Activity

Filter

Cancel
Date Panel Item Activity
14 actions
Intellectual disability syndromic and non-syndromic v0.5746 DOCK4 Sangavi Sivagnanasundram changed review comment from: 7 unrelated individuals reported with heterozygous variants (missense or null variants) in DOCK4. The individuals either had ID or DD between mild and moderate with brain abnormalities.

Functional assay neuro-2A Dock4 knockout cells by using the Alt-R CRISPR-Cas9 system utilizing two different guide RNAs (ko1 and ko2) and one nonspecific control guide RNA (C: control). The assay depicted the loss of function mechanism in the presence of either p.Arg853Leu and p.Asp946_Lys1966delinsValSer* (described as 945VS).; to: 7 unrelated individuals reported with heterozygous variants (missense or null variants) in DOCK4. The individuals either had ID or DD between mild and moderate with brain abnormalities. Two of the individuals are reportedly compound heterozygous.

Functional assay neuro-2A Dock4 knockout cells by using the Alt-R CRISPR-Cas9 system utilizing two different guide RNAs (ko1 and ko2) and one nonspecific control guide RNA (C: control). The assay depicted the loss of function mechanism in the presence of either p.Arg853Leu and p.Asp946_Lys1966delinsValSer* (described as 945VS).
Intellectual disability syndromic and non-syndromic v0.5746 DOCK4 Sangavi Sivagnanasundram changed review comment from: Well-established gene-disease association

7 unrelated individuals reported with heterozygous variants (missense or null variants) in DOCK4. The individuals either had ID or DD between mild and moderate with brain abnormalities.

Functional assay neuro-2A Dock4 knockout cells by using the Alt-R CRISPR-Cas9 system utilizing two different guide RNAs (ko1 and ko2) and one nonspecific control guide RNA (C: control). The assay depicted the loss of function mechanism in the presence of either p.Arg853Leu and p.Asp946_Lys1966delinsValSer* (described as 945VS).; to: 7 unrelated individuals reported with heterozygous variants (missense or null variants) in DOCK4. The individuals either had ID or DD between mild and moderate with brain abnormalities.

Functional assay neuro-2A Dock4 knockout cells by using the Alt-R CRISPR-Cas9 system utilizing two different guide RNAs (ko1 and ko2) and one nonspecific control guide RNA (C: control). The assay depicted the loss of function mechanism in the presence of either p.Arg853Leu and p.Asp946_Lys1966delinsValSer* (described as 945VS).
Intellectual disability syndromic and non-syndromic v0.5684 SP9 Zornitza Stark Marked gene: SP9 as ready
Intellectual disability syndromic and non-syndromic v0.5684 SP9 Zornitza Stark Gene: sp9 has been classified as Green List (High Evidence).
Intellectual disability syndromic and non-syndromic v0.5684 SP9 Zornitza Stark Classified gene: SP9 as Green List (high evidence)
Intellectual disability syndromic and non-syndromic v0.5684 SP9 Zornitza Stark Gene: sp9 has been classified as Green List (High Evidence).
Intellectual disability syndromic and non-syndromic v0.5683 SP9 Suliman Khan gene: SP9 was added
gene: SP9 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SP9 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SP9 were set to PMID: 38288683
Phenotypes for gene: SP9 were set to neurodevelopmental disorder MONDO:0700092
Review for gene: SP9 was set to GREEN
Added comment: PMID: 38288683: reported 5 unrelated patients with de novo heterozygous variants (missense and PTV) in SP9 gene. In silico and in vitro studies suggested a novel form of interneuronopathy with variable severity depending on the presence of loss or gain of function variants. Patients with loss-of-function variants had ID, ASD, and epilepsy, whereas missense variants in the second C2H2 binding domain result in hypomorphic and neomorphic DNA binding functions that cause severe epileptic encephalopathy. The author suggested a novel form of interneuronopathy with variable severity depending on the presence of loss or gain of function variants.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3208 USP9X Zornitza Stark Marked gene: USP9X as ready
Intellectual disability syndromic and non-syndromic v0.3208 USP9X Zornitza Stark Gene: usp9x has been classified as Green List (High Evidence).
Intellectual disability syndromic and non-syndromic v0.3208 USP9X Zornitza Stark Phenotypes for gene: USP9X were changed from to Mental retardation, X-linked 99, XLR (MIM#300919) and XLD (MIM#300968)
Intellectual disability syndromic and non-syndromic v0.3207 USP9X Zornitza Stark Publications for gene: USP9X were set to
Intellectual disability syndromic and non-syndromic v0.3206 USP9X Zornitza Stark Mode of inheritance for gene: USP9X was changed from Unknown to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Intellectual disability syndromic and non-syndromic v0.3199 USP9X Paul De Fazio reviewed gene: USP9X: Rating: GREEN; Mode of pathogenicity: None; Publications: 31443933, 26833328; Phenotypes: Mental retardation, X-linked 99, XLR (MIM#300919) and XLD (MIM#300968); Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males); Current diagnostic: yes
Intellectual disability syndromic and non-syndromic v0.0 USP9X Zornitza Stark gene: USP9X was added
gene: USP9X was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Expert Review Green,Genetic Health Queensland
Mode of inheritance for gene: USP9X was set to Unknown