Activity

Filter

Cancel
Date Panel Item Activity
13 actions
BabyScreen+ newborn screening v1.114 WT1 Tommy Li Added phenotypes Wilms tumor, type 1, MIM#194070 for gene: WT1
BabyScreen+ newborn screening v1.103 TRIM28 Zornitza Stark gene: TRIM28 was added
gene: TRIM28 was added to BabyScreen+ newborn screening. Sources: Expert list
Mode of inheritance for gene: TRIM28 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TRIM28 were set to 30694527
Phenotypes for gene: TRIM28 were set to Wilms tumour, MONDO:0006058, TRIM28-related
Review for gene: TRIM28 was set to GREEN
Added comment: Established gene-disease association, more than 10 individuals reported.

Onset in childhood.

Included for completeness as managed similarly to WT1.
Sources: Expert list
BabyScreen+ newborn screening v1.89 REST Zornitza Stark gene: REST was added
gene: REST was added to BabyScreen+ newborn screening. Sources: Expert list
cancer, treatable tags were added to gene: REST.
Mode of inheritance for gene: REST was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: REST were set to 26551668; 34308104
Phenotypes for gene: REST were set to {Wilms tumor 6, susceptibility to}, MIM# 616806
Review for gene: REST was set to GREEN
Added comment: Established association, more than 10 families reported.

Childhood onset.

Included for completeness as managed similarly to WT1.
Sources: Expert list
BabyScreen+ newborn screening v0.1835 WT1 Zornitza Stark Classified gene: WT1 as Green List (high evidence)
BabyScreen+ newborn screening v0.1835 WT1 Zornitza Stark Gene: wt1 has been classified as Green List (High Evidence).
BabyScreen+ newborn screening v0.1834 WT1 Zornitza Stark Tag for review was removed from gene: WT1.
BabyScreen+ newborn screening v0.1834 WT1 Zornitza Stark changed review comment from: Rated as 'moderate actionability' in paediatric patients by ClinGen.

Individuals with germline WT1 pathogenic variants are more likely to have bilateral or multicentric tumors and to develop tumors at an early age. The median age of diagnosis is between 3 and 4 years and both kidneys are affected in ~5% of children. Significantly more females than males have the bilateral disease. Adult forms are very rare. In the majority of cases, the prognosis is favorable with a survival rate of over 90%.

The goal of surveillance in individuals with a genetic predisposition to WT is to

detect tumors while they are low-stage and require less treatment compared to advanced-stage tumors. Surveillance is not a one-time event and should continue through the period of risk. WTs can double in size every week, leading to the recommendation that evaluation with abdominal ultrasound be performed every 3-4 months, with and no less frequently than 3 times a year, until age five years. Even at this frequency, occasional tumors may present clinically between scans and families should be made aware of this. However, there is no evidence to suggest that such tumors have a worse outcome.

No evidence was found on the effectiveness of surveillance in children with WT due to WT1 pathogenic variants. In addition, there is no clear evidence that surveillance results in a significant decrease in mortality or tumor stage generally. However, tumors detected by surveillance would be anticipated to be on average smaller than tumors that present clinically. There have been three small retrospective evaluations of WT surveillance published, only one of which reported a significant difference in stage distribution between screened and unscreened individuals. This report was a case series of children with Beckwith-Wiedemann syndrome and idiopathic hemihypertropy, where 0/12 screened children with WT had late-stage disease and 25/59 (42%) of unscreened children had late-stage WT (p<0.003). In addition, in Germany, where abdominal ultrasound in children is common and 10% of WT are diagnosed prior to symptoms, there are some data to suggest that asymptomatic tumors are of lower stage than those present due to clinical symptoms.

Penetrance is unclear. For review.; to: Rated as 'moderate actionability' in paediatric patients by ClinGen.

Individuals with germline WT1 pathogenic variants are more likely to have bilateral or multicentric tumors and to develop tumors at an early age. The median age of diagnosis is between 3 and 4 years and both kidneys are affected in ~5% of children. Significantly more females than males have the bilateral disease. Adult forms are very rare. In the majority of cases, the prognosis is favorable with a survival rate of over 90%.

The goal of surveillance in individuals with a genetic predisposition to WT is to

detect tumors while they are low-stage and require less treatment compared to advanced-stage tumors. Surveillance is not a one-time event and should continue through the period of risk. WTs can double in size every week, leading to the recommendation that evaluation with abdominal ultrasound be performed every 3-4 months, with and no less frequently than 3 times a year, until age five years. Even at this frequency, occasional tumors may present clinically between scans and families should be made aware of this. However, there is no evidence to suggest that such tumors have a worse outcome.

No evidence was found on the effectiveness of surveillance in children with WT due to WT1 pathogenic variants. In addition, there is no clear evidence that surveillance results in a significant decrease in mortality or tumor stage generally. However, tumors detected by surveillance would be anticipated to be on average smaller than tumors that present clinically. There have been three small retrospective evaluations of WT surveillance published, only one of which reported a significant difference in stage distribution between screened and unscreened individuals. This report was a case series of children with Beckwith-Wiedemann syndrome and idiopathic hemihypertropy, where 0/12 screened children with WT had late-stage disease and 25/59 (42%) of unscreened children had late-stage WT (p<0.003). In addition, in Germany, where abdominal ultrasound in children is common and 10% of WT are diagnosed prior to symptoms, there are some data to suggest that asymptomatic tumors are of lower stage than those present due to clinical symptoms.
BabyScreen+ newborn screening v0.1726 WT1 Zornitza Stark Marked gene: WT1 as ready
BabyScreen+ newborn screening v0.1726 WT1 Zornitza Stark Gene: wt1 has been classified as Amber List (Moderate Evidence).
BabyScreen+ newborn screening v0.1726 WT1 Zornitza Stark Phenotypes for gene: WT1 were changed from Denys-Drash syndrome; Wilms tumor, type 1; Frasier syndrome to Wilms tumor, type 1, MIM#194070
BabyScreen+ newborn screening v0.1725 WT1 Zornitza Stark Tag for review tag was added to gene: WT1.
Tag cancer tag was added to gene: WT1.
Tag treatable tag was added to gene: WT1.
BabyScreen+ newborn screening v0.1725 WT1 Zornitza Stark reviewed gene: WT1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Wilms tumor, type 1, MIM#194070; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
BabyScreen+ newborn screening v0.0 WT1 Zornitza Stark gene: WT1 was added
gene: WT1 was added to gNBS. Sources: BabySeq Category B gene,Expert Review Amber,BabySeq Category A gene
Mode of inheritance for gene: WT1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: WT1 were set to Denys-Drash syndrome; Wilms tumor, type 1; Frasier syndrome