosylation, type Ib, MIM# 602579, MPI-CDG MONDO:0011257; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5690 MPDU1 Zornitza Stark Phenotypes for gene: MPDU1 were changed from to Congenital disorder of glycosylation, type If, MIM# 609180; MPDU1-CDG, MONDO:0012211
Mendeliome v0.5687 MPDU1 Zornitza Stark reviewed gene: MPDU1: Rating: GREEN; Mode of pathogenicity: None; Publications: 11733564, 11733556, 31741824, 29721919; Phenotypes: Congenital disorder of glycosylation, type If, MIM# 609180, MPDU1-CDG, MONDO:0012211; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5687 DPAGT1 Zornitza Stark Phenotypes for gene: DPAGT1 were changed from to Congenital disorder of glycosylation, type Ij, MIM# 608093; DPAGT1-CDG MONDO:0011964; Myasthenic syndrome, congenital, 13, with tubular aggregates, MIM# 614750
Mendeliome v0.5684 DPAGT1 Zornitza Stark changed review comment from: Type I CDG. More than 20 unrelated families reported. Most affected individuals have a very severe disease course, where common findings are pronounced muscular hypotonia, intractable epilepsy, global developmental delay/intellectual disability, and early death. Additional features that may be observed include apnoea and respiratory deficiency, cataracts, joint contractures, vermian hypoplasia, dysmorphic features (esotropia, arched palate, micrognathia, finger clinodactyly, single flexion creases) and feeding difficulties.

Myasthenic syndrome, congenital, 13, with tubular aggregates, MIM 614750 is a milder allelic disorder.; to: Type I CDG. More than 20 unrelated families reported. Most affected individuals have a very severe disease course, where common findings are pronounced muscular hypotonia, intractable epilepsy, global developmental delay/intellectual disability, and early death. Additional features that may be observed include apnoea and respiratory deficiency, cataracts, joint contractures, vermian hypoplasia, dysmorphic features (esotropia, arched palate, micrognathia, finger clinodactyly, single flexion creases) and feeding difficulties.

Myasthenic syndrome, congenital, 13, with tubular aggregates, MIM 614750 is a milder allelic disorder. More than 5 unrelated families reported with this presentation.
Mendeliome v0.5684 DPAGT1 Zornitza Stark reviewed gene: DPAGT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 12872255, 22492991, 22304930, 31153949, 30653653, 30117111; Phenotypes: Congenital disorder of glycosylation, type Ij, MIM# 608093, DPAGT1-CDG MONDO:0011964, Myasthenic syndrome, congenital, 13, with tubular aggregates, MIM# 614750; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5684 DOLK Zornitza Stark Phenotypes for gene: DOLK were changed from to DK1-CDG, MONDO:0012556; Congenital disorder of glycosylation, type Im, MIM# 610768
Mendeliome v0.5681 DOLK Zornitza Stark reviewed gene: DOLK: Rating: GREEN; Mode of pathogenicity: None; Publications: 17273964, 22242004, 23890587, 30653653, 28816422, 24144945; Phenotypes: DK1-CDG, MONDO:0012556, Congenital disorder of glycosylation, type Im, MIM# 610768; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5674 POR Zornitza Stark Phenotypes for gene: POR were changed from to Antley-Bixler syndrome with genital anomalies and disordered steroidogenesis, MIM#201750; Disordered steroidogenesis due to cytochrome P450 oxidoreductase, MIM#613571
Mendeliome v0.5665 POR Elena Savva reviewed gene: POR: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 27068427; Phenotypes: Antley-Bixler syndrome with genital anomalies and disordered steroidogenesis, MIM#201750, Disordered steroidogenesis due to cytochrome P450 oxidoreductase, MIM#613571; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.5665 COG6 Zornitza Stark Phenotypes for gene: COG6 were changed from to Congenital disorder of glycosylation, type IIl, MIM# 614576
Mendeliome v0.5662 COG6 Zornitza Stark reviewed gene: COG6: Rating: GREEN; Mode of pathogenicity: None; Publications: 20605848, 23430903, 26260076, 32905044, 32683677, 31420886; Phenotypes: Congenital disorder of glycosylation, type IIl, MIM# 614576; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5662 COG5 Zornitza Stark Phenotypes for gene: COG5 were changed from to Congenital disorder of glycosylation, type IIi, MIM# 613612
Mendeliome v0.5659 COG5 Zornitza Stark reviewed gene: COG5: Rating: GREEN; Mode of pathogenicity: None; Publications: 23228021, 31572517, 32174980; Phenotypes: Congenital disorder of glycosylation, type IIi, MIM# 613612; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5653 SHMT2 Zornitza Stark Phenotypes for gene: SHMT2 were changed from Congenital microcephaly; Infantile axial hypotonia; Spastic paraparesis; Global developmental delay; Intellectual disability; Abnormality of the corpus callosum; Abnormal cortical gyration; Hypertrophic cardiomyopathy; Abnormality of the face; Proximal placement of thumb; 2-3 toe syndactyly to Neurodevelopmental disorder with cardiomyopathy, spasticity, and brain abnormalities (NEDCASB), MIM#619121; Congenital microcephaly; Infantile axial hypotonia; Spastic paraparesis; Global developmental delay; Intellectual disability; Abnormality of the corpus callosum; Abnormal cortical gyration; Hypertrophic cardiomyopathy; Abnormality of the face; Proximal placement of thumb; 2-3 toe syndactyly
Mendeliome v0.5652 SHMT2 Zornitza Stark edited their review of gene: SHMT2: Changed phenotypes: Neurodevelopmental disorder with cardiomyopathy, spasticity, and brain abnormalities (NEDCASB), MIM#619121, Congenital microcephaly, Infantile axial hypotonia, Spastic paraparesis, Global developmental delay, Intellectual disability, Abnormality of the corpus callosum, Abnormal cortical gyration, Hypertrophic cardiomyopathy, Abnormality of the face, Proximal placement of thumb, 2-3 toe syndactyly
Mendeliome v0.5623 DACH2 Zornitza Stark gene: DACH2 was added
gene: DACH2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: DACH2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DACH2 were set to 15459172
Phenotypes for gene: DACH2 were set to Primary ovarian insufficiency
Review for gene: DACH2 was set to RED
Added comment: In a small candidate gene study, missense were more common in POI cases than controls (p= 0.0125). 5 missense reported in 7 POI cases, although 2 of the missense are too common in gnomAD for a dominant disorder. No other reports with evidence for an association with POI.
Sources: Expert list
Mendeliome v0.5579 EMC10 Zornitza Stark gene: EMC10 was added
gene: EMC10 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EMC10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EMC10 were set to 32869858
Phenotypes for gene: EMC10 were set to Intellectual disability
Review for gene: EMC10 was set to RED
Added comment: Homozygous variants of EMC1 are associated with GDD, scoliosis, and cerebellar atrophy, indicating the relevance of this pathway for neurogenetic disorders.

One Saudi family with 2 affected individuals with mild ID, speech delay, and GDD.
WES and Sanger sequencing revealed a homozygous splice acceptor site variant (c.679‐1G>A) in EMC10 . Variant segregated within the family. RT‐qPCR showed a substantial decrease in the relative EMC10 gene expression in the patients.
Sources: Literature
Mendeliome v0.5577 FBXO28 Zornitza Stark gene: FBXO28 was added
gene: FBXO28 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FBXO28 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FBXO28 were set to 33280099
Phenotypes for gene: FBXO28 were set to Developmental and epileptic encephalopathy
Review for gene: FBXO28 was set to GREEN
Added comment: Nine new individuals with FBXO28 pathogenic variants (four missense, including one recurrent, three nonsense, and one frameshift) and all 10 known cases reviewed to delineate the phenotypic spectrum. All had epilepsy and 9 of 10 had DEE, including infantile spasms (3) and a progressive myoclonic epilepsy (1). Median age at seizure onset was 22.5 months (range 8 months to 5 years). Nine of 10 patients had intellectual disability, which was profound in six of nine and severe in three of nine. Movement disorders occurred in eight of 10 patients, six of 10 had hypotonia, four of 10 had acquired microcephaly, and five of 10 had dysmorphic features.
Sources: Literature
Mendeliome v0.5567 VPS4A Kristin Rigbye changed review comment from: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain.
1x homozygous missense in the MIT domain (milder phenotype and unaffected parents).
Demonstrated defective CD71 trafficking in all 3 patients.

PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly).
Demonstrated that the variants had a dominant-negative effect on VPS4A function.
"The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Sources: Literature; to: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain.
1x homozygous missense in the MIT domain (milder phenotype and unaffected parents - possibly just a simple LoF mechanism for AR inheritance).
Demonstrated defective CD71 trafficking in all 3 patients.

PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly).
Demonstrated that the variants had a dominant-negative effect on VPS4A function.

"The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Mendeliome v0.5567 VPS4A Elena Savva changed review comment from: Comment when marking as ready: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain. 1x homozygous missense in the MIT domain (milder phenotype and unaffected parents). Demonstrated defective CD71 trafficking in all 3 patients. PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly). Demonstrated that the variants had a dominant-negative effect on VPS4A function. "The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."; to: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain.
1x homozygous missense in the MIT domain (milder phenotype and unaffected parents).
Demonstrated defective CD71 trafficking in all 3 patients.

Comment when marking as ready: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain. 1x homozygous missense in the MIT domain (milder phenotype and unaffected parents). Demonstrated defective CD71 trafficking in all 3 patients. PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly). Demonstrated that the variants had a dominant-negative effect on VPS4A function. "The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Mendeliome v0.5567 VPS4A Elena Savva Added comment: Comment when marking as ready: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain. 1x homozygous missense in the MIT domain (milder phenotype and unaffected parents). Demonstrated defective CD71 trafficking in all 3 patients. PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly). Demonstrated that the variants had a dominant-negative effect on VPS4A function. "The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Mendeliome v0.5563 BICRA Elena Savva Added comment: Comment when marking as ready: 12 individuals reported, 11 de novo (1 not resolved), "with neurodevelopmental phenotypes—developmental delay (HP:0001263), intellectual disability (HP:0001249), autism spectrum disorder (HP:0000729), and/or behavioral phenotypes (HP:0000708)—and variable structural birth defects and dysmorphic features". Mostly LoF or gene deletions, but 2 missense reported. Zebrafish model supports the gene-disease association.
Mendeliome v0.5558 VPS4A Kristin Rigbye gene: VPS4A was added
gene: VPS4A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: VPS4A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: VPS4A were set to PMID: 33186543; 33186545
Phenotypes for gene: VPS4A were set to Neurodevelopmental disorder
Review for gene: VPS4A was set to GREEN
Added comment: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain.
1x homozygous missense in the MIT domain (milder phenotype and unaffected parents).
Demonstrated defective CD71 trafficking in all 3 patients.

PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly).
Demonstrated that the variants had a dominant-negative effect on VPS4A function.
"The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Sources: Literature
Mendeliome v0.5554 BICRA Paul De Fazio gene: BICRA was added
gene: BICRA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: BICRA was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: BICRA were set to 33232675
Phenotypes for gene: BICRA were set to Developmental delay, intellectual disability, autism spectrum disorder,behavioral abnormalities, dysmorphic features
Review for gene: BICRA was set to GREEN
gene: BICRA was marked as current diagnostic
Added comment: 12 individuals reported, 11 de novo (1 not resolved), "with neurodevelopmental phenotypes—developmental delay (HP:0001263), intellectual disability (HP:0001249), autism spectrum disorder (HP:0000729), and/or behavioral phenotypes (HP:0000708)—and variable structural birth defects and dysmorphic features". Mostly LoF or gene deletions, but 2 missense reported. Zebrafish model supports the gene-disease association.
Sources: Literature
Mendeliome v0.5552 SMG8 Kristin Rigbye reviewed gene: SMG8: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 33242396; Phenotypes: Neuorodevelopmental disorder; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5546 KAT5 Zornitza Stark Phenotypes for gene: KAT5 were changed from Severe global developmental delay; Intellectual disability; Seizures; Microcephaly; Behavioral abnormality; Sleep disturbance; Morphological abnormality of the central nervous system; Short stature; Oral cleft; Abnormality of the face to Neurodevelopmental disorder with dysmorphic facies, sleep disturbance, and brain abnormalities (NEDFASB), MIM#619103; Severe global developmental delay; Intellectual disability; Seizures; Microcephaly; Behavioral abnormality; Sleep disturbance; Morphological abnormality of the central nervous system; Short stature; Oral cleft; Abnormality of the face
Mendeliome v0.5545 KAT5 Zornitza Stark edited their review of gene: KAT5: Changed rating: GREEN; Changed phenotypes: Neurodevelopmental disorder with dysmorphic facies, sleep disturbance, and brain abnormalities (NEDFASB), MIM#619103; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5523 TFE3 Zornitza Stark edited their review of gene: TFE3: Added comment: PMID: 32409512 (2020) - 14 variants reported as de novo events in 17 unrelated cases (including 5 previously published) of severe intellectual disability with pigmentary mosaicism and storage disorder-like features; Changed publications: 30595499, 31833172, 32409512; Changed mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.5507 USP7 Zornitza Stark edited their review of gene: USP7: Added comment: Hao-Fountain syndrome (HAFOUS) is a neurodevelopmental disorder characterized by global developmental delay, variably impaired intellectual development with significant speech delay, behavioral abnormalities, such as autism, and mild dysmorphic facies. Additional features are variable, but may include hypotonia, feeding problems, delayed walking with unsteady gait, hypogonadism in males, and ocular anomalies, such as strabismus. Some patients develop seizures and some have mild white matter abnormalities on brain imaging.; Changed publications: 26365382, 30679821; Changed phenotypes: Hao-Fountain syndrome, MIM# 616863, Intellectual disability, Autism
Mendeliome v0.5489 PIGK Zornitza Stark Phenotypes for gene: PIGK were changed from Intellectual disability; seizures; cerebellar atrophy to Neurodevelopmental disorder with hypotonia and cerebellar atrophy, with or without seizures, MIM# 618879
Mendeliome v0.5488 PIGK Zornitza Stark edited their review of gene: PIGK: Changed phenotypes: Neurodevelopmental disorder with hypotonia and cerebellar atrophy, with or without seizures, MIM# 618879
Mendeliome v0.5487 PIGH Zornitza Stark edited their review of gene: PIGH: Added comment: Further three families reported.

Common clinical features include developmental delay/intellectual disability and hypotonia. Variable clinical features include seizures, autism spectrum disorder, apraxia, severe language delay, dysarthria, feeding difficulties, facial dysmorphisms, microcephaly, strabismus, and musculoskeletal anomalies.; Changed publications: 29573052, 29603516, 33156547
Mendeliome v0.5483 GPAA1 Zornitza Stark edited their review of gene: GPAA1: Added comment: At least 5 unrelated families reported with bi-allelic variants in this gene and delayed psychomotor development, variable intellectual disability, hypotonia, early-onset seizures in most, and cerebellar atrophy, resulting in cerebellar signs including gait ataxia and dysarthria. The disorder is caused by a defect in glycosylphosphatidylinositol (GPI) biosynthesis.; Changed publications: 29100095
Mendeliome v0.5480 PEX1 Zornitza Stark Phenotypes for gene: PEX1 were changed from to Heimler syndrome 1 234580; Peroxisome biogenesis disorder 1A (Zellweger) 214100; . Peroxisome biogenesis disorder 1B (NALD/IRD) 601539
Mendeliome v0.5474 PEX1 Elena Savva reviewed gene: PEX1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 26387595; Phenotypes: Heimler syndrome 1 234580, Peroxisome biogenesis disorder 1A (Zellweger) 214100, . Peroxisome biogenesis disorder 1B (NALD/IRD) 601539; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5472 AGBL1 Zornitza Stark gene: AGBL1 was added
gene: AGBL1 was added to Mendeliome. Sources: Expert Review
disputed tags were added to gene: AGBL1.
Mode of inheritance for gene: AGBL1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: AGBL1 were set to 24094747; 31555324
Phenotypes for gene: AGBL1 were set to Corneal dystrophy, Fuchs endothelial, 8, MIM# 615523
Review for gene: AGBL1 was set to RED
Added comment: Gene disease association first reported in 2013 in PMID 24094747, in a large multigenerational family. However, note the variant reported, p.Arg1028Ter is present in over 400 hets in gnomad. Another variant reported in same paper, p.Cys990Ser in three unrelated individuals, is present in over 300 hets in gnomad and 1 hom.

Two further variants reported in PMID 31555324, one is missense, p.Arg748His, present in 60 hets, and the other, p.Arg1028Ter, is present is the variant identified in the previous publication, present in over 400 hets.

These variant frequencies are out of keeping for a rare disorder.
Sources: Expert Review
Mendeliome v0.5462 SSR3 Zornitza Stark gene: SSR3 was added
gene: SSR3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SSR3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SSR3 were set to 30945312
Phenotypes for gene: SSR3 were set to Congenital disorder of glycosylation
Review for gene: SSR3 was set to AMBER
Added comment: Single individual reported with an unsolved type I CDG, intellectual disability, homozygous LOF variant in SSR3, supportive functional evidence.
Sources: Literature
Mendeliome v0.5455 ALG9 Zornitza Stark Phenotypes for gene: ALG9 were changed from to Congenital disorder of glycosylation, type Il, MIM#608776; Gillessen-Kaesbach-Nishimura syndrome, MIM# 263210; Polycystic kidney disease
Mendeliome v0.5452 ALG9 Zornitza Stark reviewed gene: ALG9: Rating: GREEN; Mode of pathogenicity: None; Publications: 28932688, 25966638, 26453364, 30676690; Phenotypes: Congenital disorder of glycosylation, type Il, MIM#608776, Gillessen-Kaesbach-Nishimura syndrome, MIM# 263210, Polycystic kidney disease; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.5452 ALG8 Zornitza Stark Phenotypes for gene: ALG8 were changed from Congenital disorder of glycosylation, type Ih, MIM# 608104 to Congenital disorder of glycosylation, type Ih, MIM# 608104; Polycystic liver disease 3 with or without kidney cysts, MIM# 617874
Mendeliome v0.5449 ALG8 Zornitza Stark edited their review of gene: ALG8: Added comment: Monoallelic variants are associated with polycystic liver disease.; Changed publications: 26066342, 28375157, 15235028; Changed phenotypes: Congenital disorder of glycosylation, type Ih, MIM# 608104, Polycystic liver disease 3 with or without kidney cysts, MIM# 617874; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.5449 ALG8 Zornitza Stark Phenotypes for gene: ALG8 were changed from to Congenital disorder of glycosylation, type Ih, MIM# 608104
Mendeliome v0.5446 ALG8 Zornitza Stark reviewed gene: ALG8: Rating: GREEN; Mode of pathogenicity: None; Publications: 26066342; Phenotypes: Congenital disorder of glycosylation, type Ih, MIM# 608104; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5446 ALG3 Zornitza Stark Phenotypes for gene: ALG3 were changed from to Congenital disorder of glycosylation, type Id, MIM# 601110
Mendeliome v0.5443 ALG3 Zornitza Stark reviewed gene: ALG3: Rating: GREEN; Mode of pathogenicity: None; Publications: 31067009; Phenotypes: Congenital disorder of glycosylation, type Id, MIM# 601110; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5441 SLC3A2 Naomi Baker changed review comment from: No evidence of mendelian gene-disease association reported in the literature.; to: Weak evidence of mendelian gene-disease association reported in the literature.

Three monoallelic missense variants reported in patients with Autism spectrum disorder (ASD) from one publication (PMID: 31701662).
Mendeliome v0.5416 ALG6 Zornitza Stark Phenotypes for gene: ALG6 were changed from to Congenital disorder of glycosylation, type Ic (MIM#603147)
Mendeliome v0.5413 ALG6 Zornitza Stark reviewed gene: ALG6: Rating: GREEN; Mode of pathogenicity: None; Publications: 10914684, 27498540; Phenotypes: Congenital disorder of glycosylation, type Ic (MIM#603147); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5412 MOGS Zornitza Stark reviewed gene: MOGS: Rating: GREEN; Mode of pathogenicity: None; Publications: 31925597, 30587846, 33058492; Phenotypes: Congenital disorder of glycosylation, type IIb, MIM# 606056; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5406 NEMF Zornitza Stark Phenotypes for gene: NEMF were changed from Intellectual disability; neuropathy to Intellectual developmental disorder with speech delay and axonal peripheral neuropathy, MIM# 619099; Intellectual disability; neuropathy
Mendeliome v0.5405 NEMF Zornitza Stark edited their review of gene: NEMF: Changed phenotypes: Intellectual developmental disorder with speech delay and axonal peripheral neuropathy, MIM# 619099, Intellectual disability, neuropathy
Mendeliome v0.5393 NARS Zornitza Stark Phenotypes for gene: NARS were changed from Abnormal muscle tone; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Ataxia; Abnormality of the face; Demyelinating peripheral neuropathy to Neurodevelopmental disorder with microcephaly, impaired language, and gait abnormalities (NEDMILG), MIM#619091; Neurodevelopmental disorder with microcephaly, impaired language, epilepsy, and gait abnormalities (NEDMILEG), MIM#619092; Abnormal muscle tone; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Ataxia; Abnormality of the face; Demyelinating peripheral neuropathy
Mendeliome v0.5392 NARS Zornitza Stark edited their review of gene: NARS: Changed phenotypes: Neurodevelopmental disorder with microcephaly, impaired language, and gait abnormalities (NEDMILG), MIM#619091, Neurodevelopmental disorder with microcephaly, impaired language, epilepsy, and gait abnormalities (NEDMILEG), MIM#619092, Abnormal muscle tone, Microcephaly, Global developmental delay, Intellectual disability, Seizures, Ataxia, Abnormality of the face, Demyelinating peripheral neuropathy
Mendeliome v0.5373 GABBR2 Zornitza Stark commented on gene: GABBR2: At least 3 unrelated individuals reported with DEE 59, MIM# 617904. Neurodevelopmental disorder with poor language and loss of hand skills, MIM# 617903 is an allelic disorder, which is less severe. The two may represent a spectrum.
Mendeliome v0.5373 GABBR2 Zornitza Stark edited their review of gene: GABBR2: Changed publications: 29100083, 28061363, 28135719, 28856709, 29369404, 29377213, 25262651, 28856709; Changed phenotypes: Neurodevelopmental disorder with poor language and loss of hand skills, 617903, Developmental and epileptic encephalopathy 59, MIM# 617904
Mendeliome v0.5321 AP2S1 Zornitza Stark Phenotypes for gene: AP2S1 were changed from Hypocalciuric hypercalcemia, type III MIM#600740 to Hypocalciuric hypercalcemia, type III MIM#600740; Developmental disorder
Mendeliome v0.5315 ZFHX4 Bryony Thompson changed review comment from: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 16 de novo variants (5 frameshift, 5 missense, 4 stopgain, 2 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature; to: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 16 de novo variants (5 frameshift, 5 missense, 4 stopgain, 2 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
PMID: 24038936 - a single case with developmental delay, macrocephaly, ventriculomegaly, hypermetropia, recurrent
infections, dysmorphism and a de novo deletion of the last 7 exons of the gene.
Sources: Literature
Mendeliome v0.5315 ZFHX4 Bryony Thompson edited their review of gene: ZFHX4: Changed phenotypes: Developmental disorders, intellectual disability, dysmorphic features
Mendeliome v0.5315 ZFHX4 Bryony Thompson gene: ZFHX4 was added
gene: ZFHX4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZFHX4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ZFHX4 were set to 33057194
Phenotypes for gene: ZFHX4 were set to Developmental disorders
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 16 de novo variants (5 frameshift, 5 missense, 4 stopgain, 2 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5313 UPF1 Bryony Thompson gene: UPF1 was added
gene: UPF1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UPF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: UPF1 were set to 33057194
Phenotypes for gene: UPF1 were set to Developmental disorders
Review for gene: UPF1 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 16 de novo variants (1 frameshift, 11 missense, 4 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5311 U2AF2 Bryony Thompson gene: U2AF2 was added
gene: U2AF2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: U2AF2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: U2AF2 were set to 33057194
Phenotypes for gene: U2AF2 were set to Developmental disorders
Review for gene: U2AF2 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 10 de novo variants (1 in-frame, 8 missense, 1 synoymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5309 TCF7L2 Bryony Thompson Phenotypes for gene: TCF7L2 were changed from to Developmental disorders
Mendeliome v0.5305 TCF7L2 Bryony Thompson reviewed gene: TCF7L2: Rating: AMBER; Mode of pathogenicity: None; Publications: 33057194; Phenotypes: Developmental disorders; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5304 SRRM2 Bryony Thompson gene: SRRM2 was added
gene: SRRM2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SRRM2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SRRM2 were set to 33057194
Phenotypes for gene: SRRM2 were set to Developmental disorders
Review for gene: SRRM2 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 28 de novo variants (11 frameshift, 7 missense, 1 splice acceptor, 5 stopgain, 4 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5302 SPEN Bryony Thompson gene: SPEN was added
gene: SPEN was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SPEN was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SPEN were set to 33057194
Phenotypes for gene: SPEN were set to Developmental disorders
Review for gene: SPEN was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 25 de novo variants (6 frameshift, 1 in-frame, 7 missense, 8 stopgain, 3 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5300 SATB1 Bryony Thompson gene: SATB1 was added
gene: SATB1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SATB1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SATB1 were set to 33057194
Phenotypes for gene: SATB1 were set to Developmental disorders
Review for gene: SATB1 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 12 de novo (2 frameshift, 7 missense, 1 stopgain, 2 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5298 RAB14 Bryony Thompson gene: RAB14 was added
gene: RAB14 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: RAB14 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RAB14 were set to 33057194
Phenotypes for gene: RAB14 were set to Developmental disorders
Review for gene: RAB14 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 8 de novo variants (1 in-frame, 7 missense) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5296 PSMC5 Bryony Thompson gene: PSMC5 was added
gene: PSMC5 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PSMC5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PSMC5 were set to 33057194
Phenotypes for gene: PSMC5 were set to Developmental disorders
Review for gene: PSMC5 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 10 de novo variants (1 in-frame, 9 missense) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5295 PRPF8 Bryony Thompson Added comment: Comment on phenotypes: Established Retinitis pigmentosa gene.
PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 29 de novo variants (2 frameshift, 19 missense, 1 stopgain, 7 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Mendeliome v0.5290 MSL2 Bryony Thompson gene: MSL2 was added
gene: MSL2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MSL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MSL2 were set to 31332282; 33057194
Phenotypes for gene: MSL2 were set to Developmental disorders; autism
Review for gene: MSL2 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 13 de novo variants (9 frameshift, 4 missense) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
PMID: 31332282 - candidate gene in a single autism study, with recurrent de novo variants in a potential oligogenic model
Sources: Literature
Mendeliome v0.5288 MMGT1 Bryony Thompson gene: MMGT1 was added
gene: MMGT1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MMGT1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MMGT1 were set to 33057194
Phenotypes for gene: MMGT1 were set to Developmental disorders
Review for gene: MMGT1 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 3 de novo missense identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5286 MIB1 Bryony Thompson Added comment: Comment on phenotypes: Established congenital cardiac disease gene.
PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 11 de novo variants (1 frameshift, 2 missense, 2 splice acceptor, 1 splice donor, 5 stopgain) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Mendeliome v0.5284 MFN2 Bryony Thompson Added comment: Comment on phenotypes: Established cause of hereditary neuropathy.
PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 9 de novo variants (8 missense, 1 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Mendeliome v0.5282 KCNK3 Bryony Thompson Added comment: Comment on phenotypes: Established pulmonary hypertension gene.
PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 8 de novo variants (7 missense, 1 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Mendeliome v0.5279 HNRNPD Bryony Thompson gene: HNRNPD was added
gene: HNRNPD was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: HNRNPD was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: HNRNPD were set to 33057194
Phenotypes for gene: HNRNPD were set to Developmental disorders
Review for gene: HNRNPD was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 8 de novo variants (5 frameshift, 1 missense, 1 splice acceptor, 1 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5278 H3F3A Bryony Thompson reviewed gene: H3F3A: Rating: AMBER; Mode of pathogenicity: None; Publications: 33057194, 31942419; Phenotypes: Developmental disorders, intellectual disability, microcephaly, severe developmental delay; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5274 MYMK Zornitza Stark changed review comment from: Sources: Expert list; to: Carey-Fineman-Ziter syndrome (CFZS) is a multisystem congenital disorder characterized by hypotonia, Moebius sequence (bilateral congenital facial palsy with impairment of ocular abduction), Pierre Robin complex (micrognathia, glossoptosis, and high-arched or cleft palate), delayed motor milestones, and failure to thrive. Intellect has been normal in molecularly confirmed cases. Defect in myoblast fusion. 6 unrelated families reported with CFZ phenotype and bi-allelic MYMK variants. p.Pro91Thr is a common founder variant, which is hypomorphic.
Mendeliome v0.5270 FOXP4 Zornitza Stark gene: FOXP4 was added
gene: FOXP4 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FOXP4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FOXP4 were set to 33110267
Phenotypes for gene: FOXP4 were set to Neurodevelopmental disorder; multiple congenital abnormalities
Review for gene: FOXP4 was set to GREEN
Added comment: Eight unrelated individuals reported, seven de novo missense, and one individual with a truncating variant. Detailed phenotypic information available on 6. Overlapping features included speech and language delays, growth abnormalities, congenital diaphragmatic hernia (2/6), cervical spine abnormalities, and ptosis. Intellectual disability described as mild in 2, some had normal intellect despite the early speech and language delays.
Sources: Literature
Mendeliome v0.5254 FBXO31 Kristin Rigbye changed review comment from: 2 unrelated probands with CP harbouring the same de novo missense variant (p.Asp334Asn). The variant affects the cyclin D interaction site, leading to an apparent gain of function of cyclin D degradation, supported by Western blots from patient fibroblasts which showed decreased cyclin D expression.; to: 2 unrelated probands with CP harbouring the same de novo missense variant (p.Asp334Asn). The variant affects the cyclin D interaction site, leading to an apparent gain of function of cyclin D degradation, supported by Western blots from patient fibroblasts which showed decreased cyclin D expression.

Extended patient phenotypes: Spastic diplegia, with esotropia, ID, dysarthria, mixed receptive/expressive language disorder, ADHD, cleft palate, intestinal malrotation and midgut volvulus (patient 1); Spastic paraplegia with ventricular dilation and thin corpus callosum, ID, attention deficit, anxiety, language impairments, strabismus, severe constipation (patient 2).
Mendeliome v0.5235 GNB2 Bryony Thompson reviewed gene: GNB2: Rating: AMBER; Mode of pathogenicity: None; Publications: 33057194; Phenotypes: Developmental disorder, sinus node dysfunction and atrioventricular block; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.5234 GIGYF1 Bryony Thompson gene: GIGYF1 was added
gene: GIGYF1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GIGYF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GIGYF1 were set to 33057194
Phenotypes for gene: GIGYF1 were set to Developmental disorder
Review for gene: GIGYF1 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 14 de novo variants (4 frameshift, 5 missense, 1 splice donor, 3 stopgain, 1 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5232 FBXW7 Bryony Thompson gene: FBXW7 was added
gene: FBXW7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FBXW7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FBXW7 were set to 33057194
Phenotypes for gene: FBXW7 were set to Developmental disorder
Review for gene: FBXW7 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio developmental disorder study. 12 de novo missense and 1 de novo synonymous variant identified in ~10,000 cases with developmental disorders (no other phenotype info provided)
Sources: Literature
Mendeliome v0.5229 PRKAR1B Konstantinos Varvagiannis gene: PRKAR1B was added
gene: PRKAR1B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRKAR1B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PRKAR1B were set to https://doi.org/10.1101/2020.09.10.20190314; 25414040
Phenotypes for gene: PRKAR1B were set to Global developmental delay; Intellectual disability; Autism; Attention deficit hyperactivity disorder; Aggressive behavior; Abnormality of movement; Upslanted palpebral fissure
Penetrance for gene: PRKAR1B were set to unknown
Review for gene: PRKAR1B was set to AMBER
Added comment: Please consider inclusion of this gene with amber rating pending publication of the preprint and/or additional evidence.

Marbach et al. (2020 - medRxiv : https://doi.org/10.1101/2020.09.10.20190314 - last author : C. Schaaf) report 6 unrelated individuals with heterozygous missense PRKAR1B variants.

All presented formal ASD diagnosis (6/6), global developmental delay (6/6) and intellectual disability (all - formal evaluations were lacking though). Additional features included neurologic anomalies (movement disorders : dyspraxia, apraxia, clumsiness in all, with tremor/dystonia or involuntary movements as single occurrences). Three displayed high pain tolerance. Regression in speech was a feature in two. Additional behavior anomalies included ADHD (4-5/6) or aggression (3/6). There was no consistent pattern of malformations, physical anomalies or facial features (with the exception of uplsanted palpebral fissures reported in 4).

3 different missense variants were identified (NM_00116470:c.1003C>T - p.Arg335Trp, c.586G>A - p.Glu196Lys, c.500_501delAAinsTT - p.Gln167Leu) with Arg355Trp being a recurrent one within this cohort (4/6 subjects). A possible splicing effect may apply for the MNV. All variants are absent from gnomAD and the SNVs had CADD scores > 24.

In all cases were parental samples were available (5/6), the variant had occurred as a de novo event.

Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes. As the authors comment, the RIβ subunit is primarily expressed in brain with higher expression in cortex and hypothalamus.

The functional consequences of the variants at cellular level were not studied.

Previous studies have demonstrated that downregulation of RIβ in murine hippocampal cultures, reduced phosphorylation of CREB, a transcription factor involved in long-term memory formation. The authors speculate that a similar effect on cAMP/PKA/CREB cascade may mediate the cognitive effects in humans. RIβ deficient mice also display diminished nociceptive pain, similar to the human phenotype. [Several refs provided].

The authors cite the study by Kaplanis et al (2020 - PMID: 33057194), where in a large sample of 31,058 trio exomes of children with developmental disorders, PRKAR1B was among the genes with significant enrichment for de novo missense variants. [The gene has a pLI score of 0.18 in gnomAD / o/e = 0.26 - so pLoF variants may not be deleterious].

Please note that a specific PRKAR1B variant (NM_002735.2:c.149T>G - p.Leu50Arg) has been previous reported to segregate with a late-onset neurodegenerative disorder characterized by dementia and/or parkinsonism within a large pedigree with 12 affected individuals [Wong et al 2014 - PMID: 25414040].
Sources: Literature
Mendeliome v0.5216 SCYL1 Zornitza Stark commented on gene: SCYL1: Autosomal recessive spinocerebellar ataxia-21 is a neurologic disorder characterized by onset of cerebellar ataxia associated with cerebellar atrophy in early childhood. Affected individuals also have recurrent episodes of liver failure in the first decade, resulting in chronic liver fibrosis, as well as later onset of a peripheral neuropathy. Mild learning disabilities may also occur. More than 5 unrelated families reported.
Mendeliome v0.5212 DDX23 Bryony Thompson gene: DDX23 was added
gene: DDX23 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: DDX23 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DDX23 were set to 33057194
Phenotypes for gene: DDX23 were set to Developmental disorder
Review for gene: DDX23 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio developmental disorder study. 6 de novo missense identified in ~10,000 cases with developmental disorders (no other phenotype info provided)
Sources: Literature
Mendeliome v0.5210 ATP6V0A1 Bryony Thompson gene: ATP6V0A1 was added
gene: ATP6V0A1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ATP6V0A1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ATP6V0A1 were set to 30842224; 33057194
Phenotypes for gene: ATP6V0A1 were set to Developmental disorder; Rett syndrome-like
Review for gene: ATP6V0A1 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio developmental disorder study. 11 de novo missense identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
PMID: 30842224 - identified a de novo missense variant in a single individual with atypical Rett syndrome phenotype
Sources: Literature
Mendeliome v0.5208 ARHGAP35 Bryony Thompson gene: ARHGAP35 was added
gene: ARHGAP35 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ARHGAP35 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ARHGAP35 were set to 33057194
Phenotypes for gene: ARHGAP35 were set to Developmental disorder
Review for gene: ARHGAP35 was set to AMBER
Added comment: Has been identified as a gene with significant de novo enrichment in a large trio developmental disorder study. 16 de novo variants (3 frameshift, 2 in-frame, 10 missense, 1 stopgain) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: Literature
Mendeliome v0.5207 AP2S1 Bryony Thompson Added comment: Comment on phenotypes: Established hypercalcaemia gene.
PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio developmental disorder study. 5 de novo missense identified in ~10,000 cases with developmental disorders (no other phenotype info provided)
Mendeliome v0.5200 ODC1 Zornitza Stark Phenotypes for gene: ODC1 were changed from Intellectual disability; macrocephaly; dysmorphism to Neurodevelopmental disorder with alopecia and brain imaging abnormalities (NEDABIA), MIM#619075
Mendeliome v0.5198 ODC1 Zornitza Stark edited their review of gene: ODC1: Changed phenotypes: Neurodevelopmental disorder with alopecia and brain imaging abnormalities (NEDABIA), MIM#619075
Mendeliome v0.5188 NUS1 Zornitza Stark Phenotypes for gene: NUS1 were changed from Epilepsy; intellectual disability to Congenital disorder of glycosylation, type 1aa 617082; Mental retardation, autosomal dominant 55, with seizures 617831
Mendeliome v0.5185 COG8 Zornitza Stark Phenotypes for gene: COG8 were changed from to Congenital disorder of glycosylation, type IIh, MIM# 611182
Mendeliome v0.5183 COG8 Zornitza Stark reviewed gene: COG8: Rating: GREEN; Mode of pathogenicity: None; Publications: 17220172, 28619360; Phenotypes: Congenital disorder of glycosylation, type IIh, MIM# 611182; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5174 NUS1 Elena Savva reviewed gene: NUS1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 25066056, 29100083, 31656175, 32485575; Phenotypes: ?Congenital disorder of glycosylation, type 1aa 617082, Mental retardation, autosomal dominant 55, with seizures 617831; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.5174 COG8 Elena Savva reviewed gene: COG8: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 30690882, 17331980; Phenotypes: Congenital disorder of glycosylation, type IIh 611182; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5171 SLC35A3 Zornitza Stark Phenotypes for gene: SLC35A3 were changed from Arthrogryposis, mental retardation, and seizures; OMIM #615553 to Arthrogryposis, mental retardation, and seizures OMIM #615553; Skeletal dysplasia; Congenital disorder of glycosylation
Mendeliome v0.5168 SLC35A3 Zornitza Stark edited their review of gene: SLC35A3: Added comment: Third unrelated family reported in PMID 28777481 with prenatally diagnosed anomalous vertebrae, including butterfly, and hemivertebrae throughout the spine, as well as cleft palate, micrognathia, patent foramen ovale, patent ductus arteriosus, posterior embryotoxon, short limbs, camptodactyly, talipes valgus, rocker bottom feet, and facial dysmorphism including proptosis, nevus flammeus, and a cupped left ear. Unclear if this is a distinct phenotype (note Holstein cows with variants in this gene have a skeletal phenotype) or part of a spectrum for a CDG. However, abnormal protein glycosylation, consistent with a defective Golgi UDP-GlcNAc transporter demonstrated, so overall, promoted to Green for CDG.; Changed rating: GREEN; Changed publications: 28777481, 28328131, 24031089; Changed phenotypes: Arthrogryposis, mental retardation, and seizures OMIM #615553, Skeletal dysplasia, Congenital disorder of glycosylation; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5079 ALG2 Zornitza Stark Phenotypes for gene: ALG2 were changed from to Myasthenic syndrome, congenital, 14, with tubular aggregates, MIM# 616228; Congenital disorder of glycosylation, type Ii, MIM# 607906
Mendeliome v0.5075 ALG2 Zornitza Stark reviewed gene: ALG2: Rating: AMBER; Mode of pathogenicity: None; Publications: 23404334, 24461433, 12684507; Phenotypes: Myasthenic syndrome, congenital, 14, with tubular aggregates, MIM# 616228, Congenital disorder of glycosylation, type Ii, MIM# 607906; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5066 SETD1A Zornitza Stark changed review comment from: OMIM has assigned a second phenotype in relation to the syndromic ID cohort reported in PMID 32346159. All variants were predicted to disrupt or delete the SET catalytic domain, and LOF is the established mechanism.

In addition, there are 3 families reported with a predominantly seizure phenotype without ID, PMID 31197650. All the variants are missense and mechanism of pathogenicity is not clearly established, hence it is difficult to know whether these are two distinct conditions or part of a spectrum of severity for SETD1A-related disorders.; to: OMIM has assigned a second phenotype in relation to the syndromic ID cohort reported in PMID 32346159. All variants were predicted to disrupt or delete the SET catalytic domain, and LOF is the established mechanism.

In addition, there are 4 families reported with a predominantly seizure phenotype without ID, PMID 31197650. All the variants are missense and mechanism of pathogenicity is not clearly established, hence it is difficult to know whether these are two distinct conditions or part of a spectrum of severity for SETD1A-related disorders.
Mendeliome v0.5066 SETD1A Zornitza Stark Phenotypes for gene: SETD1A were changed from Epilepsy, early-onset, with or without developmental delay, MIM# 618832 to Epilepsy, early-onset, with or without developmental delay, MIM# 618832; Neurodevelopmental disorder with speech impairment and dysmorphic facies, MIM# 619056
Mendeliome v0.5065 SETD1A Zornitza Stark edited their review of gene: SETD1A: Added comment: OMIM has assigned a second phenotype in relation to the syndromic ID cohort reported in PMID 32346159. All variants were predicted to disrupt or delete the SET catalytic domain, and LOF is the established mechanism.

In addition, there are 3 families reported with a predominantly seizure phenotype without ID, PMID 31197650. All the variants are missense and mechanism of pathogenicity is not clearly established, hence it is difficult to know whether these are two distinct conditions or part of a spectrum of severity for SETD1A-related disorders.; Changed phenotypes: Epilepsy, early-onset, with or without developmental delay, MIM# 618832, Neurodevelopmental disorder with speech impairment and dysmorphic facies, MIM# 619056
Mendeliome v0.5060 AFF2 Zornitza Stark changed review comment from: This is classically a triplet expansion disorder. Note one report of an intragenic deletion which segregated with ID in a family, and two truncating variants classified as pathogenic by laboratories in ClinVar.; to: This is classically a triplet expansion disorder. Note one report of an intragenic deletion which segregated with ID in a family, and two truncating variants classified as pathogenic by laboratories in ClinVar. Missense variants found to be over-represented in an autism cohort.
Mendeliome v0.5057 AFF2 Zornitza Stark commented on gene: AFF2: This is classically a triplet expansion disorder. Note one report of an intragenic deletion which segregated with ID in a family, and two truncating variants classified as pathogenic by laboratories in ClinVar.
Mendeliome v0.5050 PI4K2A Zornitza Stark gene: PI4K2A was added
gene: PI4K2A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PI4K2A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PI4K2A were set to 32418222
Phenotypes for gene: PI4K2A were set to Cutis laxa, intellectual disability, movement disorder
Review for gene: PI4K2A was set to RED
Added comment: Single individual reported with homozygous missense variant and functional data including mouse model.
Sources: Literature
Mendeliome v0.5045 HECW2 Zornitza Stark Phenotypes for gene: HECW2 were changed from to Neurodevelopmental disorder with hypotonia, seizures, and absent language, MIM# 617268; intellectual disability; epilepsy; regression; microcephaly
Mendeliome v0.4976 GARS Zornitza Stark Phenotypes for gene: GARS were changed from to Spinal muscular atrophy, infantile, James type, MIM# 619042; Charcot-Marie-Tooth disease, type 2D, MIM# 601472; Neuronopathy, distal hereditary motor, type VA, MIM# 600794; Multi-system mitochondrial disorder
Mendeliome v0.4973 GARS Zornitza Stark reviewed gene: GARS: Rating: GREEN; Mode of pathogenicity: None; Publications: 17101916, 22462675, 31985473, 32181591, 12690580, 25168514, 26503042, 29648643, 16982418, 24669931, 28594869; Phenotypes: Spinal muscular atrophy, infantile, James type, MIM# 619042, Charcot-Marie-Tooth disease, type 2D, MIM# 601472, Neuronopathy, distal hereditary motor, type VA, MIM# 600794, Multi-system mitochondrial disorder; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.4878 MAG Zornitza Stark changed review comment from: Spastic paraplegia-75 is an autosomal recessive, slowly progressive neurodegenerative disorder characterized by onset of spastic paraplegia and cognitive impairment in childhood. Eight unrelated families reported.; to: Spastic paraplegia-75 is an autosomal recessive, slowly progressive neurodegenerative disorder characterized by onset of spastic paraplegia and cognitive impairment in childhood. Eight unrelated families reported with variable combinations of psychomotor delay, ataxia, eye movement abnormalities, spasticity, dystonia, and neuropathic symptoms.
Mendeliome v0.4862 VPS41 Zornitza Stark gene: VPS41 was added
gene: VPS41 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: VPS41 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: VPS41 were set to 32808683
Phenotypes for gene: VPS41 were set to Dystonia; intellectual disability
Review for gene: VPS41 was set to RED
Added comment: Single individual reported with homozygous canonical splice site variant resulting in exon 7 skipping, and global developmental delay and generalized dystonia. He attained a few words and voluntary limb movements but never sat unsupported. He had pale optic discs and an axonal neuropathy. From 6 years of age, his condition began to deteriorate, with reduced motor abilities and alertness. An MRI of the brain showed atrophy of the superior cerebellar vermis and slimming of the posterior limb of the corpus callosum. VPS41 is component of the HOPS complex and other genes in the complex have been implicated in movement disorders.
Sources: Literature
Mendeliome v0.4843 ABCC6 Kristin Rigbye changed review comment from: All conditions are regarded as a single disorder at variable ends of the phenotypic spectrum. The same variants have been reported in all three conditions, however reports for AD PE are consistently from older papers (pre-2005) and may have missed a 2nd hit (OMIM). More recent papers consistently report this condition as autosomal recessive (PMID: 28102862).; to: All conditions are regarded as a single disorder at variable ends of the phenotypic spectrum. The same variants have been reported in all three conditions, however reports for AD PXE are consistently from older papers (pre-2005) and may have missed a 2nd hit (OMIM). More recent papers consistently report this condition as autosomal recessive (PMID: 28102862).

In addition to missense, PTCs and splice variants, deletions and duplications in this gene comprise a significant proportion of variants and are a recognised mechanism / cause of PXE.
Mendeliome v0.4829 NEK9 Zornitza Stark edited their review of gene: NEK9: Added comment: Another Saudi family described with which 2 sisters and a female cousin who had a similar disorder characterised by arthrogryposis apparent since early childhood, avascular necrosis of the hip (Perthes disease), and upward gaze palsy. Homozygous missense variant segregated with the phenotype. Given the small number of reports, it is unclear whether this represents a distinct association is part of a spectrum with includes the more severe phenotype described in the Irish traveller families.; Changed publications: 26908619, 21271645; Changed phenotypes: Lethal congenital contracture syndrome 10, MIM# 617022, Arthrogryposis, Perthes disease, and upward gaze palsy, MIM# 614262, Skeletal dysplasia
Mendeliome v0.4808 ALG14 Zornitza Stark Phenotypes for gene: ALG14 were changed from Myasthenic syndrome, congenital, 15, without tubular aggregates 616227; Intellectual developmental disorder with epilepsy, behavioral abnormalities, and coarse facies (IDDEBF), MIM#619031; Disorder of N-glycosylation to Myasthenic syndrome, congenital, 15, without tubular aggregates 616227; Intellectual developmental disorder with epilepsy, behavioral abnormalities, and coarse facies (IDDEBF), MIM#619031; Myopathy, epilepsy, and progressive cerebral atrophy, MIM# 619036; Disorder of N-glycosylation
Mendeliome v0.4807 ALG14 Zornitza Stark changed review comment from: 5 individuals from unrelated families described in the literature: one with myasthenic syndrome, no report of ID; second with predominantly ID phenotype; and three more with a neurodegenerative phenotype. ALG14 is part of the UDP-GlcNAc transferase, which catalyzes a key step in endoplasmic reticulum N-linked glycosylation; to: 5 individuals from unrelated families described in the literature: one with myasthenic syndrome, no report of ID; second with predominantly ID phenotype; and three more with a neurodegenerative phenotype. ALG14 is part of the UDP-GlcNAc transferase, which catalyzes a key step in endoplasmic reticulum N-linked glycosylation. The three OMIM disorders may represent a spectrum of severity for CDG.
Mendeliome v0.4807 ALG14 Zornitza Stark edited their review of gene: ALG14: Changed phenotypes: Myasthenic syndrome, congenital, 15, without tubular aggregates 616227, Intellectual developmental disorder with epilepsy, behavioral abnormalities, and coarse facies (IDDEBF), MIM#619031, Myopathy, epilepsy, and progressive cerebral atrophy, MIM# 619036, Disorder of N-glycosylation
Mendeliome v0.4780 ALS2 Ain Roesley gene: ALS2 was added
gene: ALS2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ALS2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ALS2 were set to 32214227
Phenotypes for gene: ALS2 were set to Tetraparesis with affection of upper and lower motor neuron
Penetrance for gene: ALS2 were set to unknown
Review for gene: ALS2 was set to RED
Added comment: In a cohort of Palestinian and Israeli Arabs with neurological disorders, a family with 2 affecteds were homozygous for a nonsense variant. Authors classified as likely path by ACMG guidelines
Sources: Literature
Mendeliome v0.4748 HPDL Zornitza Stark Phenotypes for gene: HPDL were changed from Neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities (NEDSWMA), MIM#619026; Progressive neurological disorder; Leigh-like syndrome to Spastic paraplegia-83 (SPG83), MIM#619027; Neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities (NEDSWMA), MIM#619026; Progressive neurological disorder; Leigh-like syndrome
Mendeliome v0.4747 HPDL Zornitza Stark edited their review of gene: HPDL: Added comment: Although two distinct distinct disease associations have been assigned by OMIM, these clinical presentations likely represent a continuum of severity for an underlying mitochondrial disorder.; Changed phenotypes: Spastic paraplegia-83 (SPG83), MIM#619027, Neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities (NEDSWMA), MIM#619026
Mendeliome v0.4747 HPDL Zornitza Stark Phenotypes for gene: HPDL were changed from Progressive neurological disorder; Leigh-like syndrome to Neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities (NEDSWMA), MIM#619026; Progressive neurological disorder; Leigh-like syndrome
Mendeliome v0.4746 HPDL Zornitza Stark reviewed gene: HPDL: Rating: ; Mode of pathogenicity: None; Publications: ; Phenotypes: Neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities (NEDSWMA), MIM#619026; Mode of inheritance: None
Mendeliome v0.4743 SCN1A Zornitza Stark edited their review of gene: SCN1A: Added comment: Note we have reported the association with AMC previously in PMID 29543227 (Supplementary info) in an infant presenting with AMC and severe EE, and de novo p.(Ile1347Asn) variant which at the time was thought to only partially explain the phenotype, but in light of this new report, likely fully explains the phenotype. Given the presence of severe seizure disorder in the two infants who were phenotyped in the newborn period, this likely represents the severe end of the spectrum of SCN1A-related disorders rather than a distinct association.; Changed phenotypes: Epileptic encephalopathy, early infantile, 6 (Dravet syndrome), MIM# 607208, Genetic Epilepsy Febrile Seizures plus (GEFS+) Syndrome, Febrile seizures, Arthrogryposis multiplex congenita
Mendeliome v0.4693 MYH9 Zornitza Stark Phenotypes for gene: MYH9 were changed from to Deafness, autosomal dominant 17, MIM# 603622; Macrothrombocytopenia and granulocyte inclusions with or without nephritis or sensorineural hearing loss, MIM# 155100; MYH9-related disorders
Mendeliome v0.4690 MYH9 Zornitza Stark reviewed gene: MYH9: Rating: GREEN; Mode of pathogenicity: None; Publications: 9390828, 24890873, 17146397, 25505834, 16630581, 16162639, 23976996, 21908426; Phenotypes: Deafness, autosomal dominant 17, MIM# 603622, Macrothrombocytopenia and granulocyte inclusions with or without nephritis or sensorineural hearing loss, MIM# 155100, MYH9-related disorders; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4672 ALG13 Zornitza Stark Phenotypes for gene: ALG13 were changed from to Congenital disorder of glycosylation, type Is (MIM# 300884)
Mendeliome v0.4669 ALG13 Zornitza Stark reviewed gene: ALG13: Rating: GREEN; Mode of pathogenicity: None; Publications: 23033978, 23934111, 24781210, 24896178, 25732998, 26138355, 26482601, 28940310, 32238909; Phenotypes: Congenital disorder of glycosylation, type Is (MIM# 300884); Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Mendeliome v0.4548 ALG14 Zornitza Stark Phenotypes for gene: ALG14 were changed from to Myasthenic syndrome, congenital, 15, without tubular aggregates 616227; Intellectual developmental disorder with epilepsy, behavioral abnormalities, and coarse facies (IDDEBF), MIM#619031; Disorder of N-glycosylation
Mendeliome v0.4545 ALG14 Zornitza Stark reviewed gene: ALG14: Rating: GREEN; Mode of pathogenicity: None; Publications: 30221345, 23404334, 28733338; Phenotypes: Myasthenic syndrome, congenital, 15, without tubular aggregates 616227, Intellectual developmental disorder with epilepsy, behavioral abnormalities, and coarse facies (IDDEBF), MIM#619031, Disorder of N-glycosylation; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4531 IBA57 Zornitza Stark changed review comment from: More than 15 families reported with bi-allelic variants in this gene and a severe neurodegenerative disorder characterised by loss of previously acquired developmental milestones in the first months or years of life. Some affected individuals have normal development in early infancy before the onset of symptoms, whereas others show delays from birth. Features included loss of motor function, spasticity, pyramidal signs, loss of speech, and cognitive impairment. The disease course is highly variable: some individuals die of respiratory failure early in childhood, whereas some survive but may be bedridden with a feeding tube. Less commonly, some individuals may survive and have a stable course with motor deficits and mild or even absent cognitive impairment, although there may be fluctuating symptoms, often in response to infection. Other variable features include visual problems and seizures. Brain imaging shows diffuse leukodystrophy in the subcortical region, brainstem, cerebellum, and spinal cord. Laboratory studies tend to show increased lactate and CSF glycine, and decreased activity of mitochondrial complexes I and II, although these findings are also variable.; to: MMDS3: More than 15 families reported with bi-allelic variants in this gene and a severe neurodegenerative disorder characterised by loss of previously acquired developmental milestones in the first months or years of life. Some affected individuals have normal development in early infancy before the onset of symptoms, whereas others show delays from birth. Features included loss of motor function, spasticity, pyramidal signs, loss of speech, and cognitive impairment. The disease course is highly variable: some individuals die of respiratory failure early in childhood, whereas some survive but may be bedridden with a feeding tube. Less commonly, some individuals may survive and have a stable course with motor deficits and mild or even absent cognitive impairment, although there may be fluctuating symptoms, often in response to infection. Other variable features include visual problems and seizures. Brain imaging shows diffuse leukodystrophy in the subcortical region, brainstem, cerebellum, and spinal cord. Laboratory studies tend to show increased lactate and CSF glycine, and decreased activity of mitochondrial complexes I and II, although these findings are also variable.

SPG74: Three families with spastic paraparesis as a feature of the condition.
Mendeliome v0.4522 MADD Zornitza Stark Phenotypes for gene: MADD were changed from Intellectual disability; seizures; autonomic dysfunction; endocrine dysfunction to DEEAH syndrome, MIM#619004 (Developmental Delay With Endocrine, Exocrine, Autonomic, and Hematologic Abnormalities); Neurodevelopmental disorder with dysmorphic facies, impaired speech and hypotonia (NEDDISH), MIM# 619005
Mendeliome v0.4521 MADD Zornitza Stark edited their review of gene: MADD: Added comment: OMIM have assigned two disease entities to this gene.

DEEAH syndrome: 12 families.
NEDDISH syndrome: 8 families.; Changed phenotypes: DEEAH syndrome, MIM#619004 (Developmental Delay With Endocrine, Exocrine, Autonomic, and Hematologic Abnormalities), Neurodevelopmental disorder with dysmorphic facies, impaired speech and hypotonia (NEDDISH), MIM# 619005
Mendeliome v0.4520 SLC12A2 Zornitza Stark edited their review of gene: SLC12A2: Added comment: Monoallelic :
DD/ID was a feature in >= 6 individuals with monoallelic de novo SLC12A2. An individual with an exon 22 truncating variant was reported to have normal milestones and cognitive function. Exon 21 variants have been described in individuals with rather isolated hearing impairment (possibly some associated motor delay, but normal cognition). Hearing impairment was also reported in 2/6 patients with variants in other exons (1 missense / 1 frameshift).

Biallelic :
DD/ID was reported in at least 3 individuals in literature. Hearing impairment has been reported on 2 occasions (although this was not probably evaluated in all subjects).

---

Monoallelic SLC12A2 mutations :

► Individuals with de novo mutations and developmental disorder were first identified by the DDD study (2017 - PMID: 28135719). 5 of them have been reported in detail by McNeill et al (below).

► McNeill et al (2020 - PMID: 32658972) report on 6 individuals with neurodevelopmental disorder due to de novo SLC12A2 mutation. All presented DD or ID ranging from mild to severe. ASD was reported in 3/6. Sensorineural hearing loss was a feature in 2/6 with the remaining having normal formal evaluations. Brain, cardiac and/or additional malformations were reported in a single individual. Following non-diagnostic prior work-up (CMA, FMR1 or other investigations) trio exome sequencing revealed missense (4/6) or truncating variants (2/6).

Three additional individuals (incl. a father and his son) with missense variants in exon 21 (NM_001046.3 / p.Glu979Lys and p.Glu980Lys) presented with bilateral sensorineural hearing loss. Speech and/or motor delay reported in these cases were attributed to the hearing impairment/vestibular arreflexia (cognitive abilities not tested).

SLC12A2 encodes sodium-potassium-chloride transporter 1 (also NKCC1).

The GTEx project has identified 8 isoforms. In brain both exon 21-containing/deleted isoforms are expressed (cited Morita et al 2014 - PMID: 24695712). As the authors discuss, RNA-seq of the developing mouse cochlea suggests that the exon 21 containing isoform is the single transcript expressed. Evidence from RNA-seq data (BrainSpan project) and literature suggests that the significant amounts of exon 21 lacking isoforms in fetal brain compensate for the deleterious effects of exon 21 variants and explain the lack of NDD in relevant patients.

Slc12a2 (NKCC1) null mouse model has demonstrated that the transporter plays a role in accumulation of the potassium rich endolymph in the inner ear, with NKCC1 absence causing sensorineural deafness and imbalance. Slc12a2 display cochlear malformations, loss of hair cells and hearing impairment (cited Delpire et al 1999 - PMID: 10369265). The brain phenotype has not been studied extensively, although loss of Slc12a2 has been shown to inhibit neurogenesis (cited: Magalhães and Rivera et al. - PMID: 27582690).

Slc12a2 null zebrafish display a collapse of the otic vesicle and reduced endolymph (Abbas and Whitfield, 2009 - PMID: 19633174) relevant to the human hearing disorder.

In vitro assessment of NKCC1 ion transporter function in Xenopus laevis, supported the deleterious effect of the identified variants (significant reduction in K+ influx). Using available single cell RNA-seq data the authors further demonstrated that SLC12A2 expressing cells display transcriptomic profiles reflective of active neurogenesis.

► Delpire et al (2016 - PMID: 27900370 - not reviewed in detail) described a 13 y.o. girl harboring a de novo 11-bp deletion in SLC12A2 exon 22. This individual reached developmental milestones on time and had a NORMAL cognitive function. Hearing was seemingly normal. Features included orthostatic intolerance, respiratory weakness, multiple endocrine abnormalities, pancreatic insufficiency and multiorgan failure incl. gut and bladder. Exome in the proband, parents and 3 unaffected sibs suggested SLC12A2 as the only candidate for her phenotype. Functional analyses in Xenopus laevis oocytes suggested that a non functional transporter was expressed and trafficked to the membrane as the wt. Detection of the truncated protein at higher molecular sizes suggested either enhanced dimerization or misfolded aggregate. There was no dominant-negative effect of mutant NKCC1. In patient fibroblasts a reduced total and NKCC1-mediated K+ influx.

► Mutai et al (2020 - PMID: 32294086) report on several individuals from 4 families, harboring variants within exon 21 or - in one case - at it's 3' splice-site (leading to skipping oe this exon at the mRNA level). All subjects were investigated for severe/profound hearing loss (in line with the role of exon 21-included isoforms in cochlea. The variant segregated with hearing impairment in 3 generations of a family while in all other subjects the variant had occured as de novo event. Despite motor delays (e.g. the subject from fam2 could not hold head or sit at the age of 10m / the proband in Fam3 was able to hold his head and walk at 6 and 20 m respectively) behavior and cognition were commented to be within normal range.


-----

Biallelic SLC12A2 mutations:

► Anazi et al (2017 - PMID: 29288388) briefly reported on a 3 y.o. boy (17DG0776) with central hypotonia, neonatal respiratory distress, failure to thrive, global DD and microcephaly and a skeletal survey suggestive of osteopenia. After non-diagnostic prior investigations (CMA revealing a 1p duplication classified as VUS, extensive metabolic workup), WES revealed a homozygous SLC12A2 splicing variant [NM_001046.2:c.2617-2A>G].

► Macnamara et al (2019 - PMID: 30740830) described a 5.5 y.o. male with sensorineural hearing loss, profound delays in all developmental areas among several other features (choanal atresia, failure to thrive, respiratory problems, absent sweat and tear production or salivation, GI abnormalities). Genetic testing for several disorders considered (cystic fibrosis, spinal muscular atrophy, sequencing and del/dup analysis of mtDNA) was normal. CMA revealed paternal uniparental isodisomy for chr. 5 and WGS a homozygous 22kb deletion in SLC12A2. This was followed by confirmation of homozygosity in the proband, heterozygosity of the unaffected father, delineation of breakpoints (chr5:127441491-127471419). mRNA studies in patient fibroblasts confirmed deletion of ex2-7, splicing of ex1 directly to ex8 and introduction of a premature stop codon in ex9. qRT-PCR confirmed that mRNA is likely subjected to NMD (expression ~80% of control). Western blot confirmed absence of the protein in the patient's fibroblasts. Again mouse models are thought to recapitulate the hearing defect but also the deficient saliva production (cited Evans et al 2000 - PMID: 10831596). Again the authors speculate a role of SLC12A2 in brain development based on evidence from murine models (migration, dendritic growth, increse in neuron density through regulation of GABAergic signalling (Young et al 2012 - PMID: 23015452). Hypotheses are also made on a regulatory relationship between NKCC1 and CFTR based on mRNA data from the ko mouse model.

► Stödberg et al (2020 - PMID: 32754646) reported 2 sibs with a complex neurodevelopmental disorder due to compound heterozygosity for a frameshift SLC12A2 variant and a splicing one (NM_001046:c.1431delT and c.2006-1G>A). Both presented hypotonia, neonatal S. aureus parotitis and respiratory problems (incl. apneas). While the older sib died at the age of 22 days, the younger one had persistent respiratory issues incl. a dry respiratory mucosa motivating metabolic, immunology investigations and testing for CF. She displayed microcephaly (OFC -2.5 SD, H was also -3.5SD), severe intellectual disability. MRI was suggestive of white matter and basal ganglia abnormalities. Other features incl. hearing impairment, and lack of tears,saliva and sweat, constipation and intestinal malrotation. There was facial dysmorphism. The variants were the only retained following WGS of the 2 affected sisters, parents and an unaffected brother. The splicing variant was shown to result in skipping of exon 13, while the indel in NMD. Again the authors discuss that the deficient saliva production, impaired hearing and GI problems are recapitulated in the mouse model (several refs provided).; Changed rating: GREEN; Changed publications: 28135719, 32658972, 27900370, 32294086, 29288388, 30740830, 32754646; Changed phenotypes: Kilquist syndrome, deafness, intellectual disability, dysmorphic features, absent salivation, ectodermal dysplasia, constipation, intestinal malrotation, multiple congenital anomalies; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.4503 ZMYM2 Zornitza Stark gene: ZMYM2 was added
gene: ZMYM2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZMYM2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ZMYM2 were set to 32891193
Phenotypes for gene: ZMYM2 were set to Congenital anomalies of kidney and urinary tract; Neurodevelopmental disorder
Review for gene: ZMYM2 was set to GREEN
Added comment: Heterozygous pathogenic (pLoF) ZMYM2 variants have been reported in individuals with syndromic presentation including CAKUT (in several cases) and variable neurological manifestations among extra-renal features.

--

Connaughton et al (2020 - PMID: 32891193) report on 19 individuals (from 15 unrelated families) with heterozygous pathogenic ZMYM2 variants.

Affected individuals from 7 families presented with CAKUT while all of them displayed extra-renal features. Neurological manifestations were reported in 16 individuals from 14 families (data not available for 1 fam), among others hypotonia (3/14 fam), speech delay (4/14 fam), global DD (9/14 fam), ID (4/14 fam), microcephaly (4/14 fam). ASD was reported in 4 fam (4 indiv). Seizures were reported in 2 fam (2 indiv). Variable other features included cardiac defects, facial dysmorphisms, small hands and feet with dys-/hypo-plastic nails and clinodactyly.

14 pLoF variants were identified, in most cases as de novo events (8 fam). In 2 families the variant was inherited from an affected parent. Germline mosaicism occurred in 1 family.

The human disease features were recapitulated in a X. tropicalis morpholino knockdown, with expression of truncating variants failing to rescue renal and craniofacial defects. Heterozygous Zmym2-deficient mice also recapitulated the features of CAKUT.

ZMYM2 (previously ZNF198) encodes a nuclear zinc finger protein localizing to the nucleus (and PML nuclear body).

It has previously been identified as transcriptional corepressor interacting with nuclear receptors and the LSD1-CoREST-HDAC1 complex. It has also been shown to interact with FOXP transcription factors.

The authors provide evidence for loss of interaction of the truncated ZMYM2 with FOXP1 (mutations in the latter having recently been reported in syndromic CAKUT).
Sources: Literature
Mendeliome v0.4500 RREB1 Zornitza Stark gene: RREB1 was added
gene: RREB1 was added to Mendeliome. Sources: Literature
SV/CNV tags were added to gene: RREB1.
Mode of inheritance for gene: RREB1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RREB1 were set to 32938917
Phenotypes for gene: RREB1 were set to Noonan syndrome-like disorder
Review for gene: RREB1 was set to RED
Added comment: Single individual reported with Noonan syndrome-like features and a deletion encompassing RREB1. Overlapping deletions in publicly reported databases examined, and RREB1 postulated to be the key gene. Rreb1 hemizygous mice display orbital hypertelorism and age dependent cardiac hypertrophy. RREB1 recruits SIN3A and KDM1A to an RRE in target promoters in human and murine cells to control histone H3K4 methylation of MAPK pathway genes.

In summary, single well phenotyped individual with a CNV and experimental data to support gene-disease association.
Sources: Literature
Mendeliome v0.4496 TAOK1 Zornitza Stark Phenotypes for gene: TAOK1 were changed from to TAOK1-related neurodevelopmental disorder
Mendeliome v0.4493 TAOK1 Zornitza Stark reviewed gene: TAOK1: Rating: GREEN; Mode of pathogenicity: None; Publications: 31230721; Phenotypes: TAOK1-related neurodevelopmental disorder; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4489 TAOK1 Elena Savva reviewed gene: TAOK1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 31230721; Phenotypes: Neurodevelopmental disorder; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.4482 MAPK8 Zornitza Stark reviewed gene: MAPK8: Rating: AMBER; Mode of pathogenicity: None; Publications: 31784499; Phenotypes: Chronic mucocutaneous candidiasis, Connective tissue disorders; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4480 MAPK8 Arina Puzriakova gene: MAPK8 was added
gene: MAPK8 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MAPK8 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: MAPK8 were set to 31784499
Phenotypes for gene: MAPK8 were set to Chronic mucocutaneous candidiasis; Connective tissue disorders
Added comment: PMID: 31784499 (2020) - Three cases in a single family with chronic mucocutaneous candidiasis and a connective tissue disorder that clinically overlaps with hEDS. WES revealed a splice-site variant (c.311+1G>A) in the MAPK8 gene that segregated with the disorder. Includes supportive functional data using patient-derived fibroblasts, showing that the variant impairs IL-17A/F immunity and the development of Th17 cells.
Sources: Literature
Mendeliome v0.4463 NAXE Zornitza Stark changed review comment from: Early-onset progressive encephalopathy with brain edema and/or leukoencephalopathy-1 (PEBEL1) is an autosomal recessive severe neurometabolic disorder characterized by rapidly progressive neurologic deterioration that is usually associated with a febrile illness. Affected infants tend to show normal early development followed by acute psychomotor regression with ataxia, hypotonia, respiratory insufficiency, and seizures, resulting in coma and death in the first years of life. Brain imaging shows multiple abnormalities, including brain edema and signal abnormalities in the cortical and subcortical regions. More than 5 unrelated families reported.; to: Early-onset progressive encephalopathy with brain oedema and/or leukoencephalopathy-1 (PEBEL1) is an autosomal recessive severe neurometabolic disorder characterized by rapidly progressive neurologic deterioration that is usually associated with a febrile illness. Affected infants tend to show normal early development followed by acute psychomotor regression with ataxia, hypotonia, respiratory insufficiency, and seizures, resulting in coma and death in the first years of life. Brain imaging shows multiple abnormalities, including brain edema and signal abnormalities in the cortical and subcortical regions. More than 5 unrelated families reported.
Mendeliome v0.4398 SVBP Zornitza Stark changed review comment from: 5 unrelated families with homozygous mutations in SVBP. The mutations segregated with the disorder in all families. In vitro functional cellular expression studies showed that protein levels of the SVBP mutants were barely detectable, suggesting instability, and that the mutant proteins had lost VASH/SVBP catalytic detyrosination activity toward tubulin. Knockdown of about 50% Svbp expression using shRNA in rat hippocampal neurons impaired the formation of excitatory synapses compared to controls.
Sources: Literature; to: 5 unrelated families with homozygous mutations in SVBP. Some shared the same founder variant, p.Q28*. The mutations segregated with the disorder in all families. In vitro functional cellular expression studies showed that protein levels of the SVBP mutants were barely detectable, suggesting instability, and that the mutant proteins had lost VASH/SVBP catalytic detyrosination activity toward tubulin. Knockdown of about 50% Svbp expression using shRNA in rat hippocampal neurons impaired the formation of excitatory synapses compared to controls.
Sources: Literature
Mendeliome v0.4395 SQSTM1 Zornitza Stark changed review comment from: Four unrelated families, presenting feature of this progressive neurological disorder was ataxia.; to: Nine individuals from four unrelated families.
Mendeliome v0.4392 SLC25A46 Zornitza Stark changed review comment from: Age of onset is variable, but childhood onset described. Ataxia is a feature.; to: Hereditary motor and sensory neuropathy type VIB is an autosomal recessive complex progressive neurologic disorder characterized mainly by early-onset optic atrophy resulting in progressive visual loss and peripheral axonal sensorimotor neuropathy with highly variable age at onset and severity. Affected individuals also have cerebellar or pontocerebellar atrophy on brain imaging, and they show abnormal movements, such as ataxia, dysmetria, and myoclonus.

At least 10 unrelated families reported, supportive functional data.
Mendeliome v0.4392 RORA Zornitza Stark Phenotypes for gene: RORA were changed from to Intellectual developmental disorder with or without epilepsy or cerebellar ataxia, MIM# 618060
Mendeliome v0.4389 RORA Zornitza Stark reviewed gene: RORA: Rating: GREEN; Mode of pathogenicity: None; Publications: 29656859; Phenotypes: Intellectual developmental disorder with or without epilepsy or cerebellar ataxia, MIM# 618060; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4389 MAPK8IP3 Zornitza Stark edited their review of gene: MAPK8IP3: Added comment: 18 unrelated individuals reported with de novo variants and a neurodevelopmental disorder characterised by global developmental delay, variably impaired intellectual development, and poor or absent speech. Additional features may include hypotonia, spasticity, or ataxia. About half have abnormal findings on brain imaging, including cerebral or cerebellar atrophy, loss of white matter volume, thin corpus callosum, and perisylvian polymicrogyria. Seizures are not a prominent finding, and nonspecific dysmorphic facial features are described.; Changed publications: 30612693, 30945334
Mendeliome v0.4374 DOCK3 Zornitza Stark Phenotypes for gene: DOCK3 were changed from to Neurodevelopmental disorder with impaired intellectual development, hypotonia, and ataxia, MIM#618292
Mendeliome v0.4371 DOCK3 Zornitza Stark reviewed gene: DOCK3: Rating: GREEN; Mode of pathogenicity: None; Publications: 28195318, 29130632, 30976111; Phenotypes: Neurodevelopmental disorder with impaired intellectual development, hypotonia, and ataxia, MIM#618292; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4331 CBL Zornitza Stark Phenotypes for gene: CBL were changed from to Noonan syndrome-like disorder with or without juvenile myelomonocytic leukaemia, MIM# 613563
Mendeliome v0.4327 CBL Zornitza Stark reviewed gene: CBL: Rating: GREEN; Mode of pathogenicity: Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments; Publications: 25358541, 20619386, 20543203, 20694012; Phenotypes: Noonan syndrome-like disorder with or without juvenile myelomonocytic leukaemia, MIM# 613563; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4320 CACNA1E Zornitza Stark changed review comment from: At least 30 unrelated patients reported with heterozygous variants in this gene; primarily a seizure disorder, often with profound intellectual disability.; to: At least 30 unrelated patients reported with heterozygous variants in this gene; primarily a seizure disorder, often with profound intellectual disability. Additional common features included spastic quadriplegia, hyperreflexia, hyperkinetic movements, dystonia, myoclonus, clonus, poor or absent eye contact, nystagmus, cortical visual impairment, and loss of head control. Thirteen patients had congenital contractures and 13 had macrocephaly.
Mendeliome v0.4317 ATAD1 Zornitza Stark changed review comment from: Severe progressive neurological disorder, severe/profound intellectual disability is a feature; to: Hyperekplexia-4 is an autosomal recessive severe neurologic disorder apparent at birth. Three unrelated families reported. Affected infants have extreme hypertonia and appear stiff and rigid. They have little if any development, poor or absent visual contact, and no spontaneous movement, consistent with an encephalopathy. Some patients have early-onset refractory seizures. Severe progressive neurological disorder, severe/profound intellectual disability is a feature.
Mendeliome v0.4315 ADAT1 Zornitza Stark gene: ADAT1 was added
gene: ADAT1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: ADAT1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ADAT1 were set to 28180185; 29390050; 29659736
Phenotypes for gene: ADAT1 were set to Hyperekplexia 4, MIM#618011
Review for gene: ADAT1 was set to GREEN
Added comment: Hyperekplexia-4 is an autosomal recessive severe neurologic disorder apparent at birth. Three unrelated families reported. Affected infants have extreme hypertonia and appear stiff and rigid. They have little if any development, poor or absent visual contact, and no spontaneous movement, consistent with an encephalopathy. Some patients have early-onset refractory seizures.
Sources: Expert list
Mendeliome v0.4305 VAMP2 Zornitza Stark Phenotypes for gene: VAMP2 were changed from Intellectual disability; Autism to Neurodevelopmental disorder with hypotonia and autistic features with or without hyperkinetic movements 618760; Intellectual disability; Autism
Mendeliome v0.4304 VAMP2 Zornitza Stark edited their review of gene: VAMP2: Changed phenotypes: Neurodevelopmental disorder with hypotonia and autistic features with or without hyperkinetic movements 618760, Intellectual disability, Autism
Mendeliome v0.4304 FARSA Zornitza Stark gene: FARSA was added
gene: FARSA was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: FARSA was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FARSA were set to 31355908
Phenotypes for gene: FARSA were set to Rajab interstitial lung disease with brain calcifications 2, MIM# 619013
Review for gene: FARSA was set to RED
Added comment: Autosomal recessive disorder characterized by growth delay, interstitial lung disease, liver disease, and abnormal brain MRI findings, including brain calcifications and periventricular cysts. Single affected individual reported, but FARSA interacts with FARSB, which causes a similar disorder.
Sources: Expert list
Mendeliome v0.4298 UBR4 Zornitza Stark changed review comment from: Episodic ataxia reported in two families, but another molecular diagnosis present in the second, so suggested as a modifier. Only one individual reported with childhood-onset progressive neurological disorder as part of a large paper proposing multiple candidate genes.; to: Episodic ataxia reported in four families, but another molecular diagnosis present in the some, so suggested as a modifier. Variants are missense, with no supportive segregation or functional data, some are present at a low level in population databases. Only one individual reported with childhood-onset progressive neurological disorder as part of a large paper proposing multiple candidate genes.
Mendeliome v0.4266 RAD50 Zornitza Stark Phenotypes for gene: RAD50 were changed from to Nijmegen breakage syndrome-like disorder, MIM# 613078
Mendeliome v0.4263 RAD50 Zornitza Stark reviewed gene: RAD50: Rating: GREEN; Mode of pathogenicity: None; Publications: 19409520, 32212377; Phenotypes: Nijmegen breakage syndrome-like disorder, MIM# 613078; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4226 FDXR Zornitza Stark edited their review of gene: FDXR: Added comment: Four families reported with bi-allelic variants in FDXR causing an autosomal recessive neurologic disorder characterised by onset of visual and hearing impairment in the first or second decades. Two individuals described with a more severe progressive neurological phenotype. Mouse model exhibits neurodegeneration.; Changed rating: GREEN; Changed publications: 30250212, 28965846
Mendeliome v0.4221 SETD1B Zornitza Stark Phenotypes for gene: SETD1B were changed from Epilepsy with myoclonic absences; intellectual disability; SETD1B-related neurodevelopmental disorder to Epilepsy with myoclonic absences; intellectual disability; Intellectual developmental disorder with seizures and language delay (IDDSELD), MIM#619000
Mendeliome v0.4220 TRAPPC6B Zornitza Stark Phenotypes for gene: TRAPPC6B were changed from to Neurodevelopmental disorder with microcephaly, epilepsy, and brain atrophy, MIM# 617862
Mendeliome v0.4217 TRAPPC6B Zornitza Stark reviewed gene: TRAPPC6B: Rating: GREEN; Mode of pathogenicity: None; Publications: 28626029, 28397838, 31687267; Phenotypes: Neurodevelopmental disorder with microcephaly, epilepsy, and brain atrophy, MIM# 617862; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4201 DHX37 Zornitza Stark Phenotypes for gene: DHX37 were changed from 46,XY gonadal dysgenesis; testicular regression syndrome (TRS) to 46,XY gonadal dysgenesis; testicular regression syndrome (TRS); Neurodevelopmental disorder with brain anomalies and with or without vertebral or cardiac anomalies, MIM#618731
Mendeliome v0.4198 DHX37 Zornitza Stark edited their review of gene: DHX37: Added comment: Bi-allelic disease: 5 unrelated families with bi-allelic variants, all with ID as part of the phenotype, which also includes congenital anomalies particularly affecting the vertebrae and heart, but also some with microcephaly, brain anomalies.; Changed publications: 31337883, 31745530, 26539891, 31256877; Changed phenotypes: 46,XY gonadal dysgenesis, testicular regression syndrome (TRS), Neurodevelopmental disorder with brain anomalies and with or without vertebral or cardiac anomalies, MIM#618731; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4163 PTPN23 Zornitza Stark Phenotypes for gene: PTPN23 were changed from to Neurodevelopmental disorder and structural brain anomalies with or without seizures and spasticity, MIM# 618890
Mendeliome v0.4160 PTPN23 Zornitza Stark reviewed gene: PTPN23: Rating: GREEN; Mode of pathogenicity: None; Publications: 31395947, 29899372, 29090338, 27848944, 25558065; Phenotypes: Neurodevelopmental disorder and structural brain anomalies with or without seizures and spasticity, MIM# 618890; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4160 PRUNE1 Zornitza Stark Phenotypes for gene: PRUNE1 were changed from to Neurodevelopmental disorder with microcephaly, hypotonia, and variable brain anomalies , MIM#617481
Mendeliome v0.4157 PRUNE1 Zornitza Stark reviewed gene: PRUNE1: Rating: GREEN; Mode of pathogenicity: None; Publications: 26539891, 28334956; Phenotypes: Neurodevelopmental disorder with microcephaly, hypotonia, and variable brain anomalies , MIM#617481; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4134 TOGARAM1 Arina Puzriakova gene: TOGARAM1 was added
gene: TOGARAM1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TOGARAM1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TOGARAM1 were set to 32747439
Phenotypes for gene: TOGARAM1 were set to Cleft of the lip and palate; Microphthalmia; Cerebral dysgenesis; Hydrocephalus
Added comment: PMID: 32747439 (2020) - Novel gene-disease association. In two sibling fetuses with a malformation disorder characterised by microcephaly, severe cleft lip and palate, microphthalmia, and brain anomalies, WES revealed compound heterozygous variants ([c.1102C>T, p.Arg368Trp] and [c.3619C>T, p.Arg1207*]) in the TOGARAM1 gene.

Functional analysis of the missense variant in a C. elegans model showed impaired lipophilic dye uptake, with shorter and altered cilia in sensory neurons. In vitro analysis revealed faster microtubule polymerisation compared to wild-type, suggesting aberrant tubulin binding.
Sources: Literature
Mendeliome v0.4121 UFC1 Paul De Fazio gene: UFC1 was added
gene: UFC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UFC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UFC1 were set to 29868776; 30552426
Phenotypes for gene: UFC1 were set to Neurodevelopmental disorder with spasticity and poor growth (MIM#618076)
Review for gene: UFC1 was set to GREEN
gene: UFC1 was marked as current diagnostic
Added comment: PMID 29868776: 8 affected individuals from 4 families reported. 7 were described to be postnatally microcephalic (at or below 3rd percentile). One was -5.1SD and one was -3.6SD. SD values for the others weren't provided.

The following head circumference measurements were provided for 6 of the affecteds:

51cm at 16yo; 50cm at 19yo; 42.5cm at 12mo, 45cm at 28mo, 45.2cm at 7yo; 45cm at 4yo.

3 of the families were consanguineous Saudi families with the same homozygous missense variant.

In vitro functional expression studies showed that both mutations caused impaired thioester binding with UFM1. Patient cells also showed decreased UFC1 intermediate formation with UFM1. The decrease in function was consistent with a hypomorphic allele, and the authors suggested that complete loss of function would be embryonic lethal.

PMID 30552426: 1 more individual with epileptic encephalopathy reported with a different homozygous missense variant in UFC1. The patient had microcephaly <3rd percentile.
Sources: Literature
Mendeliome v0.4097 TRPM7 Zornitza Stark edited their review of gene: TRPM7: Added comment: Ion channel expressed in the nervous and cardiac systems. The variant associated with ALS/dementia in the Guam population, p.Thr1482Ile is present in >23,000 hets in gnomad, which is out of keeping for a rare Mendelian disorder. Note recent publication associating missense variants with cardiac arrhythmia and stillbirth, with some functional data provided to substantiate effect of variant on protein function but not necessarily establish gene-disease association.; Changed rating: AMBER; Changed publications: 32503408, 31423533; Changed phenotypes: {Amyotrophic lateral sclerosis-parkinsonism/dementia complex, susceptibility to}, MIM# 105500, Cardiac arrhythmia, stillbirth; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4093 ADARB1 Zornitza Stark Phenotypes for gene: ADARB1 were changed from Intellectual disability; microcephaly; seizures to Neurodevelopmental disorder with hypotonia, microcephaly, and seizures, 618862; Intellectual disability; microcephaly; seizures
Mendeliome v0.4091 NOTCH3 Eleanor Williams gene: NOTCH3 was added
gene: NOTCH3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NOTCH3 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: NOTCH3 were set to 31960911
Phenotypes for gene: NOTCH3 were set to CADASIL
Review for gene: NOTCH3 was set to AMBER
Added comment: PMID: 31960911 - Gravesteijn et al 2020 - describe a family with a unique cysteine-altering NOTCH3 variant in exon 9 in 5 individuals, which is predicted to cause natural exon 9 skipping. This mimics the therapeutic NOTCH3 cysteine correction approach and allows the effect of cysteine corrective exon skipping on NOTCH3 protein aggregation and disease severity in humans to be studied. In this family the CADASIL phenotype was mild.

Note this gene is rated green on the Neurodegenerative disorders - adult onset panel in the Genomics England instance of PanelApp https://panelapp.genomicsengland.co.uk/panels/474/gene/NOTCH3/
Sources: Literature
Mendeliome v0.4091 ZFYVE19 Arina Puzriakova gene: ZFYVE19 was added
gene: ZFYVE19 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: ZFYVE19 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZFYVE19 were set to 32737136
Phenotypes for gene: ZFYVE19 were set to Cholestasis
Review for gene: ZFYVE19 was set to GREEN
Added comment: PMID: 32737136 (2020) - Nine Han Chinese children from seven families with biallelic, predicted complete LoF variants in ZFYVE19. All patients had high-GGT intrahepatic cholestasis, portal hypertension, and histopathological features of the ductal plate malformation/congenital hepatic fibrosis.

ZFYVE19 depletion in cultured cells from one patient yielded centriolar and axonemal abnormalities, and immunostaining for two ciliary proteins DCDC2 and ACALT showed abnormal localisation in patient cholangiocytes, indicating this as a novel ciliopathy disorder.
Sources: Literature
Mendeliome v0.4091 ADARB1 Arina Puzriakova reviewed gene: ADARB1: Rating: GREEN; Mode of pathogenicity: None; Publications: 32220291, 32719099; Phenotypes: Neurodevelopmental disorder with hypotonia, microcephaly, and seizures, 618862; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.4091 SRD5A3 Zornitza Stark Phenotypes for gene: SRD5A3 were changed from to Congenital disorder of glycosylation, type Iq, MIM#612379; Kahrizi syndrome, MIM# 612713
Mendeliome v0.4088 SRD5A3 Zornitza Stark edited their review of gene: SRD5A3: Added comment: Over 25 families reported, well established gene-disease association for CDG. Allelic disorder Kahrizi syndrome has overlapping features, may not be distinct entity.; Changed publications: 32424323; Changed phenotypes: Congenital disorder of glycosylation, type Iq, MIM#612379, Kahrizi syndrome, MIM# 612713
Mendeliome v0.4025 ZSWIM6 Zornitza Stark Phenotypes for gene: ZSWIM6 were changed from to Neurodevelopmental disorder with movement abnormalities, abnormal gait, and autistic features, MIM# 617865; Acromelic frontonasal dysostosis, MIM# 603671
Mendeliome v0.4022 ZSWIM6 Zornitza Stark reviewed gene: ZSWIM6: Rating: GREEN; Mode of pathogenicity: None; Publications: 29198722, 25105228, 26706854; Phenotypes: Neurodevelopmental disorder with movement abnormalities, abnormal gait, and autistic features, MIM# 617865, Acromelic frontonasal dysostosis, MIM# 603671; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.3955 GRIN1 Zornitza Stark Phenotypes for gene: GRIN1 were changed from to Neurodevelopmental disorder with or without hyperkinetic movements and seizures, autosomal dominant, MIM# 614254; Neurodevelopmental disorder with or without hyperkinetic movements and seizures, autosomal recessive, MIM# 617820
Mendeliome v0.3952 GRIN1 Zornitza Stark reviewed gene: GRIN1: Rating: GREEN; Mode of pathogenicity: None; Publications: 29365063, 27164704, 27164704, 28051072; Phenotypes: Neurodevelopmental disorder with or without hyperkinetic movements and seizures, autosomal dominant, MIM# 614254, Neurodevelopmental disorder with or without hyperkinetic movements and seizures, autosomal recessive, MIM# 617820; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.3951 ALG12 Zornitza Stark Phenotypes for gene: ALG12 were changed from to Congenital disorder of glycosylation, type Ig, MIM# 607143
Mendeliome v0.3945 ALG12 Zornitza Stark reviewed gene: ALG12: Rating: GREEN; Mode of pathogenicity: None; Publications: 31481313; Phenotypes: Congenital disorder of glycosylation, type Ig, MIM# 607143; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3945 ALG11 Zornitza Stark Phenotypes for gene: ALG11 were changed from to Congenital disorder of glycosylation, type Ip, MIM# 613661
Mendeliome v0.3942 ALG11 Zornitza Stark reviewed gene: ALG11: Rating: GREEN; Mode of pathogenicity: None; Publications: 30676690; Phenotypes: Congenital disorder of glycosylation, type Ip, MIM# 613661; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3938 PDE2A Zornitza Stark gene: PDE2A was added
gene: PDE2A was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PDE2A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PDE2A were set to 32467598; 32196122; 29392776
Phenotypes for gene: PDE2A were set to Paroxysmal dyskinesia
Review for gene: PDE2A was set to GREEN
Added comment: Four unrelated families reported with childhood-onset refractory paroxysmal dyskinesia with cognitive impairment, sometimes associated with choreodystonia and interictal baseline EEG abnormalities or epilepsy. One of the reports characterises the disorder as 'Rett-like'.
Sources: Literature
Mendeliome v0.3874 ABAT Zornitza Stark edited their review of gene: ABAT: Added comment: Bi-allelic variants in ABAT are associated with a neurotransmitter disorder. However, there are also reports of families with encephalomyopathic MDS caused by bi-allelic variants in ABAT resulting in elevated GABA in subjects' brains as well as decreased mtDNA levels in subjects' fibroblasts. Nucleoside rescue and co-IP experiments demonstrate that ABAT functions in the mitochondrial nucleoside salvage pathway to facilitate conversion of dNDPs to dNTPs. Unclear whether this a distinct disorder or part of a continuum caused by the enzyme being part of two pathways.; Changed publications: 25738457, 27903293, 28411234, 27596361, 20052547, 10407778, 6148708; Changed phenotypes: GABA-transaminase deficiency, MIM# 613163, mtDNA depletion syndrome (MDS)
Mendeliome v0.3872 LMBRD2 Zornitza Stark gene: LMBRD2 was added
gene: LMBRD2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LMBRD2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: LMBRD2 were set to 32820033; https://doi.org/10.1101/797787
Phenotypes for gene: LMBRD2 were set to Global developmental delay; Intellectual disability; Microcephaly; Seizures; Abnormality of nervous system morphology; Abnormality of the eye
Mode of pathogenicity for gene: LMBRD2 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: LMBRD2 was set to GREEN
Added comment: 13 individuals with dn missense SNVs overall, overlapping features for 10 with available phenotype / a recurring variant has been identified in 2 different studies.

► Malhotra et al (2020 - PMID: 32820033) report on 10 unrelated individuals with de novo missense LMBRD2 variants. Features included DD (9/10), ID (6/8 of relevant age), microcephaly (7/10), seizures (5/10 - >=3 different variants), structural brain abnormalities (e.g. thin CC in 6/9), highly variable ocular abnormalities (5/10) and dysmorphic features in some (7/10 - nonspecific). All had variable prior non-diagnostic genetic tests (CMA, gene panel, mendeliome, karyotype). WES/WGS revealed LMBRD2 missense variants, in all cases de novo. A single individual had additional variants with weaker evidence of pathogenicity. 5 unique missense SNVs and 2 recurrent ones (NM_001007527:c.367T>C - p.Trp123Arg / c.1448G>A - p.Arg483His) were identified. These occurred in different exons. Variants were not present in gnomAD and all had several in silico predictions in favor of a deleterious effect. There was phenotypic variability among individuals with the same variant (e.g. seizures in 1/3 and microchephaly in 2/3 of those harboring R483H). The gene has a pLI of 0 (although o/e ranges from 0.23 to 0.55), %HI of 15.13 and z-score of 2.27. The authors presume that haploinsufficiency may not apply, and consider a gain-of-function/dominant-negative effect more likely. As the authors comment LMBRD2 (LMBR1 domain containing 2) encodes a membrane bound protein with poorly described function. It is widely expressed across tissues with notable expression in human brain (also in Drosophila, or Xenopus laevis). It displays high interspecies conservation. It has been suggested (Paek et al - PMID: 28388415) that LMBRD2 is a potential regulator of β2 adrenoreceptor signalling through involvement in GPCR signalling.

► Kaplanis et al (2020 - https://doi.org/10.1101/797787) in a dataset of 31058 parent-offspring trios (WES) previously identified 3 individuals with developmental disorder, harboring c.1448G>A - p.Arg483His. These individuals (1 from the DDD study, and 2 GeneDx patients) appear in Decipher. [ https://decipher.sanger.ac.uk/ddd/research-variant/40e17c78cc9655a6721006fc1e0c98db/overview ]. The preprint by Kaplanis et al is cited by Malhotra et al, with Arg483His reported in 6 patients overall in both studies.
Sources: Literature
Mendeliome v0.3834 TAF1C Zornitza Stark gene: TAF1C was added
gene: TAF1C was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: TAF1C was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TAF1C were set to 32779182
Phenotypes for gene: TAF1C were set to Global developmental delay; Intellectual disability; Spasticity; Strabismus; Seizures; Abnormality of nervous system morphology
Review for gene: TAF1C was set to AMBER
Added comment: Knuutinen et al (2020 - PMID: 32779182) report on 2 individuals from 2 consanguineous families, homozygous for TAF1C missense variants. Both presented with an early onset neurological phenotype with severe global DD, ID (2/2 - moderate and profound), spasticity (2/2), ophthalmic findings (strabismus 2/2, nystagmus 1/2). Epilepsy, abnormal brain MRI (cerebral and cerebellar atrophy and white matter hyperintensities) as well and additional findings were reported in one (always the same individual). Following a normal CMA, exome in the first case revealed a homozygous missense SNV (NM_005679.3:c.1165C>T / p.Arg389Cys) supported by in silico predictions. mRNA and protein levels were substantially reduced in fibroblasts from this subject. Only the patient and parents were tested for the variant but not 3 unaffected sibs (fig1). The second individual was homozygous for another missense variant (p.Arg405Cys) also supported by in silico predictions. The girl was the single affected person within the family with an unaffected sib and parents heterozygous for the variant. Several other unaffected relatives in the extended pedigree were either carriers for this variant or homozygous for the wt allele. TAF1C encodes the TATA-box binding protein associated factor (TAF) RNA polymerase I subunit. RNA polymerase I (Pol I) transcribes genes to produce rRNA. For Pol I to initiate transcription, two transcription factors are required : UBF (upstream binding factor encoded by UBTF) and SL1 (selectivity factor 1). The latter is formed by TBP (TATA-binding protein) and 3 Pol I-specific TBP-associated factors (TAFs). A recurrent de novo missense variant in UBTF (encoding the other Pol I transcription factor) causes a disorder with highly similar features. The specific variant acts through a gain-of-function mechanism (and not by LoF which appears to apply for TAF1C based on expression data). The authors hypothesize that altered Pol I activity and resulting ribosomal stress could cause the microcephaly and leukodystrophy (both reported in 1 - the same - individual).
Sources: Expert list
Mendeliome v0.3817 KRT17 Zornitza Stark changed review comment from: Also known as Jackson-Lawler type, the main clinical features are nail dystrophy, palmoplantar keratoderma, oral leucokeratosis and cysts. PMID: 31823354; - cohort of 815 individuals, 134 patients had variants in KRT17 - approx 61.8% presented with palmar keratoderma and approx 82.8% with plantar keratoderma; to: Also known as Jackson-Lawler type, the main clinical features are nail dystrophy, palmoplantar keratoderma, oral leucokeratosis and cysts. PMID: 31823354; - cohort of 815 individuals, 134 patients had variants in KRT17 - approx 61.8% presented with palmar keratoderma and approx 82.8% with plantar keratoderma. Steatocystoma multiplex is an allelic disorder.
Mendeliome v0.3811 SLURP1 Zornitza Stark changed review comment from: Over 10 families reported with Mal de Meleda, a rare autosomal recessive skin disorder characterized by transgressive palmoplantar keratoderma, keratotic skin lesions, perioral erythema, brachydactyly, and nail abnormalities.; to: Over 10 families reported with Mal de Meleda, a rare autosomal recessive skin disorder characterized by transgressive palmoplantar keratoderma, keratotic skin lesions, perioral erythema, brachydactyly, and nail abnormalities. Note single report of manifesting carriers.
Mendeliome v0.3801 THBD Zornitza Stark Phenotypes for gene: THBD were changed from {Hemolytic uremic syndrome, atypical, susceptibility to, 6}, MIM# 612926 to {Hemolytic uremic syndrome, atypical, susceptibility to, 6}, MIM# 612926; Bleeding disorder
Mendeliome v0.3799 THBD Zornitza Stark edited their review of gene: THBD: Added comment: Variants in this gene have also been linked to thrombophilia. Two families reported with a bleeding disorder, both variants located in the transmembrane domain.; Changed publications: 29500241, 19625716, 25564403, 32634856; Changed phenotypes: {Hemolytic uremic syndrome, atypical, susceptibility to, 6}, MIM# 612926, Bleeding disorder
Mendeliome v0.3794 SLFN14 Zornitza Stark gene: SLFN14 was added
gene: SLFN14 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: SLFN14 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SLFN14 were set to 26280575; 26769223
Phenotypes for gene: SLFN14 were set to Bleeding disorder, platelet-type, 20, MIM# 616913
Review for gene: SLFN14 was set to GREEN
Added comment: At least four unrelated families reported.
Sources: Expert list
Mendeliome v0.3789 PRKACG Zornitza Stark gene: PRKACG was added
gene: PRKACG was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: PRKACG was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PRKACG were set to 25061177; 30819905
Phenotypes for gene: PRKACG were set to Bleeding disorder, platelet-type, 19, MIM# 616176
Review for gene: PRKACG was set to RED
Added comment: Single family reported only. A heterozygous VOUS reported in another individual in PMID 30819905 together with several other VOUS in same individual.
Sources: Expert list
Mendeliome v0.3787 PLAU Zornitza Stark gene: PLAU was added
gene: PLAU was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: PLAU was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PLAU were set to 20007542
Phenotypes for gene: PLAU were set to Quebec platelet disorder, MIM# 601709
Review for gene: PLAU was set to GREEN
Added comment: Note this is a tandem 78kb duplication of the gene, multiple families reported.
Sources: Expert list
Mendeliome v0.3752 EPHB2 Zornitza Stark Phenotypes for gene: EPHB2 were changed from to Bleeding disorder, platelet-type, 22, MIM# 618462
Mendeliome v0.3748 EPHB2 Zornitza Stark reviewed gene: EPHB2: Rating: AMBER; Mode of pathogenicity: None; Publications: 30213874, 25370417; Phenotypes: Bleeding disorder, platelet-type, 22, MIM# 618462; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3748 ACTN1 Zornitza Stark Phenotypes for gene: ACTN1 were changed from to Bleeding disorder, platelet-type, 15, MIM# 615193
Mendeliome v0.3745 ACTN1 Zornitza Stark reviewed gene: ACTN1: Rating: GREEN; Mode of pathogenicity: None; Publications: 23434115; Phenotypes: Bleeding disorder, platelet-type, 15, MIM# 615193; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.3703 RAC1 Zornitza Stark Phenotypes for gene: RAC1 were changed from Neurodevelopmental disorder with structural brain anomalies and dysmorphic facies (MIM#618577), AD to Mental retardation, autosomal dominant 48, MIM# 617751
Mendeliome v0.3702 RAC1 Zornitza Stark Phenotypes for gene: RAC1 were changed from to Neurodevelopmental disorder with structural brain anomalies and dysmorphic facies (MIM#618577), AD
Mendeliome v0.3698 RAC1 Kristin Rigbye reviewed gene: RAC1: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 30042656, 29276006, 30293988; Phenotypes: Neurodevelopmental disorder with structural brain anomalies and dysmorphic facies (MIM#618577), AD; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.3684 FBXO11 Zornitza Stark Phenotypes for gene: FBXO11 were changed from to Intellectual Developmental Disorder with Dysmorphic Facies and Behavioural Abnormalities, MIM#618089
Mendeliome v0.3681 FBXO11 Zornitza Stark reviewed gene: FBXO11: Rating: GREEN; Mode of pathogenicity: None; Publications: 30679813, 30057029, 29796876; Phenotypes: Intellectual Developmental Disorder with Dysmorphic Facies and Behavioural Abnormalities, MIM#618089; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.3675 PIGQ Zornitza Stark edited their review of gene: PIGQ: Added comment: Homozygous or compound heterozygous mutations in PIGQ cause Epileptic encephalopathy, early infantile, 77 (MIM #618548).

Johnstone et al (2020 - PMID: 32588908) describe the phenotype of 7 children (from 6 families) with biallelic PIGQ pathogenic variants. The authors also review the phenotype of 3 subjects previously reported in the literature (by Martin et al, Alazami et al, Starr et al - respective PMIDs: 24463883, 25558065, 31148362).

Affected individuals displayed severe to profound global DD/ID and seizures with onset in the first year of life. There were variable other features incl. - among others - genitourinary, cardiac, skeletal, ophthalmological anomalies, gastrointestinal issues. Within the cohort there was significant morbidity/mortality.

PIGQ encodes phosphatidylinositol glycan anchor biosynthesis class Q protein, playing a role (early) in the biosynthesis of the GPI-anchor. Several genes in the GPI biosynthesis pathway cause multi-system disease with DD/ID and seizures. Flow cytometry has been used in individuals with PIGQ-related disorder. Serum ALP was elevated in some (4) although - as the authors comment - elevations are more typical in disorders affecting later steps of GPI biosynthesis.

More than 10 variants have been reported to date (missense / pLoF).; Changed phenotypes: Epileptic encephalopathy, early infantile, 77, MIM# 618548
Mendeliome v0.3654 HPDL Zornitza Stark Phenotypes for gene: HPDL were changed from Progressive neurological disorder to Progressive neurological disorder; Leigh-like syndrome
Mendeliome v0.3653 CRY1 Ee Ming Wong gene: CRY1 was added
gene: CRY1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: CRY1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CRY1 were set to PMID: 28388406; PMID: 32538895
Phenotypes for gene: CRY1 were set to Attention deficit/hyperactivity disorder (ADHD); Delayed sleep phase disorder (DSPD),
Penetrance for gene: CRY1 were set to Incomplete
Review for gene: CRY1 was set to GREEN
gene: CRY1 was marked as current diagnostic
Added comment: - Splice variants identified in 7 families with ADHD and DSPD
- Gain of function suggested for CRY1Δ11 (PMID: 28388406)
- Loss of function suggested for CRY1Δ6 (HEK293T cells transfected with a Per1::Luc reporter plasmid showed reduced repressor activity compared to WT and CRY1Δ11)
Sources: Literature
Mendeliome v0.3653 HPDL Zornitza Stark Phenotypes for gene: HPDL were changed from Neurological disorder to Progressive neurological disorder
Mendeliome v0.3647 HPDL Crystle Lee gene: HPDL was added
gene: HPDL was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: HPDL was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HPDL were set to 32707086
Phenotypes for gene: HPDL were set to Neurological disorder
Review for gene: HPDL was set to GREEN
Added comment: Biallelic variants reported in 13 families with a neurodegenerative disease ranging from neonatal encephalopathy to adolescent-onset spastic paraplegia
Sources: Expert Review
Mendeliome v0.3644 SCAF4 Crystle Lee gene: SCAF4 was added
gene: SCAF4 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: SCAF4 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: SCAF4 were set to 32730804
Phenotypes for gene: SCAF4 were set to Mild intellectual disability; seizures; behavioral abnormalities
Review for gene: SCAF4 was set to GREEN
Added comment: > 5 variants reported in individuals with variable neurodevelopmental disorder characterized by mild intellectual disability, seizures, behavioral abnormalities, and various skeletal and structural anomalies.
Sources: Expert Review
Mendeliome v0.3643 NARS Zornitza Stark gene: NARS was added
gene: NARS was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NARS was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: NARS were set to 32738225
Phenotypes for gene: NARS were set to Abnormal muscle tone; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Ataxia; Abnormality of the face; Demyelinating peripheral neuropathy
Review for gene: NARS was set to GREEN
Added comment: [Please note that HGNC Approved Gene Symbol for this gene is NARS1] Manole et al (2020 - PMID: 32738225) provide evidence that both biallelic and monoallelic (de novo) pathogenic NARS1 variants cause a neurodevelopmental disorder. In total 32 individuals from 21 families are reported, with biallelic variants identified in individuals from 13 families and de novo in 8 families. Similar features were reported for AR/AD occurrences of the disorder and included microcephaly (90% - most often primary), epilepsy (23/32 or 74% - variable semiology incl. partial/myoclonic/generalized tonic-clonic seizures), DD and ID (as a universal feature), abnormal tone in several (hypotonia/spasticity), ataxia, demyelinating peripheral neuropathy (in 3 or more for each inheritance mode - or a total of 25%). Some individuals had dysmorphic features. NARS1 encodes an aminoacyl-tRNA synthetase (ARS) [asparaginyl-tRNA synthetase 1]. Aminoacyl-tRNA synthetases constitute a family of enzymes catalyzing attachment of amino-acids to their cognate tRNAs. As the authors comment, mutations in genes encoding several other ARSs result in neurological disorders ranging from peripheral neuropathy to severe multi-systemic NDD. Dominant, recessive or both modes for inheritance for mutations in the same gene (e.g. AARS1, YARS1, MARS1, etc) have been reported. Some variants were recurrent, e.g. the c.1600C>T / p.Arg534* which occurred in 6 families as a de novo event or c.1633C>T p.Arg545Cys (homozygous in 6 families). 3 different variants were reported to have occured de novo (c.965G>T - p.Arg322Leu, c.1525G>A - p.Gly509Ser, p.Arg534*) with several other variants identified in hmz/compound htz individuals. A single SNV (c.1067A>C - p.Asp356Ala) was suggested to be acting as modifier and pathogenic only when in trans with a severe variant. [NM_004539.4 used as RefSeq for all]. The authors provide several lines of evidence for a partial loss-of-function effect (e.g. reduction in mRNA expression, enzyme levels and activity in fibroblasts or iNPCs) underlying pathogenicity of the variants identified in individuals with biallelic variants. A gain-of-function (dominant-negative) effect is proposed for de novo variants (such effect also demonstrated for the p.Arg534* in a zebrafish model).
Sources: Literature
Mendeliome v0.3631 MAPK1 Zornitza Stark gene: MAPK1 was added
gene: MAPK1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MAPK1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MAPK1 were set to 32721402
Phenotypes for gene: MAPK1 were set to Global developmental delay; Intellectual disability; Behavioral abnormality; Growth delay; Abnormality of the face; Abnormality of the neck; Abnormality of the cardiovascular system; Abnormality of the skin
Review for gene: MAPK1 was set to GREEN
Added comment: Motta et al (2020 - PMID: 32721402) report on 7 unrelated individuals harboring de novo missense MAPK1 pathogenic variants.

The phenotype corresponded to a neurodevelopmental disorder and - as the authors comment - consistently included DD, ID , behavioral problems. Postnatal growth delay was observed in approximately half. Hypertelorism, ptosis, downslant of palpebral fissures, wide nasal bridge as low-set/posteriorly rotated ears were among the facial features observed (each in 3 or more subjects within this cohort). Together with short/webbed neck and abnormalities of skin (lentigines / CAL spots) and growth delay these led to clinical suspicion of Noonan s. or disorder of the same pathway in some. Congenital heart defects (ASD, mitral valve insufficiency, though not cardiomyopathy) occurred in 4/7. Bleeding diathesis and lymphedema were reported only once.

MAPK1 encodes the mitogen-activated protein kinase 1 (also known as ERK2) a serine/threonine kinase of the RAS-RAF-MEK-(MAPK/)ERK pathway.

MAPK1 de novo variants were identified in all individuals following trio exome sequencing (and extensive previous genetic investigations which were non-diagnostic).

The distribution of variants, as well as in silico/vitro/vivo studies suggest a GoF effect (boosted signal through the MAPK cascade. MAPK signaling also upregulated in Noonan syndrome).
Sources: Literature
Mendeliome v0.3623 RIMS2 Zornitza Stark Phenotypes for gene: RIMS2 were changed from nystagmus; retinal dysfunction; autism; night blindness to nystagmus; retinal dysfunction; autism; night blindness; Cone-rod synaptic disorder syndrome, congenital nonprogressive , MIM#618970
Mendeliome v0.3622 RIMS2 Zornitza Stark edited their review of gene: RIMS2: Changed phenotypes: nystagmus, retinal dysfunction, autism, night blindness, Cone-rod synaptic disorder syndrome, congenital nonprogressive , MIM#618970
Mendeliome v0.3603 NGLY1 Zornitza Stark Phenotypes for gene: NGLY1 were changed from to Congenital disorder of deglycosylation, MIM# 615273
Mendeliome v0.3600 NGLY1 Zornitza Stark reviewed gene: NGLY1: Rating: GREEN; Mode of pathogenicity: None; Publications: 24651605, 27388694; Phenotypes: Congenital disorder of deglycosylation, MIM# 615273; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3539 LARS Zornitza Stark Added comment: Comment when marking as ready: Lenz et al (2020 - PMID: 32699352) review the phenotype of 25 affected individuals from 15 families.

Seizures occurred in 19/24 and were commonly associated with infections. Encephalopathic episodes (in 13 patients) accompanied by seizures up to status epilepticus occurred independently of hepatic decompensation.

In addition 22/24 presented with neurodevelopmental delay. The authors comment that cognitive impairment was present in 13/17 individuals (mild-severe) whereas most presented with learning disabilities.

These patients will most likely investigated for their liver disease (although presentation was highly variable and/or very mild in few).

The gene encodes a cytoplasmic amino-acyl tRNA synthetase (ARS) with neurologic manifestations observed in almost all patients (and seizures / DD and ID common to other disorders due to mutations in other genes encoding for ARSs).

Please note that the HGNC approved symbol for this gene is LARS1.
Mendeliome v0.3454 COG2 Zornitza Stark Phenotypes for gene: COG2 were changed from to Congenital disorder of glycosylation, type IIq (MIM# 617395)
Mendeliome v0.3450 COG2 Ain Roesley reviewed gene: COG2: Rating: RED; Mode of pathogenicity: None; Publications: 24784932; Phenotypes: Congenital disorder of glycosylation, type IIq (MIM# 617395); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3433 NR0B1 Zornitza Stark Added comment: Comment when marking as ready: Note 46XY reversal disorder is only associated with duplications.
Mendeliome v0.3380 DPM1 Zornitza Stark Phenotypes for gene: DPM1 were changed from to Congenital disorder of glycosylation, type Ie, 608799
Mendeliome v0.3377 DPM1 Elena Savva reviewed gene: DPM1: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 23856421; Phenotypes: Congenital disorder of glycosylation, type Ie, 608799; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3372 DEAF1 Zornitza Stark Phenotypes for gene: DEAF1 were changed from to Neurodevelopmental disorder with hypotonia, impaired expressive language, and with or without seizures 617171; Vulto-van Silfout-de Vries syndrome 615828
Mendeliome v0.3368 DEAF1 Elena Savva reviewed gene: DEAF1: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID 30923367, PMID 24726472; Phenotypes: Neurodevelopmental disorder with hypotonia, impaired expressive language, and with or without seizures 617171, Vulto-van Silfout-de Vries syndrome 615828; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.3368 GRM7 Zornitza Stark Phenotypes for gene: GRM7 were changed from Epilepsy, microcephaly, developmental delay to Epilepsy, microcephaly, developmental delay; neurodevelopmental disorder with seizures, hypotonia, and brain imaging abnormalities (NEDSHBA), MIM#618922
Mendeliome v0.3367 GRM7 Zornitza Stark edited their review of gene: GRM7: Changed phenotypes: Epilepsy, microcephaly, developmental delay, neurodevelopmental disorder with seizures, hypotonia, and brain imaging abnormalities (NEDSHBA), MIM#618922
Mendeliome v0.3345 ESR2 Zornitza Stark Phenotypes for gene: ESR2 were changed from to 46,XY disorder of sex development; Ovarian dysgenesis 8, MIM# 618187
Mendeliome v0.3342 ESR2 Zornitza Stark reviewed gene: ESR2: Rating: AMBER; Mode of pathogenicity: None; Publications: 29261182, 9861029, 30113650; Phenotypes: 46,XY disorder of sex development, Ovarian dysgenesis 8, MIM# 618187; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.3325 TBC1D2B Zornitza Stark gene: TBC1D2B was added
gene: TBC1D2B was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: TBC1D2B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TBC1D2B were set to 32623794
Phenotypes for gene: TBC1D2B were set to Global developmental delay; Intellectual disability; Seizures; Gingival overgrowth; Behavioral abnormality; Abnormality of the mandible; Abnormality of brain morphology; Abnormality of the eye; Hearing abnormality
Review for gene: TBC1D2B was set to GREEN
Added comment: Harms et al (2020 - PMID: 32623794) report on 3 unrelated individuals with biallelic pLoF TBC1D2B variants. Features included cognitive impairment (mild ID in one case, regression at the age of 12y in another, hypotonia and delayed milestones in a third aged 8m), seizures (3/3 - variable age of onset) and/or gingival overgrowth (2/3 - prior to initiation of AEDs). Other findings included behavioral abnormalities, mandibular anomalies, abnormal brain imaging and ophthalmologic or (rarely) audiometric evaluations. All were born to non-consanguineous couples and additional investigations were performed in some. Variants were identified by WES or trio WGS, with Sanger confirmation/compatible segregation analyses. In line with the pLoF variants, mRNA studies in fibroblasts from 2 unrelated affected individuals demonstrated significantly reduced (~80-90%) TBC1C2D mRNA levels compared to controls, restored following cycloheximide treatment. Protein was absent in patient fibroblasts. TBC-domain containing GTPase activating proteins are known as key regulators of RAB GTPase activity. TBC1D2B was shown to colocalize with RAB5-positive endocytic vesicles. CRISPR/Cas9-mediated ko of TBC1D2B in HeLa cells suggested a role in EGF receptor endocytosis and decreased cell viability of TBC1D2B-deficient HeLa cells upon serum deprivation. Genes encoding other TBC domain-containg GTPase-activating proteins, e.g. TBC1D7 and TBC1D20, TBC1D24 are associated with recessive neurodevelopmental disorders (with ID and/or seizures) and the pathophysiological defect in TBC1D2B-related disorder (deficit in vesicle trafficking and/or cell survival) is proposed to be similar to that of TBC1D24.
Sources: Expert Review
Mendeliome v0.3318 ABCA2 Zornitza Stark gene: ABCA2 was added
gene: ABCA2 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: ABCA2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ABCA2 were set to 30237576; 29302074; 31047799
Phenotypes for gene: ABCA2 were set to Intellectual developmental disorder with poor growth and with or without seizures or ataxia, 618808
Review for gene: ABCA2 was set to GREEN
Added comment: Biallelic pathogenic ABCA2 variants cause Intellectual developmental disorder with poor growth and with or without seizures or ataxia (MIM 618808). There are 3 relevant publications (01-07-2020) : - Maddirevula et al [2019 - PMID: 30237576] described briefly 2 unrelated subjects (16-2987, 16DG0071) both DD and seizures among other manifestations. - Hu et al [2019 - PMID: 29302074] reported 3 sibs (M8600615 - III:1-3) born to consanguineous parents (M8600615 - III:1-3) with DD/ID (formal confirmation of moderate ID, in those (2) evaluated). One also presented with seizures. - Aslam and Naz [2019 - PMID: 31047799] provided clinical details on 2 siblings born to consanguineous parents. ID was reported for the older sib but was absent in the younger one. Seizures were not part of the phenotype. All subjects harbored biallelic pLoF variants. N.B. : Steinberg et al [2015 - PMID: 25773295], within a cohort of patients with ALS, identified one with biallelic ABCA2 variants. As however Aslam and Naz comment, this person harbored a single pathogenic variant, with a second one rather unlikely to be pathogenic due to high allele frequency. Overall this gene can be considered for inclusion with green rating in both ID and epilepsy panels (each in >=3 unrelated individuals).
Sources: Expert Review
Mendeliome v0.3295 DPM2 Zornitza Stark Phenotypes for gene: DPM2 were changed from to Congenital disorder of glycosylation, type Iu, MIM# 615042
Mendeliome v0.3291 DPM2 Zornitza Stark reviewed gene: DPM2: Rating: AMBER; Mode of pathogenicity: None; Publications: 23109149; Phenotypes: Congenital disorder of glycosylation, type Iu, MIM# 615042; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.3278 PYCR1 Dean Phelan changed review comment from: Aortopathy/Connective tissue review

Variants in this gene are associated with Cutis Laxa:
Cutis laxa type 2 (ARCL2, [MIM 219200]) is an autosomal-recessive multisystem disorder with prominent connective-tissue features characterized by the appearance of premature aging, particularly wrinkled and lax skin with reduced elasticity.

GEL PanelApp: Green in EDS panel - clinical features overlapping EDS
Cutis laxa, autosomal recessive, type IIIB (ARCL3B) PMID: 19648921,4076251, 22052856
Cutis laxa, autosomal recessive, type IIB (ARCL2B) PMID: 19576563, 19648921, 9648921, 22052856, 28294978 AR

PMID: 27756598: a homozygous mutation in PYCR1 segregating in the family with the affected individuals with complex connective tissue disorder and severe intellectual disability.; to: Aortopathy/Connective tissue review

Variants in this gene are associated with Cutis Laxa:
Cutis laxa type 2 (ARCL2, [MIM 219200]) is an autosomal-recessive multisystem disorder with prominent connective-tissue features characterized by the appearance of premature aging, particularly wrinkled and lax skin with reduced elasticity.

GEL PanelApp: Green in EDS panel - clinical features overlapping EDS
Cutis laxa, autosomal recessive, type IIIB (ARCL3B) PMID: 19648921,4076251, 22052856
Cutis laxa, autosomal recessive, type IIB (ARCL2B) PMID: 19576563, 19648921, 9648921, 22052856, 28294978 AR

PMID: 27756598: a homozygous mutation in PYCR1 segregating in the family with the affected individuals with complex connective tissue disorder and severe intellectual disability.
Mendeliome v0.3229 SETD1B Zornitza Stark Phenotypes for gene: SETD1B were changed from to Epilepsy with myoclonic absences; intellectual disability; SETD1B-related neurodevelopmental disorder
Mendeliome v0.3226 SETD1B Zornitza Stark reviewed gene: SETD1B: Rating: GREEN; Mode of pathogenicity: None; Publications: 32546566, 29322246, 31440728, 31685013; Phenotypes: Epilepsy with myoclonic absences, intellectual disability, SETD1B-related neurodevelopmental disorder; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.3196 EXOC7 Zornitza Stark gene: EXOC7 was added
gene: EXOC7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: EXOC7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EXOC7 were set to 32103185
Phenotypes for gene: EXOC7 were set to brain atrophy; seizures; developmental delay; microcephaly
Review for gene: EXOC7 was set to GREEN
Added comment: 4 families with 8 affected individuals with brain atrophy, seizures, and developmental delay, and in more severe cases microcephaly and infantile death. Four novel homozygous or comp.heterozygous variants found in EXOC7, which segregated with disease in the families. They showed that EXOC7, a member of the mammalian exocyst complex, is highly expressed in developing human cortex. In addition, a zebrafish model of Exoc7 deficiency recapitulates the human disorder with increased apoptosis and decreased progenitor cells during telencephalon development, suggesting that the brain atrophy in human cases reflects neuronal degeneration.
Sources: Literature
Mendeliome v0.3176 GRIA2 Zornitza Stark Phenotypes for gene: GRIA2 were changed from Intellectual disability; autism; Rett-like features; epileptic encephalopathy to Intellectual disability; autism; Rett-like features; epileptic encephalopathy; Neurodevelopmental disorder with language impairment and behavioral abnormalities, MIM# 618917
Mendeliome v0.3175 GRIA2 Zornitza Stark edited their review of gene: GRIA2: Changed phenotypes: Intellectual disability, autism, Rett-like features, epileptic encephalopathy, Neurodevelopmental disorder with language impairment and behavioral abnormalities, MIM# 618917
Mendeliome v0.3156 AXL Bryony Thompson gene: AXL was added
gene: AXL was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: AXL was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: AXL were set to 18787040; 24476074
Phenotypes for gene: AXL were set to Kallman syndrome; normosmic idiopathic hypogonadotropic hypogonadism
Review for gene: AXL was set to AMBER
Added comment: Axl null mice had delayed first oestrus and persistently abnormal oestrous cyclicality compared with wild-type controls. Only a single study reported screening human cases. In a screen of 104 probands with KS or nIHH, four heterozygous AXL mutations were identified in two KS and two nIHH unrelated subjects (two males and two females). Three of the variants appear to be too common in gnomAD v2.1 given the reported prevalence of KS reported in GeneReviews (1:30,000 in males and 1:125,000 in females): c.587-6C>T (normal splicing in RNA studies, NFE AF 0.0001472), p.Q361P (NFE 0.002560), p.L50F (AJ 0.004405). The other variant p.S202C (4 hets, 1 female in gnomAD v2.1) is rare enough in gnomAD for a dominant disorder. In vitro functional assays were conducted and p.S202C had an significant effect on function, but so did the more common variant p.Q361P.
Sources: Literature
Mendeliome v0.3152 GOLGA2 Zornitza Stark Phenotypes for gene: GOLGA2 were changed from Nueromuscular disorder to Neuromuscular disorder
Mendeliome v0.3150 GOLGA2 Elena Savva gene: GOLGA2 was added
gene: GOLGA2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: GOLGA2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GOLGA2 were set to PMID: 30237576; 26742501
Phenotypes for gene: GOLGA2 were set to Nueromuscular disorder
Review for gene: GOLGA2 was set to GREEN
Added comment: PMID: 30237576 - One 11 year old patient with a homozygous PTC.
Patient had global dev delay, microcephaly, distal muscle weakness with joint contractures and elevated CK levels. Muscle biopsy showed dystrophin changes. MRI at 2 years old showed brain atrophy with thin corpus callosum and hypomyelination. No seizures or regression.

PMID: 26742501 - One infant with a homozygous PTC.
Patient had dev delay, seizures, microcephaly and muscular dystrophy. Zebrafish null model recapitulates the human phenotype with microcephaly and skeletal muscle disorganization.

Summary: 2 patients + animal model
Sources: Expert list
Mendeliome v0.3143 TANC2 Zornitza Stark Phenotypes for gene: TANC2 were changed from Intellectual disability; autism; epilepsy; dysmorphism to Intellectual disability; autism; epilepsy; dysmorphism; Intellectual developmental disorder with autistic features and language delay, with or without seizures, MIM# 618906
Mendeliome v0.3142 TANC2 Zornitza Stark edited their review of gene: TANC2: Changed phenotypes: Intellectual disability, autism, epilepsy, dysmorphism, Intellectual developmental disorder with autistic features and language delay, with or without seizures, MIM# 618906
Mendeliome v0.3141 SORD Zornitza Stark Phenotypes for gene: SORD were changed from isolated hereditary neuropathy to isolated hereditary neuropathy; Sorbitol dehydrogenase deficiency with peripheral neuropathy (SORDDPN), MIM#618912
Mendeliome v0.3140 SORD Zornitza Stark reviewed gene: SORD: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Sorbitol dehydrogenase deficiency with peripheral neuropathy (SORDDPN), MIM#618912; Mode of inheritance: None
Mendeliome v0.3032 PPP1CB Zornitza Stark Phenotypes for gene: PPP1CB were changed from to Noonan syndrome-like disorder with loose anagen hair 2, OMIM # 617506
Mendeliome v0.3029 PPP1CB Zornitza Stark reviewed gene: PPP1CB: Rating: GREEN; Mode of pathogenicity: None; Publications: 32476286, 28211982, 27264673, 27681385, 27868344; Phenotypes: Noonan syndrome-like disorder with loose anagen hair 2, OMIM # 617506; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.3002 COG4 Zornitza Stark Phenotypes for gene: COG4 were changed from to Saul-Wilson syndrome, OMIM #618150; Congenital disorder of glycosylation, type IIj, OMIM #613489
Mendeliome v0.2999 COG4 Zornitza Stark reviewed gene: COG4: Rating: GREEN; Mode of pathogenicity: None; Publications: 31949312, 30290151, 19494034, 21185756; Phenotypes: Saul-Wilson syndrome, OMIM #618150, Congenital disorder of glycosylation, type IIj, OMIM #613489; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.2970 EFEMP1 Zornitza Stark Phenotypes for gene: EFEMP1 were changed from to Doyne honeycomb degeneration of retina, MIM# 126600; EFEMP1-related connective tissue disorder
Mendeliome v0.2966 EFEMP1 Zornitza Stark reviewed gene: EFEMP1: Rating: GREEN; Mode of pathogenicity: None; Publications: 32006683, 31792352; Phenotypes: Doyne honeycomb degeneration of retina, MIM# 126600, EFEMP1-related connective tissue disorder; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.2965 USP8 Bryony Thompson gene: USP8 was added
gene: USP8 was added to Mendeliome. Sources: Expert list
somatic tags were added to gene: USP8.
Mode of inheritance for gene: USP8 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: USP8 were set to 25675982; 24482476; 25485838; 25942478
Phenotypes for gene: USP8 were set to Pituitary adenoma 4, ACTH-secreting, somatic MIM#219090; hereditary spastic paraplegia
Review for gene: USP8 was set to GREEN
Added comment: Recurrent somatic gain of function missense variants in pituitary adenomas cause Cushing's disease.
A single family reported with spastic paraplegia with a homozygous variant, and a zebrafish model with a movement disorder.
Sources: Expert list
Mendeliome v0.2943 TRIM71 Elena Savva gene: TRIM71 was added
gene: TRIM71 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TRIM71 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: TRIM71 were set to PMID: 29983323; 32168371; 30975633
Phenotypes for gene: TRIM71 were set to Hydrocephalus, congenital communicating, 1 618667
Mode of pathogenicity for gene: TRIM71 was set to Other
Added comment: PMID: 29983323 - 3 unrelated patients with de novo missense and hydrocephalus with ventriculomegaly (p.Arg608His recurrent). One patient then transmitted the variant to an affected child.

PMID: 32168371 - refers to the gene as an established sources of neurodevelopmental disorder

PMID: 30975633 - identifies and proves by functional studies that TRIM71 is essential for neurodevelopment. Proposes a LOF mechanism.
Sources: Literature
Mendeliome v0.2941 SORD Seb Lunke Marked gene: SORD as ready
Mendeliome v0.2941 SORD Seb Lunke Gene: sord has been classified as Green List (High Evidence).
Mendeliome v0.2941 SORD Seb Lunke Classified gene: SORD as Green List (high evidence)
Mendeliome v0.2941 SORD Seb Lunke Gene: sord has been classified as Green List (High Evidence).
Mendeliome v0.2940 SORD Seb Lunke gene: SORD was added
gene: SORD was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SORD was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SORD were set to 32367058
Phenotypes for gene: SORD were set to isolated hereditary neuropathy
Review for gene: SORD was set to GREEN
gene: SORD was marked as current diagnostic
Added comment: 45 individuals from 38 families across multiple ancestries carrying the nonsense c.757delG
(p.Ala253GlnfsTer27) variant in SORD, in either a homozygous or compound heterozygous state
Sources: Literature
Mendeliome v0.2876 KRAS Zornitza Stark Phenotypes for gene: KRAS were changed from to Cardiofaciocutaneous syndrome 2 615278; Noonan syndrome 3 609942; RAS-associated autoimmune leukoproliferative disorder 614470; Schimmelpenning-Feuerstein-Mims syndrome, somatic mosaic 163200
Mendeliome v0.2867 DHX30 Zornitza Stark Phenotypes for gene: DHX30 were changed from to Neurodevelopmental disorder with severe motor impairment and absent language, 617804
Mendeliome v0.2861 KRAS Elena Savva reviewed gene: KRAS: Rating: GREEN; Mode of pathogenicity: Other; Publications: PMID: 23059812, 17056636; Phenotypes: Arteriovenous malformation of the brain, somatic 108010, Bladder cancer, somatic 109800, Breast cancer, somatic 114480, Cardiofaciocutaneous syndrome 2 615278, Gastric cancer, somatic 137215, Leukemia, acute myeloid 601626, . Lung cancer, somatic 211980, Noonan syndrome 3 609942, Pancreatic carcinoma, somatic 260350, RAS-associated autoimmune leukoproliferative disorder 614470, Schimmelpenning-Feuerstein-Mims syndrome, somatic mosaic 163200; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v0.2861 DHX30 Elena Savva reviewed gene: DHX30: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 29100085; Phenotypes: Neurodevelopmental disorder with severe motor impairment and absent language, 617804; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes
Mendeliome v0.2814 MOGS Zornitza Stark Phenotypes for gene: MOGS were changed from to Congenital disorder of glycosylation, type IIb 606056
Mendeliome v0.2806 GFI1B Bryony Thompson gene: GFI1B was added
gene: GFI1B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GFI1B was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: GFI1B were set to 24325358; 23927492; 28041820; 11825872
Phenotypes for gene: GFI1B were set to Bleeding disorder, platelet-type, 17 MIM#187900
Review for gene: GFI1B was set to GREEN
Added comment: Three families with a heterozygous variant and one case with a homozygous variant, with supporting in vitro functional assays. A null mouse model contained erythroid and megakaryocytic precursors arrested in their development.
Sources: Literature
Mendeliome v0.2805 MOGS Elena Savva reviewed gene: MOGS: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 31925597; Phenotypes: Congenital disorder of glycosylation, type IIb 606056; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.2786 TOMM70 Zornitza Stark gene: TOMM70 was added
gene: TOMM70 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: TOMM70 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: TOMM70 were set to 31907385; 32356556
Phenotypes for gene: TOMM70 were set to Severe anaemia, lactic acidosis, developmental delay; White matter abnormalities, developmental delay, regression, movement disorder
Review for gene: TOMM70 was set to AMBER
Added comment: TOM70 is a member of the TOM complex that transports cytosolic proteins into mitochondria.
Bi-allelic disease: one individual reported with compound heterozygous variants in TOMM70 [c.794C>T (p.T265M) and c.1745C>T (p.A582V)]. Clinical features included severe anaemia, lactic acidosis, and developmental delay. Some functional data: in vitro cell model compensatory experiments.
Monoallelic disease: de novo mono allelic variants in the C-terminal region of TOMM70 reported in two individuals. While both individuals exhibited shared symptoms including hypotonia, hyperreflexia, ataxia, dystonia, and significant white matter abnormalities, there were differences between the two individuals, most prominently the age of symptom onset, with one experiencing episodes of regression. Some functional data.
Sources: Expert list
Mendeliome v0.2767 UGDH Zornitza Stark gene: UGDH was added
gene: UGDH was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: UGDH was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UGDH were set to 32001716
Phenotypes for gene: UGDH were set to Epileptic encephalopathy, early infantile, 84 - MIM #618792
Review for gene: UGDH was set to GREEN
Added comment: 36 individuals with biallelic UGDH pathogenic variants reported. The phenotype corresponded overall to a developmental epileptic encephalopathy with hypotonia, feeding difficulties, severe global DD, moderate or commonly severe ID in all. Hypotonia and motor disorder (incl. spasticity, dystonia, ataxia, chorea, etc) often occurred prior to the onset of seizures. A single individual did not present seizures and 2 sibs had only seizures in the setting of fever. There were no individuals with biallelic pLoF variants identified. Parental/sib studies were all compatible with AR inheritance mode.

UGDH encodes the enzyme UDP-glucose dehydrogenase which converts UDP-glucose to UDP-glucuronate, the latter being a critical component of the glycosaminoglycans, hyaluronan, chondroitin sulfate, and heparan sulfate. Patient fibroblast and biochemical assays suggested a LoF effect of variants leading to impairment of UGDH stability, oligomerization or enzymatic activity (decreased UGDH-catalyzed reduction of NAD+ to NADH / hyaluronic acid production which requires UDP-glucuronate).

Attempts to model the disorder using an already developped zebrafish model (for a hypomorphic LoF allele) were unsuccessful as fish did not exhibit seizures spontaneously or upon induction with PTZ. Modelling of the disorder in vitro using patient-derived cerebral organoids demonstrated smaller organoids due to reduced number of proliferating neural progenitors
Sources: Literature
Mendeliome v0.2764 YIF1B Zornitza Stark gene: YIF1B was added
gene: YIF1B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: YIF1B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: YIF1B were set to 32006098; 26077767
Phenotypes for gene: YIF1B were set to Central hypotonia; Failure to thrive; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Spasticity; Abnormality of movement
Review for gene: YIF1B was set to GREEN
Added comment: 6 individuals (from 5 families) with biallelic YIF1B truncating variants reported. Presenting features: hypotonia, failure to thrive, microcephaly (5/6), severe global DD and ID as well as features suggestive of a motor disorder (dystonia/spasticity/dyskinesia). Seizures were reported in 2 unrelated individuals (2/6). MRI abnormalities were observed in some with thin CC being a feature in 3. Affected individuals were found to be homozygous for truncating variants (4/5 families being consanguineous). The following 3 variants were identified (NM_001039672.2) : c.186dupT or p.Ala64fs / c.360_361insACAT or p.Gly121fs / c.598G>T or p.Glu200*. Yif1B KO mice demonstrate a disorganized Golgi architecture in pyramidal hippocampal neurons (Alterio et al 2015 - PMID: 26077767). Functional/network analysis of genes co-regulated with YIF1B based on available RNAseq data, suggest enrichement in in genes important for nervous system development and function.
Sources: Literature
Mendeliome v0.2681 MAN2B2 Zornitza Stark gene: MAN2B2 was added
gene: MAN2B2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MAN2B2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MAN2B2 were set to 31775018
Phenotypes for gene: MAN2B2 were set to Congenital disorder of glycosylation; immunodeficiency
Review for gene: MAN2B2 was set to RED
Added comment: Single individual reported.
Sources: Literature
Mendeliome v0.2668 PSMB10 Zornitza Stark gene: PSMB10 was added
gene: PSMB10 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PSMB10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PSMB10 were set to 31783057
Phenotypes for gene: PSMB10 were set to Autoinflammatory syndrome
Review for gene: PSMB10 was set to RED
Added comment: PSMB10 is part of the immunoproteasome, and other components cause auto inflammatory disorders. Single individual with homozygous missense variant reported.
Sources: Literature
Mendeliome v0.2602 CACNB4 Zornitza Stark edited their review of gene: CACNB4: Added comment: PMID 32176688: A homozygous missense variant (Leu126Pro) reported in two siblings with intellectual disability, psychomotor retardation, blindness, epilepsy, movement disorder and cerebellar atrophy. Some functional data.; Changed publications: 10762541, 9628818, 27003325, 32176688; Changed phenotypes: Episodic ataxia, type 5, MIM#613855, Intellectual disability, Epilepsy, Movement disorder
Mendeliome v0.2579 CSGALNACT1 Zornitza Stark reviewed gene: CSGALNACT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 31705726, 31325655; Phenotypes: Congenital disorder of glycosylation, skeletal dysplasia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.2550 RSRC1 Zornitza Stark edited their review of gene: RSRC1: Added comment: 17 additional individuals reported.; Changed rating: GREEN; Changed publications: 28640246, 29522154, 32227164; Changed phenotypes: Intellectual developmental disorder, autosomal recessive 70, MIM# 618402
Mendeliome v0.2548 GALNT2 Zornitza Stark gene: GALNT2 was added
gene: GALNT2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GALNT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GALNT2 were set to 32293671
Phenotypes for gene: GALNT2 were set to Congenital disorder of glycosylation
Review for gene: GALNT2 was set to GREEN
Added comment: Seven individuals from four families reported with bi-allelic LOF variants and global developmental delay, intellectual disability with language deficit, autistic features, behavioural abnormalities, epilepsy, chronic insomnia, white matter changes on brain MRI, dysmorphic features, decreased stature, and decreased high density lipoprotein cholesterol levels. Rodent (mouse and rat) models of GALNT2-CDG recapitulated much of the human phenotype, including poor growth and neurodevelopmental abnormalities.
Sources: Literature
Mendeliome v0.2543 GRIN2A Zornitza Stark Phenotypes for gene: GRIN2A were changed from to Epilepsy, focal, with speech disorder and with or without mental retardation, MIM# 245570
Mendeliome v0.2539 GRIN2A Zornitza Stark reviewed gene: GRIN2A: Rating: GREEN; Mode of pathogenicity: Other; Publications: 30544257; Phenotypes: Epilepsy, focal, with speech disorder and with or without mental retardation, MIM# 245570; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.2452 SEC31A Zornitza Stark Phenotypes for gene: SEC31A were changed from congenital neurodevelopmental syndrome; spastic paraplegia; multiple contractures; profound developmental delay; epilepsy; failure to thrive to Neurodevelopmental disorder with spastic quadriplegia, optic atrophy, seizures, and structural brain anomalies, MIM# 618651; congenital neurodevelopmental syndrome; spastic paraplegia; multiple contractures; profound developmental delay; epilepsy; failure to thrive
Mendeliome v0.2440 TMPRSS9 Chern Lim gene: TMPRSS9 was added
gene: TMPRSS9 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TMPRSS9 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMPRSS9 were set to 31943016
Phenotypes for gene: TMPRSS9 were set to autism spectrum disorder
Review for gene: TMPRSS9 was set to RED
Added comment: Association with Mendelian disease not established.

Is a candidate gene for autism spectrum disorder: single patient, compound heterozygous nonsense variants. Functional studies showed Tmprss9 gene is expressed in mouse brain, knockout mice had decreased social interest and social recognition. (PMID: 31943016)
Sources: Literature
Mendeliome v0.2440 WIPI2 Melanie Marty edited their review of gene: WIPI2: Added comment: Four homozygous patients from one consanguineous family with intellectual developmental, short stature and variable skeletal anomalies. Functional studies in patient cells showed impaired protein function.; Changed rating: RED; Changed phenotypes: Intellectual developmental disorder with short stature and variable skeletal anomalies 618453
Mendeliome v0.2392 GNAI2 Elena Savva gene: GNAI2 was added
gene: GNAI2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: GNAI2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: GNAI2 were set to PMID: 31036916
Phenotypes for gene: GNAI2 were set to Pituitary adenoma, ACTH-secreting, somatic; Ventricular tachycardia, idiopathic 192605; Syndromic developmental disorder
Review for gene: GNAI2 was set to AMBER
Added comment: Papers associating this gene to tachycardia are very old (pre 2000, OMIM).

PMID: 31036916 - a single de novo patient with syndromic developmental disorder

Summary: AMBER - one report, may be a coincidental de novo finding
Sources: Literature
Mendeliome v0.2386 FEM1B Elena Savva gene: FEM1B was added
gene: FEM1B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FEM1B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: FEM1B were set to PMID: 31036916
Phenotypes for gene: FEM1B were set to Syndromic global developmental delay
Review for gene: FEM1B was set to AMBER
Added comment: No OMIM phenotype

PMID: 31036916 - a single de novo patient reported in a neurodevelopmental disorder cohort. Authors note another de novo case with the exact same variant (p.Arg126Gln) from the DDD study, and a 3rd patient from GeneMatcher with the same de novo missense again. Decipher shows this variant to be in a highly constrained region of the protein.

Have selected AMBER for now - not sure if GeneMatcher findings can be used as a 3rd case
Sources: Literature
Mendeliome v0.2378 WIPI2 Melanie Marty gene: WIPI2 was added
gene: WIPI2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: WIPI2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: WIPI2 were set to 30968111
Phenotypes for gene: WIPI2 were set to Intellectual developmental disorder with short stature and variable skeletal anomalies 618453
Review for gene: WIPI2 was set to AMBER
Added comment: Four homozygous patients from one consanguineous family with intellectual developmental, short stature and variable skeletal anomalies. Functional studies in patient cells showed impaired protein function.
Sources: Literature
Mendeliome v0.2225 SHANK2 Zornitza Stark Phenotypes for gene: SHANK2 were changed from to {Autism susceptibility 17}; Autism spectrum disorder with or without intellectual disability
Mendeliome v0.2189 VARS Zornitza Stark Phenotypes for gene: VARS were changed from to Neurodevelopmental disorder with microcephaly, seizures, and cortical atrophy; OMIM #617802
Mendeliome v0.2023 TFE3 Zornitza Stark Phenotypes for gene: TFE3 were changed from to TFE3-associated neurodevelopmental disorder; Intellectual disability; Epilepsy; Coarse facial features
Mendeliome v0.2020 TFE3 Zornitza Stark reviewed gene: TFE3: Rating: GREEN; Mode of pathogenicity: None; Publications: 30595499, 31833172; Phenotypes: TFE3-associated neurodevelopmental disorder, Intellectual disability, Epilepsy, Coarse facial features; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.1990 POLA1 Zornitza Stark Phenotypes for gene: POLA1 were changed from to Pigmentary disorder, reticulate, with systemic manifestations, X-linked, MIM# 301220; Van Esch-O'Driscoll syndrome OMIM# 301030
Mendeliome v0.1987 POLA1 Zornitza Stark reviewed gene: POLA1: Rating: GREEN; Mode of pathogenicity: None; Publications: 27019227, 31006512; Phenotypes: Pigmentary disorder, reticulate, with systemic manifestations, X-linked, MIM# 301220, Van Esch-O'Driscoll syndrome OMIM# 301030; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.1833 CNOT3 Zornitza Stark Phenotypes for gene: CNOT3 were changed from to Intellectual developmental disorder with speech delay, autism, and dysmorphic facies, MIM# 618672
Mendeliome v0.1830 CNOT3 Zornitza Stark reviewed gene: CNOT3: Rating: GREEN; Mode of pathogenicity: None; Publications: 31201375; Phenotypes: Intellectual developmental disorder with speech delay, autism, and dysmorphic facies, MIM# 618672; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.1799 MRPL3 Zornitza Stark changed review comment from: 1 French family with 4 sibs with severe mitochondrial disorder - compound heterozygous mutations in the MRPL3 gene, no functional studies. 1 male infant with a severe mitochondrial disorder - compound heterozygous mutations in the MRPL3 gene, no functional studies.; to: 1 French family with 4 sibs with severe mitochondrial disorder - compound heterozygous mutations in the MRPL3 gene, some functional studies. 1 male infant with a severe mitochondrial disorder - compound heterozygous mutations in the MRPL3 gene, no functional studies.
Mendeliome v0.1795 SHANK2 Elena Savva reviewed gene: SHANK2: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 30072871, 30911184; Phenotypes: {Autism susceptibility 17}, Autism spectrum disorder with or without intellectual disability; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.1725 ISCA1 Zornitza Stark gene: ISCA1 was added
gene: ISCA1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: ISCA1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ISCA1 were set to 28356563; 32092383; 31016283; 30113620; 30105122
Phenotypes for gene: ISCA1 were set to Multiple mitochondrial dysfunctions syndrome 5, MIM# 617613
Review for gene: ISCA1 was set to GREEN
gene: ISCA1 was marked as current diagnostic
Added comment: Multiple unrelated families reported. Severe disorder characterised by progressive neurologic deterioration beginning in early infancy. Affected individuals have essentially no psychomotor development and have early-onset seizures with neurologic decline and spasticity. Brain imaging shows severe leukodystrophy with evidence of dys- or delayed myelination. Rat model results in early lethality. Founder variant c.259G > A, p.(Glu87Lys) reported in Indian families.
Sources: Expert list
Mendeliome v0.1718 CTNNB1 Zornitza Stark Phenotypes for gene: CTNNB1 were changed from to Exudative vitreoretinopathy 7, MIM# 617572; Neurodevelopmental disorder with spastic diplegia and visual defects, MIM# 615075
Mendeliome v0.1714 CTNNB1 Zornitza Stark reviewed gene: CTNNB1: Rating: GREEN; Mode of pathogenicity: None; Publications: 25326669, 29435196, 27915094, 30640974; Phenotypes: Exudative vitreoretinopathy 7, MIM# 617572, Neurodevelopmental disorder with spastic diplegia and visual defects, MIM# 615075; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.1650 BPTF Zornitza Stark Phenotypes for gene: BPTF were changed from to Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies AD, MIM#617755
Mendeliome v0.1635 BPTF Michelle Torres reviewed gene: BPTF: Rating: GREEN; Mode of pathogenicity: None; Publications: 28942966; Phenotypes: Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies AD; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.1633 TBR1 Zornitza Stark Phenotypes for gene: TBR1 were changed from to Intellectual developmental disorder with autism and speech delay, MIM# 606053
Mendeliome v0.1627 TBR1 Melanie Marty reviewed gene: TBR1: Rating: GREEN; Mode of pathogenicity: None; Publications: 25232744, 30250039; Phenotypes: Intellectual developmental disorder with autism and speech delay 606053; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.1617 ZBTB11 Zornitza Stark Phenotypes for gene: ZBTB11 were changed from to Intellectual developmental disorder, autosomal recessive 69, OMIM #618383
Mendeliome v0.1613 ZBTB11 Zornitza Stark reviewed gene: ZBTB11: Rating: AMBER; Mode of pathogenicity: None; Publications: 29893856; Phenotypes: Intellectual developmental disorder, autosomal recessive 69, OMIM #618383; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.1588 VARS Zornitza Stark reviewed gene: VARS: Rating: GREEN; Mode of pathogenicity: None; Publications: 30755616, 30755602, 26539891, 29691655, 30275004; Phenotypes: Neurodevelopmental disorder with microcephaly, seizures, and cortical atrophy, OMIM #617802; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.1567 TPH2 Zornitza Stark Phenotypes for gene: TPH2 were changed from to {Attention deficit-hyperactivity disorder, susceptibility to, 7} 613003
Mendeliome v0.1563 TPH2 Zornitza Stark reviewed gene: TPH2: Rating: RED; Mode of pathogenicity: None; Publications: 18347598; Phenotypes: {Attention deficit-hyperactivity disorder, susceptibility to, 7} 613003; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.1553 TMEM94 Zornitza Stark gene: TMEM94 was added
gene: TMEM94 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: TMEM94 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMEM94 were set to 30526868
Phenotypes for gene: TMEM94 were set to Intellectual developmental disorder with cardiac defects and dysmorphic facies, MIM#618316
Review for gene: TMEM94 was set to GREEN
Added comment: 10 individuals from 6 unrelated families.
Sources: Expert list
Mendeliome v0.1485 CDK13 Zornitza Stark Phenotypes for gene: CDK13 were changed from to Congenital heart defects, dysmorphic facial features, and intellectual developmental disorder, MIM#617360
Mendeliome v0.1482 CDK13 Zornitza Stark reviewed gene: CDK13: Rating: GREEN; Mode of pathogenicity: None; Publications: 29021403, 29393965, 30904094; Phenotypes: Congenital heart defects, dysmorphic facial features, and intellectual developmental disorder, MIM#617360; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.1471 COX4I2 Zornitza Stark edited their review of gene: COX4I2: Added comment: Glu138Lys present in 3 homozygotes in gnomad, wich is out of keeping for this rare metabolic disorder. Note no other variants reported in this gene since original report in 2009. All variants submitted to ClinVar are VOUS/LB/B.; Changed rating: RED
Mendeliome v0.1405 SLC6A4 Zornitza Stark Phenotypes for gene: SLC6A4 were changed from to {Obsessive-compulsive disorder}, MIM# 164230; depression; alcohol dependence
Mendeliome v0.1401 SLC6A4 Zornitza Stark reviewed gene: SLC6A4: Rating: RED; Mode of pathogenicity: None; Publications: 31629822; Phenotypes: {Obsessive-compulsive disorder}, MIM# 164230, depression, alcohol dependence; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.1377 INTS1 Zornitza Stark Phenotypes for gene: INTS1 were changed from to Neurodevelopmental disorder with cataracts, poor growth, and dysmorphic facies, MIM# 618571
Mendeliome v0.1374 INTS1 Zornitza Stark reviewed gene: INTS1: Rating: GREEN; Mode of pathogenicity: None; Publications: 28542170, 30622326, 31428919; Phenotypes: Neurodevelopmental disorder with cataracts, poor growth, and dysmorphic facies, MIM# 618571; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.1363 PEX6 Zornitza Stark Phenotypes for gene: PEX6 were changed from to Heimler syndrome 2, MIM# 616617; Peroxisome biogenesis disorder 4A (Zellweger), MIM# 614862; Peroxisome biogenesis disorder 4B, MIM# 614863
Mendeliome v0.1357 PEX6 Elena Savva reviewed gene: PEX6: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 29220678; Phenotypes: Peroxisome biogenesis disorder 4B, Heimler syndrome 2, Peroxisome biogenesis disorder 4A (Zellweger); Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.1344 CSGALNACT1 Tiong Tan gene: CSGALNACT1 was added
gene: CSGALNACT1 was added to Mendeliome. Sources: Expert Review,Literature
Mode of inheritance for gene: CSGALNACT1 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: CSGALNACT1 were set to Congenital disorders of glycosylation; skeletal dysplasia; advanced bone age
Review for gene: CSGALNACT1 was set to GREEN
Added comment: Two unrelated families and functional studies
Sources: Expert Review, Literature
Mendeliome v0.1320 LNPK Zornitza Stark Phenotypes for gene: LNPK were changed from to Neurodevelopmental disorder with epilepsy and hypoplasia of the corpus callosum, MIM# 618090
Mendeliome v0.1316 LNPK Zornitza Stark reviewed gene: LNPK: Rating: AMBER; Mode of pathogenicity: None; Publications: 30032983; Phenotypes: Neurodevelopmental disorder with epilepsy and hypoplasia of the corpus callosum, MIM# 618090; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.1308 INTS8 Zornitza Stark Phenotypes for gene: INTS8 were changed from to Neurodevelopmental disorder with cerebellar hypoplasia and spasticity, MIM# 618572
Mendeliome v0.1304 INTS8 Zornitza Stark reviewed gene: INTS8: Rating: RED; Mode of pathogenicity: None; Publications: 28542170; Phenotypes: Neurodevelopmental disorder with cerebellar hypoplasia and spasticity, MIM# 618572; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.1251 GABBR2 Zornitza Stark Phenotypes for gene: GABBR2 were changed from to Neurodevelopmental disorder with poor language and loss of hand skills, 617903
Mendeliome v0.1248 GABBR2 Zornitza Stark reviewed gene: GABBR2: Rating: GREEN; Mode of pathogenicity: None; Publications: 29100083, 28061363, 28135719, 28856709, 29369404, 29377213; Phenotypes: Neurodevelopmental disorder with poor language and loss of hand skills, 617903; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.1232 ACTB Sebastian Lunke Phenotypes for gene: ACTB were changed from to Baraitser-Winter syndrome 1 243310; ACTB-related neurodevelopment disorder
Mendeliome v0.1220 ACTB Melanie Marty reviewed gene: ACTB: Rating: GREEN; Mode of pathogenicity: Other; Publications: 29220674; Phenotypes: ?Dystonia, juvenile-onset 607371, Baraitser-Winter syndrome 1 243310, ACTB-related neurodevelopment disorder; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Current diagnostic: yes
Mendeliome v0.1066 IRF2BPL Zornitza Stark Phenotypes for gene: IRF2BPL were changed from to Neurodevelopmental disorder with regression, abnormal movements, loss of speech, and seizures, MIM#618088
Mendeliome v0.1054 IRF2BPL Elena Savva reviewed gene: IRF2BPL: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 30057031; Phenotypes: Neurodevelopmental disorder with regression, abnormal movements, loss of speech, and seizures; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.1052 GNAO1 Zornitza Stark Phenotypes for gene: GNAO1 were changed from to Epileptic encephalopathy, early infantile, 17; Neurodevelopmental disorder with involuntary movements
Mendeliome v0.1048 GNAO1 Zornitza Stark reviewed gene: GNAO1: Rating: GREEN; Mode of pathogenicity: Other; Publications: 28747448, 30682224; Phenotypes: Epileptic encephalopathy, early infantile, 17, Neurodevelopmental disorder with involuntary movements; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.995 HCN2 Zornitza Stark Phenotypes for gene: HCN2 were changed from to Genetic epilepsy with febrile seizures plus; Other seizure disorders
Mendeliome v0.992 HCN2 Zornitza Stark edited their review of gene: HCN2: Added comment: Further cases identified. Evidence for both mono-allelic and bi-allelic variants causing disease; also evidence for both GoF and LoF as mechanism.; Changed rating: GREEN; Changed publications: 22131395, 30986657, 29064616, 20437590, 12514127, 17931874; Changed phenotypes: Genetic epilepsy with febrile seizures plus, Other seizure disorders; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.991 CTBP1 Zornitza Stark gene: CTBP1 was added
gene: CTBP1 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: CTBP1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CTBP1 were set to 27094857; 28955726; 31041561
Phenotypes for gene: CTBP1 were set to Hypotonia, ataxia, developmental delay, and tooth enamel defect syndrome, MIM#617915
Review for gene: CTBP1 was set to GREEN
gene: CTBP1 was marked as current diagnostic
Added comment: At least 12 unrelated individuals reported with this neurodevelopmental disorder.
Sources: Expert list
Mendeliome v0.987 CNOT2 Sebastian Lunke gene: CNOT2 was added
gene: CNOT2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: CNOT2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CNOT2 were set to 31512373; 31145527; 28135719
Phenotypes for gene: CNOT2 were set to Intellectual developmental disorder with nasal speech, dysmorphic facies, and variable skeletal anomalies 618608
Review for gene: CNOT2 was set to GREEN
gene: CNOT2 was marked as current diagnostic
Added comment: From GEL: Three independent patients with non-sense or intra-genic deletions
Sources: Expert list
Mendeliome v0.965 STT3B Zornitza Stark Phenotypes for gene: STT3B were changed from to Congenital disorder of glycosylation, type Ix 615597
Mendeliome v0.963 STT3B Zornitza Stark reviewed gene: STT3B: Rating: RED; Mode of pathogenicity: None; Publications: 23842455; Phenotypes: Congenital disorder of glycosylation, type Ix 615597; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.963 SLC39A8 Zornitza Stark Phenotypes for gene: SLC39A8 were changed from to Congenital disorder of glycosylation, type IIn , MIM#16721
Mendeliome v0.957 FUK Zornitza Stark gene: FUK was added
gene: FUK was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: FUK was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FUK were set to 30503518
Phenotypes for gene: FUK were set to Congenital disorder of glycosylation with defective fucosylation 2, MIM# 618324
Review for gene: FUK was set to AMBER
Added comment: Two unrelated individuals reported.
Sources: Literature
Mendeliome v0.955 ZNF142 Zornitza Stark gene: ZNF142 was added
gene: ZNF142 was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: ZNF142 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNF142 were set to 31036918
Phenotypes for gene: ZNF142 were set to Neurodevelopmental disorder with impaired speech and hyperkinetic movements, MIM#618425
Review for gene: ZNF142 was set to GREEN
gene: ZNF142 was marked as current diagnostic
Added comment: 7 individuals from 4 unrelated families reported.
Sources: Expert list
Mendeliome v0.951 NBEA Zornitza Stark gene: NBEA was added
gene: NBEA was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: NBEA was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: NBEA were set to 30269351; 28554332; 12746398; 12826745; 11450821; 3377648; 23277425; 22109531; 23153818
Phenotypes for gene: NBEA were set to Intellectual disability; Seizures
Review for gene: NBEA was set to GREEN
gene: NBEA was marked as current diagnostic
Added comment: 24 de novo variants reported in individuals with a neurodevelopmental disorder
Sources: Expert list
Mendeliome v0.939 HNRNPR Zornitza Stark gene: HNRNPR was added
gene: HNRNPR was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: HNRNPR was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: HNRNPR were set to 26795593; 31079900
Phenotypes for gene: HNRNPR were set to Intellectual disability; seizures
Review for gene: HNRNPR was set to GREEN
gene: HNRNPR was marked as current diagnostic
Added comment: Five unrelated individuals reported with de novo variants and a neurodevelopmental disorder.
Sources: Expert list
Mendeliome v0.935 GNB5 Zornitza Stark Phenotypes for gene: GNB5 were changed from to Intellectual developmental disorder with cardiac arrhythmia, 617173; Language delay and ADHD/cognitive impairment with or without cardiac arrhythmia, 617182; Early infantile epileptic encephalopathy (EIEE)
Mendeliome v0.931 FAR1 Zornitza Stark Phenotypes for gene: FAR1 were changed from to Peroxisomal fatty acyl-CoA reductase 1 disorder, MIM#616154
Mendeliome v0.928 FAR1 Zornitza Stark reviewed gene: FAR1: Rating: AMBER; Mode of pathogenicity: None; Publications: 25439727; Phenotypes: Peroxisomal fatty acyl-CoA reductase 1 disorder, MIM#616154; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.912 DHPS Zornitza Stark gene: DHPS was added
gene: DHPS was added to Mendeliome. Sources: Expert list
Mode of inheritance for gene: DHPS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DHPS were set to 30661771
Phenotypes for gene: DHPS were set to Neurodevelopmental disorder with seizures and speech and walking impairment, MIM#618480
Review for gene: DHPS was set to GREEN
gene: DHPS was marked as current diagnostic
Added comment: 5 individuals from 4 unrelated families with biallelic pathogenic variants in DHPS, note one variant is recurrent (c.518A>G or p.Asn173Ser). The phenotype consisted of DD/ID (5/5), tone abnormalities (hypotonia/hypertonia/spasticity - 5/5), seizures (5/5 - in one case though unclear staring spells) with EEG abnormalities (5/5). Additionally most individuals displayed behavioral issues, or some common facial features
Sources: Expert list
Mendeliome v0.907 DDOST Zornitza Stark Phenotypes for gene: DDOST were changed from to Congenital disorder of glycosylation, type Ir, MIM# 614507
Mendeliome v0.903 DDOST Zornitza Stark reviewed gene: DDOST: Rating: AMBER; Mode of pathogenicity: None; Publications: 22305527; Phenotypes: Congenital disorder of glycosylation, type Ir, MIM# 614507; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.888 MTHFS Zornitza Stark gene: MTHFS was added
gene: MTHFS was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MTHFS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MTHFS were set to 30031689; 31844630; 22303332
Phenotypes for gene: MTHFS were set to Neurodevelopmental disorder with microcephaly, epilepsy, and hypomyelination, 618367
Review for gene: MTHFS was set to GREEN
Added comment: Three unrelated individuals reported with supporting biochemical evidence.
Sources: Literature
Mendeliome v0.880 CACNA1B Zornitza Stark Phenotypes for gene: CACNA1B were changed from to Neurodevelopmental disorder with seizures and nonepileptic hyperkinetic movements, MIM# 618497
Mendeliome v0.877 CACNA1B Zornitza Stark reviewed gene: CACNA1B: Rating: GREEN; Mode of pathogenicity: None; Publications: 30982612; Phenotypes: Neurodevelopmental disorder with seizures and nonepileptic hyperkinetic movements, MIM# 618497; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.875 NTNG2 Zornitza Stark Phenotypes for gene: NTNG2 were changed from Intellectual disability; autism; dysmorphic features to Intellectual disability; autism; dysmorphic features; Neurodevelopmental disorder with behavioral abnormalities, absent speech, and hypotonia, MIM# 618718
Mendeliome v0.835 IQSEC1 Zornitza Stark gene: IQSEC1 was added
gene: IQSEC1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: IQSEC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: IQSEC1 were set to 31607425
Phenotypes for gene: IQSEC1 were set to Intellectual developmental disorder with short stature and behavioral abnormalities, MIM# 618687
Review for gene: IQSEC1 was set to GREEN
Added comment: Five individuals from two unrelated families reported, animal model data.
Sources: Literature
Mendeliome v0.828 LEMD2 Alison Yeung gene: LEMD2 was added
gene: LEMD2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: LEMD2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: LEMD2 were set to PMID: 30905398
Phenotypes for gene: LEMD2 were set to progeroid disorder
Review for gene: LEMD2 was set to AMBER
Added comment: two reported unrelated individuals, limited functional evidence
Sources: Literature
Mendeliome v0.818 MAPK8IP3 Zornitza Stark gene: MAPK8IP3 was added
gene: MAPK8IP3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MAPK8IP3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MAPK8IP3 were set to 30612693
Phenotypes for gene: MAPK8IP3 were set to Neurodevelopmental disorder with or without variable brain abnormalities OMIM# 605431
Review for gene: MAPK8IP3 was set to GREEN
Added comment: >3 reported individuals and functional evidence in Caenorhabditis elegans
Sources: Literature
Mendeliome v0.797 TET3 Zornitza Stark gene: TET3 was added
gene: TET3 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: TET3 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: TET3 were set to 31928709
Phenotypes for gene: TET3 were set to Intellectual disability; dysmorphic features; abnormal growth; movement disorders
Review for gene: TET3 was set to GREEN
Added comment: Eleven individuals from 8 families described. Mono-allelic frameshift and nonsense variants occur throughout the coding region. Mono-allelic and bi-allelic missense variants localize to conserved residues; all but one such variant occur within the catalytic domain, and most display hypomorphic function in an assay of catalytic activity.
Sources: Literature
Mendeliome v0.788 TDP2 Zornitza Stark gene: TDP2 was added
gene: TDP2 was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: TDP2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TDP2 were set to 31410782; 30109272; 24658003
Phenotypes for gene: TDP2 were set to Spinocerebellar ataxia, autosomal recessive 23; OMIM #616949
Review for gene: TDP2 was set to GREEN
Added comment: ID is part of the phenotype: 4 families with 6 affected patients, with functional evidence.

1 family with 3 affected sibs with homozygous splice site mutation in the TDP2 gene. Patient cell extracts showed absence of the full-length TDP2 protein and absence of 5-prime TDP activity, consistent with a loss of function, although 3-prime TDP activity, conferred by TDP1, was normal. In addition, patient lymphoblastoid cells were hypersensitive to the TOP2 poison etoposide. The findings indicated impaired capacity for double-strand break repair.

1 unrelated Egyptian patient with a similar disorder was homozygous for a truncating mutation in the TDP2 gene

1 unrelated Caucasian patient with same homozygous splice site mutation in the TDP2 gene. Western blot analysis did not detect TDP2 protein in patient primary skin fibroblasts. Patient fibroblasts showed an inability to rapidly repair topoisomerase-induced DNA double-strand breaks in the nucleus and also showed a profound hypersensitivity to this type of DNA damage. Complementation of patient cells with recombinant human TDP2 restored normal rates of nuclear DSB repair.
Sources: Expert list
Mendeliome v0.786 TRMT1 Zornitza Stark gene: TRMT1 was added
gene: TRMT1 was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: TRMT1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TRMT1 were set to 30289604; 26308914; 21937992
Phenotypes for gene: TRMT1 were set to Mental retardation, autosomal recessive 68; OMIM #618302
Review for gene: TRMT1 was set to GREEN
Added comment: 4 families reported:
-1 consanguineous Iranian family with 5 individuals with nonsyndromic moderate to severe impaired intellectual development.
-1 consanguineous Iranian family with 3 adult brothers with global developmental delay and moderately delayed intellectual development
-2 unrelated Pakistani families with 4 patients with impaired intellectual development.
All with homozygous mutations in the TRMT1 gene which segregated with the disorder in the families, but functional studies of the variants were not performed.
Sources: Expert list
Mendeliome v0.785 SLC35A3 Zornitza Stark Added comment: Comment when marking as ready: 1 family with 2 sibs, with segregation but no functional studies.

1 family with 8 affected people. The mutations segregated with the disorder in the family. Patient cells showed no normal transcript, indicating that they had no functional SLC35A3 protein. Golgi vesicles derived from patient fibroblasts showed significantly reduced transport of UDP-GlCNAc compared to controls.
Mendeliome v0.780 SLC9A7 Zornitza Stark gene: SLC9A7 was added
gene: SLC9A7 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: SLC9A7 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: SLC9A7 were set to 30335141
Phenotypes for gene: SLC9A7 were set to Intellectual developmental disorder, X-linked 108; OMIM #301024
Review for gene: SLC9A7 was set to AMBER
Added comment: 6 males from 2 unrelated families with hemizygous missense mutation in the SLC9A7 gene. The mutation segregated with the disorder in the family. In vitro functional expression studies in CHO cells (AP-1 cells) showed that the mutation caused decreased levels of protein expression and reduced oligosaccharide maturation/glycosylation compared to wildtype, indicating impaired posttranslational processing. Subcellular localization studies indicated that protein trafficking was unaffected by the mutation. However, examination of the trans-Golgi compartment suggested a gain-of-function effect and a perturbation of glycosylation of secretory cargo. Serum transferrin studies in 1 patient suggested a glycosylation defect.
Sources: Literature
Mendeliome v0.778 KIAA1161 Zornitza Stark gene: KIAA1161 was added
gene: KIAA1161 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: KIAA1161 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: KIAA1161 were set to 30656188; 30649222; 30460687; 29910000
Phenotypes for gene: KIAA1161 were set to Basal ganglia calcification, idiopathic, 7, autosomal recessive; OMIM #618317
Review for gene: KIAA1161 was set to GREEN
Added comment: Total 9 families, but no functional evidence:

12 patients from 6 unrelated Chinese families reported by Yao et al. (2018) and homozygous or compound heterozygous mutations in the MYORG gene. Functional studies of the variants and studies of patient cells were not performed, but the presence of nonsense mutations suggested a loss of function.

1 Chinese woman identified with homozygous nonsense mutation in the MYORG gene, segregated with the disorder in the family. Functional studies of the variant and studies of patient cells were not performed.

2 unrelated Middle Eastern families with homozygous mutations in the MYORG gene, which segregated with the disorder in the families. Functional studies of the variants were not performed.

4 sibs from one Turkish family with homozygous missense mutation in the MYORG gene, which segregated with the disorder in the family. Functional studies of the variant and studies of patient cells were not performed.
Sources: Literature
Mendeliome v0.717 DNASE2 Zornitza Stark gene: DNASE2 was added
gene: DNASE2 was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: DNASE2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DNASE2 were set to 29259162; 31775019
Phenotypes for gene: DNASE2 were set to Auto-inflammatory disorder; splenomegaly; glomerulonephritis; liver fibrosis; arthritis; HLH
Review for gene: DNASE2 was set to GREEN
Added comment: Inflammatory disorder characterized by splenomegaly, glomerulonephritis, liver fibrosis, circulating anti-DNA autoantibodies, and progressive arthritis. Three families and functional data.
Sources: Expert list
Mendeliome v0.703 AP2M1 Zornitza Stark gene: AP2M1 was added
gene: AP2M1 was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: AP2M1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: AP2M1 were set to 31104773
Phenotypes for gene: AP2M1 were set to Intellectual developmental disorder 60 with seizures, MIM# 618587
Review for gene: AP2M1 was set to GREEN
Added comment: Four unrelated individuals reported, recurrent variant, NM_004068.3:c.508C>T or p.Arg170Trp.
Sources: Expert list
Mendeliome v0.638 RSRC1 Zornitza Stark gene: RSRC1 was added
gene: RSRC1 was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: RSRC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RSRC1 were set to 28640246; 29522154
Phenotypes for gene: RSRC1 were set to Intellectual developmental disorder, autosomal recessive 70, MIM# 618402
Review for gene: RSRC1 was set to AMBER
Added comment: Two unrelated families reported, 8 affected individuals.
Sources: Expert list
Mendeliome v0.636 METTL5 Zornitza Stark gene: METTL5 was added
gene: METTL5 was added to Mendeliome_VCGS. Sources: Expert list
Mode of inheritance for gene: METTL5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: METTL5 were set to 29302074; 31564433
Phenotypes for gene: METTL5 were set to Intellectual developmental disorder, autosomal recessive 72, MIM# 618665
Review for gene: METTL5 was set to GREEN
Added comment: Three unrelated families and animal model.
Sources: Expert list
Mendeliome v0.553 RNF13 Zornitza Stark gene: RNF13 was added
gene: RNF13 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: RNF13 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RNF13 were set to 30595371
Phenotypes for gene: RNF13 were set to Epileptic encephalopathy, early infantile, 73, MIM# 618379
Mode of pathogenicity for gene: RNF13 was set to Other
Review for gene: RNF13 was set to GREEN
Added comment: Three unrelated individuals with de novo gain-of-function variants in this gene reported; severe neurodegenerative disorder, seizures are a prominent part of the phenotype.
Sources: Literature
Mendeliome v0.540 PPP1R12A Zornitza Stark Phenotypes for gene: PPP1R12A were changed from to Intellectual disability; holoprosencephaly; disorder of sex development
Mendeliome v0.415 EEF1B2 Zornitza Stark gene: EEF1B2 was added
gene: EEF1B2 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: EEF1B2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EEF1B2 were set to 31845318; 21937992
Phenotypes for gene: EEF1B2 were set to Intellectual disability
Review for gene: EEF1B2 was set to AMBER
Added comment: 5 individuals from two unrelated families described in the literature so far, no functional data but gene belongs to a family implicated in neurodevelopmental disorders.
Sources: Literature
Mendeliome v0.359 PPP1R12A Zornitza Stark reviewed gene: PPP1R12A: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Intellectual disability, holoprosencephaly, disorder of sex development; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.343 CSNK1E Zornitza Stark gene: CSNK1E was added
gene: CSNK1E was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: CSNK1E was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CSNK1E were set to 30488659
Phenotypes for gene: CSNK1E were set to Epileptic encephalopathy
Review for gene: CSNK1E was set to RED
Added comment: De novo splicing variant reported but in conjunction with STXBP1 variants; authors postulate it may contribute to susceptibility. Also reports linking variants in this gene to psychiatric disorders.
Sources: Literature
Mendeliome v0.333 ZMIZ1 Zornitza Stark gene: ZMIZ1 was added
gene: ZMIZ1 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: ZMIZ1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ZMIZ1 were set to 30639322
Phenotypes for gene: ZMIZ1 were set to Neurodevelopmental disorder with dysmorphic facies and distal skeletal anomalies; OMIM #618659
Review for gene: ZMIZ1 was set to GREEN
Added comment: 19 unrelated individuals with heterozygous variants in this gene reported.
Sources: Literature
Mendeliome v0.331 VAMP2 Zornitza Stark gene: VAMP2 was added
gene: VAMP2 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: VAMP2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: VAMP2 were set to 30929742
Phenotypes for gene: VAMP2 were set to Intellectual disability; Autism
Review for gene: VAMP2 was set to GREEN
Added comment: 5 unrelated patients with heterozygous de novo mutations in VAMP2, presenting with a neurodevelopmental disorder characterized by axial hypotonia, intellectual disability, and autistic features. Affected individuals carrying de novo non-synonymous variants involving the C-terminal region presented a more severe phenotype with additional neurological features, including central visual impairment, hyperkinetic movement disorder, and epilepsy or electroencephalography abnormalities. Reconstituted fusion involving a lipid-mixing assay indicated impairment in vesicle fusion as one of the possible associated disease mechanisms.
Sources: Literature
Mendeliome v0.322 SVBP Zornitza Stark gene: SVBP was added
gene: SVBP was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: SVBP was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SVBP were set to 31363758; 30607023
Phenotypes for gene: SVBP were set to Neurodevelopmental disorder with ataxia, hypotonia, and microcephaly; OMIM #618569
Review for gene: SVBP was set to GREEN
Added comment: 5 unrelated families with homozygous mutations in SVBP. The mutations segregated with the disorder in all families. In vitro functional cellular expression studies showed that protein levels of the SVBP mutants were barely detectable, suggesting instability, and that the mutant proteins had lost VASH/SVBP catalytic detyrosination activity toward tubulin. Knockdown of about 50% Svbp expression using shRNA in rat hippocampal neurons impaired the formation of excitatory synapses compared to controls.
Sources: Literature
Mendeliome v0.311 PPP2CA Zornitza Stark gene: PPP2CA was added
gene: PPP2CA was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: PPP2CA was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PPP2CA were set to 30595372
Phenotypes for gene: PPP2CA were set to Neurodevelopmental disorder and language delay with or without structural brain abnormalities; OMIM #618354
Review for gene: PPP2CA was set to GREEN
Added comment: 15 unrelated patients with a neurodevelopmental disorder with de novo heterozygous PPP2CA mutations, and 1 with partial deletion of PPP2CA. Functional studies showed complete PP2A dysfunction in 4 individuals with seemingly milder ID, hinting at haploinsufficiency. Ten other individuals showed mutation-specific biochemical distortions, including poor expression, altered binding to the A subunit and specific B-type subunits, and impaired phosphatase activity and C-terminal methylation.
Sources: Literature
Mendeliome v0.301 POLR2A Sue White gene: POLR2A was added
gene: POLR2A was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: POLR2A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: POLR2A were set to 31353023
Phenotypes for gene: POLR2A were set to Neurodevelopmental disorder with hypotonia and variable intellectual and behavioral abnormalities, MIM# 618603
Mode of pathogenicity for gene: POLR2A was set to Other
Review for gene: POLR2A was set to GREEN
Added comment: 11 unrelated individuals reported with de novo variants in this gene. Missense variants postulated to exert a dominant-negative effect; LoF variants by contrast resulted in milder phenotype.
Sources: Literature
Mendeliome v0.299 PAK1 Zornitza Stark gene: PAK1 was added
gene: PAK1 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: PAK1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PAK1 were set to 31504246; 30290153
Phenotypes for gene: PAK1 were set to Intellectual developmental disorder with macrocephaly, seizures, and speech delay; OMIM #618158
Review for gene: PAK1 was set to GREEN
Added comment: 2 unrelated individuals with de novo PAK1 mutations, with developmental delay, secondary macrocephaly, seizures, and ataxic gait. Enhanced phosphorylation of the PAK1 targets JNK and AKT shown in fibroblasts of one subject and of c-JUN in those of both subjects compared with control subjects. In fibroblasts of the 2 affected individuals, they observed a trend toward enhanced PAK1 kinase activity. By using co-immunoprecipitation and size-exclusion chromatography, they observed a significantly reduced dimerization for both PAK1 mutants compared with wild-type PAK1.

4 unrelated individuals with intellectual disability, macrocephaly and seizures, with de novo heterozygous missense variants in PAK1.
Sources: Literature
Mendeliome v0.297 P4HTM Zornitza Stark gene: P4HTM was added
gene: P4HTM was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: P4HTM was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: P4HTM were set to 25078763; 30940925
Phenotypes for gene: P4HTM were set to Hypotonia, hypoventilation, impaired intellectual development, dysautonomia, epilepsy, and eye abnormalities; OMIM #618493
Review for gene: P4HTM was set to GREEN
Added comment: 12 patients from 5 families with hypotonia, intellectual disability, and eye abnormalities, and homozygous or compound heterozygous pathogenic P4HTM gene variants. Segregated with the disorder in the families. In vitro functional expression studies of 3 of the P4HTM variants showed that they caused a significant decrease in the amount of soluble protein compared to wildtype.
Sources: Literature
Mendeliome v0.294 NFASC Zornitza Stark gene: NFASC was added
gene: NFASC was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: NFASC was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NFASC were set to 31501903; 28940097; 30124836; 30850329; 31608123
Phenotypes for gene: NFASC were set to Neurodevelopmental disorder with central and peripheral motor dysfunction; OMIM #618356
Review for gene: NFASC was set to GREEN
Added comment: > 10 unrelated families reported, exhibiting a neurodevelopmental disorder (intellectual disability, developmental delay, motor impairment, speech difficulties, early onset demyelinating neuropathy), with homozygous variants in NFASC. Segregated with the disorder in the family. Some studies with functional evidence.
Sources: Literature
Mendeliome v0.269 FBXL3 Zornitza Stark gene: FBXL3 was added
gene: FBXL3 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: FBXL3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FBXL3 were set to 30481285
Phenotypes for gene: FBXL3 were set to Intellectual developmental disorder with short stature, facial anomalies, and speech defects; OMIM #606220
Review for gene: FBXL3 was set to GREEN
Added comment: Three unrelated families, multiple affected individuals.
Sources: Literature
Mendeliome v0.263 DYNC1I2 Zornitza Stark gene: DYNC1I2 was added
gene: DYNC1I2 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: DYNC1I2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DYNC1I2 were set to 31079899
Phenotypes for gene: DYNC1I2 were set to Neurodevelopmental disorder with microcephaly and structural brain anomalies , MIM#618492
Review for gene: DYNC1I2 was set to GREEN
Added comment: Five individuals from three unrelated families reported.
Sources: Literature
Mendeliome v0.256 DDX6 Zornitza Stark gene: DDX6 was added
gene: DDX6 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: DDX6 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DDX6 were set to 31422817
Phenotypes for gene: DDX6 were set to Intellectual developmental disorder with impaired language and dysmorphic facies, MIM#618653
Review for gene: DDX6 was set to GREEN
Added comment: Five unrelated individuals reported with 5 different de novo heterozygous missense mutations in exon 11 of the DDX6 gene. All variants occurred at conserved residues in either the QxxR or V motifs within the second RecA-2 domain of the helicase core; this region is involved in RNA and/or ATP binding, suggesting functional consequences.
Sources: Literature
Mendeliome v0.241 PUS7 Zornitza Stark gene: PUS7 was added
gene: PUS7 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: PUS7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PUS7 were set to 30526862; 30778726; 31583274
Phenotypes for gene: PUS7 were set to Intellectual developmental disorder with abnormal behavior, microcephaly, and short stature; OMIM #618342
Review for gene: PUS7 was set to GREEN
Added comment: 11 patients from 6 families with ID, speech delay, short stature, microcephaly, and aggressive behavior, with homozygous PUS7 mutations, which segregated with disease.
Sources: Literature
Mendeliome v0.229 BCL11B Zornitza Stark gene: BCL11B was added
gene: BCL11B was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: BCL11B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: BCL11B were set to 29985992
Phenotypes for gene: BCL11B were set to Intellectual developmental disorder with dysmorphic facies, speech delay, and T-cell abnormalities, MIM# 618092
Review for gene: BCL11B was set to GREEN
Added comment: Nine unrelated individuals, all but one with de novo variants in this gene and syndromic ID/immunodeficiency. Most variants located in the last exon (exon 4) and are predicted to escape nonsense-mediated mRNA decay.
Sources: Literature
Mendeliome v0.222 ALKBH8 Zornitza Stark gene: ALKBH8 was added
gene: ALKBH8 was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: ALKBH8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ALKBH8 were set to 31079898
Phenotypes for gene: ALKBH8 were set to Intellectual developmental disorder, autosomal recessive 71, MIM#618504
Review for gene: ALKBH8 was set to GREEN
Added comment: Two families and functional data.
Sources: Literature
Mendeliome v0.220 ACTL6B Zornitza Stark gene: ACTL6B was added
gene: ACTL6B was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: ACTL6B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ACTL6B were set to 31134736; 31031012; 30656450; 30237576
Phenotypes for gene: ACTL6B were set to Epileptic encephalopathy, early infantile, 76, MIM# 618468; Intellectual developmental disorder with severe speech and ambulation defects, MIM# 618470
Review for gene: ACTL6B was set to GREEN
Added comment: Over 10 unrelated individuals reported in the literature.
Sources: Literature
Mendeliome v0.14 KDM6B Zornitza Stark gene: KDM6B was added
gene: KDM6B was added to Mendeliome_VCGS. Sources: Literature
Mode of inheritance for gene: KDM6B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KDM6B were set to 31124279
Phenotypes for gene: KDM6B were set to Neurodevelopmental disorder with coarse facies and mild distal skeletal abnormalities, MIM#618505
Review for gene: KDM6B was set to GREEN
Added comment: 12 unrelated patients reported with de novo variants in this gene, no functional evidence.
Sources: Literature